
The Review of Modern Logic

Volume 9 Numbers 1 & 2 (November 2001–November 2003) [Issue 29], pp. 195–202.

Larry Wos and Gail W. Pieper (eds.)
The Collected Works of Larry Wos
Volume I: Exploring the Power of Automated Reasoning
Volume II: Applying Automated Reasoning to Puzzles, Problems, and

Open Questions
Singapore: World Scientific, 2000
xvii + 1639 pp. ISBN 9810240015

REVIEW

VLADIK KREINOVICH

What is “automated reasoning”? Crudely speaking, automated
reasoning is an area whose main objective is to make computers solve
hard open problems in mathematics and in other well-defined formal
areas.

Is it successful? Oh yes, there have been quite a few success sto-
ries when automated reasoning programs succeeded in solving long-
standing open mathematical problems.

Probably the most well-known of these problems is the antiautomor-
phism semigroup problem. This problem was originally formulated by
a well-known algebraist I. Kaplansky as a challenge to the automated
reasoning community. Let S be a semigroup, i.e., a set with an associa-
tive operation ∗. A mapping f : S → S is called an antiautomorphism
if f(x ∗ y) = f(y) ∗ f(x) for all x and y. Many semigroups have anti-
automorphisms: e.g., for every natural number n, transposition is an
antiautomorphism on the semigroup of all n×n matrices. This partic-
ular antiautomorphism is an involution, i.e., f(f(x)) = x for every x.
At the time when Kaplansky formulated this question, in every known
finite semigroup with an antiautomorphism there was also an antiau-
tomorphism which is an involution. It was therefore conjectured that
every finite semigroup with an antiautomorphism has an antiautomor-
phism which is an involution. Mathematicians tried hard, but could
neither prove this conjecture nor find a counterexample.

An automated reasoning program succeeded in finding a non-trivial
counterexample — a semigroup of 83-th order!

c© 2003 The Review of Modern Logic.

195



196 VLADIK KREINOVICH

There have been many other successful examples of computers solv-
ing open mathematical problems. Many long-standing questions about
independence of axioms, about the shortest single axiom for different
classes of algebraic structures, about combinatorial logic, etc., have
been successfully solved by using automated reasoning.

Why are these success stories not getting the praise they de-
serve? Chess computers — whose success was largely due to their
pure processing speed — made it to the front pages, but a much more
intellectually interesting computer proofs remain relatively unknown.
Why?

One reason: these successes were not surprising. One reason
for this is that these computer proof successes were not unexpected. In
the 1950s and 1960s, every journalist writing about computers knew
that very soon, computers will be able to prove theorems. All you need
to do is start with axioms, apply inference rules again and again, and
wait until the desired statement (or its negation) pops up. OK, maybe
not so easy, maybe you need to also start with the statement itself,
but anyway, there are successes already, and with faster computers,
mathematicians would be soon obsolete.

Well, it did not happen that soon as optimists predicted, and math-
ematicians are not yet obsolete, but it is finally happening. To many
people outside the automated reasoning community, what is surpris-
ing is not that computers can solve open mathematical problems, but
rather that it happened so slowly and on a much smaller scale than the
original hype suggested.

Second reason: people grossly underestimate intelligence be-
hind the corresponding programs. Researchers who are not very
familiar with automated reasoning sometimes underestimate the intel-
lectual effort behind the success stories. This underestimation is easy
to understand. When they browse the papers describing details of
these success stories, they see mentions of thousands and millions of
computer generated intermediate statements, they see a lot of seem-
ingly random examples of such statements, and they get the erroneous
impression that what is going on here is exactly what the original jour-
nalists described: random search for a proof, OK, maybe somewhat
trimmed and pruned, but still largely random.

This impression is easy to disprove: for a proof consisting of 80+
steps (and computers produced such proofs already in the 1980s), even
if we had 2 choices on each step, a random generation would require



REVIEW: THE COLLECTED WORKS OF LARRY WOS 197

testing 280 (≈ 1024) possible proofs — clear impossibility. In reality,
such a computer proof usually includes thousands of intermediate for-
mulas. From 1024 to 103 — some trimming! This is not just one idea,
this downsizing of the search space is what automated reasoning has
achieved by its numerous successful ideas.

In computing, there is always a kind of a rivalry between hardware
and software people. Hardware folks tend to sometimes make fun of
our successes: when we put a lot of effort and speed up an algorithm 10
times, this is a big success story, all over math news — but they have
been steadily achieving the same speedup every 5 years. Automated
reasoning is our success story: the 1024/103 = 1021 times speedup is
something that hardware folks cannot match!

Third reason: confusion with AI. The third reason why this area
does not get its due is because of the confusion with AI. Many AI
program reason, so why not use these programs (e.g., Prolog-based) to
prove theorems as well?

On the surface, it may sound like a good idea, but in reality, AI
programs do not work well in automatic reasoning. The reason is sim-
ple: in AI, typically, we solve problems that are not that difficult to
solve. For example, a typical AI problem is robot navigation. It is not
a very easy problem to solve automatically, but an operator can easily
navigate a robot. Similarly, playing chess: it is not easy to design a
program but many humans play chess reasonably well. Because AI is
mainly about such problems, AI heuristics help solve such problems
faster and better.

In automated reasoning, problems are very different. Here, the main
difficulty is not so much automating human reasoning, but coming up
with some reasoning at all, because humans cannot solve such problems
either. These problems are different, and not surprisingly, standard AI
heuristics do not work well.

Who is Larry Wos and what this book is about. A good illustra-
tion of the fact that automated reasoning does not get the recognition
it deserves is that, based on the reaction of some of my colleagues, I
have to explain who Larry Wos is.

Larry Wos is the Mr. Automated Reasoning. He is the recognized
leader of this field, the founding editor of the Journal of Automated
Reasoning (the main journal in this area), the first winner of the Amer-
ican Mathematical Society prize in Automated Reasoning, and of many
other prizes.



198 VLADIK KREINOVICH

Larry was in the field when it started, he followed it up, and this
book, with a chronological collection of his papers — most of which
were breakthroughs and milestones — give a pretty good picture of
how this field evolved. And it did evolve, from the original ideas (that
were, honestly, not too far away from the random search as envisioned
by the science journalists), to modern successes, to the unbelievable
1021 speedup.

How the field evolved. The book gives a good overview of how the
field evolved. Of course, our subdivision into stages is very schematic.
In reality, these stages overlapped, but we still give it because it pro-
vides a reasonable big picture:

(1) Theory (1967–73) At first, the main effort was on finding pos-
sible proof search strategies. Here, the main emphasis was not
yet on efficiency, but rather on correctness of the results (sound-
ness) and on the possibility to actually find the proofs of all
provable statements by using these strategies (completeness).
This was a difficult analysis because it was produced before any
programming started, with no way to run computer simulations
and thus check and guide results.

(2) Known problems (1974–76) After this analysis was over and
several reasonable strategies were proven to be sound and com-
plete, the next step was to try these strategies on known math-
ematical results. These tries were used to adjust and tune the
strategies until they finally covered the known results.

(3) New problems (1977–80) After the strategies were evolved enough
to be successful on known problems, Wos and others tried them
on open problems. This led to the first true successes: several
open problems have been solved.

(4) Challenging problems (1981–83) On the third stage, researchers
applied their strategies to several open problems, with the pos-
itive result that some of these problems got solved (but others
did not). On one hand, it was a success story, because quite a
few open problems were actually solved. On the other hand, the
ideal automated reasoning tool should be able not just to solve
a few of open problems, but hopefully most of them. So, on
the next stage of this work, the authors solicited open problems
and tried to adjust their programs in such a way so as to solve
these particular problems. This lead to the 1981 success with
the above Kaplansky problem. Several other open problems
were successfully solved in this manner.



REVIEW: THE COLLECTED WORKS OF LARRY WOS 199

(5) Practical problems (1984–95) Many applied problems, when well
understood, can be naturally reformulated in mathematical terms.
So, if we have a tool that can prove theorems, we therefore have
a tool that can potentially solve practical problems. This is the
main idea, it is not that simple, but after some adjustment, the
automated reasoning tools were indeed successfully applied to
solving such practical problems as circuit design, proving pro-
gram correctness, and job scheduling (a known NP-hard prob-
lem).

(6) Elegant proofs (1995–98) Readers familiar with discussions re-
lated to the computer proof of the four colors problems will
easily recall that the main problem with that proof is that it
was tedious, ugly, and impossible to understand. This example
is a good illustration of what computer proofs used to be: not
elegant. It turns out that in automated reasoning, in addition
to looking for a proof, we can also successfully look for an ele-
gant proof. As a result, modern automated reasoning tools can
be used not only to find proofs for open problems, but also to
look for elegant proofs for problems for which only ugly proofs
were previously known.

What methods were used. At each stage of the above evolution,
new methods, algorithms, and ideas were developed. Crudely speaking,
we can see three stages in this development:

• At first, the main emphasis was on pruning and limiting the
search space. One of the main ideas here is the idea of sub-
sumption: that if a statement is a particular case of an already
proven one, then we can keep the more general statement and
dismiss less general statements. This idea led Wos to his more
sophisticated 1967 idea of demodulation: discarding not only
particular cases of a given statement, but, crudely speaking,
also instances of repeated application of a given equality.

• After pruning techniques became more and more sophisticated,
it became more and more difficult to achieve improvement by
further pruning. So, the main theoretical emphasis somewhat
shifted to developing new (“linked”) inference rules from the
old ones. Such rules speed up the search for a proof because in
one application of a new rule, we are able, in effect, to achieve
the same result as by applying several old ones. This “meta-
approach” (looking for new rules instead of simply applying
them) turned out to be also very successful.



200 VLADIK KREINOVICH

• In spite of these successes, there were cases when the tools did
not work well. One reason for this is that when a researcher
explains an open problem to a student, she not only describes
this problem in informal terms, she also provides some informal
intuition about this problem:

– This intuition may include the idea that some mathemat-
ical statements may be useful in this proof.

– It may also include the idea (in analogy with known proofs
of similar statements) that a natural way to the desired
proof is through a lemma of certain type.

In the 1990s, Wos developed two ideas which enabled the auto-
mated reasoning program to use such information:

– a hot list strategy, in which statements marked by a re-
searcher as possibly useful are used more frequently than
others; and

– a resonance strategy in which a program looks for proofs
with lemmas of a certain type.

When combined, these two strategies greatly improved the pro-
grams.

Lessons learned. At first glance, it may sound as if the history of
automated reasoning followed a very natural path: intuitively natural
ideas were transformed into programs, tuned, and successfully applied.
Alas, life is never so straightforward. As Larry Wos mentions (on pp.
853, 1182–1186, etc.), the following seemingly natural ideas turned out
to be completely wrong:

• Exponential growth? Since the search space grows exponentially
with the size of the proof, it is natural to expect that even after
trimming, we will still get an exponential dependence of proof
time on the proof length. This expectation may have been one
of the reasons why many researchers did not even bother to try
to find proofs with 80+ steps. And this pessimistic expectation
turned out to be wrong. In reality, after smart trimmings, the
computation time grows much more slowly than exponentially
and, as a result, we can actually get a proof. This counter-
intuitive result is good news. It is in good accordance with
the fact that, e.g., logic programming, in which most problems
are NP-hard, is actually a very successful practical tool: expo-
nential growth is about worst case, not about the practically
important average complexity.

• Now or never? Intuitively, if we try and try and try and do not
succeed, we need to give up, cut the losses, and try something



REVIEW: THE COLLECTED WORKS OF LARRY WOS 201

else. This may be a good commonsense advice, but interest-
ingly, this advise turned out to be too pessimistic for automated
reasoning: often, when a program does not find a proof in rea-
sonable time, it finds it eventually. This fact should not be so
surprising: after all, this is how open problems are solved by
humans: we try and try and then eventually, someone succeeds.

• From simple to complex? In general, how do we analyze com-
plex objects? First, we try simple ones, learn the techniques,
and then scale these techniques to more complex ones. This is
how we analyze and design circuits, this is how we analyze and
design programs, etc. It may sound natural to expect that this
is how we should look for proofs. On the example of simple
statements, we find which proof strategies work the best, and
then apply these best strategies to the desired complex open
problem. Alas, it does not work. Why? Because for those
problem for which it works, we have already succeeded in using
known proof strategies in our brain, and as a result, we have
already proved the results. What remains is challenging prob-
lems which are still open, and the very fact that they are open
means that a simple scaling of known strategies did not work
well, new ideas are needed.

• Specialists are needed? If an algebraist who is normally in
groups cannot solve a problem related to semigroups, then a
natural idea is to consult a semigroup specialist. Similarly, it
seems to make sense, for each area of mathematics, to fine-tune
search techniques to this particular area and then use these
tuned techniques to solve open problems. Does not work. Why?
For the same reason as in the previous example: if it worked
then this problem would not have been open. The very fact
that this problem is open means that the methods well used in
this particular area have not succeeded, so other techniques are
necessary.

• There is the best strategy? We are accustomed to thinking is
sports-like terms: one computer is better, one algorithm is bet-
ter. From this viewpoint, we expect that of different proof
search strategies, one would be the best, and the question is
how to find this The Best Strategy. Experimentally, however,
there is never a clear winner: on some problems, one strategy
is better, or other problems, the other is better. In such sit-
uations, a natural idea is to combine the best ideas of these
two good strategies into a single strategy that would be better



202 VLADIK KREINOVICH

than each of them. This combination is possible, but this com-
bination can be done in several different ways. Usually, there
is no clear winner between these different combinations, so we
end up with several combined strategies and again without a
single “the best” one. By the way, it is not clear how we can
theoretically explain this empirical fact (pp. 1193 ff.).

Conclusion. This book gives us a unique opportunity to look into
the area of automated reasoning, into its insights, evolution, successes,
and challenges. It shows that seemingly intuitive ideas do not work
and thus, it changes your viewpoint. And it make you think.

Department of Computer Science, University of Texas at El Paso,
El Paso, TX 79968, USA

E-mail address: vladik@cs.utep.edu


