A new hypoelliptic operator on almost CR manifolds

Raphaël Ponge

Abstract

The aim of this paper is to present the construction, out of the Kohn-Rossi complex, of a new hypoelliptic operator Q_{L} on almost CR manifolds equipped with a real structure. The operator acts on all (p, q)-forms, but when restricted to $(p, 0)$-forms and (p, n)-forms it is a sum of squares up to sign factor and lower order terms. Therefore, only a finite type condition condition is needed to have hypoellipticity on those forms. However, outside these forms Q_{L} may fail to be hypoelliptic, as it is shown in the example of the Heisenberg group \mathbb{H}^{5}.

Introduction

Homogeneity reasons prevent natural operators on CR manifolds to be elliptic, but they can be hypoelliptic in various other guises. An important example is the Kohn Laplacian: under suitable geometric conditions (i.e., $Y(q)$-condition) the Kohn Laplacian is maximal hypoelliptic and hypoelliptic with a gain of 1 derivative (see $[14,10,3]$), but in general it may have rather subtle hypoelliptic properties (see $[4,5,7,8,13,15,17]$).

The aim of this paper is to present the construction of a new hypoelliptic operator on almost CR manifolds, that is, manifolds M together with a subbundle $H \subset T M$ which is equipped with an almost complex structure $J \in \operatorname{End} H, J^{2}=-1$. This construction is partly inspired by the second order signature operator of Connes-Moscovici [6] and an earlier version on 3 -dimensional contact manifolds was presented in [18].

In order to construct our operator it is crucial to further assume that the horizontal subbundle H admits a real structure, i.e., there exists a subbundle $L \subset H$ so that $H=L \oplus J L$.

[^0]This implies the vanishing of the first Chern class of H, and so an almost CR manifold does not admit a real structure in general. However, as explained in Section 1, there is a handful of interesting examples of CR manifolds which do admit a real structure. Among these are real hypersurfaces of \mathbb{C}^{n+1} that are rigid in the sense of [2], nilpotent Lie groups and CR nilmanifolds, some CR symmetric spaces in the sense of [12], and contact manifolds equipped with a Legendrian subbundle, including circle bundles associated to the geometric quantization of symplectic manifolds.

The existence of a real structure allows us to define a chirality operator which is analogous to the Hodge \star-operator and maps (p, q)-forms to ($n-p$, $n-q$)-forms (where n is the complex dimension of $\operatorname{dim} H$). We then can define a second order differential operator by letting

$$
Q_{L}=\left(\bar{\partial}_{H}^{*} \bar{\partial}_{H}-\bar{\partial}_{H} \bar{\partial}_{H}^{*}\right)-\gamma\left(\bar{\partial}_{H}^{*} \bar{\partial}_{H}-\bar{\partial}_{H} \bar{\partial}_{H}^{*}\right) \gamma,
$$

where $\bar{\partial}_{H}$ is the horizontal $\overline{\bar{\partial}}$-operator of Kohn-Rossi ([16], [14]). This operators acts on (p, q)-forms and anticommutes with the chirality operator γ.

When restricted to ($p, 0$)-forms and (p, n)-forms Q_{L} agrees with a sum of squares up to sign factor and lower order terms (see Proposition 3.2). Therefore, whenever M has finite type, on these forms Q_{L} is maximal hypoelliptic, which in this context implies that the operator is hypoelliptic with gain of one derivative (see Section 4). In fact, it even admits a parametrix in the class of singular-integral operators of Rotschild-Stein [19] and, when codim $H=1$, it further has a parametrix in the Heisenberg calculus of Beals-Greiner [3] and Taylor [21]. Notice that in order for all these properties to hold only the finite type condition is needed. In particular, when codim $H=1$ we may allow (M, H) to be weakly pseudoconvex.

The hypoelliptic properties of Q_{L} contrast with that of the Kohn Laplacian. For instance, on strictly pseudoconvex CR manifolds Q_{L} is hypoelliptic precisely in bidegrees where the Kohn Laplacian is not. In particular, in dimension 3 the operator Q_{L} is hypoelliptic in every bidegree, while the Kohn Laplacian is hypoelliptic in none. In addition, on weakly pseudoconvex CR manifolds that are not strictly pseudoconvex Q_{L} may be maximal hypoelliptic, while the Kohn Laplacian may not.

On the other hand, outside ($p, 0$)-forms and $(n, 0)$-forms the operator Q_{L} may fail to be hypoelliptic. This fact is illustrated in Section 5, where we look at the operator Q_{L} on the 5 -dimensional Heisenberg group \mathbb{H}^{5}. In this setting we explicitly construct a $(0,1)$-form which annihilates Q_{L} but is singular at the origin. This shows that Q_{L} is not hypoelliptic on $(0,1)$-forms. Similar arguments also show that Q_{L} is not hypoelliptic on (1,1)-forms or on $(2,1)$ forms either. Therefore, in the case of \mathbb{H}^{5} this is only on $(p, 0)$-forms and (p, n)-forms that Q_{L} is hypoelliptic.

This paper is organized as follows. In Section 1, we present the main definitions and examples regarding real structures on almost CR manifolds. In Section 2, we construct the chirality operator γ mentioned above. In Section 3, we construct the operator Q_{L} and we derive a local expression which shows that on $(p, 0)$-forms and (p, n)-forms Q_{L} is a sum of squares up to sign factor and lower order terms. In Section 4, we study the hypoellipticity properties of Q_{L} on ($p, 0$)-forms and (p, n)-forms. In Section 5, we look at the operator Q_{L} on the Heisenberg group \mathbb{H}^{5} and illustrate on this example the fact that Q_{L} may fail to be hypoelliptic outside forms of bidegree $(p, 0)$ and (p, n).

Acknowledgements. I am very grateful to Olivier Biquard, Louis Boutet de Monvel, Alain Connes, Charlie Epstein, Henri Moscovici, Xiang Tang and Alan Weinstein for helpful and stimulating discussions related to the subject matter of this paper.

1. Real structures on CR manifolds

Let M be an almost CR manifold, i.e., M is equipped with a subbundle $H \subset T M$ carrying an almost complex structure $J \in C^{\infty}(M, H), J^{2}=-1$. This gives rise to a CR structure when J is integrable, i.e., the subbundle $T_{1,0}:=\operatorname{ker}(J+i) \subset T_{\mathbb{C}} M$ is integrable in Froebenius' sense.

We don't assume H to have codimension 1, that is, (M, H) need not be of hypersurface type. In any case $n:=\frac{1}{2} \operatorname{dim} H$ is an integer, called the $C R$ dimension of M.

In addition, we shall say that M is of finite type, when Hörmander's bracket condition is satisfied, i.e., at every point $T M$ is spanned by successive Lie brackets $\left[X_{1},\left[X_{2},\left[\ldots, X_{m}\right] \ldots\right]\right]$ of vectors fields with values in H.

Definition 1.1. A real structure on H is given by the datum of a rank n real subbundle $L \subset H$ such that

$$
\begin{equation*}
H=L \oplus \mathcal{J} L \tag{1.1}
\end{equation*}
$$

If L is real structure on H, then the decomposition (1.1) yields an involution $X \rightarrow \underline{X}$ on the fibers of H defined by

$$
\begin{equation*}
\underline{X_{1}+\mathcal{J} Y_{1}}=X_{1}-\mathcal{J} Y_{1} \quad \forall X_{1}, Y_{1} \in C^{\infty}(M, L) \tag{1.2}
\end{equation*}
$$

Notice that $L=\operatorname{ker}(.-1)$ and $\mathcal{J} L=\operatorname{ker}(.+1)$. Conversely, if ι is an involutive section of $\operatorname{End}_{\mathbb{R}} H$ anticommuting with \mathcal{J}, then the subbundle $L:=\operatorname{ker}(\iota-1)$ defines a real structure on H.

Let us now look at some examples of real structures.

A. Rigid real hypersurfaces

Let us denote $\left(z^{1}, \ldots, z^{n}, w\right)$ the complex coordinates on \mathbb{C}^{n+1}. In terms of real and imaginary parts we shall write $z^{j}=x^{j}+i y^{j}, j=1, \ldots, n$, and $w=u+i v$. Consider a real hypersurface of the form,

$$
\begin{equation*}
M=\{v=F(z, \bar{z})\} \tag{1.3}
\end{equation*}
$$

where $F(z, \bar{z})$ is some real-valued function. In the terminology of [2] such a hypersurface is said to be rigid. Examples of such hypersurfaces are given by the hyperquadrics $Q_{p, q}^{2 n+1}:=\left\{v=\sum_{j=1}^{p}\left|z^{j}\right|^{2}-\sum_{j=p+1}^{q}\left|z^{j}\right|^{2}\right\}, p+q=n$.

We equip M with the CR structure induced by the complex structure of \mathbb{C}^{n+1}, i.e., the differential J_{0} of the multiplication by i on $T \mathbb{C}^{n+1}$. Therefore we have $H=T M \cap J_{0}(T M)$ and the complex structure of H is just $J=J_{0 \mid M}$. Then the CR tangent bundle $T_{1,0}:=\operatorname{ker}(J-i)$ agrees with $T^{1,0} \mathbb{C}^{n+1} \cap T_{\mathbb{C}} M$. In particular, a global frame of $T_{1,0}$ is given by the vector fields,

$$
\begin{equation*}
Z_{j}=\frac{\partial}{\partial z^{j}}+i \partial_{z j} F(z, \bar{z}) \frac{\partial}{\partial w} \quad j=1, \ldots, n . \tag{1.4}
\end{equation*}
$$

For $j=1, \ldots, n$. set $Z_{j}=X_{j}-i Y_{j}$, where X_{j} and Y_{j} denote the real and imaginary parts of Z_{j}, i.e.,

$$
\begin{equation*}
X_{j}=\frac{\partial}{\partial x^{j}}+\partial_{y^{j}} F \frac{\partial}{\partial u}+\partial_{x^{j}} F \frac{\partial}{\partial v}, \quad Y_{j}=\frac{\partial}{\partial y^{j}}-\partial_{x^{j}} F \frac{\partial}{\partial u}+\partial_{y^{j}} F \frac{\partial}{\partial v} . \tag{1.5}
\end{equation*}
$$

Then the vector fields X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} form a frame of H such that $J X_{j}=Y_{j}$. Therefore, if we let L denote the subbundle spanned by X_{1}, \ldots, X_{n} then $H=L \oplus J L$, that is, L defines a real structure on H.

B. Nilpotent Lie groups and CR nilmanifolds

Let $\mathbb{H}^{2 n+1}$ denote the $(2 n+1)$-dimensional Heisenberg group. We realize $\mathbb{H}^{2 n+1}$ as $\mathbb{R} \times \mathbb{R}^{2 n}$ equipped with the group law,

$$
\begin{equation*}
x \cdot y=\left(x^{0}+y^{0}+\sum_{1 \leq j \leq n}\left(x^{n+j} y^{j}-x^{j} y^{n+j}\right), x^{1}+y^{1}, \ldots, x^{2 n}+y^{2 n}\right) . \tag{1.6}
\end{equation*}
$$

This group law is homogeneous with respect to the parabolic dilations,

$$
\begin{equation*}
t .\left(x^{0}, x^{1}, \ldots, x^{2 n}\right)=\left(t^{2} x^{0}, t x^{1}, \ldots, t x^{2 n}\right) \quad t>0 \tag{1.7}
\end{equation*}
$$

Identifying the Lie algebra $\mathfrak{h}^{2 n+1}$ of $\mathbb{H}^{2 n+1}$ with the Lie algebra of leftinvariant vector fields, a basis for $\mathfrak{h}^{2 n+1}$ is provided by the left-invariant vector-fields,

$$
\begin{equation*}
X_{0}=\frac{\partial}{\partial x^{0}}, \quad X_{j}=\frac{\partial}{\partial x^{j}}+x^{n+j} \frac{\partial}{\partial x^{0}}, \quad X_{n+j}=\frac{\partial}{\partial x^{n+j}}-x^{j} \frac{\partial}{\partial x^{0}}, \tag{1.8}
\end{equation*}
$$

where j ranges from 1 to n. In particular, for $j, k=1, \ldots, n$ and $k \neq j$ we have the relations $\left[X_{j}, X_{n+k}\right]=-2 \delta_{j k} X_{0}$ and $\left[X_{0}, X_{j}\right]=\left[X_{j}, X_{k}\right]=$ $\left[X_{n+j}, X_{n+k}\right]=0$. Notice also that with respect to the dilations (1.7) the vector fields X_{0} is homogeneous of degree -2 , while $X_{1}, \ldots, X_{2 n}$ are homogeneous of degree -1 .

Let H be the subbundle spanned by $X_{1}, \ldots, X_{2 n}$. We endow H with the complex structure \mathcal{J} such that $\mathcal{J} X_{j}=X_{n+j}$ and $\mathcal{J} X_{n+j}=-X_{j}$. This defines a homogeneous left-invariant CR structure on $\mathbb{H}^{2 n+1}$. A leftinvariant real structure on H is then provided by the subbundle L spanned by X_{1}, \ldots, X_{n}.

More generally, let G be a real nilpotent Lie group which is stratified, in the sense that its Lie algebra $\mathfrak{g}:=T_{0} G$ admits a grading by vector subspaces,

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{h}_{1} \oplus \ldots \oplus \mathfrak{h}_{k} \tag{1.9}
\end{equation*}
$$

such that $\mathfrak{h}_{j}:=\left[\mathfrak{h}_{1}, \mathfrak{h}_{j-1}\right], j=2, \ldots, k$. Set $\mathfrak{h}=\mathfrak{h}_{1}$ and assume that $\operatorname{dim}_{\mathbb{R}} \mathfrak{h}$ is even, say $\operatorname{dim}_{\mathbb{R}} \mathfrak{h}=2 n$. As a real vector space \mathfrak{h} is isomorphic to \mathbb{C}^{n}, and so it admits a complex structure \mathcal{J}_{0}. Let H be the subbundle of left-invariant vector fields such that $H_{\mid x=0}=\mathfrak{h}$ and let \mathcal{J} be the almost complex structure on H such that $\mathcal{J}_{\mid x=0}=\mathcal{J}_{0}$. Then H and \mathcal{J} define a left-invariant almost CR structure on G.

Let \mathfrak{l} be an n-dimensional real subspace of \mathfrak{h} such that $\mathfrak{h}=\mathfrak{l} \oplus \mathcal{J}_{0} \mathfrak{l}$, and let L denote the subbundle of left-invariant vector fields such that $L_{\mid x=0}=\mathfrak{l}$. Then $H=L \oplus \mathcal{J} L$, and so L gives rise to a left-invariant real structure on H.

Let $\Gamma \subset G$ be a lattice, i.e., a discrete cocompact subgroup of G. Then $M:=\Gamma \backslash G$ is a compact nilmanifold. Since H and \mathcal{J} are left-invariant, and Γ acts on left, they descend to M, and hence define a natural CR structure on M. Similarly L descends to a vector bundle on M, and thereby gives rise to a real structure on M.

C. CR symmetric spaces

Let G be a connected Lie group with Lie algebra \mathfrak{g} and let $j \in G$ have order 4. Let τ be the automorphism $\tau(x)=j x j^{-1}, x \in G$, and let G_{τ} denote the fixed point group of τ. Set $s=j^{2}$ and $\sigma=\tau^{2}$, so that σ is an involutive automorphism of G.

Let K be a compact subgroup of G_{τ} with Lie algebra \mathfrak{k} and let \mathfrak{l} be an $\operatorname{Ad}(K)$-invariant subspace of $\operatorname{ker}(\operatorname{Ad}(s)+1)$ such that $\mathfrak{l} \cap \operatorname{Ad}(j) \mathfrak{l}=\{0\}$. Set $\mathfrak{h}=\mathfrak{l} \oplus \operatorname{Ad}(j) \mathfrak{l}$; this is an $\operatorname{Ad}(K)$-invariant subspace. Let \mathfrak{a} denote the Lie algebra generated by \mathfrak{h} and let us further assume that $\mathfrak{g}=\mathfrak{k}+\mathfrak{a}$. In addition, since K is compact and \mathfrak{h} is $\operatorname{Ad}(K)$-invariant, there is a subspace \mathfrak{p} of \mathfrak{g} containing \mathfrak{h} such that $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$.

Under these conditions $M:=G / K$ is a CR symmetric space in the sense of Kaup-Zaitsev (see [12, Sect. 6]). Let $o \in M$ denote the class of 1. Then $T_{o} M$ is isomorphic to \mathfrak{p} and under this identification there are a unique G-invariant bundle $H \subset T M$ and a unique G-invariant almost complex \mathcal{J} structure on H such that $H_{o}=\mathfrak{h}$ and $\mathcal{J}_{o}=\left.\operatorname{Ad}(j)\right|_{\mathfrak{h}}$. In addition, the condition $\mathfrak{g}=\mathfrak{k}+\mathfrak{a}$, where \mathfrak{a} is the Lie algebra of \mathfrak{h}, insures us that this CR structure is of finite type (cf. [12, Prop. 6.2]).

Let L denote the unique G-invariant subbundle of H such that $L_{0}=\mathfrak{l}$, then we have $H=L \oplus J L$. Therefore L defines a G-invariant real structure on M.

The above construction can be illustrated by the following example. We take $G=S U(n)$, so that the Lie algebra $\mathfrak{g}=\mathfrak{s u}(n)$ consists of trace-free skew-Hermitian matrices. In addition, we let p and q be positive integers so that $n=p+q$. Identifying \mathbb{C}^{n} with $\mathbb{C}^{p} \oplus \mathbb{C}^{q}$ we shall write $n \times n$-matrices as block matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Set $j:=\left(\begin{array}{cc}1 & 0 \\ 0 & -i\end{array}\right)$. This is a 4th-order element of $S U(n)$ and we have $s:=j^{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Thus,

$$
\begin{align*}
& \tau\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right]=\operatorname{Ad}(j)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a & i b \\
-i c & d
\end{array}\right), \tag{1.10}\\
& \sigma\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right]=\operatorname{Ad}(s)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a & -b \\
-c & d
\end{array}\right) . \tag{1.11}
\end{align*}
$$

In particular, we have the splitting $\mathfrak{s u}(n)=\mathfrak{m}_{+} \oplus \mathfrak{m}_{-}$, where

$$
\begin{align*}
& \mathfrak{m}_{+}:=\operatorname{ker}(\operatorname{Ad}(s)-1)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) ; a \in \mathfrak{u}(p), d \in \mathfrak{u}(q), \operatorname{Tr} a+\operatorname{Tr} d=0\right\}, \tag{1.12}\\
& (1.13) \quad \mathfrak{m}_{-}:=\operatorname{ker}(\operatorname{Ad}(s)+1)=\left\{\left(\begin{array}{cc}
0 & b \\
-b^{*} & 0
\end{array}\right)\right\} . \tag{1.13}
\end{align*}
$$

Set $K:=S O(p) \times S O(q)=\left\{\left(\begin{array}{cc}a & 0 \\ 0 & d\end{array}\right) ; a \in S O(p), d \in S O(q)\right\}$. This is a (compact) subgroup of G_{τ}. Define $\mathfrak{l}:=\mathfrak{m}_{-} \cap M_{n}(\mathbb{R})$, i.e.,

$$
\mathfrak{l}=\left\{\left(\begin{array}{cc}
0 & b \tag{1.14}\\
-b^{t} & 0
\end{array}\right) ; b \in M_{p, q}(\mathbb{R})\right\} .
$$

Then \mathfrak{l} is an $\operatorname{Ad}(K)$-invariant subspace such that $\mathfrak{l} \cap \operatorname{Ad}(j) \mathfrak{l}=\{0\}$. In fact, we have $\mathfrak{h}:=\mathfrak{l} \oplus \operatorname{Ad}(j) \mathfrak{l}=\mathfrak{m}$ _ and, using elementary matrices, it is not difficult to check that $\left[\mathfrak{m}_{-}, \mathfrak{m}_{-}\right]=\mathfrak{m}_{+}$. Therefore \mathfrak{g} agrees with the Lie
algebra generated by \mathfrak{h}. It then follows that $S U(n) /(S O(p) \times S O(q))$ is a CR symmetric space of finite type with a $S U(n)$-invariant real structure defined by \mathfrak{l}.

D. Contact manifolds, Legendrian subbundles and geometric quantization

Assume that $\left(M^{2 n+1}, H\right)$ is an orientable contact manifold, i.e., H is the annihilator of a globally defined contact form θ on M. Let \mathcal{J} be an almost complex structure on H which is calibrated with respect to $d \theta_{\mid H}$, i.e., $g_{\theta, \mathcal{J}}(X, Y):=d \theta(X, \mathcal{J} Y)$ is a positive-definite metric on H (since M is orientable such an almost complex structure always exists). In particular (H, \mathcal{J}) defines an almost CR structure on M.

Let L be a Legendrian subbundle of H, i.e., L is a maximal isotropic subbundle of $d \theta_{\mid H}$. If X and Y are sections of L, then we have

$$
\begin{equation*}
g_{\theta, \mathcal{J}}(X, \mathcal{J} Y)=d \theta\left(X, \mathcal{J}^{2} Y\right)=-d \theta(X, Y)=\theta([X, Y])=0 \tag{1.15}
\end{equation*}
$$

This implies the orthogonal decomposition $H=L \oplus \mathcal{J} L$, and so L defines a real structure independently of the choice of \mathcal{J}.

Conversely, suppose that L is a subbundle H of rank n such that L and $\mathcal{J} L$ are orthogonal. As in (1.15) if X and Y are sections of L, then

$$
\begin{equation*}
d \theta(X, Y)=-\theta([X, Y])=-g_{\theta, \mathcal{J}}(X, \mathcal{J} Y)=0 \tag{1.16}
\end{equation*}
$$

Thus L is a Legendrian subbundle of H.
As we shall now recall examples of contact manifolds equipped with a Legendrian subbundle naturally occur in the context of the geometric quantization of symplectic manifolds.

Let $\left(X^{2 n}, \omega\right)$ be a symplectic manifold which is prequantizable, i.e., the cohomology class of $\frac{1}{2 \pi} \omega$ is integral (see, e.g., [1], [22]). Then there exists a Hermitian line bundle (L, h) on X with a metric connection ∇^{L} with curvature $F^{L}=-i \omega$. Let L^{*} denote the dual line bundle with unit sphere bundle $S^{*}(L):=\left\{\xi \in L^{*} ; h(\xi, \xi)=1\right\}$. Recall that the connection 1-form of the dual connection $\nabla^{L^{*}}$ makes sense as a globally defined real 1-form on the total space M of $S\left(L^{*}\right)$. This can be seen as follows.

Let ξ be a local section of $S\left(L^{*}\right)$. Regarding ξ as a non-zero section of L^{*} it defines a local trivialization of L^{*} with respect to which we have $\nabla^{L^{*}}=d+i \alpha$, where $\alpha:=-i h\left(\xi, \nabla^{L *} \xi\right)$. Notice that, as $\nabla^{L^{*}}$ is a metric connection, α must be a real 1 -form. Let λ denote the local fiber coordinate on M defined by ξ and consider the real 1 -form defined by

$$
\begin{equation*}
\theta:=p^{*} \alpha-i \lambda^{-1} d \lambda \tag{1.17}
\end{equation*}
$$

where $p: M \rightarrow X$ is the fibration of M over X.

Let ξ^{\prime} be another local section of $S\left(L^{*}\right)$ and set $\alpha^{\prime}:=-i h\left(\xi^{\prime}, \nabla^{L *} \xi^{\prime}\right)$ and $\xi^{\prime}=\mu \xi$, where μ is an S^{1}-valued function. Then $\alpha^{\prime}=\alpha-i \mu^{-1} d \mu$. The local fiber coordinate on M defined by ξ^{\prime} is $\lambda^{\prime}=\left(p^{*} \mu\right)^{-1} \lambda$, so the 1 -form (1.17) corresponding to ξ^{\prime} is

$$
\begin{array}{r}
\theta^{\prime}=p^{*} \alpha^{\prime}-i \lambda^{\prime-1} d \lambda^{\prime}=p^{*}\left[\alpha-i \mu^{-1} d \mu\right]-i\left[\left(p^{*} \mu\right)^{-1} \lambda\right]^{-1} d\left[\left(p^{*} \mu\right)^{-1} \lambda\right] \tag{1.18}\\
=p^{*} \alpha-i \lambda^{-1} d \lambda=\theta
\end{array}
$$

This shows that the 1-form θ in (1.17) does not depend on the choice of the local section ξ, and so it makes sense globally on M.

Let $H=\operatorname{ker} \theta$ and let $V:=\operatorname{ker} d p \subset T M$ be the vertical bundle of M. It follows from (1.17) that $H \cap V=\{0\}$, and so $d p$ induces an isomorphism from H onto $T X$. Using (1.17) we also see that locally $d \theta=p^{*} d \alpha$. By assumption we have $i d \alpha=F^{L^{*}}=-F^{L}=i \omega$, and so $d \theta=p^{*} \omega$. Since $d p$ induces an isomorphism from H onto $T X$, it follows that $d \theta$ is non-degenerate on H, i.e., θ is a contact form on H.

Let us further assume that (X, ω) is quantizable in the sense that it admits a Lagrangian subbundle, i.e., a subbundle $\Lambda \subset T X$ which is maximal isotropic for ω (see, e.g., [1, Sect. 3.2], [22, Sect. 4.5]). Then the subbundle $L:=p^{*} \Lambda \cap H$ is maximal isotropic for $d \theta$, i.e., L is a Legendrian subbundle of M. Therefore, we see that the quantization of a symplectic manifold naturally gives rise to a contact manifold (M, θ) equipped with a Legendrian subbundle.

2. Real structure and chirality operator

Throughout the rest of the paper we let (M, H) be an almost CR manifold of CR dimension n. We also assume H to have a real structure L, that is,

$$
\begin{equation*}
H=L \oplus \mathcal{J} L \tag{2.1}
\end{equation*}
$$

where \mathcal{J} denotes the almost complex structure of H.
In addition, we endow L with a Riemannian metric g_{L}. Extending g_{L} to be zero on $\mathcal{J} L \times H$ and $H \times \mathcal{J} L$, we endow H with the Riemannian metric,

$$
\begin{equation*}
g_{H}:=g_{L}(., .)+g_{L}(\mathcal{J} ., \mathcal{J} .) . \tag{2.2}
\end{equation*}
$$

With respect to this metric \mathcal{J} becomes an isometry and the splitting (1.1) becomes orthogonal. If (M, H) is of finite type, then we see that $\left(H, g_{H}\right)$ defines a sub-Riemannian structure on M compatible with its almost CR structure.

We fix a choice of supplement \mathcal{N} of H in $T M$. This allows us to identify H^{*} with the annihilator of \mathcal{N} in $T^{*} M$. We also set $T_{1,0}=\operatorname{ker}(\mathcal{J}+i)$
and $T_{0,1}=\operatorname{ker}(\mathcal{J}-i)$. Notice that $\overline{T_{1,0}}=T_{0,1}$. Moreover, extending g_{H} into a Hermitian metric on $T_{\mathbb{C}} M$ we get the orthogonal decomposition,

$$
\begin{equation*}
H \otimes \mathbb{C}=T_{1,0} \oplus T_{0,1} . \tag{2.3}
\end{equation*}
$$

For $p, q=0, \ldots, n$ we let $\Lambda^{p, q}:=\left(\Lambda^{1,0}\right)^{p} \wedge\left(\Lambda^{0,1}\right)^{q}$ denote the bundle of (p, q)-covectors, where $\Lambda^{1,0}$ and $\Lambda^{0,1}$ are the respective annihilators in $T_{\mathbb{C}}^{*} M$ of the subbundles $T_{0,1} \oplus(\mathcal{N} \otimes \mathbb{C})$ and $T_{1,0} \oplus(\mathcal{N} \otimes \mathbb{C})$. We then have the orthogonal splitting,

$$
\begin{equation*}
\Lambda_{\mathbb{C}}^{*} H^{*}=\bigoplus_{p, q=0}^{n} \Lambda^{p, q} \tag{2.4}
\end{equation*}
$$

We shall now turn the bundle of (p, q)-covectors into a super-bundle by equipping it with a suitable chirality operator. To define this operator we shall make use of the real structure of H. To this end we extend the involution (1.2) into the antilinear involution on $H \otimes \mathbb{C}$ defined by

$$
\begin{equation*}
\underline{X+i Y}=\underline{X}-i \underline{Y} \quad \forall X, Y \in C^{\infty}(M, H) \tag{2.5}
\end{equation*}
$$

This involution preserves both $T_{1,0}$ and $T_{0,1}$. Therefore, by duality it gives rise to an antilinear involution of $\Lambda^{*, *}$ preserving the bidegree. As we shall see the latter property will be crucial in the construction of the operator Q_{L} in the next section.

Let $v_{H}(x)$ be the volume form of g_{H} (seen as a section of $\Lambda^{n, n}$), and let g_{H}^{*} denote the Hermitian metric on $\Lambda^{*, *}$ induced by g_{H}. The operator $\star: \Lambda^{*, *} \rightarrow \Lambda^{n-*, n-*}$ is uniquely determined by the formula,

$$
\begin{equation*}
\beta \wedge \underline{\star \alpha}=g_{H}^{*}(\beta, \alpha) v_{H}(x) \quad \forall \alpha, \beta \in C^{\infty}\left(M, \Lambda^{p, q}\right) . \tag{2.6}
\end{equation*}
$$

Let X_{1}, \ldots, X_{n} be an orthonormal frame of L. Since the splitting $H=$ $L \oplus \mathcal{J} L$ is orthogonal we see that $\left\{X_{j}, \mathcal{J} X_{j}\right\}$ is an orthonormal frame of H. For $j=1, \ldots, n$ we set $Z_{j}=\frac{1}{\sqrt{2}}\left(X_{j}-i \mathcal{J} X_{j}\right)$ and $Z_{\bar{j}}=\frac{1}{\sqrt{2}}\left(X_{j}+i \mathcal{J} X_{j}\right)$. Then $\left\{Z_{j}\right\}$ and $\left\{Z_{j}, Z_{\bar{j}}\right\}$ are orthonormal frames of $T_{1,0}$ and $H \otimes \mathbb{C}$ respectively. Any orthonormal frame of $H \otimes \mathbb{C}$ obtained by a similar process is said to be admissible. Notice that the invariance of L under the involution (1.2) imply that $\underline{Z_{j}}=Z_{j}$ and $\underline{Z_{\bar{j}}}=Z_{\bar{j}}$.

Let $\left\{\theta^{j}, \theta^{\bar{j}}\right\}$ be the coframe of $H^{*} \otimes \mathbb{C}$ dual to $\left\{Z_{j}, Z_{\bar{j}}\right\}$. For any ordered subsets $J=\left\{j_{1}, \ldots, j_{p}\right\}$ and $K=\left\{k_{1}, \ldots, k_{q}\right\}$ of $\{1, \ldots, n\}$ with $j_{1}<\cdots<j_{p}$ and $k_{1}<\cdots<k_{q}$ we set $\theta^{J, \bar{K}}:=\theta^{1} \wedge \cdots \wedge \theta^{j_{p}} \wedge \theta^{\overline{k_{1}}} \wedge \cdots \wedge \theta^{\overline{k_{q}}}$. Then $\left\{\theta^{J, K}\right\}$ is an orthonormal coframe of $\Lambda^{*, *}$.

If $J=\left\{j_{1}, \ldots, j_{p}\right\}$ is an ordered subset of $\{1, \ldots, n\}$ with ordered complement $J^{c}=\left\{j_{1}^{\prime}, \ldots, j_{n-p}^{\prime}\right\}$, then we let $\varepsilon\left(J, J^{c}\right)$ denote the signature of the permutation

$$
\begin{equation*}
\left(j_{1}, \ldots, j_{p}, j_{1}^{\prime}, \ldots, j_{n-p}^{\prime}\right) \longrightarrow(1, \ldots, n) . \tag{2.7}
\end{equation*}
$$

Notice that we always have $\varepsilon\left(J, J^{c}\right) \varepsilon\left(J^{c}, J\right)=(-1)^{p(n-p)}$, for $\varepsilon\left(J, J^{c}\right) \varepsilon\left(J^{c}, J\right)$ is the signature of the permutation

$$
\left(j_{1}, \ldots, j_{p}, j_{1}^{\prime}, \ldots, j_{n-p}^{\prime}\right) \rightarrow\left(j_{1}^{\prime}, \ldots, j_{n-p}^{\prime}, j_{1}, \ldots, j_{p}\right) .
$$

Lemma 2.1. 1) We have

$$
\begin{equation*}
\star \theta^{J, \bar{K}}=i^{n}(-1)^{\frac{n(n-1)}{2}+q(n-p)} \varepsilon\left(J, J^{c}\right) \varepsilon\left(K, K^{c}\right) \theta^{J^{c}, \bar{K}^{c}} . \tag{2.8}
\end{equation*}
$$

2) $O n \Lambda^{p, q}$ we have

$$
\begin{equation*}
\star^{2}=(-1)^{n+p+q} . \tag{2.9}
\end{equation*}
$$

Proof. Set $\theta^{n, \bar{n}}:=\theta^{1} \wedge \cdots \wedge \theta^{n} \wedge \theta^{\overline{1}} \wedge \cdots \wedge \theta^{\bar{n}}$. Since H is oriented by means of its almost complex structure, locally we have

$$
\begin{equation*}
v_{H}(x)=i^{n} \theta^{1} \wedge \theta^{\overline{1}} \wedge \cdots \wedge \theta^{n} \wedge \theta^{\bar{n}}=i^{n}(-1)^{\frac{n(n-1)}{2}} \theta^{n, \bar{n}} . \tag{2.10}
\end{equation*}
$$

Therefore Eq. (2.6) can be rewritten as

$$
\begin{equation*}
\beta \wedge \underline{\star \alpha}=i^{n}(-1)^{\frac{n(n-1)}{2}} g_{H}^{*}(\beta, \alpha) \theta^{n, \bar{n}} \quad \forall \alpha, \beta \in C^{\infty}\left(M, \Lambda^{p, q}\right) . \tag{2.11}
\end{equation*}
$$

Let J_{0} and K_{0} be ordered subsets of $\{1, \ldots, n\}$ of respective lengths p and q, and set $\omega:=\star \theta^{J_{0}, \bar{K}_{0}}=\sum \lambda_{J, \bar{K}} \theta^{J, \bar{K}}$. The (n, n)-component of $\underline{\omega} \wedge \Theta^{J, \bar{K}}$ is equal to $\pm \overline{\lambda_{J, \bar{K}^{c}}} \theta^{n, \bar{n}}$, and so from (2.11) we see that $\lambda_{J^{c}, \overline{K^{c}}}=0$ unless $J=$ J_{0}^{c} and $K=K_{0}^{c}$, i.e., we have $\omega=\lambda_{J_{0}^{c}, \bar{K}_{0}^{c}} \theta^{J_{0}^{c}, \bar{K}_{0}^{c}}$. In particular, from (2.11) we get

$$
\begin{equation*}
i^{n}(-1)^{\frac{n(n-1)}{2}} \theta^{n, \bar{n}}=\theta^{J_{0}, \overline{K_{0}}} \wedge \underline{\omega}=\overline{\lambda_{J_{0}^{c}, \bar{K}_{0}^{c}}} \theta^{J_{0}, \bar{K}_{0}} \wedge \theta^{J_{0}^{c}, \bar{K}_{0}^{c}} . \tag{2.12}
\end{equation*}
$$

Next, upon writing $\theta^{J_{0}, \bar{K}_{0}}=\theta^{J_{0}, \overline{0}} \wedge \theta^{0, \bar{K}_{0}}$ and $\theta^{J_{0}^{c}, \bar{K}_{0}^{c}}=\theta^{J_{0}^{c}, \overline{0}} \wedge \theta^{0, \bar{K}_{0}^{c}}$ we get

$$
\begin{align*}
\theta^{J_{0}, \bar{K}_{0}} \wedge \theta^{J_{0}^{c}, \bar{K}_{0}^{c}}=(-1)^{q(n-p)} \theta^{J_{0}, \overline{0}} & \wedge \theta^{J_{0}^{c}, \overline{0}} \wedge \theta^{0, \bar{K}_{0}} \wedge \theta^{0, \bar{K}_{0}^{c}} \tag{2.13}\\
& =(-1)^{q(n-p)} \varepsilon\left(J_{0}, J_{0}^{c}\right) \varepsilon\left(K_{0}, K_{0}^{c}\right) \theta^{n, \bar{n}}
\end{align*}
$$

Comparing this with (2.12) yields

$$
\lambda_{J_{0}^{c}, \bar{K}_{0}^{c}}=i^{n}(-1)^{\frac{n(n-1)}{2}+q(n-p)} \varepsilon\left(J_{0}, J_{0}^{c}\right) \varepsilon\left(K_{0}, K_{0}^{c}\right) .
$$

Thus,

$$
\begin{equation*}
\star \theta^{J_{0}, \bar{K}_{0}}=i^{n}(-1)^{\frac{n(n-1)}{2}+q(n-p)} \varepsilon\left(J_{0}, J_{0}^{c}\right) \varepsilon\left(K_{0}, K_{0}^{c}\right) \theta^{J_{0}^{c}, \bar{K}_{0}^{c}} . \tag{2.14}
\end{equation*}
$$

Now, using (2.8) we see that $\star^{2} \theta^{J_{0}, \overline{K_{0}}}$ is equal to

$$
\begin{equation*}
(-1)^{n+q(n-p)+(n-q) p} \varepsilon\left(J_{0}^{c}, J_{0}\right) \varepsilon\left(K_{0}^{c}, K_{0}\right) \varepsilon\left(J_{0}, J_{0}^{c}\right) \varepsilon\left(K_{0}, K_{0}^{c}\right) \theta^{J_{0}, \bar{K}_{0}} \tag{2.15}
\end{equation*}
$$

Since $\varepsilon\left(J_{0}^{c}, J_{0}\right)=(-1)^{(n-p) p} \varepsilon\left(J_{0}, J_{0}^{c}\right)$ and $\varepsilon\left(K_{0}^{c}, K_{0}\right)=(-1)^{(n-q) q} \varepsilon\left(K_{0}, K_{0}^{c}\right)$ we get $\star^{2} \theta^{J_{0}, K_{0}^{c}}=(-1)^{n+N} \theta^{J_{0}, \bar{K}_{0}^{c}}$, with

$$
\begin{align*}
N=q(n-p)+(n-q) p+(n-p) p+(n-q) q & =(2 n-p-q)(p+q) \tag{2.16}\\
& =(p+q)^{2}=p+q \quad \bmod 2
\end{align*}
$$

that is, $\star^{2} \theta^{J_{0}, \bar{K}_{0}}=(-1)^{n+p+q} \theta^{J_{0}, \bar{K}_{0}}$. Thus $\star^{2}=(-1)^{n+p+q}$ on $\Lambda^{p, q}$, proving the lemma.

Next, the chirality operator $\gamma: \Lambda^{*, *} \rightarrow \Lambda^{*, *}$ is defined by

$$
\begin{equation*}
\gamma=i^{n+(p+q)^{2}} \star \quad \text { on } \Lambda^{p, q} \tag{2.17}
\end{equation*}
$$

Notice that γ maps $\Lambda^{p, q}$ onto $\Lambda^{n-p, n-q}$.
Lemma 2.2. The operator γ is a \mathbb{Z}_{2}-grading, that is, it satisfies

$$
\begin{equation*}
\gamma^{2}=1 \quad \text { and } \quad \gamma^{*}=\gamma \tag{2.18}
\end{equation*}
$$

Proof. First, thanks to Lemma 2.1, on $\Lambda^{p, q}$ we have

$$
\begin{equation*}
\gamma^{2}=i^{2 n+(2 n-p-q)^{2}+(p+q)^{2}} \star^{2}=i^{2 n+2(p+q)^{2}}(-1)^{n+p+q}=1 . \tag{2.19}
\end{equation*}
$$

Next, let $\left\{\theta^{J, \bar{K}}\right\}$ be the coframe of $\Lambda^{*, *}$ associated to an admissible frame $\left\{Z_{j}, Z_{j}\right\}$ of $H \otimes \mathbb{C}$, and let J and K be ordered subsets of respective lengths p and q. Then by (2.8) and (2.17) we have

$$
\begin{equation*}
\gamma \theta^{J, \bar{K}}=i^{(p+q)^{2}}(-1)^{\frac{n(n-1)}{2}+q(n-p)} \varepsilon\left(J, J^{c}\right) \varepsilon\left(K, K^{c}\right) \theta^{J^{c}, \bar{K}^{c}} . \tag{2.20}
\end{equation*}
$$

Since $\left\{\theta^{J, \bar{K}}\right\}$ is an orthonormal coframe, this gives

$$
\begin{equation*}
\gamma^{*} \theta^{J^{c}, \bar{K}^{c}}=(-i)^{(p+q)^{2}}(-1)^{\frac{n(n-1)}{2}+q(n-p)} \varepsilon\left(J, J^{c}\right) \varepsilon\left(K, K^{c}\right) \theta^{J, \bar{K}} \tag{2.21}
\end{equation*}
$$

Thus for $\theta^{J, \bar{K}}$ we obtain

$$
\begin{align*}
& \gamma^{*} \theta^{J, \bar{K}}=(-i)^{(2 n-p-q)^{2}}(-1)^{\frac{n(n-1)}{2}+(n-q) p} \varepsilon\left(J^{c}, J\right) \varepsilon\left(K^{c}, K\right) \theta^{J^{c}, \bar{K}^{c}}, \tag{2.22}\\
& \quad=(-i)^{(p+q)^{2}}(-1)^{\frac{n(n-1)}{2}+(n-q) p+p(n-p)+q(n-q)} \varepsilon\left(J, J^{c}\right) \varepsilon\left(K, K^{c}\right) \theta^{J^{c}, \bar{K}^{c}} .
\end{align*}
$$

As by (2.16) we have $(-1)^{(n-q) p+p(n-p)+q(n-q)}=(-1)^{p+q+q(n-p)}$, we get

$$
\begin{equation*}
\gamma^{*} \theta^{J, \bar{K}}=i^{(p+q)^{2}}(-1)^{\frac{n(n-1)}{2}+q(n-p)} \varepsilon\left(J, J^{c}\right) \varepsilon\left(K, K^{c}\right) \theta^{J^{c}, \bar{K}^{c}}=\gamma \theta^{J, \bar{K}} \tag{2.23}
\end{equation*}
$$

that is, $\gamma^{*}=\gamma$. The lemma is thus proved.

3. The operator Q_{L}

We shall now construct a differential operator Q_{L} acting on the sections of $\Lambda^{*, *}$ which is supersymmetric in the sense that it anticommutes with the chirality operator γ. Furthermore, in suitable bidegree this operator will be hypoelliptic under the finite type condition alluded to in Section 1.

First, recall that the tangential $\overline{\bar{D}}$-operator of Kohn-Rossi ([16], [14]) can be defined as follows. For any $\eta \in C^{\infty}\left(M, \Lambda^{p, q}\right)$ its differential uniquely decomposes as

$$
\begin{equation*}
d \eta=\bar{\partial}_{H} \eta+\partial_{H} \eta+\theta \wedge \mathcal{L}_{X_{0}} \eta \tag{3.1}
\end{equation*}
$$

where $\bar{\partial}_{H} \eta$ (resp. $\partial_{H} \eta$) is a section of $\Lambda^{p, q+1}$ (resp. $\Lambda^{p+1, q}$). Moreover, when $T_{1,0}$ is integrable $\bar{\partial}_{H}^{2}$ vanishes on $(0, q)$-forms, and so that we then get a cochain complex $\bar{\partial}_{H}: C^{\infty}\left(M, \Lambda^{0, *}\right) \rightarrow C^{\infty}\left(M, \Lambda^{0, *+1}\right)$.

The operator Q_{L} is defined by

$$
\begin{equation*}
Q_{L}=\left(\bar{\partial}_{H}^{*} \bar{\partial}_{H}-\bar{\partial}_{H} \bar{\partial}_{H}^{*}\right)-\gamma\left(\bar{\partial}_{H}^{*} \bar{\partial}_{H}-\bar{\partial}_{H} \bar{\partial}_{H}^{*}\right) \gamma . \tag{3.2}
\end{equation*}
$$

In order to determine the local expression of Q_{L}, let $\left\{Z_{j}, Z_{\bar{j}}\right\}$ be an admissible orthonormal frame of $H \otimes \mathbb{C}$, and let $\left\{\theta^{j}, \theta^{\bar{j}}\right\}$ be the associated dual coframe of $H^{*} \otimes \mathbb{C}$. In addition, we let $\varepsilon\left(\theta^{\bar{j}}\right)$ denote the exterior multiplication by $\theta^{\bar{j}}$ and let $\iota\left(\theta^{j}\right)$ denote the interior product by θ^{j} (i.e., $\iota\left(\theta^{j}\right)$ is the contraction of forms by the vector field $Z_{\bar{j}}$).

Lemma 3.1. For $j, k=1, \ldots, n$ we have

$$
\begin{gather*}
\gamma \varepsilon\left(\theta^{\bar{j}}\right) \gamma=i \iota\left(\theta^{j}\right), \quad \gamma \iota\left(\theta^{j}\right) \gamma=-i \varepsilon\left(\theta^{\bar{j}}\right), \tag{3.3}\\
\gamma \varepsilon\left(\theta^{\bar{j}}\right) \iota\left(\theta^{k}\right) \gamma=\iota\left(\theta^{j}\right) \varepsilon\left(\theta^{\bar{k}}\right), \quad \gamma \iota\left(\theta^{j}\right) \varepsilon\left(\theta^{\bar{k}}\right) \gamma=\varepsilon\left(\theta^{\bar{j}}\right) \iota\left(\theta^{k}\right) . \tag{3.4}
\end{gather*}
$$

Proof. First, since $\gamma^{2}=1$ the equalities $\gamma \varepsilon\left(\theta^{\bar{j}}\right) \gamma=i \iota\left(\theta^{j}\right)$ and $\gamma \iota\left(\theta^{j}\right) \gamma=$ $-i \varepsilon\left(\theta^{\bar{j}}\right)$ are equivalent to each other. Moreover, we can deduce from them the equalities (3.4). Therefore, we only have to prove that $\gamma \varepsilon\left(\theta^{\bar{j}}\right) \gamma=i \iota\left(\theta^{j}\right)$.

If $J=\left\{j_{1}, \ldots, j_{p}\right\}$ is an ordered subset of $\{1, \ldots, n\}$ and j is an element of J^{c} such that $j_{k}<j<j_{k+1}$ we let $\tilde{\varepsilon}(j, J)=(-1)^{k}$, so that $\tilde{\varepsilon}(j, J)$ is the signature of the permutation $\left(j, j_{1}, \ldots, j_{p}\right) \rightarrow\left(j_{1}, \ldots, j_{k}, j, j_{k+1}, \ldots, j_{p}\right)$. Then

$$
\varepsilon\left(\theta^{\bar{j}}\right) \theta^{J, \bar{K}}=\left\{\begin{array}{cl}
\tilde{\varepsilon}(j, K) \theta^{J, \overline{K \cup\{j\}}} & \text { if } J \notin K, \tag{3.5}\\
0 & \text { otherwise. }
\end{array}\right.
$$

Similarly, we have

$$
\iota\left(\theta^{\bar{j}}\right) \theta^{J, \bar{K}}=\left\{\begin{array}{cl}
\tilde{\varepsilon}(j, K \backslash\{j\}) \theta^{J, \bar{K} \backslash\{j\}} & \text { if } J \in K \tag{3.6}\\
0 & \text { otherwise }
\end{array}\right.
$$

Let J and K be ordered subsets of $\{1, \ldots, n\}$ of respective lengths p and q. Using (2.20) we get

$$
\begin{equation*}
\gamma \varepsilon\left(\theta^{\bar{j}}\right) \gamma \theta^{J, \bar{K}}=i^{(p+q)^{2}}(-1)^{\frac{n(n-1)}{2}+q(n-p)} \varepsilon\left(J, J^{c}\right) \varepsilon\left(K, K^{c}\right) \gamma \varepsilon\left(\theta^{\bar{j}}\right) \theta^{J^{c}, \bar{K}^{c}} . \tag{3.7}
\end{equation*}
$$

In particular, we see that $\gamma \varepsilon\left(\theta^{\bar{j}}\right) \gamma \theta^{J, \bar{K}}=0$ if $j \notin K$.
Assume now that j is in K. Then using (2.20), (3.5) and (3.7) we get

$$
\begin{align*}
\gamma \varepsilon\left(\theta^{\bar{j}}\right) \gamma \theta^{J, \bar{K}} & =i^{(p+q)^{2}}(-1)^{\frac{n(n-1)}{2}+q(n-p)} \varepsilon\left(J, J^{c}\right) \varepsilon\left(K, K^{c}\right) \tilde{\varepsilon}\left(j, K^{c}\right) \gamma \theta^{J^{c}, \overline{K^{c} \cup\{j\}}} \\
& =\lambda_{1} \lambda_{2} \lambda_{3} \theta^{J, \overline{K \backslash\{j\}}}, \tag{3.8}
\end{align*}
$$

where we have let

$$
\begin{gather*}
\lambda_{1}=i^{(p+q)^{2}+(2 n-p-q+1)^{2}}, \quad \lambda_{2}=(-1)^{q(n-p)+(n-q+1) p} \varepsilon\left(J, J^{c}\right) \varepsilon\left(J, J^{c}\right), \tag{3.9}\\
\lambda_{3}=\varepsilon\left(K, K^{c}\right) \varepsilon\left(K^{c} \cup\{j\}, K \backslash\{j\}\right) \tilde{\varepsilon}\left(j, K^{c}\right) . \tag{3.10}
\end{gather*}
$$

Recall that given any integer m the difference $m^{2}-m=m(m-1)$ is always an even number. Thus,

$$
\begin{equation*}
\lambda_{1}=i^{(p+q)^{2}+(p+q-1)^{2}}=i^{2\left[(p+q)^{2}-(p+q)\right]+1}=i . \tag{3.11}
\end{equation*}
$$

Moreover, as $\varepsilon\left(J, J^{c}\right) \varepsilon\left(J, J^{c}\right)=(-1)^{p(n-p)}$ we have

$$
\begin{equation*}
\lambda_{2}=(-1)^{q(n-p)+(n-q) p+p+p(n-p)}=(-1)^{n q-2 p q+2 n p+p-p^{2}}=(-1)^{n q} \tag{3.12}
\end{equation*}
$$

Next, set $K=\left\{k_{1}, \ldots, k_{q}\right\}$ and $K^{c} \cup\{j\}=\left\{k_{1}^{\prime}, \ldots, k_{n-q+1}^{\prime}\right\}$. Then we have $j=k_{l}=k_{l^{\prime}}^{\prime}$ for some indices l and l^{\prime}. By definition $\varepsilon\left(K, K^{c}\right)$ is the signature of the permutation

$$
\left(k_{1}, \ldots, k_{q}, k_{1}^{\prime}, \ldots, \hat{k}_{l^{\prime}}^{\prime}, \ldots, k_{n-q+1}^{\prime}\right) \rightarrow(1, \ldots, n) .
$$

This permutation can also be seen as the composition of the following permutations,

$$
\begin{align*}
& \left(k_{1}, \ldots, k_{q}, k_{1}^{\prime}, \ldots, \hat{k}_{l^{\prime}}^{\prime}, \ldots, k_{n-q+1}^{\prime}\right) \tag{3.13}\\
& \quad \rightarrow\left(j, k_{1}, \ldots, \hat{k}_{l}, \ldots, k_{q}, k_{1}^{\prime}, \ldots, \hat{k}^{\prime} l^{\prime}, \ldots, k_{n-q+1}^{\prime}\right) \\
& \quad \rightarrow\left(k_{1}, \ldots, \hat{k}_{l}, \ldots, k_{q}, j, k_{1}^{\prime}, \ldots, \hat{k}_{l^{\prime}}^{\prime}, \ldots, k_{n-q+1}^{\prime}\right) \\
& \quad \rightarrow\left(k_{1}, \ldots, \hat{k}_{l}, \ldots, k_{q}, k_{1}^{\prime}, \ldots, k_{n-q+1}^{\prime}\right) \rightarrow(1, \ldots, n)
\end{align*}
$$

The respective signatures of these permutations are

$$
\begin{gather*}
\tilde{\varepsilon}(j, K \backslash\{j\}), \quad(-1)^{q-1}, \quad \tilde{\varepsilon}\left(j, K^{c}\right), \tag{3.14}\\
\varepsilon\left(K \backslash\{j\}, K^{c} \cup\{j\}\right)=(-1)^{(q-1)(n-q+1)} \varepsilon\left(K^{c} \cup\{j\}, K \backslash\{j\}\right) . \tag{3.15}
\end{gather*}
$$

As

$$
(-1)^{q-1}(-1)^{(q-1)(n-q+1)}=(-1)^{(q-1)(n-q)}=(-1)^{n q-q^{2}-n+q}=(-1)^{n+n q}
$$

we deduce that

$$
\varepsilon\left(K, K^{c}\right)=(-1)^{(q-1)(n-q)+} \tilde{\varepsilon}(j, K \backslash\{j\}) \tilde{\varepsilon}\left(j, K^{c}\right) \varepsilon\left(K^{c} \cup\{j\}, K \backslash\{j\}\right)
$$

Thus,

$$
\begin{equation*}
\lambda_{3}=(-1)^{n+n q} \varepsilon(j, K \backslash\{j\}) . \tag{3.16}
\end{equation*}
$$

Now, combining (3.8) with (3.11), (3.12) and (3.16) gives

$$
\begin{equation*}
\gamma \varepsilon\left(\theta^{\bar{j}}\right) \gamma \theta^{J, \bar{K}}=i(-1)^{n} \tilde{\varepsilon}(j, K \backslash\{j\}) \theta^{J, \overline{K \backslash\{j\}}}, \tag{3.17}
\end{equation*}
$$

so using (3.6) we get

$$
\begin{equation*}
\gamma \varepsilon\left(\theta^{\bar{j}}\right) \gamma \theta^{J, \bar{K}}=i(-1)^{n} \iota\left(\theta^{\bar{j}}\right) \theta^{J, \bar{K}} . \tag{3.18}
\end{equation*}
$$

Since $\iota\left(\theta^{\bar{j}}\right) \theta^{J, \bar{K}}=0$ when $j \notin K$, this shows that

$$
\gamma \varepsilon\left(\theta^{\bar{j}}\right) \gamma=i(-1)^{n} \iota\left(\theta^{\bar{j}}\right),
$$

completing the proof.
In the sequel we let $\mathrm{O}_{H}(0)$ denote a general zeroth order differential operator and we let $\mathrm{O}_{H}(1)$ denote a first order differential operator involving only differentiations along $H \otimes \mathbb{C}$. For instance, seen as differential operators, Z_{j} and $Z_{\bar{j}}$ both are $\mathrm{O}_{H}(1)$, but X_{0} is not. Bearing this in mind the following holds.

Proposition 3.2. In the local trivialization of $\Lambda^{*, *}$ defined by the orthonormal coframe $\left\{\theta^{J, \bar{K}}\right\}$ we have

$$
\begin{equation*}
Q_{L}=\sum_{j, k=1}^{n}\left(\varepsilon\left(\theta^{\bar{j}}\right) \iota\left(\theta^{k}\right)-\iota\left(\theta^{j}\right) \varepsilon\left(\theta^{\bar{k}}\right)\right)\left(Z_{\bar{j}} Z_{k}+Z_{j} Z_{\bar{k}}\right)+\mathrm{O}_{H}(1) . \tag{3.19}
\end{equation*}
$$

In particular, in the local trivialization of $\Lambda^{*, 0} \oplus \Lambda^{*, n}$ we have

$$
\begin{equation*}
Q_{L}= \pm \sum_{j=1}^{n}\left(Z_{j} Z_{\bar{j}}+Z_{\bar{j}} Z_{j}\right)+\mathrm{O}_{H}(1), \tag{3.20}
\end{equation*}
$$

where the sign \pm is - on $\Lambda^{*, 0}$ and + on $\Lambda^{*, n}$.

Proof. Set

$$
Q_{L}^{\prime}:=\bar{\partial}_{H}^{*} \bar{\partial}_{H}-\bar{\partial}_{H} \bar{\partial}_{H}^{*} .
$$

One can check (see, e.g, [3]) that in the trivialization of $\Lambda^{*, *}$ defined by $\left\{\theta^{J, \bar{K}}\right\}$ we have

$$
\begin{equation*}
\bar{\partial}_{H}=\sum_{j=1}^{n} \varepsilon\left(\theta^{\bar{j}}\right) Z_{\bar{j}} \quad \text { and } \quad \bar{\partial}_{H}^{*}=-\sum_{j=1}^{n} \iota\left(\theta^{j}\right) Z_{j}+\mathrm{O}_{H}(0) . \tag{3.21}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
Q_{L}^{\prime} & =-\sum_{j, k=1}^{n} \iota\left(\theta^{j}\right) \varepsilon\left(\theta^{\bar{k}}\right) Z_{j} Z_{\bar{k}}+\sum_{j, k=1}^{n} \varepsilon\left(\theta^{\bar{j}}\right) \iota\left(\theta^{k}\right) Z_{\bar{j}} Z_{k}+\mathrm{O}_{H}(1) \\
& =\sum_{j, k=1}^{n}\left(\varepsilon\left(\theta^{\bar{j}}\right) \iota\left(\theta^{k}\right) Z_{\bar{j}} Z_{k}-\iota\left(\theta^{j}\right) \varepsilon\left(\theta^{\bar{k}}\right) Z_{j} Z_{\bar{k}}\right)+\mathrm{O}_{H}(1) . \tag{3.22}
\end{align*}
$$

Using Lemma 3.1 we get

$$
\begin{align*}
\gamma Q_{L}^{\prime} \gamma & =\sum_{j, k=1}^{n}\left(\gamma \varepsilon\left(\theta^{\bar{j}}\right) \iota\left(\theta^{k}\right) \gamma Z_{\bar{j}} Z_{k}-\gamma \iota\left(\theta^{j}\right) \varepsilon\left(\theta^{\bar{k}}\right) \gamma Z_{j} Z_{\bar{k}}\right)+\mathrm{O}_{H}(1) \\
& =\sum_{j, k=1}^{n}\left(\iota\left(\theta^{j}\right) \varepsilon\left(\theta^{\bar{k}}\right) Z_{\bar{j}} Z_{k}-\varepsilon\left(\theta^{\bar{j}}\right) \iota\left(\theta^{k}\right) Z_{j} Z_{\bar{k}}\right)+\mathrm{O}_{H}(1) . \tag{3.23}
\end{align*}
$$

Combining this with (3.22) then shows that modulo $\mathrm{O}_{H}(1)$-terms we have
$Q_{L}=Q_{L}^{\prime}-\gamma Q_{L}^{\prime} \gamma=$
$=\sum_{j, k=1}^{n}\left(\varepsilon\left(\theta^{\bar{j}}\right) \iota\left(\theta^{k}\right) Z_{\bar{j}} Z_{k}-\iota\left(\theta^{j}\right) \varepsilon\left(\theta^{\bar{k}}\right) Z_{j} Z_{\bar{k}}-\iota\left(\theta^{j}\right) \varepsilon\left(\theta^{\bar{k}}\right) Z_{\bar{j}} Z_{k}+\varepsilon\left(\theta^{\bar{j}}\right) \iota\left(\theta^{k}\right) Z_{j} Z_{\bar{k}}\right)$
$=\sum_{j, k=1}^{n}\left(\varepsilon\left(\theta^{\bar{j}}\right) \iota\left(\theta^{k}\right)-\iota\left(\theta^{j}\right) \varepsilon\left(\theta^{\bar{k}}\right)\right)\left(Z_{\bar{j}} Z_{k}+Z_{j} Z_{\bar{k}}\right)$.
Now, on $\Lambda^{p, 0}$ we have $\varepsilon\left(\theta^{\bar{j}}\right) \iota\left(\theta^{k}\right)=0$ and $\iota\left(\theta^{j}\right) \varepsilon\left(\theta^{\bar{k}}\right)=\delta^{\bar{j} k}$. Therefore, on ($p, 0$)-forms we have

$$
\begin{align*}
Q_{L} & =\sum_{j, k=1}^{n}\left(-\delta^{\bar{j} k}\right)\left(Z_{\bar{j}} Z_{k}+Z_{j} Z_{\bar{k}}\right)+\mathrm{O}_{H}(1) \\
& =-\sum_{j=1}^{n}\left(Z_{\bar{j}} Z_{j}+Z_{j} Z_{\bar{j}}\right)+\mathrm{O}_{H}(1) . \tag{3.24}
\end{align*}
$$

Similarly, as on $\Lambda^{p, n}$ we have $\varepsilon\left(\theta^{\bar{j}}\right) \iota\left(\theta^{k}\right)=\delta^{\bar{j} k}$ and $\iota\left(\theta^{j}\right) \varepsilon\left(\theta^{\bar{k}}\right)=0$, we see that on (p, n)-forms $Q_{L}=\sum_{j=1}^{n}\left(Z_{\bar{j}} Z_{j}+Z_{j} Z_{\bar{j}}\right)+\mathrm{O}_{H}(1)$. The proof is complete.

4. Hypoelliptic properties of Q_{L}

From now on we assume that M is compact. This assumption is not essential, but it will simplify the exposition of what follows. In fact, all the following results can be localized and, as such, they continue to hold in the non-compact case.

As $\left\{Z_{j}\right\}$ is an admissible frame, we can write $Z_{j}=\frac{1}{\sqrt{2}}\left(X_{j}-i X_{n+j}\right)$, where $\left\{X_{j}\right\}$ is a local orthonormal frame of L and $X_{n+j}:=\mathcal{J} X_{j}$. Then using (3.19) we can check that on ($p, 0$)-forms and (p, n)-forms we have

$$
\begin{equation*}
Q_{L}= \pm\left(X_{1}^{2}+\ldots+X_{2 n}^{2}\right)+\mathrm{O}_{H}(1) \tag{4.1}
\end{equation*}
$$

This means that, up to sign factor and to an $\mathrm{O}_{H}(1)$-term, on these forms Q_{L} is a sum of squares. A well-known result of Hörmander [11] then insures us that when (M, H) has finite type such an operator is hypoelliptic with gain of $2 / r$ derivatives, where r denotes the minimal number of Lie brackets of vector fields with values of H that are needed to span $T M$. In other words, for all $s \in \mathbb{R}$, we have

$$
\begin{equation*}
Q_{L} u \in L_{s}^{2} \Longrightarrow u \in L_{s+\frac{2}{r}}^{2} \tag{4.2}
\end{equation*}
$$

Given vector fields X_{1}, \ldots, X_{m} spanning H at every point, FollandStein [10] and Rothschild-Stein [19] introduced suitable functional spaces to study sums of squares. Namely, for $k=0,1,2, \ldots$ they defined

$$
\begin{equation*}
S_{k}^{2}(M):=\bigcap_{1 \leq l \leq k}\left\{u \in L^{2} ; X_{i_{1}} \ldots X_{i_{l}} u \in L^{2} \forall i_{j} \in\{1, \ldots, m\}\right\} \tag{4.3}
\end{equation*}
$$

which is a Hilbert space when endowed with the Hilbert norm,

$$
\begin{equation*}
\|u\|_{S_{k}^{2}}:=\left(\sum_{1 \leq l \leq k} \sum_{i_{1}, \ldots, i_{l}}\left\|X_{i_{1}} \ldots X_{i_{l}} u\right\|^{2}\right)^{\frac{1}{2}}, \quad u \in S_{k}^{2}(M) \tag{4.4}
\end{equation*}
$$

These definitions also makes sense for sections of any vector bundle over M.
If P is a differential operator of order m on M, we say that P is maximal hypoelliptic if, for all $k \in \mathbb{N}$,

$$
\begin{equation*}
P u \in S_{k}^{2} \Longrightarrow u \in S_{k+m}^{2} . \tag{4.5}
\end{equation*}
$$

Rothschild-Stein [19] proved that if (M, H) has finite type, then a sum of squares is maximal hypoelliptic and we have a continuous inclusion $S_{k}^{2} \subset L_{\underline{k}}^{2}$. Incidentally, maximal hypoellipticity implies hypoellipticity with gain of $\frac{2}{r}-$ derivatives.

In fact, Rothschild-Stein [19] and Rothschild-Tartakoff [20] even constructed parametrices for sum of squares in a suitable class of singularintegral operators. These operators enjoy various regularity properties, including mapping continuously S_{k}^{2} to S_{k+2}^{2}. We refer to [19] for a thorough account on these properties.

Summarizing all this we obtain
Proposition 4.1. Assume that (M, H) is of finite type. Then on $(p, 0)$ forms and (p, n)-forms Q_{L} is maximal hypoelliptic and admits a parametrix in the class of singular-integral operators of Rothschild-Stein.

Suppose now that (M, H) is of hypersurface type, i.e., codim $H=1$. The Levi form of (M, H) is then defined as the Hermitian form,

$$
\begin{equation*}
\mathcal{L}: T_{1,0} \times T_{1,0} \longrightarrow T_{\mathbb{C}} M /(H \otimes \mathbb{C}) \tag{4.6}
\end{equation*}
$$

such that, for all sections Z and W of $T_{1,0}$ and for all $x \in M$, we have

$$
\begin{equation*}
\mathcal{L}_{x}(Z(x), W(x))=[Z, \bar{W}](x) \quad \bmod H_{x} \otimes \mathbb{C} \tag{4.7}
\end{equation*}
$$

It is not difficult to check that (M, H) is of finite type if and only if \mathcal{L} does not vanish anywhere.

On the other hand, when codim $H=1$ Beals-Greiner [3] (see also [21]) constructed a pseudodifferential calculus, the so-called Heisenberg calculus, containing a full symbolic calculus allowing us to explicitly construct parametrices for sums of squares, as well as for the Kohn Laplacian under the so-called condition $Y(q)$ (see [3]). Therefore, we obtain
Proposition 4.2.1) If $\operatorname{codim} H=1$ and \mathcal{L} is non-vanishing, then on $(p, 0)$ forms and (p, n)-forms Q_{L} admits a parametrix in the Heisenberg calculus.
2) If $\operatorname{dim} M=3$ and \mathcal{L} is non-vanishing, then in every bidegree Q_{L} is hypoelliptic and admits a parametrix in the Heisenberg calculus.

The hypoellipticity properties of Q_{L} show a new phenomenon with respect to what happens for the Kohn Laplacian, i.e., the Laplacian of the $\bar{\partial}_{H}$-complex,

$$
\begin{equation*}
\square_{H}:=\bar{\partial}_{H}^{*} \bar{\partial}_{H}+\bar{\partial}_{H} \bar{\partial}_{H}^{*} . \tag{4.8}
\end{equation*}
$$

For CR manifolds of hypersurface type the invertibility in the Heisenberg calculus' sense of the principal symbol of \square_{H} on (p, q)-forms is equivalent to the $Y(q)$-condition of Kohn [14] (see [3]).

When the CR manifold (M, H) is strictly pseudoconvex the condition $Y(q)$ means that we must have $0<q<n$. In particular, this excludes all the (p, q)-forms in dimension 3. Thus, in the strictly pseudoconvex case, the operator Q_{L} has an invertible principal symbol precisely on forms where the Kohn Laplacian has not an invertible principal symbol.

When (M, H) is not strictly pseudoconvex, but is weakly pseudoconvex, then the $Y(q)$-condition always fails. However, if (M, H) has finite type and the Levi form has comparable eigenvalues then the Kohn Laplacian is hypoelliptic (see [13] and the references therein). There also are examples of CR manifolds whose Levi form does not have comparable eigenvalues and for which the Kohn Laplacian still enjoys nice regularity properties (see, e.g., [8], [17]).

In contrast, the hypoellipticity of Q_{L} on ($p, 0$)-forms and (p, n)-forms is independent of any convexity property of the Levi form, since the sole non-vanishing of \mathcal{L} is enough to have maximal hypoellipticity.

5. Failure of hypoellipticity on \mathbb{H}^{5}

In the previous section we saw that when restricted to $(p, 0)$-forms and (p, n)-forms Q_{L} is maximal hypoelliptic. In this section we would like to explain that that when restricted to other forms the operator Q_{L} may fail to be hypoelliptic. To this end we shall look at the example of Q_{L} on the 5 -dimensional Heisenberg group \mathbb{H}^{5} acting on (0,1)-forms.

Notice that the (localized versions) of the notions of hypoellipticity alluded to in the previous section all imply the following usual notion of hypoellipticity

$$
\begin{equation*}
Q_{L} u \in C^{\infty} \Longrightarrow u \in C^{\infty} \tag{5.1}
\end{equation*}
$$

For homogeneous left-invariant differential operators on \mathbb{H}^{5} (and more generally on nilpotent graded Lie groups) this can be shown to be equivalent to maximal hypoellipticity (see [9]). In this section we shall exhibit a $(0,1)$ form on \mathbb{H}^{5} which is singular at the origin and annihilates Q_{L}. This will prove that Q_{L} is not hypoelliptic on $(0,1)$-forms.

Throughout this section we will keep on using the notation introduced in Example B of Section 1 to describe the Heisenberg group. Thus \mathbb{H}^{5} is $\mathbb{R} \times \mathbb{R}^{4}$ equipped with the group law (1.6). We let X_{0}, \ldots, X_{4} be the leftinvariant vector fields defined by (1.8). In this context H is the vector bundle spanned by X_{1}, \ldots, X_{4}, it complex structure \mathcal{J} is such that $\mathcal{J} X_{j}=X_{2+j}$ and $\mathcal{J} X_{2+j}=-X_{j}$ for $j=1,2$, and L is the vector bundle spanned by X_{1} and X_{2}. In addition, we equip \mathbb{H}^{5} with its Levi metric $g:=\theta^{2}+d \theta(., \mathcal{J}$.$) ,$ where

$$
\theta=d x^{0}+\sum_{j=1}^{2}\left(x^{j} d x^{2+j}-x^{2+j} d x^{j}\right)
$$

is the standard contact form of \mathbb{H}^{5}. With respect to this metric X_{0}, \ldots, X_{4} form an orthonormal frame of $T \mathbb{H}^{5}$.

In the sequel it will be convenient to introduce for $j=1,2$ the complex coordinates $z^{j}=x^{j}+i x^{2+j}$ and $z^{\bar{j}}=x^{j}-i x^{2+j}$, as well as the vector fields,

$$
\begin{gather*}
Z_{j}=\frac{1}{\sqrt{2}}\left(X_{j}-i X_{2+j}\right)=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z^{j}}+i z^{j} \frac{\partial}{\partial x^{0}}\right), \tag{5.2}\\
Z_{\bar{j}}=\overline{Z_{j}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z^{\bar{j}}}-i z^{j} \frac{\partial}{\partial x^{0}}\right) . \tag{5.3}
\end{gather*}
$$

Then $\left\{Z_{1}, Z_{2}, Z_{\overline{1}}, Z_{\overline{2}}\right\}$ is a left-invariant orthonormal frame of $H \otimes \mathbb{C}$. Because of the way the CR and real structures are defined in terms of the vector fields X_{1}, \ldots, X_{4}, this orthonormal frame is admissible in the sense used in the previous section.

Let $\left\{\theta^{1}, \theta^{2}, \theta^{\overline{1}}, \theta^{\overline{2}}\right\}$ be the dual coframe of $\left\{Z_{1}, Z_{2}, Z_{\overline{1}}, Z_{\overline{2}}\right\}$. In fact, we can check that $\theta^{j}=\sqrt{2} d z^{j}$ and $\theta^{\bar{j}}=\sqrt{2} d z^{\bar{j}}$ for $j=1,2$. Since $\left\{Z_{1}, Z_{2}, Z_{\overline{1}}, Z_{\overline{2}}\right\}$ is an admissible orthonormal frame Eq. (3.19) holds. It actually holds without a $\mathrm{O}_{H}(1)$ remainder term. Indeed, as $\bar{\partial}_{H}=\sqrt{2} \sum \varepsilon\left(d z^{\bar{j}}\right) Z_{\bar{j}}$ we can check that $\bar{\partial}_{H}^{*}=-\frac{1}{\sqrt{2}} \sum \iota\left(d z^{j}\right) Z_{j}$, where $\iota\left(d z^{j}\right)$ denotes the contraction by $\frac{d}{d z^{j}}$ (it agrees with that by $\sqrt{2} Z_{\bar{j}}$ on $\left.H^{*} \otimes \mathbb{C}\right)$. Following the lines of the proof of Proposition 3.2 we then see that no remainder terms are involved anymore. Thus,

$$
\begin{equation*}
Q_{L}=\sum_{j, k=1,2}\left(\varepsilon\left(d z^{\bar{j}}\right) \iota\left(d z^{k}\right)-\iota\left(d z^{j}\right) \varepsilon\left(d z^{\bar{k}}\right)\right)\left(Z_{\bar{j}} Z_{k}+Z_{j} Z_{\bar{k}}\right) \tag{5.4}
\end{equation*}
$$

Next, observe that

$$
\begin{equation*}
\varepsilon\left(d z^{\bar{j}}\right) \iota\left(d z^{k}\right) d z^{\bar{l}}=\delta^{k \bar{l}} d z^{\bar{j}} \quad \text { and } \quad \iota\left(d z^{j}\right) \varepsilon\left(d z^{\bar{k}}\right)=\left(1-\delta^{k \bar{l}}\right)\left(\delta^{j \bar{k}} d z^{\bar{l}}-\delta^{j \bar{l}} d z^{\bar{k}}\right) . \tag{5.5}
\end{equation*}
$$

Using this we can check that, with respect to the frame $\left\{d z^{\overline{1}}, d z^{\overline{2}}\right\}$, on $(0,1)$ forms Q_{L} takes the form,

$$
Q_{L}=\left(\begin{array}{cc}
\Delta_{1}-\Delta_{2} & T \tag{5.6}\\
T & \Delta_{2}-\Delta_{1}
\end{array}\right)
$$

where we have set $\Delta_{j}:=Z_{\bar{j}} Z_{j}+Z_{j} Z_{\bar{j}}, j=1,2$, and $T:=2\left(Z_{\overline{1}} Z_{2}+Z_{1} Z_{\overline{2}}\right)$, and we also have used the fact that $\left[Z_{1}, Z_{\overline{2}}\right]=\left[Z_{2}, Z_{\overline{1}}\right]=0$.

Let $\mathcal{F}_{0} u:=\int_{-\infty}^{\infty} e^{-i x^{0} . \xi_{0}} u d x^{0}$ denote the Fourier transform with respect to the variable x_{0} on \mathcal{S}^{\prime}. We shall now look at Q_{L} under \mathcal{F}_{0}. Notice this is merely the same as looking at Q_{L} under the irreducible representations of \mathbb{H}^{5}. To this end we shall use the symbol ${ }^{\wedge}$ to denote the conjugation by \mathcal{F}_{0}. We have

$$
\begin{align*}
& \hat{Z}_{j}=\frac{1}{\sqrt{2}} \mathcal{F}_{0}\left(\frac{\partial}{\partial z^{j}}+i z^{\bar{j}} \frac{\partial}{\partial x^{0}}\right) \mathcal{F}_{0}^{-1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z^{j}}-z^{\bar{j}} \xi_{0}\right), \tag{5.7}\\
& \hat{Z}_{\bar{j}}=\frac{1}{\sqrt{2}} \mathcal{F}_{0}\left(\frac{\partial}{\partial z^{\bar{j}}}-i z^{j} \frac{\partial}{\partial x^{0}}\right) \mathcal{F}_{0}^{-1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z^{j}}+z^{j} \xi_{0}\right) . \tag{5.8}
\end{align*}
$$

Using this we can check that $2 \hat{Z}_{\bar{j}} \hat{Z}_{j}$ is equal to

$$
\begin{align*}
& \left(\frac{\partial}{\partial z^{\bar{j}}}+z^{j} \xi_{0}\right)\left(\frac{\partial}{\partial z^{j}}-z^{\bar{j}} \xi_{0}\right)= \\
& =\frac{\partial^{2}}{\partial z^{\bar{j}} \partial z^{j}}+\xi_{0}\left(-\frac{\partial}{\partial z^{\bar{j}}} z^{\bar{j}}+z^{j} \frac{\partial}{\partial z^{j}}\right)-z^{j} z^{\bar{j}} \xi_{0}^{2}=H_{j}+\xi_{0} R_{j}-\xi_{0}, \tag{5.9}
\end{align*}
$$

where we have set $H_{j}:=\frac{\partial^{2}}{\partial z^{j} \partial z^{j}}-\left|z^{j}\right|^{2} \xi_{0}^{2}$ and $R_{j}:=z^{j} \frac{\partial}{\partial z^{j}}-z^{j} \frac{\partial}{\partial z^{j}}$. Similarly,

$$
\begin{equation*}
2 \hat{Z}_{j} \hat{Z}_{\bar{j}}=H_{j}+\xi_{0} R_{j}+\xi_{0} \tag{5.10}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\hat{T}=\left(\frac{\partial}{\partial z^{1}}+z^{1} \xi_{0}\right)\left(\frac{\partial}{\partial z^{2}}-z^{\overline{2}} \xi_{0}\right)+\left(\frac{\partial}{\partial z^{1}}-z^{\overline{1}} \xi_{0}\right)\left(\frac{\partial}{\partial z^{2}}+z^{2} \xi_{0}\right) . \tag{5.11}
\end{equation*}
$$

Therefore, on (0,1)-forms we have

$$
Q_{L}=\left(\begin{array}{cc}
H_{1}-H_{2}+\xi_{0}\left(R_{1}-R_{2}\right) & \hat{T} \tag{5.12}\\
\hat{T} & H_{2}-H_{1}+\xi_{0}\left(R_{2}-R_{1}\right)
\end{array}\right),
$$

with \hat{T} given by (5.11).
In the sequel we set $z=\left(z^{1}, z^{2}\right)$ and we consider the (0,1)-form,

$$
\begin{equation*}
\hat{\omega}:=\hat{u} d z^{\overline{1}}, \quad \hat{u}\left(\xi_{0}, z\right):=\exp \left(-\left|\xi_{0}\right||z|^{2}\right) . \tag{5.13}
\end{equation*}
$$

Notice that \hat{u} is a ground state for the harmonic oscillators H_{j} and annihilates the rotation generators R_{j}, namely,

$$
\begin{equation*}
H_{1} \hat{u}=H_{2} \hat{u}=\left|\xi_{0}\right| \hat{u} \quad \text { and } \quad R_{1} \hat{u}=R_{2} \hat{u}=0 . \tag{5.14}
\end{equation*}
$$

In addition \hat{u} also annihilates $\left(\frac{\partial}{\partial z^{j}}-z^{\bar{j}} \xi_{0}\right) \hat{u}$ for $\xi_{0} \geq 0$ and $\left(\frac{\partial}{\partial z^{j}}+z^{j} \xi_{0}\right) \hat{u}=0$ for $\xi_{0} \leq 0$, and so using 5.11 we see that

$$
\begin{equation*}
\hat{T} \hat{u}=0 . \tag{5.15}
\end{equation*}
$$

Combining all this with (5.12) we get

$$
\begin{equation*}
\hat{Q}_{L} \hat{\omega}=\left(H_{1}-H_{2}+\xi_{0}\left(R_{1}-R_{2}\right)\right) \hat{u} d z^{\overline{1}}+\hat{T} \hat{u} d z^{\overline{2}}=0 . \tag{5.16}
\end{equation*}
$$

Next, the inverse transform $u:=\mathcal{F}_{0}^{-1} \hat{u}$ is equal to

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i x^{0} \cdot \xi_{0}} e^{-|z|^{2}\left|\xi_{0}\right|} d \xi_{0} & =\frac{1}{2 \pi}\left(\int_{0}^{\infty} e^{i x^{0} \cdot \xi_{0}} e^{-|z|^{2} \xi_{0}} d \xi_{0}+\int_{0}^{\infty} e^{-i x^{0} \cdot \xi_{0}} e^{-|z|^{2} \xi_{0}} d \xi_{0}\right) \\
& =\frac{1}{2 \pi}\left(\frac{1}{i x^{0}-|z|^{2}}+\frac{1}{-i x^{0}-|z|^{2}}\right)=\frac{-1}{\pi} \frac{|z|^{2}}{\left|x^{0}\right|^{2}+|z|^{4}}
\end{aligned}
$$

Notice that u is homogeneous of degree -2 with respect to the dilations (1.7). In particular u is singular at the origin.

Set $\omega=\mathcal{F}_{0}^{-1} \hat{\omega}=u d z^{\overline{1}}$. In view of (5.16) we have

$$
\begin{equation*}
Q_{L} \omega=\mathcal{F}_{0}^{-1} \hat{Q}_{L} \hat{\omega}=0 . \tag{5.17}
\end{equation*}
$$

Therefore, we see that, although ω is not smooth at the origin, $Q_{L} \omega$ is smooth everywhere. This shows that Q_{L} is not hypoelliptic on (0,1)-forms.

In fact, the same arguments as above also show that the forms $u d z^{1} \wedge d z^{1}$ and $u d z^{1} \wedge d z^{2} \wedge d z^{\overline{1}}$ too annihilate Q_{L}. Therefore Q_{L} is not hypoelliptic on $(1,1)$-forms or $(2,1)$-forms. This shows that it is only on $(p, 0)$-forms and ($p, 2$)-forms that Q_{L} is hypoelliptic.

References

[1] Ali, S. T. and Engliš, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17 (2005), no. 4, 391-490.
[2] Baouendi, M. S., Rothschild, L. P. and Trèves, F.: CR structures with group action and extendability of CR functions. Invent. Math. 82 (1985), 359-396.
[3] Beals, R. and Greiner, P. C.: Calculus on Heisenberg manifolds. Annals of Math. Studies 119. Princeton University Press, Princeton, NJ, 1988.
[4] Christ, M.: Regularity properties of the $\bar{\partial}_{b}$ equation on weakly pseudoconvex CR manifolds of dimension 3. J. Amer. Math. Soc. 1 (1988), 587-646.
[5] Christ, M.: On the $\bar{\partial}_{b}$ equation for three-dimensional CR manifolds. In Several complex variables and complex geometry, Part 3 (Santa Cruz, CA, 1989), 63-82. Proc. Symposia Pure Math. 52, Part 3. Amer. Math. Soc., Providence, RI, 1991.
[6] Connes, A. and Moscovici, H.: The local index formula in noncommutative geometry. Geom. Funct. Anal. 5 (1995), no. 2, 174-243.
[7] Fefferman, C. and Kohn, J. J.: Hölder estimates on domains of complex dimension two and on three dimensional CR manifolds. Adv. in Math. 69 (1988), 233-303.
[8] Fefferman, C., Kohn, J. J. and Machedon, M.: Hölder estimates on CR manifolds with a diagonalizable Levi form. Adv. Math. 84 (1990), 1-90.
[9] Folland, G.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13 (1975), 161-207.
[10] Folland, G. and Stein, E. M.: Estimates for the $\bar{\partial}_{b}$ complex and analysis on the Heisenberg group. Comm. Pure Appl. Math. 27 (1974), 429-522.
[11] Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147-171.
[12] Kaup, W. and Zaitsev, D.: On symmetric Cauchy-Riemann manifolds. Adv. Math. 149 (2000), no. 2, 145-181.
[13] Koenig, K. D.: On maximal Sobolev and Hölder estimates for the tangential Cauchy-Riemann operator and boundary Laplacian. Amer. J. Math. 124 (2002), no. 1, 129-197.
[14] Kohn, J. J.: Boundaries of complex manifolds. In 1965 Proc. Conf. Complex Analysis (Minneapolis, 1964), 81-94. Springer, Berlin.
[15] Kohn, J. J.: Estimates for $\bar{\partial}_{b}$ on pseudoconvex CR manifolds. In Pseudodifferential operators and applications (Notre Dame, Ind., 1984), 207-217. Proc. Symposia Pure Math. 43. Amer. Math. Soc., Providence, RI, 1985.
[16] Kohn, J. J. and Rossi, H.: On the extension of holomorphic functions from the boundary of a complex manifold. Ann. of Math. (2) 81 (1965), 451-472.
[17] Nagel, A. and Stein, E. M.: The $\bar{\partial}_{b}$-complex on decoupled boundaries in \mathbb{C}^{n}. Ann. of Math. (2) 164 (2006), no. 2, 649-713.
[18] Ponge, R.: Géométrie spectrale et formules d'indices locales pour les variétés CR et contact. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 735-738.
[19] Rothschild, L. P. and Stein, E. M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137 (1976), 247-320.
[20] Rothschild, L. P. and Tartakoff, D.: Parametrices with C^{∞}-error for \square_{b} and operators of Hörmander type. In Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977), 255-271. Lecture Notes in Pure and Appl. Math. 48. Dekker, New York, 1979.
[21] Taylor, M. E.: Noncommutative microlocal analysis. I. Mem. Amer. Math. Soc. 52 (1984), no. 313.
[22] Woodhouse, N.: Geometric quantization. Oxford Mathematical Monographs. The Clarendon Press, Oxford Univ. Press, New York, 1992.

Recibido: 21 de abril de 2009
Raphaël Ponge
Department of Mathematics
University of Toronto 40 St. George Street
Toronto, ON, M5S 2E4, Canada
Current address: Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo 153-8914, Japan ponge@ms.u-tokyo.ac.jp

[^1]
[^0]: 2000 Mathematics Subject Classification: Primary: 35H10; Secondary: 32W10, 32V35, 32V05, 53D10, 35S05.
 Keywords: Hypoelliptic operators, $\bar{\partial}_{b}$-operator, finite type condition, CR structures, contact geometry, pseudodifferential operators.

[^1]: Research partially supported by NSERC Discovery Grant 341328-07 (Canada) and by a New Staff Matching Grant of the Connaught Fund of the University of Toronto (Canada).

