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ALGEBRAIC EQUIVALENTS OF KUREPA’S
HYPOTHESES

R. M. DIMITRIĆ

Abstract. Kurepa trees have proved to be a very useful concept
with ever growing applications in diverse mathematical areas. We
give a brief survey of equivalent statements in algebra, particularly
in valuated vector spaces, abelian p-groups and non-abelian peri-
odic groups. The survey is prefaced by an outline of the illustrious
history of Kurepa’s Hypothesis. An interesting aspect of the work
in this area is the equivalence (via Kurepa’s Hypotheses) of some
statements in abelian group theory with statements in non-abelian
group theory. This kind of relationship would be hard to establish,
without Kurepa trees. The goal of the paper is to alert as well
as familiarize the readers with this active research amalgam of set
theory and algebra, but also to entice at least some to take part in
the work.

1. Kurepa’s trees and hypotheses

We first set the terminology in its modern form:
A strict partially ordered set (T,≤) is a tree if for every x ∈ T , the

set {y ∈ T : y < x} is well ordered in the induced ordering. The height
of x ∈ T , denoted by ht(x, T ), is the ordinal that is order equivalent
to the well ordered set {y ∈ T : y < x}. If α is an ordinal then
Levα(T ) = {x ∈ T : h(x, T ) = α} is the α-th level of T . The height of
(T,≤), denoted ht(T ), is the least ordinal τ such that Levτ (T ) = ∅. A
branch of T is a maximal linearly ordered subset of T ; it is well ordered
by the ordering of T . If b is a branch and b ∩ Levα(T ) 6= ∅ then the
intersection is a singleton and b∩Levβ(T ) 6= ∅ for all β < α; the length
of b is the least ordinal λ such that b ∩ Levλ(T ) = ∅. Note that this
ordinal is order equivalent to b. If the length of a branch b is λ we shall
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refer to b as a λ-branch. In this paper, κ will denote a regular cardinal
and B will denote the set of all κ-branches.

A tree (T,≤) is a κ-Kurepa tree if:

(1) ht(T ) = κ;
(2) for every α < κ, |Levα(T )| < κ;
(3) T has at least κ+ cofinal (κ-)branches.

The κ-Kurepa Hypothesis (κ-KH) is the statement “there is a κ-Kurepa
tree.” When κ = ω1 we have Kurepa’s Hypothesis (KH).

2. History of proofs of the consistency and independence
of KH1

The outline in this section has the following goals: to provide a
framework for more thorough historical investigations, to set additional
terminology as well as state consistency and independence results, and
to pose some questions of interest, whose answers are not at present
known to the author.

[Kurepa, 1935] (his dissertation reprinted) is among the first to con-
sider tree-like structures, called “ramification systems” (ensemble ram-
ifié, or tableau ramifié). In [Kurepa, 1942, p143], a discussion of
Souslin’s problem led the author to consideration of trees T of height
ω1, with at most countable levels (and nodes). It was stated (among
other hypotheses) that he did not know what the cardinality of the set
of maximal (linearly) ordered subsets of T of cardinality ℵ1 may be,
and it was proved that this cardinality is at least ℵ1 (but it obviously
cannot exceed 2ℵ1). Unable to prove many of his conjectures, Kurepa
in [Kurepa, 1935] speaks of working in the field of “many undecidable
postulates and principles”, just as in [Kurepa, 1952] there is a mention
of “ . . . immensité inconcevable d’hypothèses montrant des possibilités
logiques incroyables au sein du transfini”.

KH (or KC – Kurepa’s Conjecture as originally known) was initially
(c. 1943) the statement about Kurepa families: Let κ be a (regular)
cardinal (hence, the initial ordinal of that cardinality); a κ-Kurepa
family is a family F ⊆ P(κ) of cardinality at least κ+ such that, for
each α < κ, |{α ∩ Y : Y ∈ F}| < κ [Vaught, 1965, p85]. By a Kurepa
tree or a Kurepa family we shall mean an ω1-Kurepa tree or ω1-Kurepa
family respectively. The existence of a κ-Kurepa family is equivalent to
the existence of a κ-Kurepa tree (this was shown by Kurepa for κ = ω1;
see also [Ricabarra, 1958, spec. p. 344], where a great deal of Kurepa’s
pre 1955 work had been explored).

1Dj. Kurepa died in 1993. A brief sketch of Kurepa’s life and work may be found
in [Dimitrić, 1993].
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[Kurepa, 1935, 1951] and [Ricabarra, 1958] (see also [denjoy, 1946,
vol. III]) are the best sources on the theory of trees, before the emer-
gence of the method of forcing, Kurepa’s monograph not having lost its
vitality even nowadays. Kurepa initially conjectured that the negation
of KH was valid (but later changed his mind, not being perhaps fully
aware of what was to come).

New light was shed on these problems with the emergence of powerful
forcing methods in the 1960’s, as set out in [Cohen, 1963/4, 1966] and
their first applications as in [Feferman, 1965]. While looking into the
Löwenheim-Skolem theorems for pairs of cardinals, [Vaught, 1963, p.
309] realized that KH implies that there exists an (ω2, ω1) algebraic
structure of at most denumerable type without (ω1, ω0) elementary
substructures. Moreover κ+-KH is stated [Vaught, 1965, p. 85] to
be equivalent to the existence of a sentence in a first order language
(with equality) that has a relational structure model (A, U, Rβ) of type
(κ++, κ) (i.e. |A| = κ++, U ⊆ A, |U | = κ). If κ ≥ λ, the author (ibid.)
was interested in the following gap-two, two-cardinal conjecture (under
the GCH): For any countable set Σ of a first order language sentences,
if Σ has a model of type (κ++, κ), then Σ has a model of type (λ++, λ).
The affirmation of this conjecture would imply that κ+-KH → λ+- KH.

Vaught’s observations from 1963 were strengthened in Rowbottom’s
1964 Dissertation (see addendum in [Rowbottom, 1971], pp. 41–43),
where it was claimed that (if I represents the statement “there exists a
strongly inaccessible cardinal”, or the cardinal itself, when no confusion
arises) consistency of ZF + I implies consistency of ZFC + CH + KH.
The author stated that A. Lévy had discovered independently the same
results about three months earlier using forcing methods. No detailed
proofs or references were given. These observations can also be de-
scribed as follows: KH follows from the assumptions that ω1 is inacces-
sible in L and that no ordinal between ω1 and ω2 is a cardinal in L, for
in this case, the family F = {S ⊆ ω1 : S ∈ L} is a Kurepa family. This
is also the idea [Bukovský, 1966] uses to show that if ωα is a (regular)
strongly inaccessible cardinal and there are no cardinals between ωα

and ωα+1, then ωα-KH holds in P(ωα) ∩ L.
It turned out that the assumption of the existence of a strongly

inaccessible cardinal was not needed as shown by [Stewart, 1966], (a
student of Rowbottom), who proves in his Masters Thesis (taking ad-
vantage of the forcing ideas developed by [Lévy, 1965]) that consistency
of ZF implies consistency of ZFC + CH + KH. Solovay (unpublished;
see also [Přıkrý, 1968]) shows that ZF + V = L ` KH, (after [Jensen’s,
1968] construction of a Souslin tree in L — accomplished by Drake
too); in other words, KH is true in L and if X ⊆ ω1, then KH is
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true in L[X] (see a sketch of proofs in [Jech, 1971]). Jensen has ab-
stracted Solovay’s proof into ♦+ ` KH (see e.g. [Kunen, 1980]; note
that ZF + V = L −→ ♦+). Jensen also introduced ineffable cardinals
in order to generalize Kurepa trees: If κ is ineffable, then κ-KH does
not hold. KH (and ¬SH) was shown to be a consequence of the fol-
lowing statement satisfied in L [Silver, 1973, p. 164]: There exists a
function Q on ω1, which assigns to each ordinal α < ω1 a countable
collection Q(α) of subsets of α, such that the following holds: if X is
any subset of ω1, there is a club C of ω1, such that X ∩ α and C ∩ α
are both members of Q(α), for all α ∈ C. Thus were the consistency
questions regarding KH settled.

The question of independence of KH is also of interest, thus mod-
els satisfying the negation of Kurepa’s Hypothesis are needed. [Silver,
1971a] was able to construct a model of ZF + GCH+¬KH+ω2−KH as
follows: Start with a countable transitive model M of ZF + V = L + I
(V = L may be replaced by GCH); the desired model M [G] is ob-
tained from M by adjoining a generic sequence {fα : α < I} of col-

lapsing functions fα : ωM
1

onto−→ ωM
α , so that M [G] = {fα : α < I}.

One of the consequences is the independence of the above gap-two,
two-cardinal conjecture (modulo I and GCH). Recast in the relative
consistency language: ZFC + I is equiconsistent with ZFC +¬KH and
with ZFC + GCH + ¬KH. The negation of KH implies that ω2 is
inaccessible in L; thus, unlike the case of consistency of KH, for the
consistency of ¬KH, inaccessible cardinals are required, as was pointed
out by Solovay. [Silver, 1971a] claims that even a more general result
holds: If κ is a cardinal in some countable transitive model M of ZFC
and less than an inaccessible I in M , then a Cohen extension N of M
can be found satisfying: κN = κM , κ+N = κ+M , and ¬κ+-KH, κ++-KH
hold in N .

Chang’s conjecture is the following statement: Any relational struc-
ture (ω2, ω1, Rβ) has an elementary substructure (C, C ∩ ω1,

2C ∩Rβ),
where |C| = ℵ1 and C ∩ ω1 is countable. Chang’s conjecture implies
the negation of KH, for it implies the negation of the following weaker
statement: There is a cardinality ℵ2 family F of functions from ω1 to ω0

such that, for every f, g ∈ F with f 6= g, there is an α ∈ ω1, such that,
f(β) 6= f(α) for all β > α [Silver, 1971b]. For related considerations
see [Chang, 1972].

Note that if ZF is consistent, then so is GCH +♦+ ¬KH.

Some still open questions?

Q1: Can Bukovský’s proof be improved by not assuming I? The
affirmative answer would give consistency of κ-KH, for κ > ω1.



32 R. M. DIMITRIĆ

Q2: In Silver’s 1971a construction of the model, how does one get
rid of the assumption of GCH?

Q3:2 For a (regular) cardinal κ, can one get “decent” models of
ZFC (without assuming I or GCH) that have κ-Kurepa trees
with a prescribed number ℵ of κ-branches (κ+ ≤ ℵ ≤ 2κ)? The
emphasis is on the prescribed number of branches, thus κ-KH
may be assumed. If GCH is assumed, then would Silver’s above
claim suffice? A note in [Jech, 1971] affirms the question for
κ = ω1. [Jin, 1991] and [Jin and Shelah, 1993] may be related
to this question.

3. Valuated vector spaces

We now want to transfer the discussion about trees into the algebraic
language. We start with a tree (T,≤) and an arbitrary field (or a
ring) F . At each level of the tree we may generate the direct sum⊕

x∈Levα
Fx, and form the product

P =
∏

α<ht(T )

⊕
x∈Levα

Fx.

This two-dimensional product (an F -vector space in our case) reflects
the “ramified table” nature of a tree. We want to get even a closer
translation by introducing valuation into P . First a few general words
on valuation: A vector space V over a field F , is a valuated vector space
with a (logarithmic) valuation v : V → Ord ∪ {∞}, if the following
axioms hold: v(a) = ∞ iff a = 0, v(ta) = v(a) for all scalars t 6= 0, and
v(a + b) ≥ min{v(a), v(b)}. By V (α) we mean the subspace V (α) =
{x ∈ V : v(x) ≥ α}. If λ is a limit ordinal then by the λ-topology on
V we mean the linear topology having as a base for the neighborhoods
of 0 the set {V (α) : α < λ}. All the topologies in this paper are of
this kind. It is easy to see that if a, b ∈ V with v(a) 6= v(b) then
v(a + b) = min{v(a), v(b)}. If U and W are subspaces of V then by
V = U⊕̆W we mean the valuated direct sum, i.e., V = U ⊕ W and,
for all a ∈ U and b ∈ W , v(a + b) = min{v(a), v(b)}. All valuated
vector spaces in this paper are subject to some cardinality restrictions
in relation to the cardinality of the ground field F ; these conditions
will always be ensured for countable F . For more details on valuated
vector spaces see [Fuchs, 1975].

Given an abelian p-group A, its p-socle A[p] = {a ∈ A : pa = 0}
is a vector space over the finite field Z(p) of the integer remainders
mod p. The dimension dimZ(p) A[p] = rp(A) is called the p-rank of

2There is an answer to this question in the Addendum at the end of this paper.
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A. Another dimension of extreme importance is the following p-rank:
fα(A) = dimZ(p)(p

αA)[p]/(pα+1A)[p], called the α-th Ulm invariant of
A. pβA is defined inductively: p0A = A, pβ+1A = p(pβA), and for limit
β, pβA = ∩α<βpαA. The smallest ordinal λ such that pλ+1A = pλA is
the p-length of A, denoted by lp(A) = l(A). A valuation (the height
valuation) may be defined by the p-height of an element:

v(a) = hp(a) =


α, where a ∈ pαA \ pα+1A;

λ = l(A), if a ∈ pλA;

∞, if a = 0.

Thus, an α-neighborhood A(α) of zero consists of elements whose
height is ≥ α, and we have A(α) = pαA. Likewise the length of A
is the smallest ordinal α for which A(α) = A(α + 1). A subgroup of
A is α-high, if it is maximal with respect to trivial intersection with
A(α).

Returning to the ramified product, we define a valuation v : P −→
Ord ∪ {∞} by v(g) = min {α ∈ κ : g(α) 6= 0}. Each κ-branch of T
may be seen as an element of P — its α-th coordinate is simply its
unique intersection with the α-th level. If b ∈ B is a branch, then we
may form its α-th section bα to be the element of P coinciding with b
on indexes < α and 0 from α and upward. If a (valuated) vector space
V is defined to be generated by all the α sections (α < ht(T ) = κ) of

all the κ-branches of T , then the completion Ṽ in the κ-topology is of
cardinality at least |B|; this is because, for every branch b, {bi}i<κ is a
Cauchy net in V , converging to b in the κ-topology of V . A stronger
statement is in place if we concentrate on Kurepa trees:

Theorem 1. [Cutler and Dimitrić, 1993] Let κ be an uncountable regu-
lar cardinal and ℵ a cardinal greater than κ. Then there is a κ-Kurepa
tree with at least ℵ κ-branches if and only if for every field F of cardi-
nality < κ, there exists a valuated F -vector space V with the following
properties:

(a) |V | = κ,
(b) V (κ) = 0,
(c) for every i < κ, |V/V (i)| < κ,

(d) the completion Ṽ of V in the κ-topology has cardinality ≥ ℵ.

Remark: If in the theorem above |Ṽ | = ℵ, then the constructed κ-
Kurepa tree T has exactly ℵ κ-branches. Apparently an answer to Q3
in section 2 would help us fix the cardinality of the completion, rather
than have only an inequality.
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The reverse implication, starting from a valuated vector space with

the prescribed properties, uses the fact that the completion Ṽ may be
viewed as the inverse limit lim

←−
V/V (i), and the tree T = ∪i<κV/V (i)

is ordered via the inverse system maps.
Still, the last equivalence can be improved even further (alas only

one implication benefits); to this end we need the following natural
property: For a limit ordinal λ and an uncountable cardinal κ, we will
say that the valuated vector space V has the (λ, κ)-closure property if
it is Hausdorff in the λ-topology and if, for every subspace W of V of
cardinality < κ, its closure W in the λ-topology is also of cardinality
< κ. If V is Hausdorff in the λ-topology and is of cardinality < κ, then
V has the (λ, κ)-closure property; also free valuated vector spaces have
the (λ, κ)-closure property.

The following is a strengthened version of Theorem 1 (from the ex-
istence of a certain valuated vector space to the existence of a Kurepa
family); it is proved by building up the family using (two-dimensional)
κ-filtrations of V , and the technicalities of the proof can be found at
the source.

Theorem 2. [Cutler and Dimitrić, 1993] Let κ be an uncountable regu-
lar cardinal and ℵ a cardinal greater than κ. Then there is a κ-Kurepa
family of cardinality ≥ ℵ if and only if there exists a valuated vec-
tor space V of cardinality κ, over a field of cardinality < κ, with the
following properties:

(a) V (κ) = 0,
(b) for every (limit) i < κ, V/V (i) has the (i, κ)-closure property.

(c) the completion Ṽ of V in the κ-topology has cardinality ≥ ℵ.

It is our hope to extend elsewhere the work on valuated vector spaces
and their relationship with (not necessarily Kurepa) trees. The rest
of the paper shows further applications and equivalencies. We think
however that the methods used in arriving at these applications are still
too complicated to be called perfectly beautiful and the aim is to further
simplify them. This simplification would be realized exactly through
still better understanding of the relatinships between valuations and
trees.

4. Abelian p-groups

A well known and a relatively recently established relationship be-
tween axiomatic set theory and (abelian) group theory is that found
in the problem of J. H. C. Whitehead concerning torsion-free abelian
groups. The problem asks whether it is true that, if every extension of
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the integers Z by an abelian group A is splitting, (i.e. Ext(A, Z) = 0),
then A has to be a free abelian group. Here Ext(A, Z) stands for the
group of all congruence classes of exact sequences 0 −→ Z −→ X −→
A −→ 0 (extensions of Z by A) — the congruence roughly defined by
an isomorphism of the middle terms (this may be postulated to be a
small group — i.e. the underlying structure is a set, not a class). Of
course, if A is free, then every such extension splits. After a series of in-
complete and restricted answers to Whitehead’s problem (for instance,
if A is countable, then it has to be free), a somewhat surprising an-
swer was given in the 1970’s by Shelah, who showed that the answer to
Whitehead’s problem depended on the underlying axioms of set theory;
thus, in a model of ZFC + V = L, the group A has to be free, while in
a model of MA + ¬CH, A does not have to be free. This result was
perhaps rather more surprising at the time to abelian group theorists
than to set- and model-theorists, for long is the history of intertwining
of (abelian) group theory with set theory and logic; it goes back at
least as far as works of Tarski and Mal’cev in the 1950’s. In fact, one
may broadly say that uncountable cardinalities in algebraic structures
inevitably involve, often implicitly, model theoretical questions.

The theory of abelian groups (a referential monograph: [Fuchs, 1970])
nowadays seems to be divided into mainly non-intersecting areas (this
is, we think, because of the lack of better, unifying methods) of torsion-
free, torsion and (genuinely) mixed groups. While Whitehead’s prob-
lem involves torsion-free groups, we are in the realm of torsion groups
in this paper.

For the latter class of groups, another functor plays a prominent
role. It is the torsion product Tor(A, B) of groups A and B (see for
instance [Mac Lane, 1963]). This is the abelian group generated by
{(a, n, b) : a ∈ A, b ∈ B, n ∈ Z, na = 0, nb = 0}, subject to the follow-
ing relations: (a1 + a2, n, b) = (a1, n, b) + (a2, n, b), (a, n, b1 + b2) =
(a, n, b1) + (a, n, b2), (a, nm, b) = (na,m, b) = (a, n, mb). The name
apparently comes from the fact that only the torsion elements in A
and B are used for generating the product. Moreover the isomorphism
Tor(A, B) = ⊕pTor(Ap, Bp), where the summation is over all prime p
and Ap is the p-primary component of A, gives us freedom to concen-
trate on the p-groups only when considering torsion products. Every
p-group is representable as a torsion product: A = Tor(Z(p∞), A).
Note that by the symmetry of the definition, the torsion product is
commutative and it can be shown ([Mac Lane, 1960]) that it is also
associative, if the iterated torsion product is defined inductively by
Tor(A1, . . . , An) = Tor(Tor(A1, . . . , An−1), An), with Tor(A) = A. The
latter two properties of the torsion product would persuade us to adopt
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a new notation A©T B for the tensor product of A and B, proposed in
[Keef, 1996] and suggested by C. Metelli.

One of the first and in some sense the most important results in
abelian group theory comes from Frobenius and Stickelberger in 1878;
it establishes that every finite abelian group is a direct sum of a finite
number of cyclic groups each of order equal to a power of a prime num-
ber. This can be extended to say that every finitely generated group is
a direct sum of a finite number of cyclic groups. The simplicity of the
representation here stems from two aspects: the representation is by a
direct sum and the summands are rather easy groups to understand.
Divisible groups have this nice appearance too; they are of the form
{⊕r0Q} ⊕ {⊕p (⊕rpZ(p∞))} (where r0 and r1 are the torsion-free rank
and p-rank, respectively, of the given divisible group) . The group A
is divisible if, for every a ∈ A and every n ∈ Z, the linear equation
nx = a has a solution in A. At the other extreme, A is reduced, if it
does not contain a divisible subgroup. We will assume here that our
groups are reduced, for the maximum divisible subgroup is always a
direct summand.

Although finite abelian groups have numerous applications in diverse
mathematical subjects, they are not so interesting to abelian group the-
orists, perhaps because their structure is fully known. Thus the first
class of abelian groups to look at for excitement is that of (reduced)
countable groups and their direct sums — acronymed disco groups, as
well as direct sums of cyclic groups — acronymed discy groups (direct
sums are in a sense the simplest among the most important construc-
tions). For a p-group A, it is a discy group if and only if it is a disco
group without elements of infinite height. By a result of Kolettis from
1960, two reduced disco p-groups are isomorphic iff their Ulm invari-
ants coincide; thus the group isomorphism is reduced to comparing the
cardinal invariants.

A subgroup of a free group is again a free group. The analogous result
need not be true for subgroups of disco groups. Thus it would be useful
and interesting to know what conditions are needed that subgroups
of disco or discy groups are again of the same type. A theorem by
Kulikov states that if a p-group is of length ω0, then subgroups of disco
are again disco. Every subgroup of a countable disco is again disco.
By a result of Kaplansky, a direct summand of disco groups is again a
disco group. We say that a subgroup B is pure in A, when, for every
n ∈ Z, if the equation nx = b ∈ B has a solution x ∈ A, then it
has a solution in B too. This is a familiar condition, known under
different names in set theory. Yet a more general notion for p-groups
is that of pα-purity (α = ω describes the above purity): a subgroup
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A of G is pα-pure (or α-pure) in G if the short exact sequence 0 −→
A −→ G −→ G/A −→ 0 represents an element of pα Ext(G/A,A).
It was shown by Richman, Walker and Hill that even under stronger
conditions than purity, a subgroup of a disco group need not be of
the same kind: there are balanced subgroups of disco groups that are
not disco groups. An exact sequence 0 −→ B −→ A −→ C −→ 0
is called balanced (and B is a balanced subgroup of A) if the sequence
0 −→ pαB −→ pαA −→ pαC −→ 0 is exact for every ordinal α.
Balanced projectives are called totally projective p-groups. There are
enough balanced projectives, i.e. for every group A there is a balanced
projective B with an exact sequence B −→ A −→ 0. The balanced
projective dimension of a group A is the smallest n (or ∞ if there
is no such n) with the property that there exists an exact sequence
0 −→ Bn −→ . . . −→ B1 −→ B −→ A −→ 0, where all the B’s are
balanced projective.

[Nunke, 1967b] gives conditions under which disco groups contain
pω1-pure subgroups which are not disco groups. Among the subgroups
of disco groups, the following class is singled out: A group is called ω1-
disco, if it can be embedded as an pω1-pure subgroup in a disco group.
The mentioned Nunke’s conditions are in terms of non-completeness;
a question arises whether an ω1-disco group is a disco group, if it is
complete in the ω1-topology. Translating this question by considering
the corresponding quotients we ask an equivalent question: Is there a
Cω1-group of length ω1 with balanced projective dimension at most 1?
An abelian p-group G is a Cω1-group if G/pαG (or G/G(α) — height
valuation!) is a disco group for every α < ω1. In fact the answer is
‘no’, for any group of length ω1 has balanced projective dimension at
least 2. A new question is therefore: Does there exist a Cω1-group of
length ω1 with balanced projective dimension exactly 2? Answers will
follow in the sequel.

Some results concerning the Tor functor are dependent on the un-
derlying model of set theory. For instance, it may be shown (see [Keef,
1996]) that for certain classes of groups A, Tor(A, A) is a discy group
if and only if the continuum hypothesis holds.

[Nunke, 1967a] tries to solve a question as to when Tor(A, B) is a
disco group, for reduced A, B. Subsequently Keef treats the remaining
unsolved (more difficult) case of this question, namely when A and B
have the same length (not exceeding ω1). For the case of length ω1,
[Keef, 1988] shows that a necessary condition is for A, B to be Cω1

groups and if their balanced projective dimensions are at most 1, then
the Tor(A, B) is a disco group. Consequently this problem of Nunke can
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be resolved by treating the above mentioned question of the existence
of Cω1 groups of length ω1 and the balanced projective dimension 2.

The results on valuated vector spaces come in handy in special situa-
tions of abelian p-groups: the above Theorems 1 and 2 are instrumental
in proving two results of P. Keef, utilizing some of the techniques similar
to those he used. The approach in [Cutler and Dimitrić, 1993] is such
that it only deals with the socles of the groups in question whenever
possible.

Proposition 3. [Keef, 1989b; Cutler and Dimitrić, 1993] Kurepa’s
Hypothesis is equivalent to the existence of a Cω1-group G of length ω1

and cardinality > ℵ1 with a pω1-pure subgroup A of cardinality ℵ1 such
that the closure of A in G in the ω1-topology has cardinality κ > ℵ1.

A group G with the properties as in the last proposition, is called a
κ-Kurepa extension of A, whereas A is a κ-Kurepa subgroup of G (all
for κ ≥ ℵ2). It may be shown that if such an extension exists, then
there is one satisfying |G| = κ. Thus, there exists a κ-Kurepa extension
if and only if there exists a Kurepa family of cardinality κ. Note that
a Kurepa family can have cardinality at most 2ℵ1 ; hence there is no
κ-Kurepa extension for κ > 2ℵ1 . The existence of G is proved with the
aid of Theorem 1 and a result of F. Richman and E. Walker on valuated
groups. A is constructed as the countable union of groups Ai that are
in turn arrived at with the aid of a number of tools. Proposition 3 is
the backbone for the proof of the result that follows. In addition, a
number of definitions and results are needed. For example: Suppose
that G is a Cω1-group, λ is a limit ordinal, and {Ai}i<λ is a filtration
of pω1-pure subgroups of G. Then the closure of the union of the Ai’s
is the union of their closures in the ω1-topology on G. These are some
of the ingredients used to prove the following:

Theorem 4. [Keef, 1989b; Cutler and Dimitric, 1993] Kurepa’s Hy-
pothesis is equivalent to the existence of a Cω1-group of length ω1 and
balanced projective dimension 2.

If A is an ω1-pure subgroup of a disco group G, then it is called
pseudo-disco, if for K = G/A, the group K/K(ω1) is likewise a disco
group.

Theorem 5. [Keef, 1989b] The following are equivalent

(1) ¬ KH.
(2) Every Cω1-group of length ω1 has balanced projective dimension

at most 1.
(3) For any Cω1-groups A, B of length ω1, Tor(A, B) is a disco

group.
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(4) For every Cω1-group A of length ω1, and every group B, the
group Ext(A, B) /Ext(A, B)(ω1) is complete in the ω1-topology.

(5) The class of ω1-disco’s coincides with the class of pseudo-disco’s.
(6) An ω1-disco is a disco iff it is complete in its ω1-topology.

One of the consequences of Proposition 3 and Theorem 5 is as follows:
Existence of a Kurepa tree is equivalent to the existence of a Kurepa
extension, or to the existence of Cω1-groups A, B of length ω1 such that
Tor(A, B) is not a disco group.

A slight extension of the notion of a κ-Kurepa subgroup is as follows:
Given a Cω1-group G of length ω1, we say that an ω1-pure subgroup A
of cardinality ℵ1 is an ℵ1-Kurepa subgroup if it is either an ℵ2-Kurepa
subgroup or else, a closed subgroup which is not a disco group. The
notion is apparently related to the iterated Tor functor. The following
chain of results is mainly proved by induction on n and by expanding
groups Gi into continuous filtrations of subgroups. One can say that
the possible size of the family of sets satisfying KH is to a great extent
determined by the Tor functor.

Theorem 6. [Keef, 1989a] Let G1, . . . , Gn be Cω1-groups of length ω1,
of cardinality at most ℵn. Then Tor (G1, . . . , Gn) is not a disco group
iff there is a permutation φ of the set {1, . . . , n} such that Gφ(i) has an
ℵi-Kurepa subgroup, for every i = 1, . . . , n.

Theorem 7. [Keef, 1989a] For a natural number n, there is no ℵn-
Kurepa extension if and only if, for every family of Cω1-groups G1, . . . , Gn,
of length ω1, the group Tor (G1, . . . , Gn) is a disco group.

Theorem 8. [Keef, 1989a] For a natural number n, the following are
equivalent:

(1) There are no ℵn+1-Kurepa extensions.
(2) The balanced projective dimension of Tor(G1, . . . , Gn) ≤ 1, for

any set G1, . . . , Gn of Cω1-groups of length ω1.
(3) For any set G1, . . . , Gn of Cω1-groups of length ω1, the group

Tor (G1, . . . , Gn) is a disco group, and, if C1, . . . , Cn are closed
ω1-pure subgroups of G1, . . . , Gn respectively, then Tor (C1, . . . , Cn),
is likewise a disco group.

5. Non-abelian groups

Kurepa’s Hypotheses appear, perhaps not surprisingly, in the field
of non-commutative groups, in extension of various characterizations
of center-by-finite and finite-by-abelian groups due to [B.H. Neumann,
1955].
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A group G is a center-by-finite group if |G/Z(G)| < ω (each subgroup
has only finitely many conjugates); G is a finite-by-abelian group, if
|G′| < ω (here the commutator subgroup G′ = 〈[G, G]〉, where [S, T ] =
{g−1h−1gh : g ∈ S h ∈ T}).

Recall that, for U ≤ G the normalizer is NG(U) = {h ∈ G : h−1Uh =
U}; the centralizer is defined by CG(U) = {h ∈ G : ∀u ∈ U h−1uh =
u} and the center of G is Z(G) = CG(G). A group is called a κC-group,
if ∀g ∈ G, [G : CG(g)] < κ (each g ∈ G has at most κ conjugates).
ωC-groups are also called FC-groups ; in other words, in such groups,
every element has finitely many conjugates. A subclass of κC, denoted
by Yκ, is the class of groups for which [G : NG(U)] < κ, whenever
U ≤ G is generated by fewer than κ elements. Denote by Zκ the class
of groups G for which [G : CG(U)] < κ, whenever U ≤ G is generated
by fewer than κ elements (for κ > ω, this is equivalent to saying that
[G : CG(U)] < κ, for U ≤ G with |U | < κ). Note that Zκ ⊆ Yκ ⊆ κC
and Yω = Zω = ωC.

The following are equivalent for any group G:

(1) G is center-by-finite.
(2) ∀U ⊆ G [G : NG(U)] < ω.
(3) If in addition, G is an FC group, then the conditions are equiva-

lent to U/UG being finite, for all U ≤ G (UG denotes the largest
normal subgroup contained in U).

[Faber and Tomkinson, 1983] generalize this result to the following:

Theorem 9. For an infinite cardinal κ and any group G in Zκ, the
following are equivalent:

(1) |G/Z(G)| < κ
(2) [G : NG(U)] < κ, for all U ≤ G
(3) [G : NG(A)] < κ, for all abelian A ≤ G
(4) |U/UG| < κ, for all U ≤ G
(5) |A/AG| < κ, for all abelian A ≤ G.

For an uncountable cardinal κ, [Tomkinson, 1984, p. 149] asks a
question as to whether there is an FC-group G with |G/Z(G)| = κ,
but [G : NG(U)] < κ, for all (abelian) subgroups U of G. The question
is whether it is necessary to have G ∈ Zκ in the above theorem and
to investigate some alternative conditions. The implications (1) ⇒
(2) ⇒ (3) and (1) ⇒ (4) ⇒ (5) are always true; (3) ⇒ (1) is a part
of Neumann’s original result, and the example of a group that is a
semidirect extension of the Prüfer group Z(p∞), by the automorphism
that inverts each element, is an example that (4) 6⇒ (1), at least for
κ = ω.
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In all the considerations here, it suffices only to look into periodic
FC-groups. One of the subclasses is defined as follows: A p-group G
is extraspecial , if G′ = Z(G) = Φ(G) ∼= C(p). Here Φ(G) denotes the
Frattini subgroup of G, i.e. the intersection of maximal subgroups of
G. Thus extraspecial means that G is two-step nilpotent and that the
factor group G/G′ is elementary abelian, among other things.

Theorem 10. [Brendle, 1993a,b] Assume there is a Kurepa tree. Then
there is an extraspecial p-group E of size ω2, such that for all maximal
abelian subgroups A we have [E : A] ≤ ω1. In particular, the existence
of a Kurepa tree implies the existence of an extraspecial p-group of size
ω2 in Yω2 \ Zω2.

For the proof, take a Shelah-Steprāns group of size ω1 (a specific
extraspecial p-group of size ω1 with all abelian subgroups of size <
ω1) and extend it semidirectly, using the Kurepa tree to define the
automorphisms.

A wide Kurepa tree (also known as a weak Kurepa tree) is a tree of
height ω1 with at least ω2 uncountable branches such that all levels
have size ≤ ω1. If CH holds, then the complete binary tree of height ω1

is a wide Kurepa tree. To show the consistency of the non-existence of
wide Kurepa trees, an inaccessible is collapsed to ω2 (more correctly, the
cardinals between ω1 and the inaccessible are collapsed as in Mitchell’s
and Baumgartner’s models). The Proper Forcing Axiom implies that
no wide Kurepa trees exist.

Theorem 11. [Brendle, 1993a] If there is an extraspecial p-group of
size ω2 in Yω2 \ Zω2, then there is a weak Kurepa tree.

The hypotheses of “extraspecial p-group” may be replaced by “(pe-
riodic) finite-by-abelian group”. Similar arguments are applied in the
proof of the following:

Proposition 12. [Brendle, 1993a] The following are equivalent:

(1) There is a Kurepa tree.
(2) There is an extraspecial p-group which is Zω1, but not Zω2.
(3) There is an FC group which is Zω1, but not Zω2.

Proposition 13. [Brendle, 1993a] The following are equiconsistent:

(1) ZFC + ¬KH.
(2) ZFC + for any FC-group G and κ = ω1 or ω2, if |G/Z(G)| = κ,

then there is an abelian subgroup A ≤ G, with [G : NG(A)] = κ.
(3) ZFC+ any extraspecial p-group of size ω2 has an abelian sub-

group A with [G : NG(A)] = ω2.
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Addendum

S. Todorčević has suggested (in a private communication) that the
answer to our question Q3 above may be found through the use of
the technique employed in [Todorčević, 1984, pp. 282–284]. Indeed
there is an affirmative answer which we present here. The details have
been worked out by J. Moore (a student of Todorčević). Note that a
weak version of the GCH is assumed, thus the question still remains
whether the same can be done without (this variant of) GCH. In fact
the following holds:

Theorem. Given a regular cardinal κ and an ℵ with κ+ ≤ ℵ. As-
sume that a ground model satisfies 2<κ = κ. Then there is a forcing
construction of a κ-Kurepa tree with exactly ℵ κ-branches.

Proof. We will define a partial order (P ,≤) as follows. Elements p of
P are ordered pairs of the form (Tp, fp) satisfying

(i) Tp is a normal subtree of κ2 of height α+1 for some limit ordinal
α < κ and of cardinality less than κ.

(ii) fp is a 1-1 function from a subset of ℵ onto the top level of Tp.
p ≤ q iff

(iii) Tp is an end extension of Tq.
(iv) dom(fq) ⊂ dom(fp) and fq(ξ) ⊂ fp(ξ) for all ξ ∈ dom(fq).

We start with a ground model satisfying 2<κ = κ and show that (P ,≤)
is κ-closed (chains of length less than κ have a lower bound) and has
the κ+-c.c. (there are no antichains of size κ+). To see that our partial
order is κ-closed, let C be a chain of length less than κ. Define T =
∪p∈CTp and f : ∪p∈Cdom(fp) → κ 2 by f(ξ) = fp(ξ) where ξ ∈ dom(fp).
Note that the choice of p in our definition of f can be arbitrary by the
assertion in condition (iv) coupled with the fact that C is a chain.
Since the cardinality of C is less than κ, (T, f) is in the partial order
and clearly serves as a lower bound for C.

To see that (P ,≤) has the κ+-c.c., let A ⊂ P have cardinality κ+.
We need to show that there are two elements ofA which are compatible.
Because of the assumption on cardinal arithmetic in our ground model,
there are only κ many conditions Tp which satisfy (i). Thus we may find
a fixed T and a subcollection A′ of A of size κ+ such that all elements
of A′ are of the form (T, fp). The ∆-system lemma (see [Kunen, 1980]
p. 49, Theorem 1.6) allows us to find a subcollection A′′ of A′ of size
κ+ such that the domains of the fp’s form a ∆-system. Let r be the
root of this ∆-system. Since |r| < κ, there are only κ many ways to
define a function from this set to the top level of T . We can then pick
f and g such that (T, f) and (T, g) are both in A′′ and f(ξ) = g(ξ) for



ALGEBRAIC EQUIVALENTS OF KUREPA’S HYPOTHESES 43

all ξ ∈ dom(f) ∩ dom(g). It is easy now to extend (T, f) and (T, g) to
some (T ′, h).

Two well known results of forcing state that if a partial order is κ-
closed then it preserves cardinals ≤ κ (ibid., Corollary 6.15, p.215),
and if a partial order has the κ+-c.c., then it preserves cardinals ≥ κ+

(ibid., Lemma 6.9, p.213) (these two statements about the partial order
are made in the ground model). Thus (P ,≤) preserves cardinals. Let
G be a P-generic filter and define TG = ∪p∈GTp. It is clear that TG is
a κ-tree. Furthermore if we let b(ξ) = {t ∈ TG : ∃p(t ⊂ fp(ξ))}, then
b(ξ) 6= b(ξ′) for ξ 6= ξ′, and thus our tree has at least ℵ many branches
(since by a density argument, dom(b) =

⋃
p∈G dom(fp) = ℵ).

To finish the argument we need to show that the only κ-branches are
those of the form b(ξ) for some ξ. First we prove the following:

Claim. If ḃ is a name for a branch of our generic tree and p = (Tp, fp)

forces ḃ is not of the form b(ξ) for some ξ < ℵ then there is a condition

q ≤ p such that for every ξ ∈ dom(fp), q forces fq(ξ) 6⊂ ḃ.
Proof of Claim: Pick pξ inductively for each ξ in dom(fp) such that

pξ ≤ pη for all η < ξ in dom(fp) and pξ forces fpξ
(ξ) 6⊂ ḃ. This choice

is made possible at limit stages because (P ,≤) is κ-closed. Once we
have chosen our sequence of conditions, we can find a q which serves
as a lower bound for the sequence (this q obviously does the job). �

Let ḃ be a name for a κ-branch of TG and suppose for contradiction
that, on the contrary, there is a condition p such that p forces ḃ 6= b(ξ)
for all ξ < ℵ. Now for each n ∈ ω pick pn using the above claim such
that p0 = p, pn+1 ≤ pn and pn+1 forces fpn+1(ξ) 6⊂ ḃ for all ξ in dom(fpn).
Let f : ∪n<ω dom(fpn) → κ 2 be defined by f(ξ) = ∪{fpn(ξ) : ξ ∈
dom(fpn) & n < ω}. Define T to be (∪n<ωTpn) ∪ {f(ξ) : ξ ∈ dom(f)}.
There is a ξ in dom(f) such that (T, f) forces f(ξ) ⊂ ḃ, since p forces

ḃ is a branch of TG. We can pick an n such that ξ ∈ dom(fpn). But

pn+1 forces fpn+1(ξ) 6⊂ ḃ, which is a contradiction. Thus ḃ must be of
the form b(ξ) for some ξ < ℵ and we are finished. �

This result may be further generalized as in the following statement
of S. Todorčević (private communication; note that GCH is again as-
sumed in the ground model):

Theorem. Suppose our ground model satisfies the GCH and that
F and B are two class functions defined on the class of all regular
cardinals with ranges in the class of all cardinals such that the following
holds for all regular cardinals α and β:

(1) α < β implies F (α) ≤ F (β).
(2) cf (F (α)) > α.
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(3) α < B(α) ≤ F (α).

Then, there is an Easton-type class forcing whose forcing extension
satisfies the following for all regular cardinals κ: There is a κ-Kurepa
tree with exactly B(κ) cofinal branches and 2κ = F (κ).

Idea of a proof. Combine the proof of Lemma 5.4 in [Todorčević,
1981], where a finer forcing is used than above, with that of [Easton,
1970] (namely, take the products of those two forcings).
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