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VIEWS ON THE REAL NUMBERS AND THE
CONTINUUM

JOANNE E. SNOW

1. Introduction

The history of the real numbers is related to many areas of mathe-
matics, sometimes in a central way and sometimes in a tangential way.
Such a pervasive topic is itself quite complex and can be thought of as
three problems:

• What is a real number?
• Are the real numbers and the real line one and the same?
• What is a continuum?

In the first approaches to the real numbers, mathematicians used these
three concepts — real number, real line, and continuum — interchange-
ably, as the early view of the real numbers was geometric. Mathemati-
cians spoke of the “law of continuity” or a continuous variable or mag-
nitude with the image of the real line in mind. They cast arguments
in calculus in this geometric language. However, this dependence on
geometry was unsatisfactory to some mathematicians by the early 19th
century. To provide logical rigor to the proofs in calculus, some realized
the need for an algebraic or arithmetic description of the real numbers.
In this paper, we examine how three theories define in algebraic form
a characteristic of the real number system which distinguishes it from
the rational numbers, how the authors of these theories dealt with the
issue of the identification of the real numbers with the real line, and
finally how the authors understood the continuum.

2. Defining Characteristics of the Real Numbers

In the second half of the nineteenth century, three main theories of
the real numbers were developed. These are the theories of Richard
Dedekind (1831-1916), Georg Cantor (1845-1918) and Eduard Heine
(1821-1881), and Karl Weierstrass (1815-1897). In each case, the au-
thors of these theories assumed that the rational numbers were well-
understood and used the rational numbers as the starting point for
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their theory. Each mathematician defined a real number as an infinite
set of rational numbers which possessed a given property. What distin-
guishes one theory from the other is that given property which the set
of rational numbers must satisfy. Cantor points out this commonality
in the theories in Section 9 of the Grundlagen [3], where he critiques
the three major constructions of the real numbers. He states:

Part of the definition of an irrational real number is
always a well-defined infinite aggregate of the first power
of rational numbers; this is the common characteristic
of all forms of definition. Their difference lies in the
generative moment (Erzeugungsmoment) through which
the aggregate is tied to the number it defines, and in the
conditions which the aggregate must satisfy in order to
be a suitable basis for the number definition in question.
([3, p. 80])

The particular property which the mathematician chose to define the
set of rational numbers is related to his understanding of an essential
characteristic of the real numbers.

2.1. Dedekind. Dedekind developed his theory of the real numbers in
the essay “Stetigkeit und irrationalen Zahlen” (in [4]). The essay was
not published until 1872, but Dedekind explained in the introduction
that he had discovered the theory in the autumn of 1858. ([4, p. 1])

Dedekind realized that a “foundation for arithmetic” was needed
while trying to prove to his differential calculus class that an increasing
continuous magnitude has a limit. ([4, p. 1]) He found the geometric
arguments for this fact were useful, but not “scientific.” He complained
that “differential calculus deals with continuous magnitude, and yet an
explanation of this continuity is nowhere given.” ([4, p. 2]) So he sought
to define the real numbers and the “essence of continuity.” Dedekind
explained his definition of continuity was motivated by the geometric
image of the continuity of the real line. ([4, pp. 9-11]) He described
this principle of continuity in the following way:

If all points of the straight line fall into two classes such
that every point of the first class lies to the left of every
point of the second class, then there exists one and only
one point which produces this division of all points into
two classes, this severing of the straight line into two
portions. ([4, p. 11])

Having stated precisely what he meant by continuity, he was ready to
define the irrational numbers so that the addition of these numbers
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to the rational numbers formed a continuous domain, satisfying the
principle of continuity.

Dedekind denoted the system of rational numbers by the letter R.
He presented the definition of a cut:

If now any separation of the system R into two classes
A1, A2 is given which possesses only this characteristic
property that every number a1 in A1 is less that every
number a2 in A2, then for brevity we shall call such a
separation a cut [Schnitt] and designate it by (A1, A2). A
cut (A1, A2) is said to be produced by a rational number
if either A1 has a greatest element or A2 has a least
element. ([4, pp. 12-13])

The system of all cuts comprises the real numbers. He denoted an
element of this system by the symbol α; that is, he used α to represent
the cut (A1, A2). ([4, p. 15])

Dedekind proved that there are irrational numbers, at the same time
showing that rational numbers do not enjoy the property of continuity.
He constructed an example of an irrational number as follows. Let D
be a positive integer which is not the square of an integer. Let A2

be the set of all rational numbers whose square is greater than D and
A1 be all other rational numbers. Then (A1, A2) is a cut. He showed
that this cut is not produced by a rational number, establishing the
existence of irrational numbers and showing that the rational numbers
are not continuous. ([4, pp. 13-15])

To prove that the system of real numbers is continuous, he first
defined an order on the set of cuts. Then he named four properties
which the real numbers satisfy:

I Transitivity of order.
II Between two different numbers there exists infinitely many dif-

ferent numbers.
III If α is any real number, then all the real numbers fall into

two classes: U1 those less than α and U2 those greater than α.
The number α can be arbitrarily assigned to either set. Every
number in the first set is less than every number in the second
set. We say that this separation is produced by the number α.

IV The continuity property (which we call the Dedekind Property):
If the system of real numbers breaks up into two classes U1, U2

such that every number α1 of the class U1 is less than every
number α2 ∈ U2, then there exists one and only one number α
by which this separation is produced.
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He proved this last property, which for him represented an essential
characteristic of the real numbers.

After defining the real numbers, Dedekind turned to a discussion
of infinitesimal analysis. He used the continuity property to prove the
theorem which gave rise to his interest in the foundations of arithmetic:
Every continuously increasing bounded magnitude has a limit. Early
in the paper, he had described this result as “sufficient basis for infin-
itesimal analysis.” ([4, p. 2]) Thus he saw the reliance of the rigor of
calculus on a precise definition of the real numbers.

2.2. Cantor-Heine. Just as Dedekind was led to a consideration of
the foundations of arithmetic of the real numbers by his interest in a
theorem from another area of mathematics, so too was Cantor drawn
into this problem. Cantor wanted to extend his results on the unique-
ness of the coefficients of two trigonometric series which converged to
the same sum for all values x. He had already generalized the result to
the case for which there were only a finite number of points at which ei-
ther one of the series did not converge or the two series did not produce
the same sum. In his work to include an infinite number of such points,
he needed an algebraic characterization of the real numbers. Cantor
published his extension of his theorem as well as a short description of
the real numbers in 1872 in [1].

In this same year, Heine published a careful and complete description
of the real numbers in [6]. Heine, as Dedekind, felt that function theory
was built on a shaky foundation as long as there was no arithmetic
definition of the irrational numbers. He criticized the geometric view
of the real numbers as a line. Without a solid definition of the irrational
numbers, the truth of some theorems could be questioned. He stated:

Das Fortschreiten der Functionenlehre ist wesentlich durch
den Umstand gehemmt, dass gewisse elementare Sätze
derselben, obgleich von einem scharfsinnigen Forscher
bewiesen, noch immer bezweifelt werden, so dass die
Resultate einer Untersuchung nicht überall als richtig
gelten, wenn sie auf diesen unentbehrlichen Fundamen-
talsätzen beruhen.

. . .
Ihre Wahrheit beruht aber auf der nicht völlig festste-

henden Definition der irrationalen Zahlen, bei welcher
Vorstellungen der Geometrie, nämlich über die Erzeu-
gung einer Linie durch Bewegung, oft verwirrend eingewirkt
haben. Die Sätze sind für die unten zu Grunde gelegte
Definition der irrationalen Zahlen gültig, bei welcher Zahlen
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gleich genannt werden, die sich um keine noch so kleine
angebbare Zahl unterscheiden, bei welcher ferner der ir-
rationalen Zahl eine wirkliche Existenz zukommt, so dass
ein einwerthige Function für jeden einzelnen Werth der
Veränderlichen, sei er rational oder irrational, gleichfalls
einen bestimmten Werth besitzt. ([6, p. 172])

Translation:
Progress in function theory is essentially hampered due
to the condition that certain elementary theorems, al-
though proven by a clever researcher, will always be
questioned, so that the results of an inquiry are not con-
sidered as totally correct, if they rest on these absolutely
necessary fundamental theorems.

. . .
Their truth rests on the not completely rigorous defi-

nition of the irrational numbers, which has often been in-
correctly influenced by a geometric representation, namely
through their generation by means of movement along
a line. The theorems are valid by reason of the defini-
tion of irrational number given below, by which numbers
are meant those which differ from themselves by an arbi-
trarily small number, and by which furthermore the ex-
istence of the irrational numbers comes, so that a single
valued function has for each single value of the variable,
be it rational or irrational, a certain value.

Heine stated that Weierstrass had developed all the fundamental theory
in his lectures. While transcripts of the lectures had been prepared,
neither had Weierstrass himself published his ideas nor were the ideas
developed in one place. ([6, p. 172]) Thus, encouraged by others,
Heine wrote the paper. He expressed his appreciation to Cantor who
influenced Heine’s development and gave him helpful input.

First, we address Cantor’s work. In Section 9 of the Grundlagen
([3, pp. 81-84]), Cantor elaborated on his theory first explained in
[1] and introduced the terminology with which we are more familiar
today. Cantor used the term fundamental sequence of the first order
for an aggregate (aν) of rational numbers such that “after the choice
of an arbitrarily small rational number ε a finite number of members
of the aggregate can be separated off, so that those remaining have
pairwise a difference which in absolute terms is smaller than ε. ” ([3,
p. 81]) (Today, we also call such a sequence a Cauchy sequence.) To
the fundamental sequence, he attached the number b, which is defined
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by that sequence. The collection of all these fundamental sequences of
the first order form the real numbers.

It was very important to Cantor to point out the logical rigor of his
definition. In both papers ([1, 3]), he emphasized that the symbol b
was just a representation for the fundamental sequence. He indicated
that he was not assuming that the limit of the sequence existed nor
defining b as the limit of the sequence. In fact, after defining the basic
arithmetic operations on the fundamental sequences and the notion of
order, he stated that

now we get the first rigorously provable theorem that if
b is the number determined by a fundamental sequence
(aν), then . . .

lim
ν=∞

aν = b. ([3, p. 82])

Cantor perhaps felt he had belabored his point, because he stated

May I be forgiven my thoroughness which I motivate
with the perception that most people pass by this unpre-
tentious detail and then easily get entangled in doubts
and contradictions with respect to the irrational which,
by observing the particulars emphasized here, they could
have been spared entirely, for they would then recognize
clearly that the irrational number, by virtue of the char-
acteristics given to it by the definitions, is just as definite
a reality in our mind as the rational number, even as
the whole rational number, and that one need not first
obtain it by a limiting process but on the contrary —
through its possession one is convinced of the feasibility
and evident admissibility of the limiting processes. ([3,
p. 83])

In his discussion of Weierstrass’s treatment of the real numbers, Can-
tor also credits Weierstrass with avoiding the logical trap of defining
the real number as the limit of the sequence. He stated

I believe that this logical mistake, which was first avoided
by Herr Weierstrass, was committed almost universally
in previous times, and not noticed because it belongs
among those rare cases in which actual mistakes cannot
cause any significant damage to the calculus.

I am nonetheless convinced that all the difficulties
which have been found in the concept of the irrational
are linked to this mistake, whereas when this mistake
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is avoided, the irrational number will implant itself in
our mind with the same determinateness, distinctive-
ness, and clarity as the rational number. ([3, p. 81])

While Cantor did not give an example of a fundamental sequence
which does not converge to a rational number, he stated that when one
says that a polynomial has a real root, that means there is a funda-
mental sequence which represents the root. ([1, p. 125]) He also stated
that to every rational number corresponds to a fundamental sequence,
but not every fundamental sequence corresponds to a rational number.
([1, p. 126]) In a short paper which is a response to a criticism of
the Weierstrass-Cantor theories of the irrational numbers, Cantor does
give the example of the sequence

(1.7, 1.73, 1.732, . . . )

which represents
√

3. ([2, p. 476])
Once the irrational numbers were defined, Cantor moved on to the

issue of the defining properties of the real numbers. Given the funda-
mental sequences of the first order, one can form the set of fundamental
sequences of the second order which is the set of fundamental sequences
of numbers of the first order. The process can be repeated, and one
calls the n-th iteration of this process the set of fundamental sequences
of n-th order. Cantor pointed out that the spaces of order greater than
one are essentially the same: “All these fundamental sequences accom-
plish exactly the same thing for the determination of a real number
b as the fundamental sequences of the first order, the only difference
consisting of the more complicated and broader form in which they are
given.” ([3, p. 83]) Thus we see one arithmetic property of the real
numbers, viz., that iterations of the process of forming fundamental
sequences do not produce new numbers, other than in a formal sense.

In the second section of the 1872 paper, Cantor begins a topological
characterization of the real numbers, a theme he will return to later in
discussing the notion of continuum. Let P represent a set of numbers.
Cantor defined a limit point of P and the derived set of P. The first
derived set of a set P , denoted P ′, is the set of limit points of the
set. One can indefinitely repeat this process, forming the sequence of
derived sets: P, P ′, P ′′, . . . , P ν , . . . . Included in the examples Cantor
provided is the case where P is the set of rational numbers in the
interval (0,1). The derived set, denoted P ′, is the closed interval of real
numbers [0,1]. He added that all P ν = P ′, for all natural numbers ν
([1, p. 126].) In Section 10 of the Grundlagen, Cantor used the term
perfect to describe a set whose derived set is itself ([3, p. 86]). Thus,
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Cantor also provided a topological characterization of the real numbers
as a perfect set.

Heine’s concept of the real numbers was the same as Cantor’s; how-
ever, his presentation differed from Cantor’s in two ways. First, Heine’s
presentation was very much like a modern text — in the style of def-
inition, remark, theorem, proof. Secondly, Heine also more carefully
developed the equivalence relation on the set of fundamental sequences.
Heine defined an elementary sequence to be one whose terms are smaller
than any given number as the index increases without bound.([6, p.
174]). The symbol for an elementary sequence is 0. ([6, p. 176])
Two sequences are said to be equal if their difference is an elemen-
tary sequence. ([6, p. 175]) An arbitrary sequence of rational numbers
a, b, c, . . . is associated to the number symbol [a, b, c, . . .]. Two symbols
for a number are the same or interchangeable if the sequences to which
they belong are equal. ([6, p. 176]) Heine defined the sets of funda-
mental sequences of n-th order as Cantor had and concluded that all
those beyond the second order yield no new numbers. ([6, p. 180])

2.3. Weierstrass. Weierstrass did not publish his theory of the real
numbers, so we must rely on manuscripts of his students. Some of
these manuscripts have been published. The notes of Moritz Pasch,
Wilhelm Killing, Georg Hettner, and Adolf Hurwitz are available. Vic-
tor Dantscher published a book on Weierstrass’s theory of the irrational
numbers. The remarks below are based mainly on the published notes
of Hurwitz ([8]). (For a discussion of the development of some of Weier-
strass’s ideas on the fundamentals of analysis according to several of
the manuscripts of his students, see [5].)

Weierstrass’s development of the real numbers began with a short
discussion of equality, addition, and multiplication on the set of multi-
ples of a unity (what we would call the natural numbers). ([8, p. 4]) He
next developed the operations on positive rational multiples of a unity.
This section begins with a definition of exact parts of unity which are
numbers of the form 1

n
where n · 1

n
= 1. By a number (Zahlgröße) is

meant a set consisting of a finite number of the unity and exact parts of
unity. ([8, p. 4]) There are two transformations which can be applied
to a set without changing the number:

• any n elements 1
n

can be replaced with 1, and
• any element can be expressed through its exact parts, for ex-

ample 1 by n · 1
n

or 1
m

by n · 1
m·n . ([8, p. 5])

After giving a definition of order, addition, and multiplication on
these numbers with finitely many elements, Weierstrass considered
numbers with infinitely many elements. So that one can have an exact
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representation of these numbers, it is necessary that the elements are
selected from the previously defined numbers according to a certain
law. He gave the example of

1 +
1

3
+

1

3 · 3
+

1

3 · 3 · 3
+ · · · . ([8, p. 7])

To determine if two such numbers are equal a third rule for transfor-
mation is needed. Let a and a′ be two numbers, with a′ having a finite
number of elements. We say a′ is a component of a if a′ can be trans-
formed into a′′ so that the same elements of a′′ appear as often in a
as in a′′ and in addition a either has other elements or has the same
elements but in greater number. Then two numbers a and b are equal
if each component of a is one of b and vice versa. Moreover, we say
b > a if every component of a is a component of b but not vice versa.
([8, pp. 7-8])

While any two numbers with a finite numbers of elements can be
added or multiplied, this is not the case for numbers with an infinite
number of elements. To recognize those numbers for which these oper-
ations are possible, Weierstrass first defined finite numbers. A number
a with infinitely many elements is said to be finite if there exists a
number consisting of finitely many elements which is greater than a.
Addition and multiplication are defined for these numbers. At this
point, Weierstrass explained that the numbers developed thus far are
inadequate for subtraction and division. So he carefully and completely
constructed the negative numbers and reciprocals. The end result of
all these constructions is the set of real numbers, a set on which the
operations of addition, subtraction, multiplication, and division (by
non-zero numbers) are possible and satisfy the commutative, associa-
tive, and distributive laws. ([8, p. 17, 20])

The question for us now is how Weierstrass distinguished the real
numbers from the rational numbers. While there is a parenthetical
remark that infinitely many numbers cannot be expressed with a fi-
nite number of elements, a proof is not given. ([8, p. 8]) In another
parenthetical remark, Weierstrass said, “One is brought to the exten-
sion of the number systems if one encounters an impossible operation,
for example, squareroots.” ([8, p. 9]) There is an algorithm to find the
square root of numbers which have a rational square root, but for those
numbers without a rational square root one is led to an infinite decimal
expansion.

Definiert war dadurch z.B.
√

2 jedenfalls, indem man
durch besagten Algorithmus für jede (Decimal-)Stelle
eine bestimmte Zahl findet. Danach konnte man sagen:
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Es giebt freilich keine rationale Zahl, die mit sich selbst
multipliciert 2 ergiebt, aber man kann doch eine Reihe
von rationalen Zahlen aufstellen, von denen jede spätere
dieser Eigenschaft näher kommt als eine frühere. Dieses
läßt sich auch für die Wurzeln einer Gleichung sagen.

Translation:
For example,

√
2 was defined in this way, in which through

the aforementioned algorithm, one finds one certain num-
ber for each decimal place. From this, one can say:
There is certainly no rational number, which multiplied
by itself yields 2, but one can still construct a series of
rational numbers such that each later term of the series
comes closer to this property than an earlier. This can
also be said for other roots. ([8, p. 9])

In this parenthetical remark, Weierstrass established that the set of
real numbers was larger set than that of the rational numbers, because
the set of real numbers contains all the roots.

In the ninth chapter of the book, Weierstrass gave a characterization
of the real numbers in topological terms. It is in this chapter that
we find the Bolzano-Weierstrass Theorem which is equivalent to a set
satisfying the Dedekind property or being perfect. Weierstrass defined
the upper bound (obere Grenze (for us the supremum)) of a set. First,
he proved that every bounded set of real numbers has a supremum and
an infimum. He did this by construction, breaking the proof into two
parts.

• First he showed that if a0, a1, . . . is a non-decreasing bounded
sequence of real numbers, then letting b1 = a1 − a0, b2 = a2 −
a1, . . . , bν = aν − aν−1 , the number

b =
∞∑

ν=1

bν

is finite.
• Now dealing with an arbitrary set of positive real numbers that

is bounded above, he created a sequence of nested intervals such
that

– the sequence of lengths of the intervals tends to zero,
– the right endpoint of each interval is an upper bound for

the set,
– and in each subinterval, there is an element of the set.
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The differences of successive endpoints of these intervals are used to
create a non-decreasing bounded sequence and the supremum is con-
structed as indicated in the first part of the proof. He showed that the
number b is indeed the supremum of the set. ([8, pp. 84-86]) The above
result is a lemma for the Bolzano-Weierstrass Theorem: In any set
which has infinitely many points, there exists at least one point which
is distinguished through the property that any so small neighborhood of
that point contains infinitely many points of the set. ([8, pp. 86-87])
Again, he used the nested interval technique and proof by construction.
Thus, Weierstrass has provided the foundation for his analysis by care-
fully defining the real numbers and proving the Bolzano-Weierstrass
Theorem.

3. Relation between the real numbers and the real line

After developing a theory of the real numbers, each of the authors
came back to the issue of the relation between the real numbers and
the real line. They recognized that identifying the real numbers with
the real line was indeed different from constructing the real numbers.

Dedekind stated that while one may say that to every point, one can
attach a number, it must be taken as an axiom that to each number
there exists a point on the line. He added that if a line exists, it does
not have to be continuous. If we found a line was not continuous, we
could create new points to fill it up. ([4, pp. 11-12]) Cantor agreed with
Dedekind but talked about these ideas in a more concrete fashion. He
explained the correspondence between the real numbers and real line
in Section 2 of [1]. Imagine a straight line with a fixed origin O, fixed
unit length, and positive and negative directions. Mark a distance on
the line. If it corresponds to a rational number, one is finished. He
continued:

In the other case, if the point is known through a con-
struction, it is always possible to develop a sequence

a1, a2, a3, . . . , an, . . . ,

satisfying the conditions of Section 1 and having with
the distance in question the relation that the points of
the line corresponding to the distances a1, a2, a3, . . . , an, . . .
move infinitely nearer with increasing n .

We express this by saying: The distance of a specified
point from the point O is equal to b where b is the number
corresponding to the above sequence. ([1, p. 127])
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On the other hand, it is an axiom that to each number there is a point
on the line whose coordinate is that number. ([1, p. 128])

As is typical of Weierstrass, he went into more detail on this issue.
After completing his development of the real numbers, he provided
in the fourth section of Chapter 2 a geometric illustration of the real
numbers. He explained how to determine

• the sum of a finite number of lengths,
• a multiple of a length, and
• an exact part of a length.

Weierstrass next showed exactly how to compare two lengths. Given
two lengths a and b, if one is a multiple of the other, then one is finished.
Suppose, however, that one can lay off m copies of a against b so that
the remaining piece is less than a. So one can write b = ma + b1.
Next one compares b1 with some part of a, say a

10
. Then either b1 is a

multiple of a
10

or not. If it is, then one is done; if not, one continues the
procedure. Either it eventually terminates or one has an infinite series
which converges to b. ([8, pp. 21-22])

Then, assuming the continuity of the line, he showed how one can
represent a number by a length. He says

Haben wir eben gezeigt, daß das Verhältnis zweier Strecken
b : a (so nenne ich die in obiger Weise durch b gegebene
Zahl, wenn ich a als Einheit auffasse) eine Zahl mit
endlich oder unendlich vielen Elementen sein kann, so
wollen wir jetzt umgekehrt nachweisen, daß jede aus un-
endlich vielen Elementen zusammengesetzte Zahlgröße
sich als eine Strecke darstellen läßt, wenn wir eine feste
Strecke als Einheit annehmen, und die erwähnte Zahlgröße
in unserem Sinne einen endlichen Werth besitzt.

Translation:
We have just shown that the ratio of two lengths b : a
(so I name b in the above way the given number if a is
understood as the unit) can be a number with finitely
or infinitely many elements. Thus, we want to prove
the opposite, that each number with infinitely many el-
ements can be represented by a length if we fix a unit
length and the number has a finite value in our sense.
([8, p. 22])

He does this by example, showing how to mark off a point for the
expansion of

1 +
1

2!
+

1

3!
+ · · · .
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First one marks off the unit length, denoted by PQ. Then to each
partial sum there is a length. Now one marks off a point X so that
sn > PX for all n. Any point to the left of X has this same property.
Because the sum is finite, there must be a point Y so that PY > sn

for all n. All points to the right of Y have the same property. Since
the points X and Y form a continuous line of points, there must be a
point X0 which has the property that PX0 is greater than any partial
sum but that at the same time, if to PX0 is added some small element
representing X0Y1, PY1 is no longer contained in

1 +
1

2!
+

1

3!
+ · · · .

So PX0 is the desired length.([8, p. 22]) Weierstrass summarized saying

Jede Zahlgröße läßt sich durch das Verhältnis zweier
Strecken repräsentieren und das Verhältnis irgend zweier
Strecken durch eine Zahlgröße ausdrücken.

Translation:
Each number can be be represented as the ratio of two
lengths and the ratio of any two lengths can be repre-
sented by a number. ([8, p. 22])

So Weierstrass did not make as careful a distinction as did Cantor and
Dedekind, but his goal in that section was to produce a meaningful
picture of the real numbers.

4. Continuum

The last problem to consider is the relationship between the con-
tinuum and the system of real numbers. For Dedekind, the issue of
continuity is one and the same as the real numbers. However, Weier-
strass and Cantor recognized that a continuum required a definition
distinct from the real numbers.

Dedekind expressed his views both in his essay Stetigkiet und irra-
tionalen Zahlen and in correspondence with Cantor. The title of his
essay itself suggests that he considered continuity (Stetigkiet) and the
real numbers one and the same. Throughout the essay, he referred to
his search for the real numbers as a way to understand a continuous
domain. In the preface to Stetigkiet und irrationalen Zahlen, Dedekind
stated,

The statement is so frequently made that the differential
calculus deals with continuous magnitude, and yet an
explanation of its continuity is nowhere given; even the
most rigorous expositions of the differential calculus do
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not base their proofs upon continuity but, with more
or less consciousness of the fact, they either appeal to
geometric notions or those suggested by geometry, or
depend upon theorems which are never established in a
purely arithmetic manner. . . . It then only remained to
discover its true origin in the elements of arithmetic and
thus at the same time to secure a real definition of the
essence of continuity. ([4, p. 2])

He wished to capture arithmetically the continuity that is modeled by
an unbroken line.

If now, as is our desire, we try to follow up arithmetically
all phenomena in the straight line, the domain of ratio-
nal numbers is insufficient and it becomes absolutely
necessary that the instrument R constructed by the cre-
ation of the rational numbers be essentially improved
by the creation of new numbers such that the domain of
numbers shall gain the completeness, or as we may say
at once, the same continuity, as the straight line.

Having proved that the real numbers as constructed by himself sat-
isfied the law of continuity, Dedekind believed he had characterized
continuity completely.

4.1. Dedekind and Cantor Correspondence. For Cantor there
was more to the concept of a continuum than a characterization of
the real numbers. He discussed the issue with Dedekind in a series of
letters. The discussion began with a letter from Cantor to Dedekind.
At issue was Dedekind calling Property IV the “law of continuity.”
Dedekind replied on May 11, 1877, asking for clarification of the objec-
tion. ([7, pp. 21-22]) Cantor responded on May 17. His main concern
was that Dedekind equated continuity with Property IV, a property
which the highly discontinuous whole numbers possess. Cantor wrote:

Indessen bitte ich Sie mir die Bemerkung zu erlauben,
ob nicht vielleicht doch die Betonung, welche Sie an
verschiedenen Stellen Ihrer Schrift ausdrücklich auf die
Eigenschaft IV, als auf das Wesen der Stetigkeit legen,
zu Missverständnissen Gelegenheit geben muss, welche
ohne jene Hervorhebung von IV (als das eigentliche We-
sen) an Ihre Theorie, meiner Ansicht nach, nicht her-
antreten könnten. Im Besonderen sagen Sie in dem Vor-
worte, dass das von mir bezeichnete Axiom vollständig
mit dem übereinstimmt was Sie in §3 als Wesen der
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Stetigkeit angeben. Darunter verstehen Sie aber dieselbe
Eigenschaft, welche auf Seite 25 unter IV genannt ist;
diese Eigenschaft kommt aber auch dem System aller
ganzen Zahlen zu, welches doch als ein Prototyp von
Unstetigkeit betrachtet werden kann.

Translation:
Permit me to make this remark: the emphasis that you
put in different spots expressly on property IV, as being
the essence of continuity, could cause misunderstanding
of your theory. In particular you say in the preface that
the axiom presented by me (the Axiom of Continuity) is
equivalent to that which you present in §3 as the essence
of continuity. By the latter you understand however the
same property, which is named on p.25 under IV; but
this property belongs also to the system of all whole
numbers, which could be considered the prototype of a
discontinuous space. ([7, p. 22])

Cantor concluded the letter with a request that Dedekind examine his
reservations more closely. In a postscript to the letter, he added in a
conciliatory tone,

Ich erkläre mir, warum Sie auf IV einen besonderen
Nachdruck legen, dadurch, dass in dieser Eigenschaft
dasjenige liegt, was das vollständige Zahlgebiet unter-
scheidet von dem Gebiet aller rationalen Zahlen; und
dennoch scheint es mir aus obigen Gründen, dass man
der Eigenschaft IV nicht den von Ihnen gebrauchten Na-
men “Wesen der Stetigkiet” beilegen kann.

Translation:
I understand that you insist particularly on property IV
because it is this property which distinguishes the reals
from the rationals. However, it seems to me for the rea-
sons given in the letter that one cannot give property
IV the name “essence of continuity.” ([7, p. 23])

On May 18, 1877, Dedekind responded to Cantor:

Nach Ihrem letzten Briefe schient es mir, als ob wir
Gefahr liefen, mehr um Worte als um Dinge zu streiten.
Jeder aufmerksame Leser meiner Schrift wird meine Mei-
nung über die Stetigkiet gewiss so verstehen: Gebiete
mit einer Gegen- sätzlichkeit und Vollständigkeit ihrer
Elemente, wie sie durch I und II in §1 S. 14, §2 S.
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15, §5 S.25 ausgedruckt ist (III ist eine Folge von I
und nur deshalb hinzugefügt, um auf IV vorzubereiten),
sind darum noch nicht nothwendig stetige Gebiete; die
Eigenschaft der Stetigkeit erhalten solche Gebiete durch
die Hinzufügung der Eigenschaft IV (auf S. 18 ohne
Nummer, und auf S. 25) und nur durch diese Eigen-
schaft. Und insofern ist diese Eigenschaft als das Wesen
der Stetigkeit bezeichnet. . . . Sie theilen mir nun durch
Ihre Karte vom 10. d. M. mit, dass meine Definition
der Stetigkeit nicht vollständing ist, und machen einen
Verbesserungsvorschlag, um diesem Mangel abzuhelfen.
Darauf lehne ich diesen Vorschlag ab, indem ich Sie
auf II aufmerksam mache, worin das von Ihnen Ver-
misste enthalten ist. Hierauf geben Sie in Ihrem let-
zten Briefe zu, das in meiner Definition eigentlich Nichts
übersehen ist; wenn ich z. B. sage: “Gebiete, welche die
Eigenchaften I und II bestizen, heissen stetige, wenn sie
zugleich die Eigenschaft IV besitzen”, so werden Sie,
wenn ich Ihren letzten Brief recht versthehe, gegen die
Völlständigkeit einer solchen Erklärung Nichts einzuwen-
den haben.

Translation:
According to your last letter, it seems to me that we
run the risk of discussing words rather than ideas. Ev-
ery attentive reader of my work understands my opinion
on continuity as such: the domains of which the ele-
ments possess the property expressed as I and II (III is
a consequence of I and is only added to prepare for IV)
are not yet necessarily continuous. Such domains obtain
the property of continuity by the addition of property
IV and only by the addition of IV.

You tell me that my definition of continuity is not
complete and make a suggestion to improve it. I decline
your suggestion, in drawing your attention to property
II, which contains that which you think is lacking. You
tell me in your last letter that nothing will in effect be
missing in my definition if I say for example “Domains
which possess properties I and II are called continuous
if they also possess property IV.” ([7, p. 23])

He added that all attentive readers will understand what his point
of view is and that the example of the natural numbers would not
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occur as an objection. He regarded his work as a progression from the
rationals to the reals and as such it would suffer if he moved property
II, as the system of the rational numbers, a discontinuous field, already
possesses II. He had no objection to the legitimacy of rephrasing the
definition. But his original formulation pleased him most. In any case,
he objected to the necessity of changing the definition. He concludes
that they agree in content, and that the debate would, if continued, not
produce much. ([7, p. 24]) Dedekind’s view of the progressive nature
of his work and his understanding that the system of real numbers is
the continuous domain seem to have precluded the possibility of other
continuous domains. The letter of May 18th was their last exchange
on the topic.

Joseph Dauben in the book Georg Cantor: His Mathematics and
Philosophy of the Infinite discusses how Cantor wanted an algebraic
definition of continua. We merely include a few remarks of Cantor that
appear in the Grundlagen. In Section 10 of the Grundlagen, Cantor
explained his understanding of the continuum. He stated that there
has been confusion about the concept of a continuum since the time of
the Greeks. Thus, he concluded,

I see myself obliged only to develop the concept of the
continuum here as briefly as possible, in as logically
sober a fashion as I must grasp it and as I need it in
the theory of manifolds, and, also, only with respect to
the mathematical theory of aggregates. This treatment
was not so easy for me, for among mathematicians whose
authority I like to call upon, not a single one has dealt
closely with the continuum in the sense that I am in
need of here.

Indeed, taking one or several real or complex continu-
ous magnitudes (or, what I take to be the more correct
expression, continuous sets of magnitudes) as a basis,
the concept of a continuum depending on them either
univocally or multivocally — i.e., the concept of a con-
tinuous function — has been shaped out in the best
possible way and in the most varied directions.

. . .
However, the independent continuum itself has merely

been presupposed by the mathematical authors in that
most simple manifestation and has not been subjected
to any more thorough consideration.

. . .



112 JOANNE E. SNOW

Thus I am left with no choice but to attempt with the
aid of the real number concepts defined in Section 9, as
general as possible a definition of a purely arithmetical
concept of a point continuum. ([3, p. 85])

To give the definition of continuum, Cantor first recalled the notion
of perfect. But perfect alone is not sufficient for a definition of a con-
tinuum, because there are perfect sets which are not everywhere dense.
So another concept is required, namely that of connected. ([3, p. 86])
His definition reads,

We call T a connected point aggregate if for any two
points t and t′ of the latter and for a pre-assigned arbi-
trarily small number ε, there always exists a finite num-
ber of points

t1, t2, . . . , tν

of T in multiple ways so that the distances tt1, t1t2, . . . , tνt
′

are all smaller than ε. ([3, p. 86])

Cantor presented his definition that a continuum is a set that is both
perfect and connected. ([3, p. 86]) Having given his definition, he
criticized the definitions of Bolzano and of Dedekind. Both lack the
notion of connected. Of Dedekind, he said

Similarly it also appears to me that in the essay of Herr
Dedekind (Continuity and Irrational Numbers) only one
different property of the continuum has been stressed
one-sidedly, viz. the property which it shares with all
“perfect” aggregates. ([3, p. 87])

4.2. Weierstrass. Weierstrass also discussed the continuum in Chap-
ter 9. Suppose an infinite set of points, call it X, is selected from the
real numbers. If the set can be represented by the points of a line, con-
tinuously following one after another, we say they form a continuum.
This is analytically defined as follows: Let a be a point in a set X and
the points in any arbitrarily small neighborhood of a lie in the set X.
In a neighborhood of a point a of a set X is another point a1 so that all
the points in the interval a to a1 belong to the set. If one can continue
in this way to a2, a3, . . . an then we say a continuous path from a1 to an

is possible. ([8, pp. 83-84]) Thus, he included the notion of connected,
just as Cantor did.

∗ ∗ ∗
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In their efforts to answer questions about the foundations of mathe-
matics as well as other areas of mathematics, mathematicians came to
an understanding of the distinctions between the real numbers, the con-
tinuum, and the real line. This journey was not linear nor focused only
on the real numbers, but wandered into other branches of mathematics
and created new branches.
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[1] Georg Cantor, “Über die Ausdehnung eines Satzes auf der Theorie der
trigonometrischen Reihen,” Mathematische Annalen, 5 (1872), 123–132.

[2] Georg Cantor, “Bemerkung mit Bezug auf den Aufsatz: Zur Weierstrass-
Cantorschen Theorie der Irrationalenzahlen,” Mathematische Annalen, 33
(1889), 476.

[3] Georg Cantor, “Grundlagen einer allgemeinen Mannigfaltigskeitslehre,” The
Campaigner (The Theoretical Journal of the National Caucus of Labor Com-
mittees), 9 (1976), 69–96.

[4] Richard Dedekind, Essays on the Theory of Numbers, New York: Dover Publi-
cations, Inc, 1963.

[5] Pierre Dugac, “Elements d’analyse de Karl Weierstrass,” Archive for History of
Exact Sciences, 10 number 3-5 (1973), 41–176.

[6] E. Heine, “Die Elemente der Functionenlehre,” Journal für reine und ange-
wandte Mathematik, 74 (1872), 172–188.

[7] Emmy Noether and Jean Cavaillès (eds.), Briefwechsel Cantor-Dedekind, Paris:
Hermann & Cie, 1937.

[8] Peter Ulrich (ed.), Karl Weierstrass: Einleitung in die Theorie der analytis-
chen Funktionen: Vorlesung Berlin 1878 in einer Mischrift von Adolf Hurwitz,
Braunschweig/Wiesbaden: Friedr. Vieweg & Sohn, 1988.

Mathematics Department, Saint Mary’s College, Notre Dame, IN
46556

E-mail address: jsnow@saintmarys.edu


