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Fitting a Cm-Smooth
Function to Data II

Charles Fefferman and Bo’az Klartag

Abstract

We exhibit efficient algorithms to perform the following task:
Given a function f defined on a finite subset E ⊂ Rn, compute a Cm

function F on Rn, with a controlled Cm norm, that approximates f
on the subset E.
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1. Introduction

This manuscript is the second part in a series of papers tackling the prob-
lem of interpolation of finite data, in any dimension and for any degree
of smoothness. Here, and in [20], we give detailed proofs of the results an-
nounced in [19]. Let us briefly remind the reader of the problems and results
presented in [19].

We fix positive integers m and n. Suppose we are given a finite set
E ⊂ Rn, and a function f : E → R. We are interested in constructing a
function F : Rn → R, that extends the given function f, and whose Cm(Rn)
norm is of the smallest possible order of magnitude.

As in [19], here the “construction of a function” is interpreted from the
viewpoint of theoretical computer science. That is, we give algorithms for
computing smooth extensions of functions, and we try to minimize the time
and storage required by an (idealized) computer when executing these algo-
rithms.

Let us define the problem more precisely. Suppose that E ⊂ Rn is a
finite set, and let f : E → R, σ : E → [0,∞) be functions. We denote by
‖ f ‖Cm(E,σ) the infimum over all M > 0, for which there exists a function
F ∈ Cm(Rn) such that

(1) ‖ F ‖Cm(Rn)≤ M and |F(x) − f(x)| ≤ Mσ(x) for each x ∈ E.

We pay particular attention to the case σ ≡ 0, and hence we set

‖ f ‖Cm(E) := ‖ f ‖Cm(E,0) .
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Two numbers X, Y ≥ 0 determined by E, f, σ,m, n are said to have
“the same order of magnitude” if cX ≤ Y ≤ CX, with constants c and C
depending only on m and n. To “compute the order of magnitude of X” is
to compute some Y such that X and Y have the same order of magnitude.
The main result proved in [19] can be summarized as follows:

Theorem 1. The algorithm that was presented in [19] receives as input a set
E ⊂ Rn of cardinality N, and two functions f : E → R, σ : E → [0,∞). The
algorithm computes the order of magnitude of ‖ f ‖Cm(E,σ), using work that
is at most CN logN and storage that is at most CN, where C is a constant
depending only on m and n.

The algorithm mentioned in Theorem 1 runs on an (idealized) von Neu-
mann computer [34] that is able to add, subtract, multiply and divide exact
real numbers, and also to detect their sign. We assume in addition that a
real number can be stored at a single memory address.

In this follow-up paper, we deal with the problem of actually computing
a near-optimal function F that satisfies (1) with M having the order of
magnitude of ‖ f ‖Cm(E,σ).

As was described in [19], to “compute a function F” means the following:
First, we enter the data E, f, σ into a computer. The computer runs for a
while, performing L0 machine operations. It then signals that it is ready
to accept further input. Whenever we enter a point x ∈ Rn, the computer
responds by producing an mth degree polynomial Px on Rn, using L1 ma-
chine operations to perform the computation. We say that our algorithm
“computes the function F” if, for each x ∈ Rn, the polynomial Px produced
by that algorithm is precisely the mth order Taylor polynomial of F at x.

We call L0 the “one-time work” and L1 the “work to answer a query”.
Our main result here is the following theorem, announced in [19].

Theorem 2. The algorithm we present below computes a function F ∈
Cm(Rn) that satisfies (1), with M having the same order of magnitude as
‖ f ‖Cm(E,σ). The one-time work of our algorithm is at most CN logN, the
storage is at most CN, and the work to answer a query is at most C logN.
Here, C depends only on m and n.

In addition to the algorithm of Theorem 2, we provide algorithms for
related and generalized problems. First, we claim that the function F we
compute depends linearly on f. Furthermore, for any x ∈ Rn the polyno-
mial Px actually depends (linearly) only on at most C parameters among
(f(x))x∈E, where C > 0 is a constant depending only on m and n. We may
modify our algorithm, to respond to a query by returning the coefficients of
this short linear dependence (see the exact formulation in Section 35).
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Second, rather than specifying the function value at any point x ∈ E,
we might want to provide input of different types; for example, we might
also want to specify the gradient of the function at some points. Permissible
types of input are discussed in Section 36. Third, we would also like to
gather some information regarding all possible smooth extensions with a
bounded Cm(Rn) norm. Simple variants of the algorithm from Theorem 2
yield solutions to these problems (and others). These will be described in
Section 34 and Section 35.

We would like to remark here that our model of computation for Theo-
rem 2 is slightly different from the one used in [19]; in addition to compar-
isons and arithmetic operations on real numbers, we also require the opera-
tions of logarithm, exponent, and of rounding a real number to the closest
integer. In the Appendix we analyze the performance of the algorithm of
Theorem 2, on an (idealized) digital computer, that is unable to work with
exact real numbers. That is, we assume that a real number is represented
in a digital computer, to a certain accuracy, using S bits. We prove that
the output of the algorithm from Theorem 2, is exact to a degree of accuracy
of S bits. A precise statement and analysis are given in the Appendix.

Theorem 2 is essentially proved by rewriting the proof from [16] in an
algorithmic way. Let us explain here the basic notions that are relevant to
the proof, and at the same time review the structure of this manuscript.
We denote by P+ the space of all polynomials of degree at most m on Rn,
and let P ⊂ P+ be the space of all polynomials of degree at most m−1. For
x ∈ Rn, δ > 0 we define

(2) B+(x, δ) = {P ∈ P+ : |∂βP(x)| ≤ δm−|β| for |β| ≤ m}.

We also set

B(x, δ) = P∩B+(x, δ) = {P ∈ P : |∂βP(x)| ≤ δm−|β| for |β| ≤ m−1}.

Given M > 0 and a subset σ in a linear space V we abbreviate

M · σ = {Mv : v ∈ σ}.
For a function F ∈ Cm(Rn) and x ∈ Rn we denote by J+x (F) the m-jet of F
at x, that is the mth order Taylor polynomial of F at x. We write Jx(F) for
the (m− 1)-jet of F at x.

By Taylor’s theorem, if F ∈ Cm(Rn) with ‖ F ‖Cm(Rn)≤M, then for any
x, y ∈ Rn,

(3) Jx(F) − Jy(F) ∈ CM · B(x, |x − y|),

where C > 0 is a constant depending only on m and n.
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Conversely, suppose S ⊂ Rn is a finite set, and for each x ∈ S suppose
we are given a polynomial Px ∈M · B(x, 1) such that

(4) Px− Py ∈M · B(x, |x− y|) for all x, y ∈ S.

According to the classical Whitney Theorem (see [35] or [32, Section VI]),
under condition (4), there exists a Cm function F : Rn → R with ‖ F ‖Cm(Rn)

< CM such that

(5) Jx(F) = Px for all x ∈ S.

Thus, the “balls” MB(x, δ) capture the exact essence of having a bounded
Cm norm. This family of balls will play a central rôle in this paper. We say
that B(x, δ) = (MB(x, δ))M>0 is a “blob” in P, that is, an increasing family
of convex sets in P.

We will need to represent various “blobs” in the computer, to a certain
degree of approximation. To that end, we present in Chapter I a detailed
discussion of the relevant algorithmic issues. Readers who are familiar with
computer programming, might choose at first reading, to begin at Section 2
and then, perhaps, skip to Section 6 or Section 7.

We will make use of some standard algorithms from theoretical com-
puter science. In Section 9 we survey the Callahan-Kosaraju decomposition
that was previously used in [19]. Using the Callahan-Kosaraju decompo-
sition, we compute and discuss in Sections 10,. . . ,13 the basic blobs that
will accompany us throughout the paper. We think of these blobs, that are
denoted by

Γ(x0, �) = (Γ(x0, �,M))M>0 , for x0 ∈ E and � > 0,

as representing candidate Taylor polynomials of our desired Cm function
at x0. To help understand the meaning of these basic blobs, it might be
useful to consider the following set: Fix x0 ∈ E, � ≥ 0, M > 0. Consider all
polynomials P0 ∈ P for which

(6) ∀x1, . . . , x� ∈ E, ∃P1, . . . , P� ∈ P such that for any i, j = 0, . . . , �,

|Pi(xi)−f(xi)| ≤ Mσ(xi), Pi ∈M ·B(xi, 1) and Pi−Pj ∈M ·B(xi, |xi−xj|).

We would like to emphasize that (6) is similar only in spirit to the actual
set Γ(x0, �,M), and that the actual definition of Γ(x0, �,M) will be differ-
ent. However, both (6) and Γ(x0, �,M) share two important characteristics.
First, when M > C ‖ f ‖Cm(E,σ), the Taylor polynomials of all admissi-
ble extensions belong to our set, as follows from (3). Second, and somewhat
more exciting, is that these blobs stabilize very quickly; for some constant �∗
depending only on m and n, we have that (Γ(x0, �∗,M))M>0 is a good ap-
proximation of (Γ(x0, �,M))M>0 for all � > �∗ (and any x0 ∈ E).
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Having constructed the basic blobs, we continue along the lines of [16].
In Section 18, we attach, to each x0 ∈ E a family of small, positive num-
bers we call “lengthscales”. Very roughly, these numbers represent sizes of
neighborhoods of x0 in which we know how to solve various partial extension
problems. These length scales are used in Sections 19,...,24 to create certain
nested Calderón-Zygmund decompositions on Rn. Our desired extending
function will be constructed recursively, from a very fine scale to a meso-
scopic one. The nested Calderón-Zygmund decompositions, and the corre-
sponding partitions of unity, are used to “glue” together different patches of
the extending function.

We move to Section 23, where our second algorithmic ingredient is ex-
posed: the so-called “BBD tree”, due to Arya, Mount, Netanyahu, Silverman
and Wu [1]. The results of that paper are summarized in Section 23, and
later applied in Sections 25, 26, 27 to aid several computations related to
the above Calderón-Zygmund decompositions.

Our Main Algorithm recursively constructs extension functions defined
on certain cubes in Rn. The Main Algorithm is presented in Section 29,
along with the Main Lemma. The Main Lemma states, more or less, that
the Main Algorithm works. The proof of the Main Lemma is inductive, and
is dealt with in Sections 30,...,33. The proof is similar to the proof in [16].
The Appendix contains a discussion of various issues related to the imple-
mentation of our algorithm in an (idealized) digital computer in which real
numbers are represented only with finite precision. The mathematical issues
involved here are minor; readers unconcerned with the rigorous treatment
of roundoff errors may wish to omit the Appendix.

This paper is part of a literature on the problem of extending a given
function f : E → R, defined on an arbitrary subset E ⊂ Rn, to a function
F ∈ Cm(Rn). The question goes back to Whitney [35, 36, 37], with con-
tributions by Glaeser [21], Brudnyi-Shvartsman [5,. . . ,10 and 29, 30, 31],
Zobin [38, 39], Bierstone-Milman-Paw�lucki [2, 3], Fefferman [12,. . . ,18] and
A. and Y. Brudnyi [4].
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Chapter I - Blobs and ALPs

2. Blobs and ALPs: Definitions

In the next several sections we introduce the data structures that are used
to describe families of convex sets, and we explain some basic algorithms to
manipulate those data structures.

Let V be a finite-dimensional vector space. A “blob” in V is a family
K = (KM)M>0 of (possibly empty) convex subsets KM ⊆ V, parametrized
by M ∈ (0,∞), such that M < M′ implies KM ⊆ KM′ . The “onset” of a
blob K = (KM)M>0 is defined as the infimum of all the M > 0 for which
KM �= ∅. (If all KM are empty, then onset K = +∞.)

Let K = (KM)M>0 be a blob in V, let v ∈ V be a vector, and let C ≥ 1

be a constant. Then we call v a “C-original vector” for K if we have v ∈ KM
for all M > C· onset K. (By definition, we cannot have v ∈ KM for any
M < onset K.)

Suppose K = (KM)M>0 and K′ = (K′
M)M>0 are blobs in V, and let

C ≥ 1 be a number. We say that K and K′ are “C-equivalent” if they
satisfy KM ⊆ K′

CM and K′
M ⊆ KCM for all M ∈ (0,∞).

Note that, if K and K′ are C1-equivalent, and if K′ and K′′ are C2-
equivalent, then K and K′′ are (C1 · C2)-equivalent. Note also that, if K

and K′ are C-equivalent, then (1/C) · onset K ≤ onset K′ ≤ C · onset K.
In addition, suppose K and K′ are C1-equivalent, and suppose v is a

C2-original vector for K. Then v is a C3-original vector for K′, where C3 is
determined by C1 and C2. (We can take C3 = C21 · C2, as the reader may
easily verify.)

We describe a few elementary operations on blobs. First, suppose V =
V1 ⊕ V2 is a direct sum of vector spaces, and let Ki = (KiM)M>0 be a blob
in Vi for i = 1, 2. Then we write K1×K2 for the blob (K1M×K2M)M>0 in V.
If K1M = V1 for all M ∈ (0,∞), then we write V1 × K2 for K1 × K2; and
similarly for K1× V2.

Next, suppose T : V1 −→ V2 is a linear map of finite-dimensional vector
spaces, and let K = (KM)M>0 be a blob in V1. Then we write TK to denote
the blob (TKM)M>0 in V2. Note that T ′(TK) = (T ′T)K if T : V1 −→ V2 and
T ′ : V2 −→ V3.

Now suppose that Ki = (KiM)M>0 are blobs in a vector space V, for
i = 1, 2, . . . , T . Then we define their intersection K1 ∩ · · · ∩ KT to be the
blob (K1M∩ · · · ∩ KTM)M>0.

Finally, suppose K1 = (K1M)M>0 and K2 = (K2M)M>0 are blobs in V.
Then we define their Minkowski sum K1+K2 to be the blob (K1M+K2M)M>0
in V, where K1M+ K2M = {v1+ v2 : v1 ∈ K1M, v2 ∈ K2M}.
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This concludes our list of elementary operations on blobs. Note that the
above operations behave well with respect to C-equivalence. More precisely:

• If K1 and K̃1 are C-equivalent blobs in V1, and if K2 and K̃2 are
C-equivalent blobs in V2, then K1×K2 and K̃1× K̃2 are C-equivalent
blobs in V1⊕ V2;

• If K and K̃ are C-equivalent blobs in V1, and if T : V1 → V2 is linear,
then TK and TK̃ are C-equivalent blobs in V2.

• If Ki and K̃i are C-equivalent blobs in V for each i = 1, . . . , T , then
K1 ∩ · · · ∩ KT and K̃1 ∩ · · · ∩ K̃T are again C-equivalent.

• Finally, if Ki and K̃i are C-equivalent blobs in V, for i = 1, 2, then
K1+ K2 and K̃1+ K̃2 are again C-equivalent.

Among all blobs in a finite-dimensional vector space V, we focus attention
on those given by “Approximate Linear Algebra Problems”, or “ALPs”. To
define these, let λ1, . . . , λL be (real) linear functionals on V, let b1, . . . , bL
be real numbers, let σ1, . . . , σL be non-negative real numbers, and let M∗ ∈
[0,+∞]. We call

(1) A = [(λ1, . . . , λL), (b1, . . . bL), (σ1, . . . , σL),M∗] an “ALP” in V.

With A given by (1), we define a blob

(2) K(A) = (KM(A))M>0 in V, by setting

(3) KM(A) = {v ∈ V : |λ�(v)−b�| ≤ Mσ� for � = 1, . . . , L} when M ≥M∗;
and

(4) KM(A) = ∅ for M <M∗.

Our definition (3) motivates the use of the phrase “approximate linear al-
gebra problem.” We allow L = 0 in (1), in which case (3) says simply that
KM(A) = V for M ≥M∗.

We call K(A) “the blob arising from the ALP A”. Unlike an arbitrary
blob, an ALP is specified by finitely many (real) parameters, and may there-
fore be manipulated by algorithms.

We call L and M∗ in (1), respectively, the “length” and “threshold” of
the ALP A; and we call λ1, . . . , λL, b1, . . . , bL and σ1, . . . , σL, respectively,
the “functionals”, “targets”, and “tolerances” of A. Note that the onset of
the blob K(A) is greater than or equal to the threshold of A, thanks to (4).
The onset may be strictly greater than the threshold, since the set KM(A)
described by (3) may be empty for some M >M∗.

We say that two ALPs A,A′ are C-equivalent, provided the blobs K(A),
K(A′) arising from A,A′ are C-equivalent.
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In the next several sections, we exhibit algorithms to perform the follow-
ing tasks:

• Given an ALP A in a vector space V, compute the order of magnitude
of onset K(A).

• Given an ALP A in a vector space V, compute a C-original vector for
K(A).

• Let A be an ALP in a vector space V. Compute an ALP A′ of length
at most dimV, such that K(A′) and K(A) are C-equivalent.

• Let A1, A2 be ALPs in vector spaces V1, V2, respectively. Compute an
ALP A in V1⊕ V2 such that K(A) = K(A1) × K(A2).

• Let A be an ALP in a vector space V1, and let T : V1 → V2 be a linear
map. Compute an ALP A′ in V2 such that K(A′) is C-equivalent to
T(K(A)).

• Let A1, . . . ,AT be ALPs in a vector space V. Compute an ALP A′

such that K(A′) = K(A1) ∩ · · · ∩ K(AT).

• Let A1,A2 be ALPs in a vector space V. Compute an ALP A such
that K(A) is C-equivalent to K(A1) + K(A2).

Here, C denotes a constant depending only on the dimensions of the rele-
vant vector spaces. To “compute the order of magnitude” of onset K(A)
is to compute a number X such that cX ≤ onset K(A) ≤ CX for positive
constants c, C depending only on dimV.

In the next two sections, we describe some elementary linear algebra on
ALPs, including the reduction of an ALP to “echelon form”. In the following
sections, we apply our result on echelon form, to carry out the tasks set down
in the preceding paragraphs. We also study what happens when our ALPs
depend on parameters.

To close this section, we discuss “homogeneous ALPs”. An ALP A as
in (1) is called “homogeneous” if we have b1 = · · · = bL = 0 and M∗ = 0.
Thus, for all M ∈ (0,∞), (3) gives

(5) KM(A) = Mσ(A), with

(6) σ(A) = {v ∈ V : |λ�(v)| ≤ σ� for � = 1, . . . , L}.

In other words, a homogeneous ALP really describes a convex, centrally
symmetric polyhedron σ(A) in V, given by finitely many linear inequalities.
(Recall that a convex set K in a vector space V is called centrally symmetric
if x ∈ K implies −x ∈ K. Often, we say “symmetric” instead of “centrally
symmetric”.)
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Moreover, two blobs K(A) and K(Ã) given by homogeneous ALPs A, Ã

are C-equivalent if and only if the polyhedra σ(A) and σ(Ã) defined by (6)
satisfy

(7) σ(A) ⊆ Cσ(Ã) and σ(Ã) ⊆ Cσ(A).

If (7) holds, then we say that “σ(A) and σ(Ã) are C-equivalent”.

By specializing to the case of homogeneous ALPs, we see that the tasks
we set ourselves above include, for instance, the following:

Given two convex symmetric polyhedra σ(A1) and σ(A2) in the form (6),
compute a homogeneous ALP A for which σ(A) is C-equivalent to the
Minkowski sum σ(A1) + σ(A2).

Details are left to the reader, but we provide an elementary remark that
helps with the verifications:

Suppose A and A′ are ALPs, and suppose that K(A) is C-equivalent
to K(A′). Then A is homogeneous if and only if A′ is homogeneous.

3. Elementary Row Operations

In this section, we show how to perform elementary row operations on ALPs,
analogous to the elementary processes of linear algebra. This will be used in
the next section to place an ALP into “echelon form”. When we implement
linear algebra computations in a finite precision digital computer, certain
accuracy issues arise. These are discussed in the Appendix.

Our row operations are of three types. To describe the first row opera-
tion, let

(1) A = [(λ1, . . . , λL), (b1, . . . , bL), (σ1, . . . , σL) , M∗]

be an ALP in a vector space V, and let π : {1, . . . , L} → {1, . . . , L} be a
permutation. Then

Aπ = [(λπ1, . . . , λπL) , (bπ1, . . . , bπL), (σπ1, . . . , σπL) ,M∗]

is again an ALP in V, and, evidently, K(A) = K(Aπ). We say that Aπ arises
from A by “permuting rows”. (In the next section, we will regard each λ�
as a row vector.)

Our second type of row operation arises for an ALP (1) in case there
is some L̄ < L such that λL̄+1 = λL̄+2 = · · · = λL = 0. In that case, for
L̄ < � ≤ L, the estimate |λ�(v) − b�| ≤ Mσ�, appearing in the definition
of K(A), reduces to |b�| ≤ Mσ�, which is equivalent to M ≥ M∗

�, for
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an M∗
� ∈ [0,+∞] determined trivially by b� and σ�. Consequently, we have

K(A) = K(Ā), where

Ā = [(λ1, . . . , λL̄) , (b1, . . . , bL̄) , (σ1, . . . , σL̄) ,max(M∗,M∗̄
L+1, . . . ,M

∗
L)] .

We say that Ā arises from A by “stripping away zeros”.
Our third row operation on an ALP (1) arises by adding a multiple of

one of the functionals λ1, . . . , λL to each of the other λ’s. More precisely,
let A be the ALP given by (1), and let 1 ≤ �0 ≤ L. Suppose we are given
real coefficients β1, . . . , βL, with β�0 = 0. We define a new ALP Â in V by
setting

(2) Â = [(λ̂1, . . . , λ̂L) , (b̂1, . . . , b̂L), (σ1, . . . , σL) , M∗], where

(3) λ̂� = λ�+ β�λ�0 and b̂� = b�+ β�b�0 for � = 1, . . . , L.

The blobs K(A) and K(Â) are then related by the following simple result.

Proposition. Assume that |β�| · σ�0 ≤ σ� for � = 1, 2, . . . , L. Then the
blobs K(A) and K(Â) are 2-equivalent.

Proof. Fix M ≥M∗, and let v ∈ KM(A). Then, for � = 1, . . . , L, we have
|λ�(v) − b�| ≤Mσ�, and consequently

|̂λ�(v)−b̂�| =
∣∣[λ�(v)−b�] + β�[λ�0(v)−b�0 ]∣∣ ≤ Mσ�+ |β�| ·Mσ�0 ≤ 2Mσ� ,

since |β�|σ�0 ≤ σ� .
This shows that

(4) KM(A) ⊆ K2M(Â),

for all M ≥ M∗. On the other hand, (4) is obvious for M < M∗, since
KM(A) is empty in that case. Thus, (4) holds for all M > 0. Moreover, since
β�0 = 0, (3) implies λ� = λ̂� − β�λ̂�0 and b� = b̂� − β�b̂�0 for � = 1, . . . , L.
Hence, we may repeat the proof of (4), with the rôles of A and Â inter-
changed, to conclude that

(5) KM(Â) ⊆ K2M(A) for all M > 0.

Inclusions (4), (5) tell us that the blobs K(A) and K(Â) are 2-equivalent.
The proof of the proposition is complete. �

When A and Â are related as in (1), (2), (3) with β�0 = 0, then we
say that Â arises from A by “row addition”. If also |β�|σ�0 ≤ σ� for each
� = 1, . . . , L, so that the above Proposition applies, then we say that Â

arises from A by “stable row addition”. Note that the tolerances σ1, . . . , σL
and the threshold M∗ remain unchanged when we pass from A to Â by row
addition.
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4. Echelon Form

In this section, we use the elementary row operations from the preceding
section to place a given ALP A into “echelon form”, somewhat like the
standard echelon form in linear algebra. In the next section, we use our
echelon form to exhibit algorithms to carry out the tasks we set ourselves in
Section 2.

We take our vector space V to be RD, for some positive integer D. Let

(1) A = [(λ1, . . . , λL), (b1, . . . , bL), (σ1, . . . , σL), M∗] be an ALP in V.

Each functional λ� may be identified with a row vector λ = (λ�1, . . . , λ�D) ∈
RD. Thus, the ALP A may be rewritten in the form

(2) A =
[
(λ�j) 1≤�≤L

1≤j≤D
, (b�)1≤�≤L, (σ�)1≤�≤L, M∗

]
.

For 0 ≤ I ≤ L, we say that an ALP A as in (2) is in “echelon form through
row I”, with “pivots” p1, . . . , pI, if the following conditions are satisfied.

(EF0)I The pi are integers, and 1 ≤ p1 < p2 < · · · < pI ≤ D .
(EF1)I λipi �= 0 for i = 1, . . . , I.

(EF2)I λij = 0 for 1 ≤ j < pi, i = 1, . . . , I.

(EF3)I λij = 0 for 1 ≤ j ≤ pI, i > I.
See Figure 1 for a matrix in echelon form through row I.

λ 2,p
2

λ 1,p
1

*

*

0

0

. . .

I
λ I,p

Figure 1
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We adopt the convention that every ALP is in echelon form through row
zero. On the other hand, an ALP (2) can never be in echelon form through
row I with I > D, as one sees at once from (EF0)I. An ALP A as in (2),
which is in echelon form through row L= length (A), is said to be in “echelon
form”. Note that an ALP in RD in echelon form has length at most D.

To place a given ALP into echelon form by row operations, we repeatedly
apply the following result.

Lemma 1. Let A be an ALP as in (2), and suppose A is in echelon form
through row I. Then one of the following alternatives holds.

• Alternative 1: λ�j = 0 for all � > I, 1 ≤ j ≤ D.

• Alternative 2: There exists an ALP Ā in echelon form through row I+1,
such that the blobs K(A) and K(Ā) are 2-equivalent, and length(Ā) =
length(A). Moreover, we can compute Ā from A by an algorithm that
uses at most CD(L + 1) computer operations, where C is a universal
constant.

Proof. Let p1, . . . , pI be the pivots for A. Suppose Alternative 1 doesn’t
hold. We take pI+1 to be the least j for which there exists � > I with λ�j �= 0.
Thus,

(3) λ�,pI+1 �= 0 for some � > I, and

(4) λ�,j = 0 for j < pI+1, � > I.

Also, if I �= 0, then we have

(5) pI < pI+1 ≤ D, as we see by comparing (3) with (EF3)I.

Among all � > I with λ�,pI+1 �= 0, we pick �̄ to minimize σ�/ |λ�,pI+1 |.
Once we have picked �̄, we can act on A by permuting rows, to reduce

matters to the case in which �̄ = I + 1. Thus,

(6) λI+1,pI+1 �= 0, and

(7) |λ�,pI+1/ λI+1,pI+1 | · σI+1 ≤ σ� for all � > I.

We now perform “addition of rows” on the ALP A, as in the previous
section, taking �0 = I + 1, and using coefficients

(8) β� = −λ�,pI+1/ λI+1,pI+1 for all � > I+ 1,

(9) β� = 0 for � ≤ I+ 1.

Note that β�0 = βI+1 = 0, as required for addition of rows.
Note also that |β�| · σ�0 ≤ σ� for all �, as we see from (7), (8), (9).
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Hence, the Proposition from the preceding section applies. Thus, from A,
we obtain by “stable addition of rows” an ALP,

(10) Ā =
[
(λ̄�j) 1≤�≤L

1≤j≤D
,
(
b̄�
)
1≤�≤L , (σ�)1≤�≤L , M∗

]
, such that

(11) The blobs K(A) and K(Ā) are 2-equivalent, and

(12) λ̄�j = λ�j+ β�λ�0j for all �, j.

From (8), (9), (12), we see that

(13) λ̄�j = λ�j for � ≤ I+ 1, 1 ≤ j ≤ D; and

(14) λ̄�j = λ�j−
(
λ�,pI+1

/
λI+1,pI+1

) · λI+1,j for � > I+ 1, 1 ≤ j ≤ D.

In particular, (4) and (13), (14) give

(15) λ̄�j = 0 for j < pI+1, � ≥ I+ 1.

Another application of (14) gives λ̄�,pI+1 = 0 for � > I + 1.
Together with (15), this yields

(16) λ̄�j = 0 for j ≤ pI+1, � > I+ 1.

It is now easy to check, using (6), (13), (15) and (16), that

(17) Ā is in echelon form through row I + 1.

In view of (11), (17), and the obvious remark length (Ā) = length (A), we
find ourselves in Alternative 2. Moreover, the above argument produced Ā

from A by an algorithm that uses at most CD(L + 1) operations, as the
reader may easily check. Here, C denotes a universal constant.

The proof of Lemma 1 is complete. �

Repeatedly applying Lemma 1, we can easily derive the main result of this
section.

Lemma 2. Let A be an ALP in RD, as in (2). Then there exists an
ALP A# in echelon form in RD, such that the blobs K(A) and K(A#) are
2D-equivalent, and such that length(A#) ≤ min{length(A), D}. Moreover,
we can compute A# from A in at most CD2(L + 1) operations, where C is
a universal constant.

Proof. Starting at A0 = A, which is in echelon form through row zero,
we repeatedly apply Lemma 1, until we find ourselves in Alternative 1 in
the statement of that lemma. Thus, we obtain a sequence of ALPs A =
A0,A1,A2, . . . , with AI in echelon form through row I, and such that the
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blobs K(AI) and K(AI+1) are 2-equivalent. An ALP in RD can never be in
echelon form through row I > D, and therefore our sequence terminates at
some AJ with J ≤ D. Thus, K(A) and K(AJ) are 2D-equivalent, AJ is in
echelon form through row J, and AJ satisfies Alternative 1, i.e.,

AJ =
[
(λ̄�j) 1≤ �≤L

1≤ j≤D
, (b̄�)1≤ �≤L , (σ�)1≤ �≤L ,M∗

]
,

with λ̄�j = 0 for J < � ≤ L, 1 ≤ j ≤ D.
Stripping away zeros from AJ, we obtain an ALP A# in echelon form,

with K(AJ) = K(A#). Thus, K(A) and K(A#) are 2D-equivalent. More-
over, the above argument produces A# from A by an algorithm that uses
at most CD2(L+ 1) operations, since we apply Lemma 1 at most D times.
Here C denotes a universal constant.

It remains only to check that length (A#) ≤ min{length(A), D}. Recall
from Lemma 1 that length (AI+1) = length (AI) for each I. This yields length
(A) = length (A0) = length (AJ). Since A# arises from AJ by stripping away
zeros, we have length (A#) ≤ length (AJ) = length (A). Also, since A# is
an ALP in RD in echelon form, we have length (A#) ≤ D.

Thus,
length(A#) ≤ min{ length(A), D},

completing the proof of Lemma 2. �

5. Applications of Echelon Form

In this section, we apply our results on echelon form, to carry out the tasks
we set ourselves in Section 2.

Algorithm ALP1: Given an ALP A of length L in RD, we exhibit an ALP

A# in RD, in echelon form, such that the blobs K(A) and K(A#) are 2D-
equivalent. The ALP A# has length at most min(L,D).

Explanation: This is the main result in Section 4. The work and storage used

by this algorithm are at most CD2(L+ 1), where C is a universal constant.

Algorithm ALP2: Given an ALP A of length L in RD, we compute a number

X ≥ 0 such that 2−DX ≤ onset K(A) ≤ 2DX.

Explanation: Using Algorithm ALP1, we compute an ALP

(1) A# =
[
(λ̄�j) 1≤�≤ L̄

1≤ j≤D
, (b̄�)1≤ �≤ L̄ , (σ̄�)1≤ �≤ L̄ , M̄∗

]
in echelon form, with

L̄ ≤ D, and such that the blobs K(A) and K(A#) are 2D-equivalent.

We then return X = M̄∗. This algorithm uses work and storage at most
CD2(L+ 1) for a universal constant C.
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We check that 2−DX ≤ onset K(A) ≤ 2DX. In fact, since K(A#) and
K(A) are 2D-equivalent, we have 2−D· onset K(A#) ≤ onset K(A) ≤ 2D·
onset K(A#). Hence, it is enough to check that onset K(A#) = M̄∗. This
amounts to saying that

(2) KM(A#) �= ∅ for M ≥ M̄∗,

as we see from the definitions of “onset” and “threshold”. Recall that, for
M ≥ M̄∗, we have

(3) KM(A#) =
{
(v1, . . . , vD)∈RD :

∣∣∣ D∑
j=1

λ̄�jvj−b̄�

∣∣∣ ≤Mσ̄� for � = 1, . . . , L̄
}

.

The ALP A# is in echelon form. Let 1 ≤ p1 < · · · < pL̄ ≤ D be the pivots
of A#. Then by the definition of “echelon form”, we have

(4) λ̄�p� �= 0 for � = 1, . . . , L̄; and λ̄�j = 0 for 1 ≤ j < p�, � = 1, . . . , L̄.

We will define a vector v = (v1, ..., vD) ∈ RD as follows. The entries
vD, vD−1, . . . , v1 are determined successively by the rule:

(4a) vi = 0 if i is not one of the p�; and

(4b) vp� = λ̄−1
�p�

·
[
b̄� −

D∑
j=p�+1

λ̄�jvj

]
for � = L̄, L̄− 1, . . . , 1.

(When p� = D the sum in (4b) is zero.) From (4) and (4b), we see that
the vector v = (v1, . . . , vD) ∈ RD satisfies

∑D
j=1 λ̄�jvj = b̄� for � = 1, . . . , L̄ .

Consequently,

(5) v ∈ KM(A#) for M ≥ M̄∗, as we see from (3).

This completes the proof of (2), which shows that 2−DX ≤ onset K(A) ≤
2DX, as claimed.

Note that (5) shows that v is a 1-original vector for K(A#).

Algorithm ALP3: Given an ALP A of length L in RD, we exhibit a 22D-
original vector v for K(A).

Explanation: Using Algorithm ALP1, we exhibit an ALP A# in echelon form,

such that the blobs K(A) and K(A#) are 2D-equivalent. We then determine
a 1-original vector v for K(A#), as in our explanation of Algorithm ALP2.
Since K(A) and K(A#) are 2D-equivalent, it follows that v is a 22D-original
vector for K(A).

The work and storage to compute A# are at most CD2(L+ 1), and the
length of A# is L̄ ≤ min(D, L) ≤ D.
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The work and storage needed to compute v by (4a) and (4b) are at
most CD(L̄ + 1) ≤ C′D2. Hence, altogether, the work and storage used
by Algorithm ALP3 are at most CD2(L+ 1), for a universal constant C.

Algorithm ALP4: Given ALPs A1,A2 in vector spaces V1, V2, respectively,

we exhibit an ALP A in V1 ⊕ V2, such that K(A) = K(A1) × K(A2). We
have length (A) = length (A1) + length (A2).

(Lack of) Explanation: We leave the trivial algorithm for the reader. The
work and storage used are at most

C · (dimV1+ dimV2) · (1+ length A1+ length A2),

for a universal constant C.

Algorithm ALP5: Given an ALP A in a vector space V, and given a linear
map T : V → V ′, we compute an ALP A′ in V ′, of length at most dimV ′, such
that the blobs T(K(A)) and K(A′) are 2D-equivalent, where D = dimV.

Explanation: We consider three basic special cases, and then pass to the
general case. The special cases are as follows.

Case 1: T : V → V ′ is an isomorphism.

Case 2: T : RD → RD
′
is the injection (v1, . . . , vD) �→ (v1, . . . , vD, 0, . . . , 0) .

Case 3: T : RD → RD
′

is the projection (v1, . . . , vD) �→ (vD−D′+1, . . . , vD).

In Case 1, it is obvious how to produce an ALP A′, of the same length
as A, such that TK(A) = K(A′).

The work and storage used to produce A′ in Case 1 are at most

C(dimV ′)3+ C(dimV ′)2 length (A) ,

since we must compute T−1 and then compose each functional λ� (appearing
in A) with T−1. Here, C is a universal constant.

In Case 2, it is obvious how to produce an ALP A′, of length equal to
L = (D′ −D) + length (A), such that TK(A) = K(A′).
The work and storage used to produce A′ in Case 2 are at most CD′(L+ 1),
for a universal constant C.

In Case 3, we proceed as follows. Using Algorithm ALP1, we produce an
ALP A# in echelon form in RD, such that the blobs K(A) and K(A#) are
2D-equivalent, and such that length (A#) ≤ min(D, length (A)). We will
exhibit an ALP A′, of length at most L′ = min{D′ , length (A)}, such that
TK(A#) = K(A′). Since TK(A#) and TK(A) are 2D-equivalent, it follows
that K(A′) will be 2D-equivalent to TK(A). To compute A′, let

(7) A# =
[
(λ̄�j) 1≤�≤L̄

1≤j≤D
, (b̄�)1≤�≤L̄, (σ̄�)1≤�≤L̄, M̄∗

]
,
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and let 1 ≤ p1 < · · · < pL̄ ≤ D be the pivots for A#. As before, we have

(8) λ̄�p� �= 0 for � = 1, . . . , L̄; and λ̄�j = 0 for 1 ≤ j < p�, � = 1, . . . , L̄.

Recall that K(A#) = (KM(A#))M>0, with

(9) KM(A#) =
{
(v1, . . . , vD) ∈ RD :

∣∣ D∑
j=1

λ̄�jvj− b̄�
∣∣ ≤Mσ̄� for � = 1, . . . , L̄

}
when M ≥ M̄∗; and

(10) KM(A#) = ∅ when M < M̄∗.

We define a blob K′ = (K′
M)M>0, by setting

(11) K′
M =

{
(vD−D′+1, . . . , vD)∈RD

′
:
∣∣ D∑
j=p�

λ̄�jvj−b̄�
∣∣ ≤Mσ̄� for p�> D−D′}

when M ≥ M̄∗; and

(12) K′
M = ∅ when M < M̄∗.

Then K′ = K(A′) for an obvious ALP A′ in echelon form in RD
′
. In par-

ticular, length (A′) ≤ D′. We check that

(13) K′
M = T KM(A#) for all M > 0.

For M < M̄∗, (13) is obvious from (10) and (12). Suppose M ≥ M̄∗.
From (9), (11) and the definition of T , we obtain T KM(A#) ⊆ K′

M.

On the other hand, let v′ = (vD−D′+1, . . . , vD) belong to K′
M. We define

vD−D′ , . . . , v1 successively, by the rule:

(13a) vi = 0 if i ≤ D−D′ is not among the p� (� = 1, . . . , L̄); and

(13b) vp� = λ̄−1
�p�

[b̄�−
∑
j>p�

λ̄�jvj] if p� ≤ D−D′.

This yields v = (v1, . . . , vD) ∈ RD satisfying
∑
j≥p� λ̄�jvj − b̄� = 0 for p� ≤

D−D′, thanks to (13b); and |
∑
j≥p� λ̄�jvj− b̄�| ≤ Mσ̄� for p� > D−D′, since

v′ ∈ K′
M. Consequently, |

∑D
j=1 λ̄�jvj − b̄�| ≤ Mσ̄� for � = 1, . . . , L̄, thanks

to (8). That is, v ∈ KM(A#). Since also Tv = v′, we conclude that v′ ∈
T KM(A#). This shows that K′

M ⊆ T KM(A#), completing the proof of (13).

Thus, in Case 3, we have computed an ALP A′ of length at most min{D′,
length (A)}, such that the blobs TK(A) and K(A′) are 2D-equivalent.

The work and storage used to produce A′ are at most CD2·(1+length(A)),

for a universal constant C. This concludes our discussion of Cases 1, 2, 3
above.
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We now discuss Algorithm ALP5 in the general case. Suppose we are
given a linear map T : V → V ′, and an ALP A in V. We factor T as
the composition of the projection π : V → V/ker(T), the isomorphism [T ]:
V/ker(T) → Im(T), and the injection ı : Im (T) → V ′. Here, of course, ker(T)
stands for the kernel of T and Im(T) stands for the image of T . By picking
bases in the relevant vector spaces, and by using the known Cases 1, 2, 3
above, we can exhibit ALPs A1,A2,A

′ such that:

• K(A1) is 2D-equivalent to πK(A) (where D = dimV), and length
(A1) ≤ rank T ;

• K(A2) = [T ] K(A1) and length (A2) = length (A1); and

• K(A′) = ıK(A2) and length (A′) = length (A2) + (dimV ′ − rank T).

Thus, K(A′) is 2D-equivalent to TK(A), and length (A′) ≤ dimV ′. This
completes the implementation of Algorithm ALP5.

It is straightforward to verify that the work and storage needed for Al-
gorithm ALP5 are at most

C · (dimV + dimV ′)3 + C · (dimV)2 · length (A) ,

for a universal constant C.

Algorithm ALP6: Given ALPs A1,A2, . . . ,AT in a vector space V, we com-
pute an ALP A in V, such that

K(A) = K(A1) ∩ K(A2) ∩ · · · ∩ K(AT) , and

length (A) = length (A1) + · · · + length (AT) .

Explanation: This algorithm is trivial. To form A′ from A1, . . . , AT, we

concatenate the lists of λ�, b�, σ� from the individual Ai; and we take the
maximum of the thresholds over all the Ai.

The total work and storage used by Algorithm ALP6 are at most

C · (dimV) ·
(
1+

T∑
i=1

length (Ai)

)
for a universal constant C .

Remark. For large T , the length of the ALP A produced by the above
algorithm will be large. Hence, it is prudent to apply Algorithm ALP1, im-
mediately after applying Algorithm ALP6 with a large T .

Algorithm ALP7: Given ALPs A1,A2 in a vector space V, we compute an

ALP A of length at most dimV, such that the blobs K(A) and K(A1) +
K(A2) are 2D-equivalent.
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Explanation: Let T : V ⊕ V → V be given by (v1, v2) �→ v1+ v2. Then

K(A1) + K(A2) = T [K(A1) × K(A2)] .

Hence, we may carry out Algorithm ALP7, by applying our previous Algo-
rithms ALP4 and ALP5.

The total work and storage needed by Algorithm ALP7 are at most

C · (dimV)3+ C · (dimV)2 · ( length (A1) + length (A2)
)
,

for a universal constant C.

Next, we recall from Section 2 the notion of a “homogeneous ALP”. By
applying Algorithms ALP1, ALP6 and ALP7 in the case of “homogeneous
ALPs”, we obtain the following algorithms to manipulate convex symmetric
polyhedra.

Algorithm ALP8: Let V be a finite-dimensional vector space. For i = 1, . . . , T ,
let

σi = {v ∈ V : |λi�(v)| ≤ σi� for � = 1, . . . , Li} ,

where the λi� are (real) linear functionals on V, and the σi� belong to [0,∞).
Given the λi� and σi�, we compute functionals λ̄1, . . . , λ̄L, and non-negative
numbers σ̄1, . . . , σ̄L, such that L ≤ dimV, and σ̄ = {v ∈ V : |̄λ�(v)| ≤ σ̄�
for � = 1, . . . , L} satisfies

2−(dimV) σ̄ ⊆ σ1 ∩ · · · ∩ σT ⊆ 2+(dimV) σ̄ .

Algorithm ALP9: Let V be a finite-dimensional vector space. For i = 1, 2,
let

σi = {v ∈ V : |λi�(v)| ≤ σi� for � = 1, . . . , Li}

where the λi� are (real) linear functionals on V, and the σi� belong to [0,∞).
Given the λi� and σi�, we compute functionals λ̄1, . . . , λ̄L, and non-negative
numbers σ̄1, . . . , σ̄L, such that L ≤ dimV and

σ̄ = {v ∈ V : |̄λ�(v)| ≤ σ̄� for � = 1, . . . , L}

satisfies
2−(dimV) σ̄ ⊆ σ1 + σ2 ⊆ 2+(dimV) σ̄ .

The work and storage needed for Algorithm ALP8 are at most C(dimV)2 ·
(1+ L1 + · · · + LT); for Algorithm ALP9 we need work and storage at most
C(dimV)3+ C(dimV)2 · (1+L1+ L2). Here C denotes a universal constant.

In summary, we have carried out all the tasks we set ourselves in Sec-
tion 2. As long as we keep the length of our ALPs from growing, we re-
tain good control of the work and storage used by our algorithms. We can
prevent the length of our ALPs from growing, by applying Algorithm ALP1
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as needed. When we intersect blobs arising from T ALPs (with T large), the
work and storage are proportional to T , but the intersection is computed up
to C-equivalence, with C independent of T . We can apply our algorithms
to compute (up to C-equivalence) the intersection and Minkowski sum of
convex, symmetric polyhedra.

6. Linear Dependence on Parameters

We want to discuss the linear dependence of some of the ALP algorithms in
the previous section on the targets (b�)1≤�≤L of the input ALPs. To do so
conveniently, we introduce another data structure called a “PALP”.

Let N̄ be a large integer, to be fixed much later. (N̄ will have the order
of magnitude of the size of our input set E.) A (real) linear functional on RN̄

is said to have “depth k” if it has the form

(1) RN̄ � (ξ1, . . . , ξN̄) �→ µ1ξ1 + · · · + µN̄ξN̄, with µi �= 0 for at most k
distinct values of i.

Note that a linear combination of p functionals of depth k has depth pk. We
represent the functional (1) by keeping only the nonzero µi, along with the
(increasing) sequence of i’s for which µi �= 0. We make here the assumption,
to be justified in all applications (see Section 35), that

(2) An integer index i in the range [1, N̄] can be stored in at most C
memory words.

Thus, a depth k functional on RN̄ can be held with storage C(k + 1); and
two depth k functionals can be added with work and storage C(k+1). Here
and below, C denotes a universal constant.

We will work with vector spaces V, V ′, of dimension D and D′, respec-
tively. We write cD, CD, C

′
D, etc. to denote constants depending only on D.

Similarly, cD,D′ , CD,D′ , etc. denote constants depending only on D and D′.
These constants need not be the same from one occurrence to the next.

A “parametrized ALP” or “PALP” in V is an object of the form

(3) A = [(λ1, . . . , λL), (b1, . . . , bL), (σ1, . . . , σL)], where:

• Each λ� is a linear functional on V;

• Each b� is a linear functional on RN̄; and

• Each σ� belongs to [0,∞).

We say that a PALP (3) has “depth k” if each of the functionals b� on RN̄

has depth k.
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As for ALPs, we call λ1, . . . , λL the “functionals” of the PALP (3), even
though b1, . . . , bL are now linear functionals as well. Similarly, we call
b1, . . . , bL and σ1, . . . , σL, respectively, the “targets” and “tolerances” of
the PALP (3). Also, we call L the “length” of the PALP (3). Observe that,
unlike an ALP, a PALP has no threshold.

When V = RD, then (as for ALPs), we may regard each λ� in (3) as a
row vector, and thus rewrite our PALP in the form

(4) A =
[
(λ�j) 1≤ �≤ L

1≤ j≤D
, (b�)1≤ �≤L , (σ�)1≤ �≤L

]
, where the λ�j, σ� are real

numbers, and each b� is a linear functional on RN̄.

We may view A as an object of either form (3) or (4). Let A be a PALP as
in (3), and let

A = [(λ1, . . . , λL), (b1, . . . , bL), (σ1, . . . σL),M∗]

be an ALP of the same length as A.
For a given ξ ∈ RN̄, we say that A and A “agree at ξ” if we have:

• λ� = λ� for each � = 1, . . . , L;

• b� = b�(ξ) for each � = 1, . . . , L; and

• σ� = σ� for each � = 1, . . . , L.

There is no condition here on the threshold M∗, since the PALP A has
no threshold.

We can make elementary row operations on PALPs, just as on ALPs. In
fact, if A is as in (3), and if π : {1, . . . , L} → {1, . . . , L} is a permutation, then
by “permuting rows”, we obtain the PALP

Aπ =
[
(λπ1, . . . , λπL) , (bπ1, . . . , bπL) , (σπ1, . . . , σπL)

]
.

If A is as in (3), and if λ� = 0 for all � in the range L̄ < � ≤ L, then by
“stripping away zeros”, we obtain the PALP[

(λ1, . . . , λL̄), (b1, . . . , bL̄), (σ1, . . . , σL̄)
]
.

Finally, if A is as in (3), and if β1, . . . , βL ∈ R with β�0 = 0, then by
“addition of rows”, we obtain the PALP[
(λ1+β1·λ�0 , . . . , λL+βL·λ�0) , (b1+β1·b�0 , . . . , bL+βL·b�0), (σ1, . . . , σL)

]
.

Suppose A has depth k. Then by “permuting rows” or “stripping away
zeros”, we again obtain a PALP of depth k. However, by “addition of rows”,
we obtain from A a PALP of depth 2k.
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Our row operations on PALPs may be implemented on a computer in
an obvious way. A PALP in RD of length L and depth k takes up storage
CD(k + 1)(L + 1), and a row operation on such a PALP takes work and
storage CD(k+ 1)(L+ 1).

The usefulness of row operations on PALPs lies in the following obser-
vation.

(5) Remark. Suppose A is a PALP, A is an ALP, and ξ ∈ RN̄. Assume
that A and A agree at ξ. Let A′ and A′ arise from A and A, respectively,
either by permuting rows with respect to the same permutation, by
stripping away the same zero rows, or by addition of rows with respect
to the same parameters. Then again A′ and A′ agree at ξ.

Thanks to the above remark, we can carry out the following algorithms on
PALPs.

Algorithm PALP1: Given a PALP A of depth k and length L in RD, we pro-

duce a PALP A# of depth 2Dk and length ≤ min(L,D), with the following
property:

Let A be an ALP in RD, let ξ ∈ RN̄, and let A# be the ALP produced
from A by Algorithm ALP1. If A and A agree at ξ, then A# and A# also
agree at ξ.

Explanation: Starting with A, we perform exactly the same elementary row
operations as in Algorithm ALP1 (only now they act on PALPs instead of
ALPs). We obtain a PALP of depth 2Dk, since we perform “addition of
rows” at most D times. The desired properties of A# follow easily from
Remark (5). The work and storage in a row operation on a PALP of depth
2Dk is at most C2D(k+ 1) larger than the corresponding work and storage
for an ALP. Hence, the work and storage of Algorithm PALP1 are at most
CD(k+ 1)(L+ 1).

There is no analogue of Algorithm ALP2 for PALPs, since for that algo-
rithm the threshold plays an essential rôle.

Algorithm PALP3: Given a PALP A of length L and depth k in RD, we pro-

duce functionals v1(ξ), . . . , vD(ξ) of depth CDk on RN̄, with the following
property:

Let A be an ALP in RD, let ξ ∈ RN̄, and let (v1, . . . , vD) ∈ RD be the
vector produced from A by Algorithm ALP3. If A and A agree at ξ, then
(v1(ξ), . . . vD(ξ)) = (v1, . . . , vD) .

Explanation: First we apply Algorithm PALP1, and then we follow the same
recursive procedure as in Algorithm ALP3 to determine vD, vD−1, . . . , v1 (only
now the b� and v� are to be regarded as linear functionals on RN̄). It is
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straightforward to check that the resulting functionals v1(ξ), . . . , vD(ξ) are
of depth CDk and have the desired property, thanks to Remark (5). As in
the discussion of Algorithm PALP1, the work and storage needed for Algo-
rithm PALP3 are at most CD(k + 1) times what is required for Algorithm
ALP3, since the b� and v� are now functionals of depth CDk instead of num-
bers. Hence, the work and storage required for Algorithm PALP3 are at most
CD(k+ 1)(L+ 1).

Let A be a PALP on RD, C ≥ 1 and let (v1(ξ), . . . , vD(ξ)) be a vec-
tor of linear functionals on RN̄. Suppose that for any ALP A on RD and
ξ ∈ RN̄ such that A and A agree at ξ, we have that (v1(ξ), . . . , vD(ξ)) is a
C-original vector for A. Then we say that (v1(ξ), . . . , vD(ξ)) is a “C-original
parametrized vector for the PALP A”.

Note that Algorithm PALP3 computes a CD-original parametrized vector
for the PALP A.

Algorithm PALP4: Given PALPs A1, A2 of depth k in vector spaces V1, V2,

respectively, we produce a PALP A of depth k in V1⊕V2, with the following
property: Let A1,A2 be ALPs in V1, V2 respectively; let ξ ∈ RN̄; and let A

be the ALP in V1⊕ V2 produced by Algorithm ALP4. If Ai and Ai agree at
ξ for i = 1, 2, then also A and A agree at ξ.

(Lack of) Explanation: We perform the same trivial manipulation as for Al-
gorithm ALP4. The work and storage needed for this algorithm are at most

C(k+ 1) · (dimV1 + dimV2) · (1+ length A1 + length A2)

Algorithm PALP5: Let V, V ′ be vector spaces of dimensionD,D′ respectively.
Given a PALP A of length L and depth k in V, and given a linear map
T : V → V ′, we produce a PALP A′ of length ≤ D′ and depth CD,D′k in V ′,
with the following property:

Let A be an ALP in V, let ξ ∈ RN̄, and let A′ be the ALP produced from A

and T by Algorithm ALP5. If A and A agree at ξ, then also A′ and A′ agree
at ξ.

Explanation: We follow the same procedure as for Algorithm ALP5, but with
the targets b� of every relevant ALP being regarded now as linear functionals
on RN̄ of depth CD,D′k rather than real numbers. The work and storage
needed are at most CD,D′(k+ 1)(L+ 1). We omit the details.

Algorithm PALP6: Given PALPs A1, . . . ,AT of depth k in a vector space V,
we compute a PALP A of depth k in V, with the following property:

Let A1, . . . ,AT be ALPs in V; let ξ ∈ RN̄; and let A be the ALP in V
produced from A1, . . . ,AT by Algorithm ALP6. If Ai and Ai agree at ξ for
each i = 1, . . . , T , then also A and A agree at ξ.
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(Lack of) Explanation: Trivial. The work and storage used are at most

C(k + 1)(dimV) ·
(
1+

T∑
i=1

length (Ai)

)
.

Algorithm PALP7: Given PALPs A1,A2 of depth k in a vector space V of
dimension D, we produce a PALP A of depth CDk in V, with the following
property:

Let A1,A2 be ALPs in V; let ξ ∈ RN̄; and let A be the ALP in V produced
from A1,A2 by Algorithm ALP7. If Ai and Ai agree at ξ for i = 1, 2, then
also A and A agree at ξ.

Explanation: We follow the same procedure as for Algorithm ALP7, but with
the targets of the relevant ALPs being regarded now as linear functionals of
depth CDk on RN̄, instead of real numbers. The work and storage used by
this algorithm are at most CD(k + 1) · (length (A1) + length (A2) + 1).

7. A Lemma on Rational Functions

The following elementary result on rational functions will be used in the
next section.

Lemma 1. Let R(t) = p(t)/q(t) on (0,∞), where p and q are non-
zero, real polynomials of degree at most d. Then there exists a partition
of (0,∞) into finitely many intervals I1, . . . , Iµmax (the “hard” intervals),
and J1, . . . , Jνmax (the “easy” intervals), with the following properties.

(a) For each “easy” interval Jν, there exists a monomial aνt
m̄ν with 0 �=

aν ∈ R, m̄ν ∈ Z, |m̄ν| ≤ d, such that

|R(t) − aν t
m̄ν | ≤ 1

2
|aν| t

m̄ν for all t ∈ Jν .

(b) Each “hard” interval Iµ has the form (yµ, y
+
µ), with y+

µ/yµ ≤ C and
yµ ∈ Jν(µ) for some ν(µ). Here, C depends only on d.

(c) The “hard” intervals are open; the “easy” intervals are relatively closed
in (0,∞). Some of the Jν may consist of a single point. Additionally,
µmax < C and νmax < C for a constant C depending only on d.

(d) Given p(·) and q(·), we can compute the Iµ, Jν, aν, m̄ν, and ν(µ), with
work and storage bounded by a constant depending only on d.

Proof. We write c, C, C′, etc., to denote constants depending only on d.
For each pair of distinct non-zero monomials btk and b′tk

′
, both appearing

in p(t) or both appearing in q(t), we introduce the interval

I(k, k′) =
{
t ∈ (0,∞) : (5 d)−1 |btk | < |b′ tk

′
| < (5 d) |b tk |

}
.
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Then I(k, k′) has the form (tlow, thigh), with thigh/tlow ≤ C. Hence, the
union U of all the above intervals is a finite union of open intervals, and
we have

(1)

∫
U

dt/t ≤ C.

We take the “hard” intervals Iµ to be the component intervals of U, and we
take the “easy” intervals Jν to be the component intervals of (0,∞) � U.
Note that each Iµ has the form (yµ, y

+
µ) with yµ ∈ Jν(µ) for some ν(µ).

From (1) we obtain the bound y+
µ/yµ ≤ C.

Properties (b), (c) are obvious for the above intervals Iµ, Jν. It remains
to check properties (a) and (d).

Fix one of the “easy” intervals Jν. Thus, Jν is one of the component
intervals of (0,∞) � U.

Let btk and b′tk
′

be two distinct non-zero monomials, both appearing
in p(t). Then either

(i) |b tk | ≥ (5 d) · |b′tk
′
| for all t ∈ Jν;

(ii) |b′ tk
′
| ≥ (5 d) · |btk| for all t ∈ Jν; or

(iii) (5 d)−1|btk| < |b′tk
′
| < (5 d)|btk| for some t ∈ Jν.

In case (i), we say that btk “dominates” b′tk
′
; in case (ii) we say that

b′tk
′

“dominates” btk. Case (iii) cannot occur, since otherwise Jν would
contain some point in an I(k, k′) ⊆ U. Consequently, “domination” is a
linear order relation between non-zero monomials appearing in p(t). Since
there are only finitely many such monomials, it follows that some non-zero
monomial ak̄t

k̄ appearing in p(t) dominates all the others. Thus,

p(t) = adt
d + · · · + a0, with |akt

k| ≤ (5 d)−1|ak̄t
k̄| for all k �= k̄, t ∈ Jν.

This implies that

(2) |p(t) − ak̄t
k̄| ≤ 1

5
|ak̄t

k̄| for all t ∈ Jν,
since there are at most d non-zero monomials other than ak̄t

k̄ appearing
in p(t).

A similar argument for q(t) shows that

(3) |q(t) − b�̄t
�̄| ≤ 1

5
|b�̄t

�̄| for all t ∈ Jν,
where b�̄t

�̄ is the dominating monomial in q(t). In (2) and (3), we have
ak̄ �= 0, b�̄ �= 0, and also 0 ≤ k̄ ≤ d, 0 ≤ �̄ ≤ d since p(t) and q(t) have
degree at most d.

The desired conclusion (a) for Jν is now obvious from (2) and (3). Also,
conclusion (d) is now obvious. The proof of the lemma is complete. �
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8. Non-linear Parameters

In this section, we ask for the largest δ > 0 for which there exists v ∈ V
such that

(0) |λ�(v) − b�| ≤ σ� δ
−m� for � = 1, . . . , L.

Here, as usual, V is a finite-dimensional vector space, each λ� is a functional
on V, each b� is a real number, each σ� belongs to [0,∞). Each m� is a non-
negative integer. In principle, we could decide this question using Tarski’s
decision procedure for real-closed fields [33]. However, we will content our-
selves with solving an easier version of the problem, and will need no tools
beyond the Lemma in the preceding section.

Throughout this section, we write c, C, C′, etc. to denote constants de-
pending only on L, dimV, and max1≤�≤Lm�. Our result on (0) is as follows.

Lemma 1. Let V be a finite-dimensional vector space, let λ1, ..., λL be linear
functionals on V, let b1, ..., bL be real numbers, let σ1, ..., σL be non-negative
real numbers, and suppose that m1, ...,mL are non-negative integers.

Then, with work and storage at most C, we can compute a number δOK ∈
[0,∞], satisfying the following properties.

(a) If 0 < δ < δOK, then there exists v ∈ V, such that

| λ�(v) − b� | ≤ Cσ�δ
−m� for � = 1, . . . , L .

(b) Let δ > 0. Suppose there exists v ∈ V, such that

| λ�(v) − b� | ≤ c σ�δ
−m� for � = 1, . . . , L.

Then 0 < δ < δOK.

Proof. Let Λ0 = {� : σ� = 0}, Λ1 = {� : σ� �= 0}, and

H = {v ∈ V : | λ�(v) − b� | ≤ σ� δ
−m� for � ∈ Λ0}

= {v ∈ V : λ�(v) = b� for � ∈ Λ0}.
Then H is a (possibly empty) affine subspace of V. If H is empty, then we
can detect the fact that H is empty by elementary linear algebra; we then
have conclusions (a) and (b) with δOK = 0. Hence, we may assume from
now on that H is non-empty. We define

(1) Q(v, δ) =
∑
�∈Λ1

(
λ�(v) − b�

σ� δ−m�

)2
for v ∈ H, δ > 0, and

(2) R(δ) = min{Q(v, δ) : v ∈ H} .
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By elementary linear algebra, the minimum in (2) is attained, and R(δ)
is a rational function of δ,

(3) R(δ) =
αdδ

d + · · · + α0

βdδd + · · · + β0
.

Here, d is an integer constant determined by L, dim V, and max m�.

We can compute the coefficients α0, . . . , αd and β0, . . . , βd with work
and storage at most C, again by elementary linear algebra . The coefficients
β0, . . . , βd are not all zero.

It may happen that α0, . . . , αd are all zero, i.e., R(δ) = 0 for all δ. In
that case, there exists a vector v ∈ H with Q(v, δ) = 0 (thanks to (2)), hence
λ�(v) − b� = 0 for � ∈ Λ1 (thanks to (1)), and for � ∈ Λ0 (since v ∈ H).
Thus,

λ�(v) − b� = 0 for � = 1, . . . , L,

and consequently the inequalities (0) admit a solution v ∈ V for any δ > 0.
Therefore, after checking that α0 = α1 = · · · = αd = 0, we may just set
δOK = +∞, and conclusions (a) and (b) will hold. Hence, we may assume
from now on that α0, . . . , αd are not all zero. With d̄ = max(m1, . . . ,mL),
we have

(4) Q(v, δ) ≤ Q(v, δ′) ≤ (
δ′
δ

)2d̄
Q(v, δ) for v ∈ V and 0 < δ < δ′,

as we see easily from the definition (1). (Recall that m1, . . . ,mL ≥ 0.)
Consequently,

(5) 0 ≤ R(δ) ≤ R(δ′) ≤ (δ′
δ

)2d̄
R(δ) for 0 < δ < δ′,

by definition (2). In particular, (5) shows that R(δ) cannot vanish for any
δ > 0, since we are assuming that R(δ) doesn’t vanish identically.

We now apply the lemma from the preceding section to the rational
function R(δ). Let Iµ, Jν, aν, m̄ν, ν(µ), yµ, y

+
µ be as in that lemma.

For each “easy” interval Jν, we have

(6) |R(δ) − aνδ
m̄ν | ≤ 1

2
|aν δ

m̄ν | for all δ ∈ Jν, with aν �= 0 and |m̄ν| ≤ d.

Since R(δ) ≥ 0 by definition, and since R(δ) never vanishes, it follows that
aν > 0. Also, each “hard” interval Iµ has the form (yµ, y

+
µ) with yµ ∈ Jν(µ)

and 1 ≤ y+
µ/yµ ≤ C. Applying (5) with δ = yµ, we learn that

(7) R(yµ) ≤ R(δ) ≤ CR(yµ) for all δ ∈ Iµ.
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Let Î1, . . . , Îsmax be an enumeration of the Iµ and Jν; these intervals form
a partition of (0,∞). For s = 1, . . . , smax, we define a monomial γsδ

µs , as
follows:

• If Îs = Jν, then we set γs = aν and µs = m̄ν.

• If Îs = Iµ, then we set γs = R(yµ) and µs = 0.

Thanks to (6) and (7), we have

(8) cγsδ
µs ≤ R(δ) ≤ Cγsδ

µs for δ ∈ Îs, s = 1, . . . , smax.

For each s = 1, . . . , smax, we can trivially apply (8) to produce one of the
following three outcomes, relevant to Îs:

(O1)s: We guarantee that R(δ) ≤ C for all δ ∈ Îs.
(O2)s: We guarantee that R(δ) ≥ c for all δ ∈ Îs.
(O3)s: We produce δs ∈ Îs satisfying c′ < R(δs) < C

′.

Thanks to (5), it then follows that we can produce one of the following three
outcomes, relevant to (0,∞):

(O1): We guarantee that R(δ) ≤ C for all δ ∈ (0,∞); and we define
δOK := ∞.

(O2): We guarantee that R(δ) ≥ c for all δ ∈ (0,∞); and we define
δOK := 0.

(O3): We produce δOK ∈ (0,∞) satisfying c′ < R(δOK) < C
′.

The work and storage used to arrive at an outcome (O1), (O2) or (O3), and
to compute δOK ∈ [0,∞], are at most C.

It remains to check that δOK satisfies properties (a) and (b) in the state-
ment of Lemma 1.

We begin with (a). Suppose 0 < δ < δOK. Then (O2) cannot hold, and
we have

(9) R(δ) ≤ C′′.

Indeed (9) holds trivially in case (O1), and it follows from (5) in case (O3).
From (9) and (2), we conclude that Q(v, δ) ≤ C′′ for some v ∈ H. Thanks
to (1), this v satisfies |λ�(v) − b�| ≤ C′′′σ�δ−m� for � ∈ Λ1. Moreover,
λ�(v) − b� = 0 for � ∈ Λ0, since v ∈ H. Thus, |λ�(v) − b�| ≤ C′′′σ�δ−m� for
all � = 1, . . . , L, completing the proof of (a).

We turn to (b). Suppose δ ∈ (0,∞) satisfies δ ≥ δOK. Then (O1) cannot
hold, and we have

(10) R(δ) ≥ c′′.
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Indeed, (10) holds trivially in case (O2), and it follows from (5) in
case (O3). From (10) and (2), we conclude that Q(v, δ) ≥ c′′ for all v ∈ H.
Recalling (1) and the definition of H, we conclude that for all v ∈ V we
cannot have

|λ�(v) − b�| ≤ c′′′σ�δ−m� for � = 1, . . . , L.

This proves (b), completing the proof of Lemma 1. �
We were helped greatly by the fact that the constants in Lemma 1 are

allowed to depend on L, a luxury we were denied in our earlier sections on
blobs and ALPs. A major point in our proof of Lemma 1 is that, thanks
to (5), the “hard” intervals Iµ are not so hard after all.

Chapter II - The Basic Families of Convex sets

9. The Callahan-Kosaraju Decomposition

In this section, we recall the results of Callahan-Kosaraju [11], together with
some obvious consequences of their work, spelled out in our earlier paper [19].

Let E ⊂ Rn with #(E) = N, and let κ ∈ (0, 1). We write c, C, C′,
etc. to denote constants depending only on n and κ. A “κ-well-separated
pairs decomposition”, or “WSPD” is a finite sequence of Cartesian products,

(0) E′1× E′′1, . . . , E′L× E′′L,
each contained in E× E, and having the following properties:

(1) Each pair (x′, x′′) ∈ E × E with x′ �= x′′ belongs to precisely one of
the sets E′�×E′′� (� = 1, . . . , L). Moreover, E′�∩E′′� = ∅ for � = 1, ..., L.

(2) For each � = 1, . . . , L, we have diam (E′�), diam (E′′�) ≤ κ · dist (E′�, E
′′
�).

Here, of course,

diam (A) = max
x,y∈A

|x − y| and dist(A,B) = min
x∈A,y∈B

|x− y|

for finite sets A,B ⊂ Rn. It is convenient to introduce also

diam∞(A) = n1/2 · max
(x1,...,xn) ∈A
(y1,...,yn) ∈A

max
1≤ i≤n

|xi− yi| .

Note that n−1/2 diam∞(A) ≤ diam(A) ≤ diam∞(A).
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Callahan and Kosaraju show in [11] that there exists a WSPD (0), with
L ≤ CN; in fact, they construct one by an algorithm that uses storage at
most CN, and work at most CN logN.

Moreover, the WSPD whose construction is described in [19] has addi-
tional structure, that allows us to perform efficiently certain computational
tasks. The sets E′�, E

′′
� in (0) are defined in terms of two auxiliary objects T

and L, which we now describe.

• T is a collection of subsets of E. We write A or B to denote elements
of T. The sets A ∈ T form a tree under inclusion.

• L is a collection of pairs (Λ1, Λ2), with Λ1 and Λ2 subsets of T.

Each (Λ1, Λ2) ∈ L gives rise to a Cartesian product

(3) (∪Λ1) × (∪Λ2) ⊆ E× E, where

∪Λ = {x ∈ E : x ∈ A for some A ∈ Λ} for Λ ⊆ T .

The WSPD (0) constructed in [19] consists of all the Cartesian products (3),
for (Λ1, Λ2) ∈ L.

In addition to T and L, the algorithms in [19] allow us to compute and
store the following auxiliary data:

• For each A ∈ T, a point xA belonging to A.

• For each A ∈ T, the quantity diam∞(A).

• For each (Λ1, Λ2) ∈ L, two points x′Λ1 , x
′′
Λ2

, with x′Λ1 ∈ ∪Λ1 and
x′′Λ2 ∈ ∪Λ2.

• For each (Λ1, Λ2) ∈ L, the quantities diam∞(∪Λ1) and diam∞(∪Λ2).
We can describe any given A ∈ T or (Λ1, Λ2) ∈ L in a “compressed form”
that uses storage at most C. In fact, the set E may be ordered in such a way
that each A ∈ T and each ∪Λi [i = 1 or 2 , (Λ1, Λ2) ∈ L] is an interval.
Moreover, we can efficiently recover (Λ1, Λ2) ∈ L from the intervals ∪Λ1
and ∪Λ2. Hence, it is enough to store the endpoints of the relevant intervals.
Whenever we store or specify A ∈ T or (Λ1, Λ2) ∈ L, we always use the
“compressed form”.

Using the above (and additional) properties of T and L, we can perform
the following computations of lists.

(a) Given an A ∈ T, we compute a list of all the elements of A.

This takes work WA (to be discussed below), and storage at most CN.
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(b) Given a (Λ1, Λ2) ∈ L, we compute a list of all the elements A ∈ Λ1,
and a list of all the elements B ∈ Λ2.

This takes workW(Λ1, Λ2) (to be discussed below), and storage at most CN.

(c) Given an A ∈ T, we compute a list of all the (Λ1, Λ2) ∈ L for which
Λ1 � A.

This takes work W ′
A (to be discussed below), and storage at most CN.

(d) Given an x ∈ E, we compute a list of all the A ∈ T for which A � x.
This takes work Wx (to be discussed below), and storage at most CN.

Regarding the work of the above computations, we have

(4)
∑
A∈T

WA +
∑

(Λ1,Λ2)∈L

W(Λ1, Λ2) +
∑
A∈T

W ′
A +

∑
x∈E

Wx ≤ CN logN.

The Callahan-Kosaraju decomposition constructed in [19] is shown there to
satisfy

(5) #{nodes in T} ≤ CN , #{(Λ1, Λ2) ∈ L} ≤ CN,

(6)
∑
A∈T

#(A) ≤ CN logN , and
∑

(Λ1,Λ2)∈L

[
#(Λ1) + #(Λ2)

] ≤ CN logN.

In the next section, we use the above “Callahan-Kosaraju decomposition”
to construct a family of blobs and ALPs that plays a basic rôle in our work.

10. The Basic Blobs and ALPs: Definitions and Com-

putations

In this section, we recall from [19] an important family of blobs and ALPs.
We work in P, the vector space of (real) (m−1)rst degree polynomials on Rn.
Let D = dim P.

For x ∈ Rn and r ≥ 0, we recall from Section 1 the useful blob

(0) B(x, r) = (M · B(x, r))M≥0 in P, where

(1) M · B(x, r) = {P ∈ P : |∂αP(x)| ≤ Mrm−|α| for |α| ≤ m− 1}.

This blob arises from an obvious ALP of length D in P. Recall that we are
given a finite subset E ⊂ Rn and functions σ : E → [0,∞) and f : E → R. We
use the Callahan-Kosaraju decomposition for E, with κ = 1/2. We retain
the notation of the previous section, except that in this section C denotes a
constant depending only on m and n. Also, for � ≥ 0, we write c�, C�, C

′
�,

etc., to denote constants depending only on �, m and n.
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We now construct from E, f, σ a family of blobs Γ(x, �) = (Γ(x, �,M))M>0
in P, parametrized by x ∈ E and � ≥ 0. This is exactly the same family
of blobs that was constructed in [19]. For the convenience of the reader,
we provide here a detailed exposition of the construction. We proceed by
induction on �.

For � = 0, we define

(2) Γ(x, 0,M) = {P ∈ P : |∂αP(x)| ≤ M for |α| ≤ m− 1 ,

and |P(x) − f(x)| ≤ Mσ(x)}

for all x ∈ E.

For the inductive step, fix � ≥ 0, and suppose we have defined the blobs
Γ(x, �) for all x ∈ E. We will define the blob Γ(x, �+ 1) for all x ∈ E.

To do so, we use the Callahan-Kosaraju decomposition, and proceed in
five steps, as follows.

Step 1: For each A ∈ T, we form the blob

(3) Γ(A, �) =
⋂
x∈A

[
Γ(x, �) + B(x, diam∞(A))

]
.

Step 2: For each (Λ1, Λ2) ∈ L, and for i = 1, 2, we form the blob

(4) Γi(Λi, �) =
⋂
A∈Λi

[
Γ(A, �) + B(xA, diam∞(∪Λi))

]
.

Step 3: For each (Λ1, Λ2) ∈ L, we form the blob

(5) Γ̄(Λ1, Λ2, �) = Γ1(Λ1, �) ∩ [Γ2(Λ2, �) + B(xΛ1 , |xΛ1 − xΛ2 |)
]
.

Step 4: For each A ∈ T, we form the blob

(6) Γ ′(A, �+ 1) =
⋂

(Λ1,Λ2)∈L
Λ1�A

Γ̄(Λ1, Λ2, �).

Step 5: For each x ∈ E, we define the blob

(7) Γ(x, �+ 1) = Γ(x, �) ∩
⋂
A∈T
A�x

Γ ′(A, �+ 1).

This completes the inductive definition of the blobs Γ(x, �).



Fitting a Cm-Smooth Function to Data II 83

By following the above induction on �, we can compute ALPs A(x, �) for
each x ∈ E and � ≥ 0, such that Γ(x, �) is C�-equivalent to K(A(x, �)), the
blob arising from A(x, �). In fact, for � = 0, the blob Γ(x, 0) is already given
by an obvious ALP of length D+ 1.

For the inductive step, fix � ≥ 0, and suppose we have already computed
A(x, �) for all x ∈ E. Then, by using Algorithms ALP1, ALP6, ALP7 from
Section 5, we may follow our five steps to produce ALPs as follows.

Step 1′: For each A ∈ T, we compute an ALP A(A, �) of length ≤ D, such
that K(A(A, �)) is C�-equivalent to⋂

x∈A

[
K(A(x, �)) + B(x, diam∞(A))

]
.

Step 2′: For each (Λ1, Λ2) ∈ L, and for i = 1, 2, we compute an ALP
Ai(Λi, �) of length ≤ D, such that K(Ai(Λi, �)) is C�-equivalent to⋂

A∈Λi

[
K(A(A, �)) + B(xA, diam∞(∪Λi))

]
.

Step 3′: For each (Λ1, Λ2) ∈ L, we compute an ALP Ā(Λ1, Λ2, �) of length

≤ D, such that K(Ā(Λ1, Λ2, �)) is C�-equivalent to

K(A1(Λ1, �)) ∩ [K(A2(Λ2, �)) + B(xΛ1 , |xΛ1 − xΛ2 |)
]
.

Step 4′: For each A ∈ T, we compute an ALP A′(A, �+ 1) of length ≤ D,
such that K(A′(A, �+ 1)) is C�-equivalent to⋂

(Λ1,Λ2) ∈ L
Λ1 �A

K(Ā(Λ1, Λ2, �)).

Step 5′: For each x ∈ E, we compute an ALP A(x, � + 1) of length ≤ D,
such that K(A(x, �+ 1)) is C�-equivalent to

K(A(x, �)) ∩
⋂
A∈T
A�x

K(A′(A, �+ 1)) .

This completes our description of the computation of the ALPs A(x, �). We
will need the A(x, �) only for � = 0, 1, . . . , �∗, with �∗ depending only on m
and n.

Note that all the ALPs computed above have length ≤ D, except for
A(x, 0), which has length D+ 1.

Comparing Steps 1′, . . . ,5′ with Steps 1, . . . ,5, we see that

(8) K(A(x, �+ 1)) is C′
�-equivalent to Γ(x, �+ 1), for all x ∈ E;
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provided

(9) K(A(x, �)) is C�-equivalent to Γ(x, �), for all x ∈ E.

Since also K(A(x, 0)) = Γ(x, 0) for all x ∈ E, an obvious induction on �
shows that (9) holds for all � ≥ 0. Thus, we can compute the Γ(x, �) up to
C�-equivalence. In [19], we showed that the computation of the ALPs A(x, �)
for all x ∈ E and � = 0, . . . , �∗ requires work at most CN logN and storage
at most CN. This is a straightforward application of our results on the basic
ALP algorithms, together with the estimate (4) from the preceding section.
(In [19] we computed with “ellipsoidal blobs” rather than ALPs. This has
no effect on our estimates for the work or storage used by our algorithms.)

Starting from E, σ, f, we have defined the blobs Γ(x, �) and computed
them up to C�-equivalence. Next, we introduce a variant. Suppose we
repeat our construction of the Γ(x, �), starting from E, σ, 0 in place of E, σ, f.
Then, in place of the Γ(x, �), we will obtain a new family of blobs Γ0(x, �) =
(Γ0(x, �,M))M>0 in P, determined by E and σ. Also, in place of the ALPs
A(x, �), we will obtain a family of ALPs A0(x, �) of length ≤ D + 1, such
that

(10) The blob K(A0(x, �)) is C�-equivalent to Γ0(x, �) for each x ∈ E, � ≥ 0.
We can compute the A0(x, �) (for all x ∈ E, � = 0, . . . , �∗) using work at
most CN logN and storage at most CN.

An easy induction on � shows that the Γ0(x, �,M) have the form

Γ0(x, �,M) = Mσ(x, �)

for a convex, symmetric set σ(x, �) ⊆ P, and that A0(x, �) is a “homogeneous
ALP”; see Section 2. Consequently, the blob

K(A0(x, �)) = (KM(A0(x, �)))M>0

has the form
KM(A0(x, �)) = Mσ(A0(x, �))

for a convex, centrally symmetric polyhedron σ(A0(x, �)) ⊆ P, arising from
A0(x, �) as in (5), (6) in Section 2.

The blob equivalence (10) therefore becomes

(11) c�σ(A
0(x, �)) ⊆ σ(x, �) ⊆ C�σ(A

0(x, �)) for all x ∈ E, � ≥ 0.
Thus, we have computed the convex sets σ(x, �) up to C�-equivalence. (See
also Section 13 below for more details regarding the construction of the
σ(x, �).)
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11. The Basic Blobs and ALPs: Linear Dependence on
Parameters

In the preceding section, we associated to E, σ, f a family of blobs Γ(x, �)
and ALPs A(x, �) (x ∈ E, � ≥ 0).

In this section, we suppose that E and σ are held fixed, while f = fξ
depends linearly on a parameter ξ ∈ RN̄. We assume that

(1) ξ �→ fξ(x) is a depth k linear functional on RN̄, for each fixed x ∈ E.

We will also use the notation �f(x, ξ) = fξ(x), mostly in later sections. Here, k
and N̄ are given, and N̄ is assumed to satisfy (2) of Section 6. We ask how
the ALPs A(x, �) depend on the parameter ξ. To answer this question, we
bring in our results on PALPs.

We start with a few preliminary remarks. In this section, we write C,C′,
etc. for constants depending only on m and n; while C�, C

′
�, etc. denote con-

stants depending only on �,m, n. We set D = dim P. Recall the definition
of the blobs B(x, r). Recall from the preceding section that the blob B(x, r)
arises from an obvious ALP in P, which we shall call AB(x,r). Since the tar-
gets in AB(x,r) are all zero, it is trivial to construct a PALP AB(x,r) of depth

zero in P, such that AB(x,r) and AB(x,r) agree at every ξ ∈ RN̄.

We now discuss the ξ-dependence of the ALPs A(x, �) constructed from
E, σ, f when f = fξ. Let us call these ALPs Aξ(x, �).

By induction on � ≥ 0, we can construct a family of PALPs A(x, �) (for
x ∈ E, � ≥ 0), of depth C�k and length ≤ D + 1 in P, with the following
property:

(2)� Let x ∈ E and ξ ∈ RN̄. Then A(x, �) agrees with Aξ(x, �) at ξ.

To see this, we first recall that

(3) Γ(x, 0,M) = {P ∈ P : |∂αP(x)| ≤ M for |α| ≤ m − 1,

and |P(x) − f(x)| ≤ Mσ(x)},

and that A(x, 0) is the obvious ALP giving rise to the blob (3). Thus, for
� = 0, (2)� holds for the PALP A(x, 0) in P, defined as follows: The function-
als for A(x, 0) are λα : P �→ ∂αP(x) for |α| ≤ m− 1, and λextra : P �→ P(x).

The targets corresponding to these functionals are 0 for the λα, and fξ(x)
for λextra.

The tolerances corresponding to the above functionals are 1 for the λα,
and σ(x) for λextra.

Note that A(x, 0) has depth k.
Thus, we have constructed A(x, 0) having the desired properties.



86 C. Fefferman and B. Klartag

Next, fix � ≥ 0, and suppose we have already constructed PALPs A(x, �)
of depth C�k and length ≤ D+1 in P, for each x ∈ E, satisfying property (2)�.
We will construct PALPs A(x, � + 1) of depth C′

�k and length ≤ D in P,
for each x ∈ E, satisfying (2)�+1. To do so, we recall Steps 1′, . . . , 5′ in the
preceding section. We used these five steps to pass from the A(x, �) (x ∈ E)
to the A(x, � + 1) (x ∈ E). To implement Steps 1′, . . . , 5′, we used our
Algorithms ALP1, ALP6, ALP7 in an obvious way. We can now carry out the
analogous five steps to pass from the PALPs A(x, �) (x ∈ E) to the PALPs
A(x, �+1) (x ∈ E). We simply use Algorithms PALP1, PALP6, PALP7 in place
of ALP1, ALP6, ALP7. From (2)� and the defining properties of Algorithms
PALP1, PALP6, PALP7, we obtain the desired property (2)�+1 for the PALPs
A(x, �+ 1) (x ∈ E), and we see also that the A(x, �+ 1) have depth C′

�k.
This completes the induction on �.
Thus we can compute the A(x, �), by an analogue of our earlier com-

putation of the A(x, �). We shall need the A(x, �) only for 0 ≤ � ≤ �∗; as
before, �∗ is an integer constant, depending only on m and n.

The work and storage needed to compute the PALPs A(x, �) (x ∈ E, 0 ≤
� ≤ �∗) are at most C(k + 1) times the corresponding work and storage
for the A(x, �). (The factor C(k + 1) arises, because we work with targets
that are depth-Ck functionals instead of real numbers.) Thus, the A(x, �)
(x ∈ E, 0 ≤ � ≤ �∗) can be computed using work at most C(k + 1)N logN,
and storage at most C(k+ 1)N.

12. Whitney t-Convexity

In this section we start by proving some properties of the useful blob B(x, r)
= (MB(x, r))M>0 defined in Section 1. Recall that for x ∈ Rn, r ≥ 0 we set

(1) B(x, r) =
{
P ∈ P : |∂βP(x)| ≤ rm−|β| for |β| ≤ m− 1

}
,

and for y ∈ Rn we define B(x, y) = B(x, |x − y|). From (1) we immediately
conclude that for x ∈ Rn and r, A ≥ 0,
(2) B(x,Ar) ⊆ max{Am, A} · B(x, r) .

In this section c, C, C̃ etc. stand for constants depending only on m

and n. For two polynomials P,Q ∈ P, we denote by P �x Q the prod-
uct of P and Q as (m − 1)-jets at x. That is, P �xQ is the one and only
S ∈ P such that

∂αS(x) = ∂α(PQ)(x) for |α| ≤ m− 1 .

For Ω1, Ω2 ⊂ P and x ∈ Rn we also write

Ω1�xΩ2 = {P �xQ : P ∈ Ω1, Q ∈ Ω2}.
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Lemma 1. Let x, y ∈ Rn, r > 0. Then,

(3) B(x, r) ⊆ CB(y, r+ |x − y|),

and in particular B(x, y) is C-equivalent to B(y, x).

Suppose r ≤ r̄. Then,

(4) B(x, r) �x B(x, r̄) ⊆ Cr̄mB(x, r) .

Let P,Q ∈ B(x, r), and suppose |x − y| < r. Then,

(5) (P �yQ) − (P �xQ) ∈ CrmB(y, x) .

Proof. Start with verifying (3). Let P ∈ B(x, r) be a polynomial. Then,
for any |α| ≤ m − 1 we have

|∂αP(x)| ≤ rm−|α| .

By Taylor’s theorem

|∂αP(y)|=

∣∣∣∣ ∑
|β|≤m−1−|α|

∂α+βP(x)

β!
(y− x)β

∣∣∣∣
≤C

∑
β

rm−(|α|+|β|)|x − y||β|≤C′(r+|x− y|)m−|α|

and (3) follows from the definition of B(y, r+ |x − y|).

Next, we establish (4). Let P ∈ B(x, r), Q ∈ B(x, r̄). Then, for any
|α| ≤ 2(m− 1),

(6) |∂α(PQ)(x)| =

=

∣∣∣∣ ∑
β,α−β∈M

α!

β!(α− β)!
(∂βP)(x) · (∂α−βQ)(x)

∣∣∣∣≤C′ ∑
β,α−β∈M

rm−|β| r̄m−|α|+|β|

≤ Cr̄mrm−|α|

since r ≤ r̄. Here, M denotes the set of all multi-indices γ of order |γ| ≤
m− 1. On the other hand,

(7) ∂α(PQ)(x) = ∂α(P �xQ)(x) for |α| ≤ m− 1 .

From (6) and (7) we conclude (4).

It remains to prove (5). To that end, let P,Q ∈ B(x, r) and y ∈ Rn be
such that |x− y| < r. By (6) for any |β| ≤ 2(m− 1),∣∣∂β(PQ)(x)

∣∣ < Cr2m−|β| .

Note also that ∂β(PQ− P �xQ)(x) = 0 for |β| ≤ m− 1.
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Therefore, for any |α| ≤ m − 1,

(8) |∂α(PQ− P �xQ)(y)| =

∣∣∣∣∑
β

1

β!
∂α+β(PQ− P �xQ)(x)(y− x)β

∣∣∣∣
=

∣∣∣∣ ∑
m≤|β|+|α|≤2(m−1)

1

β!
∂α+β(PQ)(x) · (y− x)β

∣∣∣∣
≤ C

∑
m≤|β|+|α|≤2(m−1)

r2m−(|α|+|β|)|y − x||β| ≤ C′rm|y− x|m−|α|

since r > |y − x|. According to the definition of P �yQ, the inequality (8)
implies that for any |α| ≤ m− 1,

|∂α [(P �yQ) − (P �xQ)] (y)| ≤ Crm|x − y|m−|α| .

Hence (5) follows. �

Remark. For P,Q ∈ P+ and x ∈ Rn, we write P�+
x Q to denote the unique

polynomial in P+ for which ∂β(P�+
xQ−PQ)(x) = 0 for all |β| ≤ m. We will

also make use of the following fact, whose proof is completely analogous to
that of (4). Suppose x ∈ Rn and r ≤ r̄. Then,

(9) B+(x, r) �+
x B

+(x, r̄) ⊆ Cr̄m · B+(x, r).

We will need the following

Definition. Let x ∈ Rn, A ≥ 1 and let σ be a convex, symmetric, non-
empty subset of P. We say that “σ is Whitney t-convex at x, with Whitney
constant A” if for any r > 0,

(10) [σ ∩ B(x, r)] �x B(x, r) ⊆ Armσ.
The above definition is an instance of “Whitneyω-convexity”; see [14, 16].

(However, [14, 16] require (10) or its variants, only for r ≤ 1.) A basic
example of a Whitney t-convex set is B(x, r); for any x ∈ Rn, r > 0 the set
B(x, r) is Whitney t-convex at x with Whitney constant C > 0, depending
only on m and n. This follows from (4).

Also, if σ1, σ2 are Whitney t-convex at x with Whitney constants A1, A2
respectively, then σ1 ∩ σ2 is Whitney t-convex at x with Whitney constant
max{A1, A2}. We thus conclude the following lemma.

Lemma 2. Let σ ⊂ P, x ∈ Rn, A ≥ 1, r > 0. Suppose that σ is Whitney
t-convex at x with Whitney constant A. Then

σ ∩ B(x, r)

is Whitney t-convex at x with Whitney constant CA, where C is a constant
depending only on m and n.
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Another useful observation is as follows. Let σ, σ′ ⊂ P be convex sym-
metric sets, and let a, b > 0 and A ≥ 1 be constants. Suppose 1

a
σ ⊆ σ′ ⊆

bσ, and suppose σ is Whitney t-convex at x with Whitney constant A.
Then, as may be easily verified from the definition (10), the set σ′ is also
Whitney t-convex at x, with Whitney constant amax{1, b} ·A.

We view Whitney convex sets as quantitative analogues of ideals in P

with respect to �x. For instance, ideals with respect to �x are always
Whitney t-convex at x with Whitney constant A, for any A ≥ 1.

In the proof of the next lemma we will use the following elementary
observation. Suppose that A,K, T are symmetric convex sets in a vector
space V. Then,

(11) K ⊆ T =⇒ (A+ K) ∩ T ⊆ (A ∩ 2T) + K.

Indeed, if x ∈ (A + K) ∩ T , then for some k ∈ K we have that x − k ∈ A.
Also, x− k ∈ T − K ⊆ 2T , and hence x ∈ (A ∩ 2T) + K.

Lemma 3. Let x, y ∈ Rn, A ≥ 1, and assume that σ ⊂ P is Whitney
t-convex at y with Whitney constant A. Then, for any δ > |x − y|,

σ + B(y, δ)

is Whitney t-convex at x with Whitney constant CA, where C depends solely
on m and n.

Proof. Let r > 0. According to (10) we need to show that

(12) {[σ+ B(y, δ)] ∩ B(x, r)} �x B(x, r) ⊆ CArm [σ + B(y, δ)] .

Assume first that r < δ. Then as |x− y| < δ, (3) gives

(13) B(x, r) ⊆ B(x, δ) ⊆ CB(y, δ) ⊆ C [σ+ B(y, δ)] ,

since 0 ∈ σ as σ is non-empty, convex and centrally-symmetric. Combin-
ing (4) with (13) we get that,

{[σ+ B(y, δ)] ∩ B(x, r)} �x B(x, r)

⊆ B(x, r) �x B(x, r) ⊆ C′rmB(x, r) ⊆ C̃rm[σ+ B(y, δ)]

and (12) follows for the case r < δ. Suppose now that

r ≥ δ .
Then,

(14) [σ + B(x, δ)] ∩ B(x, r) ⊆ [σ ∩ 2B(x, r)] + B(x, δ).

Indeed, (14) follows from (11) since B(x, δ) ⊆ B(x, r). The sets B(x, δ) and
B(y, δ) are C-equivalent by (3), since |x − y| < δ. Therefore, (14) implies

(15) [σ + B(y, δ)] ∩ B(x, r) ⊆ C [σ ∩ B(x, r)] + C′B(y, δ).
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We will deal separately with each summand in the right-hand side of (15).
Since r ≥ δ ≥ |x− y|, we know by (3) that B(x, r) and B(y, r) are C-equiv-
alent. We use (5) and then the aforementioned equivalence to get that

(16) [σ ∩ B(x, r)] �x B(x, r) ⊆ [σ ∩ B(x, r)] �y B(x, r) + C′rmB(x, y)

⊆ C [σ ∩ B(y, r)] �y B(y, r) + C′rmB(x, y) .

Recall that σ is assumed to be Whitney t-convex at y with Whitney con-
stant A. Hence, from (16) and (10) we obtain

(17) [σ ∩ B(x, r)]�xB(x, r) ⊆ CArmσ+CrmB(x, y) ⊆ CArmσ+C′rmB(y, δ),

since B(x, y) ⊆ CB(y, δ) by (3). Next, we once more use the fact that B(x, δ)
and B(y, δ) are C-equivalent. Thus,

(18) B(y, δ) �x B(x, r) ⊆ CB(x, δ) �x B(x, r).

By (18) and (4), since r ≥ δ,
(19) B(y, δ) �x B(x, r) ⊆ C′rmB(x, δ) ⊆ C̃rmB(y, δ).

By combining (15), (17) and (19), we see that{
[σ+ B(y, δ)] ∩ B(x, r)

} �x B(x, r) ⊆ C [Armσ+ rmB(y, δ)] + C′rmB(y, δ),

and thus,{
[σ+ B(y, δ)] ∩ B(x, r)

} �x B(x, r) ⊆ CArm [σ+ B(y, δ)] .

This is precisely our desired inclusion (12). The proof is complete. �

13. Properties of the Γ ’s and σ’s

In this section we establish the basic mathematical properties of the blobs
Γ(x, �) and the convex sets σ(x, �). Those properties are as follows. We
write C� for a constant depending only on �,m, n.

Property 0:

(a) Let F ∈ Cm(Rn) and M > 0 be given. Assume that

‖ F ‖Cm(Rn)≤ M and |F(x) − f(x)| ≤ Mσ(x) for all x ∈ E .
Then Jx(F) ∈ Γ(x, �, C�M) for all x ∈ E, � ≥ 0.
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(b) Let F ∈ Cm(Rn) be such that

‖ F ‖Cm(Rn)≤ 1 and |F(x)| ≤ σ(x) for all x ∈ E .

Then Jx(F) ∈ C�σ(x, �) for all x ∈ E, � ≥ 0.

Property 1: For any x ∈ E, � ≥ 0, M > 0, we have

(a) Γ(x, �,M) + Mσ(x, �) ⊆ Γ(x, �, C�M), and

(b) Γ(x, �,M) − Γ(x, �,M) ⊆ C�Mσ(x, �).

Here, A + B and A − B denote the Minkowski sum and difference, i.e.,
A+ B = {P +Q : P ∈ A,Q ∈ B} and A− B = {P −Q : P ∈ A,Q ∈ B}.

Property 2:

(a) Let x, y ∈ E, � ≥ 1,M > 0. Then,

Γ(x, �,M) ⊂ Γ(y, �− 1, C�M) + C�MB(x, y).

(b) Let x, y ∈ E, � ≥ 1. Then,

σ(x, �) ⊂ C� [σ(y, �− 1) + B(x, y)] .

Property 3: For each x ∈ E, � ≥ 0, the set σ(x, �) is Whitney t-convex at x,
with Whitney constant C�.

Property 4: For each x ∈ E, � ≥ 0,M > 0, we have

Γ(x, �,M) ⊂ Γ(x, �− 1, C�M),

σ(x, �) ⊂ C�σ(x, �− 1).
Property 0(a) was proven in Lemma 2 of Section 7 in [19]. Property 2(a) was
also proven in [19]; see (5) and (8) of Section 7 in [19]. In order to establish
Property 0(b) and Property 2(b), recall from Section 10 that Γ0(x, �,M) =
Mσ(x, �) and Γ0(x, �) is the blob that arises when f ≡ 0. Thus, Property 0(b)
is a particular case of Property 0(a), and Property 2(b) is a particular case
of Property 2(a). It remains to establish Properties 1, 3 and 4. Property 4
is trivial, as will be explained below. Properties 1 and 3 will follow by a
straightforward induction on �, making use of Lemma 3 from the preceding
section for the proof of Property 3. We supply details.

Recalling our construction of the Γ(x, �) and σ(x, �), we see that the
σ(x, �) arise by the following induction on �.
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For � = 0, we set

σ(x, 0) = {P ∈ P : |P(x)| ≤ σ(x) and |∂βP(x)| ≤ 1 ∀|β| ≤ m− 1}.

For the inductive step, fix � ≥ 0, and suppose we have defined σ(x, �) for
each x ∈ E. We will define σ(x, � + 1) for each x ∈ E. To do so, we use
the Callahan-Kosaraju decomposition for E, with κ = 1/2. We retain the
notation of Section 9 (except that C here denotes a constant depending only
on m and n). We construct the sets σ(x, �+ 1) in five steps:

Step 1◦: For each A ∈ T, we define

σ(A, �) =
⋂
x∈A

[σ(x, �) + B(x, diam∞(A))] .

Step 2◦: For each (Λ1, Λ2) ∈ L, and for i = 1, 2, we define

σi(Λi, �) =
⋂
A∈Λi

[σ(A, �) + B(xA, diam∞(∪Λi))] .

Step 3◦: For each (Λ1, Λ2) ∈ L, we define

σ̄(Λ1, Λ2, �) = σ1(Λ1, �) ∩ [σ2(Λ2, �) + B(xΛ1 , xΛ2 )] .

Step 4◦: For each A ∈ T, we define

σ′(A, �+ 1) =
⋂

(Λ1,Λ2) ∈ L
Λ1 �A

σ̄(Λ1, Λ2, �) .

Step 5◦: For each x ∈ E, we define

σ(x, �+ 1) = σ(x, �) ∩
⋂
A ∈ T
A � x

σ′(A, �+ 1) .

This completes the induction defining the convex symmetric sets σ(x, �)
(x ∈ E, � ≥ 0).

Property 4 is now obvious from inspection of Step 5◦, and also of Step 5
from Section 10. Now we will give the induction on � proving Properties 1
and 3.

For � = 0, we denote ad-hoc,

Γ̃(x, 0,M) = {P ∈ P : |P(x) − f(x)| ≤ Mσ(x)}

and
σ̃(x, 0) = {P ∈ P : |P(x)| ≤ σ(x)} .

Then,

(1) Γ(x, 0,M) = Γ̃(x, 0,M) ∩MB(x, 1) and σ(x, 0) = σ̃(x, 0) ∩ B(x, 1).
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Property 1 is obvious for � = 0. It is also straightforward to verify that
σ̃(x, 0) is Whitney t-convex at x with Whitney constant 1. Using (1) and
Lemma 2 from the preceding section, we conclude that σ(x, 0) is Whitney
t-convex at x with Whitney constant C. Thus Property 3 holds for � = 0.

For the induction step, fix � ≥ 0, and suppose Properties 1 and 3 hold
for �. We will prove those properties for �+1. We begin with Property 1. It
is elementary to see that for any sets A1, ..., Ak, B1, ..., Bk in a vector space V
we have

(∗)

k⋂
i=1

Ai ±
k⋂
i=1

Bi ⊂
k⋂
i=1

(Ai ± Bi).

Since Property 1 holds for �, inspection of (∗) and of Steps 1 and 1◦ in the
definitions of Γ, σ shows that we have an obvious analogue of Property 1 for
the blob Γ(A, �) and the convex set σ(A, �).
Similarly, inspection of (∗) and Steps 2 and 2◦ shows that the obvious ana-
logue of Property 1 holds for Γi(Λi, �) and σi(Λi, �).
Then, inspecting Steps 3 and 3◦, followed by inspecting Steps 4 and 4◦ and
finally Steps 5 and 5◦, yields that the obvious analogues of Property 1 hold
for Γ̄(Λ1, Λ2, �) and σ̄(Λ1, Λ2, �), and then for Γ ′(A, �+ 1) and σ′(A, �+ 1),
and finally for the blob Γ(x, �+ 1) and the convex set σ(x, �+ 1).
This completes the inductive step, and establishes Property 1.
For the inductive step in the proof of Property 3, we bring in Lemma 3 from
the preceding section. (We call it “the t-convexity lemma” here.) Since
σ(x, �) is Whitney t-convex at x with Whitney constant C�, the t-convexity
lemma shows that σ(x, �) + B(x, diam∞(A)) is Whitney t-convex at any
y ∈ A, with Whitney constant C�, whenever x ∈ A.

Taking the intersection over all x ∈ A and comparing with Step 1◦, we see
that σ(A, �) is Whitney t-convex at each y ∈ A, with Whitney constant C�.

So, another application of the t-convexity lemma shows that σ(A, �) +
B(xA, diam∞(∪Λi)) is Whitney t-convex at any y ∈ ∪Λi, with Whitney
constant C�, whenever (Λ1, Λ2) ∈ L, i = 1 or 2, and A ∈ Λi. Taking the
intersection over all A ∈ Λi, and comparing with Step 2◦, we see that

(2) σi(Λi, �) is Whitney t-convex at each y ∈ ∪Λi, with Whitney con-
stant C�.

Again, using the t-convexity lemma, as well as the fact that ∪Λ1 and
∪Λ2 are κ-separated with κ = 1/2, we learn from (2) that

(3) σ2(Λ2, �) + B(xΛ2 , xΛ1) is Whitney t-convex at each point of ∪Λ1,
with Whitney constant C�, whenever (Λ1, Λ2) ∈ L.
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Since σ2(Λ2, �) + B(xΛ2 , xΛ1) and σ2(Λ2, �) + B(xΛ1 , xΛ2) are C-equivalent
with C depending only on m and n, it follows from (3) that

(4) σ2(Λ2, �) + B(xΛ1 , xΛ2) is Whitney t-convex at each point of ∪Λ1, with
Whitney constant C�, whenever (Λ1, Λ2) ∈ L.

(See the observation immediately after Lemma 2 in the preceding section.)

Comparing (2) and (4) with Step 3◦, we see that

(5) σ̄(Λ1, Λ2, �) is Whitney t-convex at each point of ∪Λ1, with Whitney
constant C�, whenever (Λ1, Λ2) ∈ L.

Thanks to (5) and our induction hypothesis (Whitney t-convexity of
σ(x, �)), we learn by inspection of Steps 4◦ and 5◦ that σ(x, �+1) is Whitney
t-convex at x, with Whitney constant C�+1, for each x ∈ E.

This completes the inductive step in the proof of Property 3.
We have established Properties 0, . . . , 4.

14. On Sets of Multi-indices

We introduce and recall some notation, to be used for the rest of this paper.
For multi-indices α, β, we denote by δαβ the Kronecker delta, equal to 1
if α = β, and 0 otherwise. We write M for the set of all multi-indices
α = (α1, . . . , αn) of order |α| = α1 + · · ·+ αn ≤ m−1. We define an order
relation on M, as follows.

Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be distinct elements of M.
Then we cannot have α1+ · · ·+αk = β1+ · · ·+βk for all k = 1, . . . , n. Let
k̄ be the largest k for which α1 + · · · + αk �= β1 + · · · + βk. Then we say
that α < β if and only if α1+ · · · + αk̄ < β1+ · · ·+ βk̄. It is easy to check
that < is a linear order relation.

We also define an order relation between subsets of M. Let A,B be two
distinct subsets of M, and let α denote the least element of the symmetric
difference (A�B) ∪ (B�A), with respect to our order relation on M. Then
we say that A < B if and only if α belongs to A. Again, one checks easily
that this defines a linear order relation. Note that M is minimal, and the
empty set ∅ is maximal under this order. Note also that A⊂B implies B≤A.

For A ⊆ M, we define

�(A) = 1 + 4 · #{A′ ∈ M : A′ < A} ,

where #S denotes the number of elements in the set S. Also, we set

�∗ = �(∅) + 1.

Thus, 1 ≤ �(A) < �∗ for each A ⊆ M. Clearly, �∗ is a constant depending
only on m and n.
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We will make use of the following elementary result from [13].

Lemma 1. Let A ⊂ M and let φ : A → M be a map with the following
properties:

(1) φ(α) ≤ α for all α ∈ A; and

(2) For each α ∈ A, either φ(α) = α or φ(α) �∈ A.

Then φ(A) ≤ A, with equality if and only if φ is the identity map.

15. Finding Neighbors

In this section, we write c, C, C′, etc. to denote constants depending only on
m and n. Unfortunately, in this section A will denote a subset of M, while
A(x, �) and A# will denote ALPs in P.

Suppose we are given P0 ∈ P, A ⊆ M, x ∈ E. We want to compute a
polynomial P ∈ P with the following property.

(I) Let P′ ∈ P and M > 0 be given. Suppose P′ and M satisfy:

(a)′ ∂β(P′ − P0)(x) = 0 for all β ∈ A; and

(b)′ P′ ∈ Γ(x, �(A) − 1,M).

Then P and M satisfy:

(a) ∂β(P − P0)(x) = 0 for all β ∈ A; and

(b) P ∈ Γ(x, �(A) − 1, CM).

(Recall that C depends only on m and n.)
We will give an algorithm, called Find-Neighbor(P0,A, x), that returns

such a polynomial P, with work and storage at most C′. We assume that we
have already performed the one-time work of finding an ALP A(x, �(A)−1)
in P, such that

(1) The blobs Γ(x, �(A) − 1) and K(A(x, �(A) − 1)) are C-equivalent.

See Section 10 for the computation of the A(x, �). Recall in particular from
that section, that length (A(x, �(A)−1)) ≤ D+1, where D = dim P. Thanks
to (1), we can replace Γ(x, �(A) − 1,M) and Γ(x, �(A) − 1, CM) in (I) by
KM(A(x, �(A)−1)) and KCM(A(x, �(A)−1)), respectively, without affecting
the validity of (I). In dealing with (I), we will assume this substitution has
been made.

We have already computed A(x, �(A) − 1). Thus,

(2) A(x, �(A) − 1) = [(λ1, . . . , λL), (b1, . . . , bL), (σ1, . . . , σL), M∗],

with known λ�, b�, σ�, M∗, and with L ≤ D+ 1.
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Here, the λ� are (real) linear functionals on P. Recall that P′ ∈ KM
(A(x, �(A) − 1)) is equivalent to the assertions

|λ�(P
′) − b�| ≤ Mσ� for � = 1, . . . , L; and M ≥M∗.

The condition P ∈ KCM(A(x, �(A) − 1)) may be similarly expressed in
terms of the λ�, b�, σ�,M∗. Hence, our desired property (I) is equivalent to
the following:

(II) Let P′ ∈ P and M > 0 be given. Suppose P′ and M satisfy:

(3) ∂β(P′ − P0)(x) = 0 for β ∈ A;

(4) |λ�(P
′) − b�| ≤ Mσ� for � = 1, . . . , L; and

(5) M ≥ M∗.

Then P and M satisfy:

(3′) ∂β(P − P0)(x) = 0 for β ∈ A;

(4′) |λ�(P) − b�| ≤ CMσ� for � = 1, . . . , L; and

(5′) CM ≥ M∗.

In view of (3) , . . . , (5), it is natural to define an auxiliary blob K# =

(K#
M)M>0 in P, by setting

(6) K
#
M = {P′ ∈ P : Conditions (3) and (4) hold } for M ≥M∗, and

(7) K
#
M = ∅ for M < M∗.

We can then rewrite condition (II) in terms of the blob K#. In fact, (II)
asserts that, whenever P′ ∈ K#

M, we must have P ∈ K#
CM. That is, (II) asserts

that P is a C-original vector for the blob K#.

On the other hand, a glance at (3), (4) and (6), (7) shows that K# has
the form K(A#) for an obvious ALP A#.

The ALP A# may be easily read off from known data (P0,A, x, and the
λ�, b�, σ�,M∗). Note also that length (A#) = #(A) + L ≤ C.

Thus, the task of finding P ∈ P satisfying (I) amounts to finding a
C-original vector for the blob K(A#) arising from a known ALP A# of
length ≤ C. This task may be performed with work and storage at most C′,
by using Algorithm ALP3 from Section 5.

This completes our discussion of the algorithm Find-Neighbor (P0,A, x).
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16. Neighbors Depending Linearly on Parameters

The polynomial P returned by the algorithm Find-Neighbor (P0,A, x) from
the preceding section depends not only on P0,A, x, but also on E, σ, and f.
In this section, we investigate the linear dependence of P on P0 and f, with
the remaining inputs held fixed.

Again, we write c, C, C′, etc. to denote constants depending only on m
and n.

We suppose we are given a map �f : E×RN̄ → R, such that ξ �→ �f(x, ξ) is
a depth k linear functional on RN̄, for each fixed x ∈ E. For fixed ξ ∈ RN̄,
we write fξ to denote the function x �→ �f(x, ξ) on E. We suppose that N̄
satisfies (2) from Section 6.

It is convenient to introduce the following definition. Let �P : RN̄ → P

be a linear map. We say that �P has “depth k” if for each linear functional
λ : P → R, the functional λ◦�P on RN̄ has depth k. We call such a �P a “depth
k parametrized polynomial”. Note that a depth k parametrized polynomial
takes up storage at most C(k+ 1).

Recall from Section 11 that we have constructed PALPs A(x, �) for x ∈ E,

0 ≤ � ≤ �∗. The PALPs A(x, �) depend on �f. We assume here that the
PALPs A(x, �) have already been computed.

Our goal here is to exhibit an algorithm

(0) Find-Parametrized-Neighbor (�P0,A, x) with the following properties.

(1) The inputs of algorithm (0) are a depth-k parametrized polynomial �P0,
a subset A ⊆ M and a point x ∈ E.

(2) The output of algorithm (0) is a depth-Ck parametrized polynomial �P.

(3) Let �P be the parametrized polynomial returned by algorithm (0) for

inputs �P0, A, x. Let ξ ∈ RN̄ be given. Set P0 = �P0(ξ), P = �P(ξ),
and f = fξ. Then P is the polynomial returned by the algorithm Find-
Neighbor (P0,A, x) with initial data E, σ, f.

(4) The algorithm (0) uses the PALP A(x, �(A) − 1) arising from �f. Once
A(x, �(A) − 1) is known, the algorithm (0) uses work and storage at
most C(k+ 1).

Thanks to (3), the algorithm Find-Parametrized-Neighbor captures the
ξ-dependence of the output of Find-Neighbor, when the inputs P0 and f

depend linearly (with depth k) on a parameter ξ ∈ RN̄.
To exhibit the algorithm (0), we just carry over our previous algo-

rithm Find-Neighbor into the setting of PALPs. Where we used the ALP
A(x, �(A)−1) in the preceding section, we now use the PALP A(x, �(A)−1).
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For ξ ∈ RN̄, consider the ALP A(x, �(A) − 1) that is constructed from
E, σ, f when f = fξ. Recall from Section 11 that this ALP is denoted by
Aξ(x, �(A) − 1). Recall from (2)� of Section 11 that A(x, �(A) − 1) agrees
with Aξ(x, �(A) − 1) at ξ, for any ξ ∈ Rn.

Whereas A(x, �(A) − 1) = [(λ1, . . . , λL), (b1, . . . , bL) , (σ1, . . . , σL), M∗],
we now have

A(x, �(A) − 1) = [(λ1, . . . , λL) , (b1, . . . , bL) , (σ1, . . . , σL)] .

The λ� and λ� are linear functionals on P, and the σ� and σ� are non-
negative numbers. The b� are real numbers, whereas the b� are depth-Ck
linear functionals on RN̄. Note that A(x, �(A) − 1) contains no “threshold”
analogous to M∗

Where we used the λ�, b�, σ�,M∗ to define the ALP A# in the preceding
section, we now use the λ�, b�, σ� to define an analogous PALP A#, whose
detailed construction we leave to the reader.

Where we applied Algorithm ALP3 to the ALP A# in the preceding sec-
tion, we now apply Algorithm PALP3 to obtain the depth C′k parametrized
polynomial �P. (See Section 6.)

Thus, we have exhibited the algorithm (0). The verification of proper-
ties (1), . . ., (4) is routine. In particular, property (3) follows easily, once
we recall the defining property of Algorithm PALP3, together with (2)� from
Section 11.

Chapter III - Lengthscales and Calderón-Zyg-
mund decompositions

17. Picking Constants

In the sequel, we will make use of two large constants, A0, p# > 1, that
depend solely on m and n. The constant p# will be an integer, and we will
choose A0 to be an integer power of two.

These constants, A0 and p#, will not be specified right now; instead,
throughout the manuscript, we will stipulate some lower bounds on A0, p#.
These lower bounds are always by constants depending only on m and n.
These bounds will appear later in the text, specifically in (23), (31) and (41)
in Section 31, in (9), (15), (25) and (34) in Section 32 and in (9), (14), (19),
(25), (71) and (81) from Section 33. (In the Appendix, we specify additional,
similar lower bounds for A0 and p#.) For concreteness, we set A0 and p# to
be the minimal integer powers of two that satisfy the aforementioned lower
bounds.
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For ∅ �= A ⊆ M we write A+ to denote the successor of A in our order
relation on sets of multi-indices, that was defined in Section 14. Similarly,
for A � M, we write A− to denote the predecessor of A in our order relation.
(Recall that ∅ is maximal and M is minimal with respect to our order.) Next,
we will define for each A ⊆ M a constant A1(A) as follows:

(1) A1(∅) = A
p#

0 , and A1(A) =
(
A20A1(A

+)
)p# for A ⊆ M,A �= ∅.

Once the constants A1(A) are defined for all A ⊆ M, we set

(2) A2 = (A0A1(M))p#.

Note that A0, A1(A) (A ⊆ M) and A2 are all integer powers of two.

Finally, we will define constants A3(A), for A ⊆ M, as follows:

(3) A3(M) = A20A1(M), and A3(A) = A0A
m
2 A3(A

−) for A ⊂ M,A �= M.

The constants A3(A) will be used only much later, in Section 29 and
Section 33. This finishes the specifications of all constants we need in the
sequel.

18. The Basic Lengthscales

Fix A ⊆ M, and let A1(A) be the constant from the preceding section.
We recall the integer �(A) = 1 + 4 · #{A′ ⊆ M : A′ < A}, satisfying
1 ≤ �(A) < �∗. Also, from Section 10, we recall the convex symmetric set
σ(x, �) ⊆ P and the homogeneous ALPs A0(x, �) in P, defined for x ∈ E,
� ≥ 0. From (11) in that section, we have

(1) c�σ(A
0(x, �)) ⊆ σ(x, �) ⊆ C�σ(A

0(x, �)) for all x ∈ E, � ≥ 0,
with c�, C� depending only on �,m, n. Recall that A0(x, �) has the following
form, since it is a homogeneous ALP:

(2) A0(x, �) = [(λ1, . . . , λL), (0, . . . , 0), (σ1, . . . , σL), 0].

Here, each λi is a linear functional on P, and each σi is a non-negative real
number. The λi and σi, and the length L, may all depend on x and �. By
definition, we have

(3) σ(A0(x, �)) = {P ∈ P : |λi(P)| ≤ σi for i = 1, . . . , L}

with A0(x, �) given by (2). Recall that L = length A0(x, �) ≤ D+ 1, where
D = dim P.
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In Section 10, we saw that the homogeneous ALPs A0(x, �) (for all x ∈ E,
0 ≤ � ≤ �∗) can be computed with work CN logN and storage CN, with
C depending only on m,n. We assume here that these homogeneous ALPs
have been computed as part of the one-time work.

The goal of this section is to compute, for each x ∈ E, a lengthscale
δ(x,A) ∈ [0,∞], with the following properties:

(OK1) Let δ be given, with 0 < δ < δ(x,A). Then there exist Pα ∈ P,
indexed by α ∈ A, such that:

(a) ∂βPα(x) = δβα for β, α ∈ A;

(b) |∂βPα(x)| ≤ CA1(A)δ|α|−|β| for α ∈ A, β ∈ M, β ≥ α; and

(c) δm−|α|Pα ∈ CA1(A) · σ(x, �(A)) for α ∈ A.

(OK2) Let δ > 0 be given, and suppose there exist Pα ∈ P, indexed by
α ∈ A, such that:

(a) ∂βPα(x) = δβα for β, α ∈ A;

(b) |∂βPα(x)| ≤ cA1(A)δ|α|−|β| for α ∈ A, β ∈ M, β ≥ α; and

(c) δm−|α|Pα ∈ cA1(A) · σ(x, �(A)) for α ∈ A.

Then 0 < δ < δ(x,A).

In (OK1), (OK2), and for the rest of this section, c and C denote constants
depending only on m and n.

We will compute all the δ(x,A) (x ∈ E,A ⊆ M) with work and storage at
most CN (once we know the A0(x, �(A))). We begin by applying (1), (2), (3)
with � = �(A). Since 0 ≤ �(A) ≤ �∗, the constants c� and C� in (1) may be
taken to depend only on m and n, once we set � = �(A). Hence (1) shows
that σ(x, �(A)) may be replaced by σ(A0(x, �(A))) in (OK1) and (OK2)
without affecting their validity. Applying (3), with � = �(A), we see that
our desired properties (OK1) and (OK2) are equivalent to the following.

(OK1′) Let δ be given, with 0 < δ < δ(x,A). Then there exist Pα ∈ P,
indexed by α ∈ A, such that⎡⎢⎢⎢⎢⎣

|∂βPα(x) − δβα| ≤ 0 for β, α ∈ A ;

|∂βPα(x)| ≤ CA1(A) δ|α|−|β| for α ∈ A, β ∈ M, β ≥ α ;

|λ�(Pα)| ≤ CA1(A)σ� · δ|α|−m for α ∈ A, 1 ≤ � ≤ L .

⎤⎥⎥⎥⎥⎦
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(OK2′) Let δ > 0 be given, and suppose there exist Pα ∈ P, indexed by
α ∈ A, such that⎡⎢⎢⎢⎢⎣

|∂βPα(x) − δβα| ≤ 0 for β, α ∈ A ;

|∂βPα(x)| ≤ cA1(A)δ|α|−|β| for α ∈ A, β ∈ M, β ≥ α ;

|λ�(Pα)| ≤ cA1(A)σ� · δ|α|−m for α ∈ A , 1 ≤ � ≤ L .

⎤⎥⎥⎥⎥⎦
Then 0 < δ < δ(x,A).

We already know the λ� and σ�, and we have L ≤ D + 1. Also, on the
right-hand sides of (OK1′) and (OK2′), the powers of δ all involve exponents
between −m and 0. Consequently, the task of finding δ(x,A) with proper-
ties (OK1′) and (OK2′) is a special case of the problem solved in Section 8.
Applying Lemma 1 from that section, we see that a single δ(x,A) with
properties (OK1′) and (OK2′) may be computed using work and storage at
most C. Hence, we obtain the following result.

Lemma 1. Let x ∈ E, A ⊆ M, and A1(A) be given. Assuming we al-
ready know the homogeneous ALP A0(x, �(A)), we can compute a number
δ(x,A) ∈ [0,∞], satisfying (OK1) and (OK2). The computation takes work
and storage less than a constant C depending only on m and n.

The lengthscales δ(x,A) provided by Lemma 1 belong to [0,∞], and
conclusion (OK1) applies to 0 < δ < δ(x,A). However, if δ(x,A) ∈ (0,∞),
then (OK1) applies also to δ = δ(x,A). To see this, we simply apply (OK1)
for δ = 1

2
δ(x,A).

From now on, we assume that the lengthscales δ(x,A) have already been
computed and stored, as part of the one-time work. The total work and
storage required for the computation are at most CN, given that we have
precomputed the ALPs A0(x, �(A)).

19. Dyadic Cubes: Notation

A “dyadic cube” in Rn is a Cartesian product Q = I1×· · ·×In ⊂ Rn, where
each Ij has the form [2st, 2s(t+1)) for integers s, t, and where the Ij all have
the same length.

To “bisect” a dyadic cube Q ⊂ Rn is to partition it into 2n congruent
subcubes in the obvious way. For each dyadic cube Q, there is a unique
dyadic cube Q+ such that Q is among the cubes obtained by bisecting Q+.
We call Q+ the dyadic “parent” of Q.
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Let Q = I1 × · · · × In ⊂ Rn be a dyadic cube, with each Ij written in
the form [aj −

h
2
, aj +

h
2
). Then we write δQ = sidelength (Q) for h; and,

for r ≥ 1, we write rQ to denote

n∏
j=1

[
aj− r

h

2
, aj+ r

h

2

)
⊂ Rn,

the enlargement of Q by factor r. There is a slight inconsistency problem
with this notation; recall that for r > 0 andΩ ⊂ P we have used the notation
rΩ = {rP : P ∈ Ω}. As a rule, whenever writing rΩ we mean {rP : P ∈ Ω},
unless Ω = Q is a dyadic cube. When Q is a dyadic cube, rQ stands for
the enlargement of Q by factor r, as defined above.

We write Q∗ to denote 5Q, Q∗∗ to denote 25Q and Q∗∗∗ to denote 125Q.

There is a constant cG > 0 (say, cG = 1/32), with the following property:

(0) Let Q,Q′ be dyadic cubes, with (1+ 2cG)Q ∩ (1+ 2cG)Q′ �= ∅.

Then:

(a) If δQ′ ≤ 1
2
δQ, then (Q′)∗ ⊂ Q∗;

(b) If δQ′ ≤ 2δQ, then Q′ ⊂ Q∗; and

(c) If 1
2
δQ ≤ δQ′ ≤ 2δQ, then the closures of Q and Q′ contain a

point in common.

For the rest of this paper, cG denotes the above constant even if c, C, C′,
etc. denote constants that may change from one occurrence to the next.
We take cG to be a power of 2.

20. Calderón-Zygmund Cubes: Definitions

Recall that for x ∈ E and A ⊆ M, we have defined a “lengthscale” δ(x,A) ∈
[0,∞]. Here, we will use the δ(x,A), and the constant A2, to partition Rn

into “Calderón-Zygmund cubes”. The constant A2 was defined in Section 17.
The only property of A2 that will be used in this section is that

(0) A2 ≥ 1 is a power of 2.

We write D(A2) to denote the collection of all dyadic cubes Q such that
δQ ≤ A−1

2 . Note that, if Q ∈ D(A2), then either Q+ ∈ D(A2) or δQ = A−1
2 .

In the next few sections, except for Lemma 5 in Section 21 below, we
make no use of the properties of the δ(x,A). We may regard them simply
as arbitrary given numbers in [0,∞].
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Let Q ∈ D(A2) (i.e., let Q be a dyadic cube of sidelength ≤ A−1
2 ), and let

A ⊆ M be given.
We say that Q is “OK(A)” if we have

(1) A2δQ ≤ δ(x,A) for all x ∈ Q∗ ∩ E.

Also, for Q ∈ D(A2) and A ⊆ M, we say that Q is “almost OK(A)” if we
have either

(2) #(E ∩Q∗) ≤ 1, or

(3) Q is OK(A′) for some A′ ≤ A.

Note that Q can be OK(A) or almost OK(A), only if δQ ≤ A−1
2 . Also, note

that every almost OK(A) cube Q is contained in some maximal almost
OK(A) cube Q′. (This follows from the observation that there are only
finitely many Q′ ∈ D(A2) containing Q.)

Finally, for Q ∈ D(A2) and A ⊆ M, we say that Q ∈ CZ(A) (Q is a
“Calderón-Zygmund” or “CZ” cube) if the following hold:

(4) Q is almost OK(A); but

(5) No cube Q′ ∈ D(A2) that properly contains Q is almost OK(A).

Again note that Q cannot be a CZ cube unless δQ ≤ A−1
2 .

21. Calderón-Zygmund Cubes: Basic Properties

In this section, we give the basic properties of the CZ cubes defined in the
preceding section. We write c, C, C′, etc., to denote constants depending
only on the dimension n. We recall the constant cG from Section 19.

Lemma 1. For each A ⊆ M, the collection CZ(A) forms a locally finite
partition of Rn into dyadic cubes.

Proof. Fix A ⊆ M, and recall that any two dyadic cubes Q,Q′ satisfy
either Q ⊆ Q′, Q′ ⊆ Q, or Q ∩ Q′ = ∅. Immediately from the definition,
we see that one cube from CZ(A) cannot be properly contained in another
cube from CZ(A). Consequently, the cubes in CZ(A) are pairwise disjoint.

On the other hand, any sufficiently small dyadic cube Q ⊂ Rn is almost
OK(A), since Q ∈ D(A2) and #(E∩Q∗) ≤ 1. Such a cube Q must therefore
be contained in a maximal almost OK(A)-cube Q′. The cube Q′ belongs
to CZ(A). It follows that CZ(A) forms a covering of Rn, and that the
sidelengths of the cubes in CZ(A) are bounded from below. The proof of
the lemma is complete. �
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Lemma 2 (“Good Geometry”). If Q,Q′ ∈ CZ(A), with (1+ 2cG)Q ∩
(1+ 2cG)Q′ �= ∅, then 1

2
δQ ≤ δQ′ ≤ 2δQ.

Proof. Suppose not. Without loss of generality, we may suppose δQ ≤ δQ′ .
Since δQ and δQ′ are powers of 2, it follows that

(1) δQ ≤ 1
4
δQ′ .

Since Q′ ∈ CZ(A) ⊆ D(A2), it follows from (1) that

(2) Q+ ∈ D(A2), and

(3) δQ+ ≤ 1
2
δQ′ .

We have also

(1+ 2cG)Q+ ∩ (1+ 2cG)Q′ ⊇ (1+ 2cG)Q ∩ (1+ 2cG)Q′ �= ∅.
Together with (3), this yields

(4) (Q+)∗ ⊂ (Q′)∗,

thanks to the defining property of cG (see (0)(a) in Section 19). Now, Q′ is
almost OK(A), since it belongs to CZ(A). Hence, either

(5) #(E ∩ (Q′)∗) ≤ 1,

or there exists A′ ≤ A such that

(6) A2δQ′ ≤ δ(x,A′) for all x ∈ (Q′)∗ ∩ E.

It follows from (3) and (4), that (5) implies

(7) #(E ∩ (Q+)∗) ≤ 1;

and (6) implies

(8) A2δQ+ ≤ δ(x,A′) for all x ∈ (Q+)∗ ∩ E.

Hence, Q+ satisfies either (7) or (8) (with A′ ≤ A). That is, Q+ is almost
OK(A), thanks also to (2).

On the other hand, (2) shows that Q+ is a cube in D(A2) properly
containing Q. Since Q ∈ CZ(A), the definition of CZ(A) shows that Q+

cannot be almost OK(A).
This contradiction completes the proof of Lemma 2. �

Corollary. Fix A ⊆ M. Then any given x ∈ Rn can belong to at most C of
the cubes (1+ cG)Q for Q ∈ CZ(A).

Proof. Let Q be the cube in CZ(A) that contains x. If Q ∈ CZ(A) and
x ∈ (1+ cG)Q, then by Lemma 2, we have

(9) 1
2
δQ ≤ δQ ≤ 2δQ and x ∈ (1+ cG)Q.

There are at most C dyadic cubes Q satisfying (9). �
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Lemma 3. The cover CZ(A′) refines the cover CZ(A) if A′ < A. That is,
whenever Q′ ∈ CZ(A′) and Q ∈ CZ(A) with Q′ ∩Q �= ∅, we have Q′ ⊆ Q.

Proof. Let A,A′, Q,Q′ be as in the hypotheses of Lemma 3. Then Q′ is
almost OK(A′), which implies trivially that Q′ is almost OK(A). Hence, Q′

is contained in a maximal almost OK(A)-cube Q′′. By definition, we have
Q′′ ∈ CZ(A). Also, Q ∈ CZ(A), and Q′′ ∩ Q ⊇ Q′ ∩ Q �= ∅. Therefore,
Q = Q′′, by Lemma 1. Thus, Q′ ⊆ Q′′ = Q, proving Lemma 3. �

Lemma 4. Let Q ∈ CZ(A). Then either δQ = A−1
2 or Q∗∗ ∩ E �= ∅.

Proof. Suppose δQ �= A−1
2 andQ∗∗∩E = ∅. We haveQ ∈ CZ(A) ⊆ D(A2),

and δQ �= A−1
2 . Hence, Q+ ∈ D(A2). Also, (Q+)∗∩E ⊆ Q∗∗∩E = ∅. Hence,

by definition, Q+ is almost OK(A). On the other hand, Q+ ∈ D(A2) andQ+

properly contains Q. Since Q ∈ CZ(A), it follows from the definition of
CZ(A) that Q+ cannot be almost OK(A). This contradiction completes the
proof of Lemma 4. �

Lemma 5. CZ(∅) consists of all dyadic cubes of sidelength A−1
2 .

Proof. Let x ∈ E. By Property (OK2) in Section 18, we have δ(x, ∅) = ∞,
because the hypotheses (a), (b), (c) of (OK2) hold vacuously for A = ∅.

It follows that every dyadic cube Q ∈ D(A2) is OK(∅), and hence almost
OK(∅). Consequently, the cubes of CZ(∅) are precisely the maximal cubes
in D(A2). These are precisely the dyadic cubes of sidelength A−1

2 , since A2
is a power of 2. �

Lemma 6. Let Q ∈ CZ(A) and Q′ ∈ CZ(A′), with A′ < A.

If (1+ cG)Q′ ∩Q∗∗∗ �= ∅, then δQ′ ≤ CδQ, where C depends only on n.

Proof. If not, then for a large enough constant C depending only on n, we
have

(10) δQ′ > CδQ.

Since (1 + cG)Q′ ∩Q∗∗∗ �= ∅, it follows that Q ⊂ (1 + 2cG)Q′. Also, since

Q′ ∈ CZ(A′) with A′ < A, there exists Q̃ ∈ CZ(A) with Q′ ⊆ Q̃. (See

Lemma 3.) We have Q̃,Q ∈ CZ(A), with

(1 + 2cG)Q̃ ∩ (1 + 2cG)Q ⊇ (1 + 2cG)Q′ ∩Q = Q �= ∅ .
Consequently, Lemma 2 yields

(11) 1
2
δQ ≤ δ

�Q ≤ 2δQ .

On the other hand, (10) gives δ
�Q ≥ δQ′ > CδQ, contradicting (11). �
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Lemma 7. Let Q ∈ CZ(A) and Q′ ∈ CZ(A′), with A′ < A and (1 +
cG)Q ∩ (1+ cG)Q′ �= ∅. Then Q′ ⊂ Q∗.

Proof. By Lemma 3, there exists Q̃ ∈ CZ(A) with Q′ ⊂ Q̃. We have

Q, Q̃ ∈ CZ(A), and (1 + cG)Q ∩ (1 + cG) Q̃ �= ∅. Hence Lemma 2 gives
1
2
δQ ≤ δ

�Q ≤ 2δQ, and consequently δQ′ ≤ 2δQ. Since also (1+ cG)Q ∩ (1+
cG)Q′ �= ∅, it follows from (0)(b) of Section 19 that Q′ ⊂ Q∗. �

Lemma 8. Let Q0 ∈ CZ(A0) and Q̂ ∈ CZ(Â), with Â < A0. Suppose that

δ
�Q = A−1

2 and (1+ cG)Q0∩ (1+ cG)Q̂ �= ∅. Then there exists Q̃ ∈ CZ(Â),

such that Q̃ ⊆ Q0 and (1+ cG)Q̃ ∩ (1+ cG)Q̂ �= ∅.
Proof. Lemma 3 shows that Q̂ ∈ CZ(A0), since δ

�Q = A−1
2 is already the

largest possible sidelength for any cube in CZ(A0). Consequently, Lemma 2

gives 1
2
δQ0 ≤ δ

�Q ≤ 2δQ0 , and therefore the closures of Q0 and Q̂ contain a
point in common. (See (0)(c) in Section 19.) It follows that there exists a

point x0 ∈ Q0 ∩ (1 + cG)Q̂. Let Q̃ be the cube in CZ(Â) containing x0.

Then Q̃ ⊆ Q0 by Lemma 3, and x0 ∈ (1+ cG)Q̃ ∩ (1+ cG)Q̂. �

22. Calderón-Zygmund Cubes: Sidelengths I

In this section, we prove a few lemmas on the sidelengths of the Calderón-
Zygmund cubes. In a later section, these lemmas will be used to give an
efficient computation of the CZ cube containing a given point.

We write c, C, C′ here, to denote constants depending only on the di-
mension n. We recall the constant cG from Section 19.

We use the following definitions.

• For x ∈ Rn, let δnbr(x) = inf{r > 0: At least two distinct elements of
E lie within distance r of x}.

• For x ∈ Rn and A ⊆ M, let δ̌(x,A) = min
y∈E

{max(|x − y|, A−1
2 δ(y,A))}.

• For x ∈ Rn and A ⊆ M, let δ#(x,A) = max{δnbr(x), max
A′≤A

δ̌(x,A′)}.

• For x ∈ Rn and A ⊆ M, let δCZ(x,A) = δQ for the cube Q ∈ CZ(A)

that contains x.

The quantity δ̌(x,A) is related to the definition ofOK(A), while δ#(x,A)

is more connected with the definition of almost OK(A). Our goal here is to
compute the order of magnitude of δCZ(x,A).

Lemma 1. For x ∈ Rn and A ⊆ M, we have

cmin{A−1
2 , δ

#(x,A)} ≤ δCZ(x,A) ≤ C min{A−1
2 , δ

#(x,A)} .
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Proof. First we show that

(1) δCZ(x,A) ≤ C min{A−1
2 , δ

#(x,A)}.

LetQ ∈ CZ(A) with x ∈ Q. We must show that δQ ≤ Cmin{A−1
2 , δ

#(x,A)}.
Since Q ∈ CZ(A) ⊆ D(A2), we know that δQ ≤ A−1

2 . Hence, to prove (1),
it is enough to show that

(2) δQ ≤ Cδ#(x,A).

We know that Q is almost OK(A). Hence, either

(3) #(E ∩Q∗) ≤ 1,

or else, for some A′ ≤ A, we have

(4) A−1
2 δ(y,A

′) ≥ δQ for all y ∈ E ∩Q∗.

Recall that x ∈ Q. If (3) holds, then by definition of δnbr(x), we have
δnbr(x) ≥ cδQ, which implies (2), by the definition of δ#(x,A).

On the other hand, suppose (4) holds for some given A′ ≤ A.

For y ∈ E ∩Q∗, we have max{|x − y|, A−1
2 δ(y,A

′)} ≥ δQ by (4).

For y ∈ E�Q∗, we have max{|x− y|, A−1
2 δ(y,A

′)} ≥ |x − y| ≥ cδQ.

Hence,
min
y∈E

{
max(|x − y|, A−1

2 δ(y,A
′))

} ≥ cδQ,

i.e., δ̌(x,A′) ≥ cδQ with A′ ≤ A. Consequently, (2) holds, by definition of
δ#(x,A).

We have shown that (2) holds in either of the two cases (3), (4). This
completes the proof of (1).

Next, we show that

(5) δCZ(x,A) ≥ c · min{A−1
2 , δ

#(x,A)}.

To see this, let µ be a small positive constant to be picked later, and
let Q be a dyadic cube containing x, with

(6) 1
2
µ · min{A−1

2 , δ#(x,A)} ≤ δQ < µ · min{A−1
2 , δ

#(x,A)}.

(Note that δ#(x,A) �= 0.) Under certain assumptions on µ, to be specified
below, we will show that

(7) Q is almost OK(A).

To prove (7), we require that

(8) µ < 1.
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Then, note that (6) implies δQ < A
−1
2 , hence Q ∈ D(A2). Consequently,

our desired result (7) is equivalent to the following assertion:

(9) #(E ∩Q∗) ≤ 1,

or else, for some A′ ≤ A, we have

(10) A−1
2 δ(y,A

′) ≥ δQ for all y ∈ E ∩Q∗.

From (6), we obtain δQ < µδ#(x,A). By definition of δ#(x,A), this
means that either

(11) δQ < µδnbr(x),

or else, for some A′ ≤ A, we have

(12) δQ < µ δ̌(x,A′).

Under a suitable assumption on µ, we will show that (11) implies (9),
and that (12) implies (10). Since we know that either (11) or (12) holds, this
will tell us that either (9) or (10) is satisfied, completing the proof of (7).

To see that (11) implies (9), we assume that

(13) µ < c for a small enough constant c depending only on the dimension n.

Assuming (11), we see that at most one point of E lies inside a ball of
radius δQ/µ centered at x. By (13), and since x ∈ Q, we conclude that
#(E ∩Q∗) ≤ 1. Thus, under the assumption (13), indeed (11) implies (9).

Next we check that (12) implies (10), under the assumption that µ sat-
isfies (13). In fact, (12) tells us that

(14) δQ ≤ µ · max
(
|x − y|, A−1

2 δ(y,A
′)
)

for any y ∈ E.

In particular, for y ∈ E∩Q∗, we have |x−y| ≤ CδQ, and hence (14) implies
that

δQ ≤ max
(
CµδQ, A

−1
2 δ(y,A

′)
) ≤ max

(
1
2
δQ, A

−1
2 δ(y,A

′)
)

,

which immediately yields (10). Thus, as claimed, (11) implies (9), and (12)
implies (10). This completes the proof of (7), under the assumptions (8)
and (13) on µ.

We now take µ to be a constant, depending only on n, and small enough
to satisfy (8) and (13). Then (7) holds. Consequently, Q is contained in a
maximal almost OK(A)-cube Q′. By definition, Q′ ∈ CZ(A), and therefore
δQ ≤ δQ′ = δCZ(x,A). Together with (6), this yields

(15) δCZ(x,A) ≥ 1
2
µ · min{A−1

2 , δ
#(x,A)}.

Since µ now depends only on the dimension n, (15) is equivalent to the
desired estimate (5). The proof of (5) is complete.

Lemma 1 is now proven, since its conclusions are our known results (1)
and (5). �
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We will apply Lemma 1 for x ∈ E. To find the order of magnitude of
δCZ(x,A) when x /∈ E, we will use Lemmas 2, 3, 4 below.

Lemma 2. For a large enough C1, depending only on the dimension n, the
following holds.
Let x ∈ Rn and y ∈ E, with |x − y| ≤ 2dist(x, E). Fix A ⊆ M. If

δCZ(y,A) > C1|x − y| ,

then
1

2
δCZ(y,A) ≤ δCZ(x,A) ≤ 2δCZ(y,A) .

Proof. Let Q,Q′ be the cubes in CZ(A) containing y, x, respectively. Then

δCZ(x,A) = δQ′ and δCZ(y,A) = δQ.

Our hypothesis gives δQ > C1|x − y|, with y ∈ Q. If we take C1 large
enough (depending only on n), this implies that x ∈ (1+ cG)Q. Since also
x ∈ Q′, we have

(1+ cG)Q ∩ (1+ cG)Q′ �= ∅ , with Q,Q′ ∈ CZ(A).

Lemma 2 from the preceding section gives 1
2
δQ ≤ δQ′ ≤ 2δQ, which is the

conclusion of the present Lemma. �
Fix the constant C1 from Lemma 2.

Lemma 3. Let x∈Rn, y∈E, with 0 < |x− y| ≤ 2dist(x, E). Fix A ⊆ M. If

δCZ(y,A) ≤ 2C1|x − y| and |x − y| ≤ A−1
2 ,

then

(16) c|x− y| ≤ δCZ(x,A) ≤ C|x − y| .

Proof. Let 0 < µ < 1/2 be a small constant depending only on n, and let Q̂
be a dyadic cube containing x, with sidelength µ|x− y| < δ

�Q ≤ 2µ|x− y| .
(Note that |x− y| �= 0.)

As |x − y| ≤ A−1
2 we have δ

�Q ≤ A−1
2 , i.e., Q̂ ∈ D(A2). Also, no points

of E lie inside a ball of radius |x − y|/4 centered at x. Since δ
�Q ≤ 2µ|x− y|

and x ∈ Q̂, then Q̂∗ ∩E = ∅, provided that µ is a sufficiently small constant
depending only on n. This shows that Q̂ is almost OK(A). Consequently,

Q̂ ⊆ Q̂′ for a maximal almost OK(A)-cube Q̂′. By definition, Q̂′ ∈ CZ(A),

and also Q̂′ ⊇ Q̂ � x; hence, δCZ(x,A) = δ
�Q′ ≥ δ

�Q > µ|x− y|, proving half
of (16). We establish the other half by contradiction. Thus, suppose

(17) δCZ(x,A) > C′|x− y|

for a large enough C′ (depending only on n).
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Let Q,Q′ be the cubes in CZ(A) that contain y, x, respectively. Then
δCZ(x,A) = δQ′ , δCZ(y,A) = δQ, and (17) gives

(18) δQ′ > C′|x− y|, with x ∈ Q′.

If C′ is large enough, then (18) implies that y ∈ (1 + cG)Q′. On the other
hand, y ∈ Q. Hence,

(1+ cG)Q ∩ (1+ cG)Q′ �= ∅, with Q,Q′ ∈ CZ(A).

Lemma 2 from the preceding section now gives 1
2
δQ ≤ δQ′ ≤ 2δQ, and

therefore,

(19) δCZ(y,A) = δQ >
1
2
C′|x− y|,

by (18). If C′ is large enough, then (19) contradicts our hypothesis that
δCZ(y,A) ≤ 2C1|x − y|. Hence, if we take C′ large enough, depending only
on n (say, C′ = 4C1), then (17) cannot hold. This proves the remaining half
of (16), completing the proof of Lemma 3. �

Lemma 4. Let x ∈ Rn, y ∈ E, with |x−y| ≤ 2 dist(x, E). If |x−y| ≥ 1
2
A−1
2 ,

then
cA−1

2 ≤ δCZ (x,A) ≤ A−1
2 .

Proof. The hypothesis immediately implies that dist(x, E) ≥ 1
4
A−1
2 . Hence,

there is a dyadic cube Q containing x, with

(20) cA−1
2 ≤ δQ ≤ A−1

2 , and E ∩Q∗ = ∅.

From (20) we have Q ∈ D(A2) and #(E ∩ Q∗) = 0, hence Q is almost
OK(A). Therefore Q is contained in a maximal almost OK(A) cube Q′. By
definition, we have Q′ ∈ CZ(A). Since also Q′ ⊇ Q � x, it follows that

δCZ(x,A) = δQ′ ≥ δQ ≥ cA−1
2 ,

by (20). On the other hand, since Q′ ∈ CZ(A) ⊆ D(A2), we have

δCZ(x,A) = δQ′ ≤ A−1
2 .

The proof of Lemma 4 is complete. �
Lemmas 2, 3 and 4 reduce the computation of the order of magnitude

of δCZ(x,A) for x ∈ Rn � E to the computation of an “approximate near-
est neighbor” y ∈ E, and the determination of the order of magnitude of
δCZ(y,A) for y ∈ E.
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23. BBD Trees

In this section, we recall some of the results of Arya, Mount, Netanyahu,
Silverman and Wu from [1].

We work with a subset

(1) E ⊂ Rn, with #(E) = N ≥ 2.

We write c, C, C′, etc. to denote constants depending only on the dimen-
sion n, and we write X = O(Y) to denote the inequality |X| ≤ CY.

Given E as in (1), and given x ∈ Rn, we can enumerate the points of E
as x1, x2, . . . , xN, in such a way that

|x− x1| ≤ |x − x2| ≤ · · · ≤ |x− xN|.

We then write dk(x, E) to denote |x − xk|. Thus, dk(x, E) is the distance
from x to its kth nearest neighbor in the set E.

The following result is contained in [1].

Theorem BBD1. There exists an algorithm with the following properties:

• The initial input consists of the set E.

• After receiving the initial input E, the algorithm performs one-time
work O(N logN) using storage O(N).

• After the one-time work is done, the algorithm answers queries, with
work O(logN) per query.

• A query consists of a point x ∈ Rn.

• The answer to a query x consists of two distinct points x̃1, x̃2 ∈ E, with

|x− x̃1| ≤ 2d1(x, E) and |x − x̃2| ≤ 2d2(x, E).

Here, we have stated merely what we need; the algorithm in [1] is more
general and more precise than Theorem BBD1.

The proof of (the stronger version of) Theorem BBD1 in [1] is based
on a data structure called a “balanced box decomposition tree”, or “BBD
tree”. We will need to use BBD trees of a certain kind. Let us recall their
definition.

A “dyadic cuboid” is a subset of Rn, of the form

(2) 2k · ([a1, a1+1)×· · ·× [ai, ai+1)× [ai+1, ai+1+ 1
2
)×· · ·× [an, an+

1
2
)
)

for integers k, i, a1, . . . , ai; and integers or half-integers ai+1, . . . , an. (Here,
1 ≤ i ≤ n. If i = n, then (2) means simply 2k([a1, a1+1)×· · ·× [an, an+1)),
which is an arbitrary dyadic cube.)
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Dyadic cuboids have the following useful properties:

• Given dyadic cuboids Q,Q′ ⊂ Rn, we have either Q ⊆ Q′, Q′ ⊆ Q, or
Q ∩Q′ = ∅.

• Any dyadic cuboid Q may be partitioned into two congruent dyadic
cuboids Q1, Q2; if Q is given by (2), then we form Q1 and Q2 by
bisecting [ai, ai+ 1). We say that Q1 and Q2 arise by “bisecting” Q.
This differs from our use of the word “bisecting” for dyadic cubes.

Given E ⊂ Rn as in (1), a “BBD Tree” for E is a tree T with the following
properties.

BBD1: Each node of T other than the root is either a dyadic cuboid, or
otherwise a set of the form Q � Q′, where Q′ ⊂ Q, and Q,Q′

are dyadic cuboids. The latter set is called a “punctured dyadic
cuboid”.

BBD2: Any node other than the root has either two children (“an internal
node”), or zero children (“a leaf”). An internal node is the disjoint
union of its two children.

BBD3: The root of T is a disjoint union of at most 2n dyadic cubes that
contains the entire set E. The root has at most 2n children, that
are all dyadic cubes. The root is the disjoint union of its children.

BBD4: A node A ∈ T is a leaf if and only if #(A∩E) ≤ 1. For any leaf A,
we mark whether A ∩ E is empty or not.

BBD5: Each node A ∈ T is marked with a “representative” xA ∈ E that
satisfies xA ∈ A in case A ∩ E �= ∅.

BBD6: The tree has height O(logN), and the number of nodes is O(N).

BBD7: Let A ∈ T be a node other than the root. Assume that A is an
internal node. Then the children of A arise as follows:

(I) If A is a dyadic cuboid Q, then either

• The children of A are the two dyadic cuboids Q1, Q2 that arise
by “bisecting” Q (a “split”); or

• There exists a dyadic cuboid Q̃ ⊂ Q, such that the children of
A are Q̃ and Q� Q̃ (a “puncture”).

(Formally, it is possible to view a split as a puncture. We choose not
to do so. Whenever we say “a puncture”, we mean one which is not
a split.)
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(II) If A is a punctured cuboid Q�Q′, then either

• The children of A are Q1�Q′ and Q2, where Q1 and Q2 arise
by “bisecting” Q, and Q′ ⊆ Q1 (a “split”); or

• There exists a dyadic cuboid Q̃, with Q′ ⊂ Q̃ ⊂ Q, such that
the children of A are Q� Q̃ and Q̃�Q′ (“enlarging the hole”).

(Again, whenever we say that the children of A arise by “enlarging
the hole”, we mean in particular that they do not arise by a “split”.)

Note that it may happen that the entire set E is not contained in a single
dyadic cube; this is the reason why we allow the root to be a disjoint union
of dyadic cubes. (To avoid trivalities, the set E is assumed in [1] to be
contained in a single large dyadic cube.)

The main result in [1], and the main step in the proof of Theorem BBD1,
is as follows.

Theorem BBD2. There exists an algorithm that computes a BBD tree
for a given E ⊂ Rn as in (1), with work O(N logN) and storage O(N).

The differences between our definition of the BBD tree and the definition
in [1] are minor and non-essential. We will compute a BBD tree for E, as
part of our one-time work.

Remark. Formally, any dyadic cuboid may be viewed asQ\Q′ whereQ,Q′

are non-empty dyadic cuboids. We would like to emphasize that whenever
we say that A ⊂ Rn is a punctured dyadic cuboid, we mean in particular
thatA is not a dyadic cuboid. Thus, a (non-empty) punctured dyadic cuboid
is uniquely represented as Q \Q′ for dyadic cuboids Q,Q′.

24. Calderón-Zygmund Cubes: Sidelengths II

Our goal in this section is to give an algorithm to compute, for each A ⊆ M

and x ∈ E, the order of magnitude of δCZ(x,A). Recall that δCZ(x,A) was
defined in Section 22 as δQ, where Q is the cube in CZ(A) that contains x.

Note that in this section, we compute the order of magnitude of δCZ(x,A)
only for x ∈ E. In a later section, we will deal with general x ∈ Rn.

We assume here that the lengthscales δ(x,A) ∈ [0,∞] have already been
computed, for all x ∈ E, A ⊆ M.

We recall from Section 22 the definitions of δnbr(x), δ̌(x,A), δ#(x,A),
δCZ(x,A). We will compute the orders of magnitude of these quantities, for
all x ∈ E, A ⊆ M.
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We write C,C′, etc., here to denote constants depending only on m

and n.
First of all, by applying Theorem BBD1 from Section 23, we can compute

numbers δnbr(x) for all x ∈ E, satisfying

(1) 1
2
δnbr(x) ≤ δnbr(x) ≤ δnbr(x) for all x ∈ E;

the computation of the δnbr(x) for all x ∈ E uses work at most CN logN
and storage at most CN.

Next, we turn our attention to the numbers δ̌(x,A) for x ∈ E, A ⊆ M.
We fix a Callahan-Kosaraju decomposition (T,L), with parameter κ = 1/2.
(See Section 9 for the notation.) Recall that it takes work at most CN logN
and storage at most CN to compute (T,L).

Recall also that, for each (Λ1, Λ2) ∈ L, we have computed and stored
“representatives” x′Λ1 ∈ ∪Λ1 and x′′Λ2 ∈ ∪Λ2. Fix A ⊆ M. We perform the
following computations.

Step 1: For each A′′ ∈ T, we compute δ′′(A′′) := min
y∈A′′

δ(y,A).

Step 2: For each (Λ1, Λ2) ∈ L, we compute δ(Λ1, Λ2) := min
A′′∈Λ2

δ′′(A′′).

Step 3: For each A′ ∈ T, we compute

δ′(A′) := min
(Λ1,Λ2)∈L

Λ1�A′

{
max(|x′Λ1 − x′′Λ2 |, A

−1
2 δ(Λ1, Λ2))

}
.

Step 4: For each x ∈ E, we compute δmin(x) := min
A′∈T
A′�x

δ′(A′).

The properties of the Callahan-Kosaraju decomposition guarantee that
we can carry out the above computations, with total work at most CN logN,
and storage at most CN. (See (4), (5), (6) in Section 9.)

By inspection of Steps 1 and 2 above, we have

(2) δ(Λ1, Λ2) = min
y∈∪Λ2

δ(y,A), for each (Λ1, Λ2) ∈ L.

We recall the definition

(3) δ̌(x,A) = min
y∈E

{
max(|x − y|, A−1

2 δ(y,A))
}

for any x ∈ Rn.

The next lemma shows that the order of magnitude of δ̌(x,A) is known,
for all x ∈ E, once we have computed the δmin(x) (x ∈ E).
Lemma 1. For all x ∈ E, we have

(4) 1
2

min{δmin(x), A
−1
2 δ(x,A)} ≤ δ̌(x,A) ≤ 2min{δmin(x), A

−1
2 δ(x,A)}.
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Proof. By definition of δmin(x), we have

(5) δmin(x) = δ′(A′) for an A′ ∈ T with x ∈ A′.

Fix such an A′. By definition of δ′(A′), we have

(6) δ′(A′) = max
{
|x′Λ1 − x′′Λ2 |, A

−1
2 δ(Λ1, Λ2)

}
, for some (Λ1, Λ2) ∈ L

with A′ ∈ Λ1.
Fix such a (Λ1, Λ2). Combining (2), (5), (6), we see that

(7) δmin(x) = max
{
|x′Λ1 − x′′Λ2 |, A

−1
2 δ(ȳ,A)

}
, for some ȳ ∈ ∪Λ2.

We have now x, x′Λ1 ∈ ∪Λ1 and ȳ, x′′Λ2 ∈ ∪Λ2, with (Λ1, Λ2) ∈ L. Since
(T,L) is a Callahan-Kosaraju decomposition with κ = 1/2, it follows that
|x′Λ1 − x′′Λ2 | ≥ 1

2
|x− ȳ|, and therefore (7) yields

(8) δmin(x) ≥ 1
2

max
(
|x − ȳ|, A−1

2 δ(ȳ,A)
)
, with ȳ ∈ ∪Λ2 ⊆ E.

Comparing (8) with (3), we see that

(9) δmin(x) ≥ 1
2
δ̌(x,A).

From (3) we also obtain (trivially)

(10) A−1
2 δ(x,A) ≥ δ̌(x,A).

Estimates (9), (10) together imply the upper bound for δ̌(x,A) in (4).
We turn our attention to the lower bound. Fix ȳ ∈ E to achieve the

minimum in (3). Thus,

(11) δ̌(x,A) = max
{
|x− ȳ|, A−1

2 δ(ȳ,A)
}

.

If ȳ = x, then (11) gives δ̌(x,A) = A−1
2 δ(x,A), in which case the lower bound

for δ̌(x,A) in (4) is obvious. Suppose instead that ȳ �= x. By the defining
property of the Callahan-Kosaraju decomposition, there exists (Λ1, Λ2) ∈ L

with x ∈ ∪Λ1 and ȳ ∈ ∪Λ2. Fix such a (Λ1, Λ2), and fix also A′, A′′ ∈ T,
with x ∈ A′, A′ ∈ Λ1, ȳ ∈ A′′, A′′ ∈ Λ2. (Such A′, A′′ exist, since x ∈
∪Λ1 and ȳ ∈ ∪Λ2.) We have x, x′Λ1 ∈ ∪Λ1, and ȳ, x′′Λ2 ∈ ∪Λ2, with
(Λ1, Λ2) ∈ L. Another appeal to the defining properties of a Callahan-
Kosaraju decomposition (with κ = 1/2) yields

(12) |x′Λ1 − x′′Λ2 | ≤ 2|x− ȳ|.

We inspect the algorithm for the computation of δmin(x):

(13) By Step 4, δmin(x) ≤ δ′(A′);
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(14) By Step 3, δ′(A′) ≤ max
(
|x′Λ1 − x′′Λ2 |, A

−1
2 δ(Λ1, Λ2)

)
;

(15) By Step 2, δ(Λ1, Λ2) ≤ δ′′(A′′); and

(16) By Step 1, δ′′(A′′) ≤ δ(ȳ,A).

(Here, we use the fact that x ∈ A′, A′ ∈ Λ1, (Λ1, Λ2) ∈ L, A′′ ∈ Λ2, and
ȳ ∈ A′′.)
Combining (13),. . ., (16), we obtain δmin(x) ≤ max (|x′Λ1−x

′′
Λ2

|, A−1
2 δ(ȳ,A)).

Together with (12), this implies that δmin(x) ≤ 2max(|x− ȳ|, A−1
2 δ(ȳ,A)),

and therefore (11) yields 1
2
δmin(x) ≤ δ̌(x,A).

This immediately implies the lower bound for δ̌(x,A) in (4). Thus, that
lower bound holds in all cases. The proof of Lemma 1 is complete. �

We now let A ⊆ M vary, and we write δmin(x,A) in place of δmin(x).
We can compute all the δmin(x,A) for x ∈ E, A ⊆ M with work at most
CN logN and storage at most CN. Lemma 1 tells us that

(17)
1

2
δ̌(x,A) ≤ min

{
δmin(x,A) , A−1

2 δ(x,A)
} ≤ 2δ̌(x,A).

for all x ∈ E, A ⊆ M.
Recall that, for any x ∈ E and A ⊆ M, we defined

(18) δ#(x,A) = max
{
δnbr(x), max

A′≤A
δ̌(x,A′)

}
.

Let us define

(19) δ#(x,A) = max
{
δnbr(x),max

A′≤A

[
min{δmin(x,A

′), A−1
2 δ(x,A

′)}
]}

, for

x ∈ E, A ⊆ M.

For each given x,A, we can compute δ#(x,A) from the known quantities
δnbr(x), δmin(x,A

′), δ(x,A′) (A′ ≤ A), with work at most C. Hence, we
may compute and store all the δ#(x,A) (x ∈ E,A ⊆ M) with work and
storage at most CN. Moreover, comparing (18) with (19), and applying (1)
and (17), we learn that

(20) 1
2
δ#(x,A) ≤ δ#(x,A) ≤ 2δ#(x,A) for all x ∈ E, A ⊆ M.

Finally, we set

(21) δCZ(x,A) = min
{
A−1
2 , δ

#(x,A)
}

for x ∈ E, A ⊆ M.

Thus,

(22) We can compute all the quantities (21) starting from the set E,
and the lengthscales δ(x,A) (x ∈ E, A ⊆ M), with work at most
CN logN, and storage at most CN.
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Moreover, by comparing (20) and (21) with Lemma 1 from Section 22,
we discover that

(23) cδCZ(x,A) ≤ δCZ(x,A) ≤ CδCZ(x,A) for all x ∈ E, A ⊆ M.

We record (21), (22), (23) as a lemma.

Lemma 2. With work at most CN logN and storage at most CN, we can
compute numbers δCZ(x,A) (for all x ∈ E, A ⊆ M), having the following
property:

Let x ∈ E and A ⊆ M be given, and let Q be the cube in CZ(A) that
contains x. Then cδCZ(x,A) ≤ δQ ≤ CδCZ(x,A). That is,

cδCZ(x,A) ≤ δCZ(x,A) ≤ CδCZ(x,A).

Here, c and C depend only on m and n.

Thus, we have succeeded in computing the order of magnitude of the
sidelengths of the CZ cubes containing points of E.

25. Recognizing a CZ Cube

The goal of this section is to give an efficient algorithm to recognize whether
a given dyadic cube Q belongs to CZ(A) for a given subset A ⊆ M. We use
the BBD tree for the set E. Let us keep the notation from the Section 23,
except that in this section C,C′, etc. stand for constants depending only
on m and n.

We suppose that we have already precomputed the lengthscales δ(x,A) ∈
[0,∞], for all x ∈ E and A ⊆ M. We are given the constant A2.

For any subsets A ⊆ M and Ω ⊂ Rn, we write δmin(Ω,A) to denote
the minimum of δ(x,A) over all x ∈ E ∩ Ω. (If E ∩ Ω = ∅, then we set
δmin(Ω,A) = ∞.)
Note that, if Ω is partitioned into Ω1, . . . , Ωs, then

(1) δmin(Ω,A) = min
i=1,...,s

δmin(Ωi,A).

Recall that the leaves of our BBD tree T are marked. In particular, for
each leaf A, either E∩A = ∅ or #(E∩A) = 1. The leaf A is marked to show
whether E∩A is empty, and to exhibit the (unique) element xA ∈ E∩A, in
case E ∩ A is non-empty. Recall also that each internal node A other than
the root is the disjoint union of its two children A1 and A2. The root is the
disjoint union of its children, and it has at most 2n children. Consequently,
a trivial “bottom-up” recursive algorithm (using (1)) allows us to compute
the quantities

(2) δmin(A,A) for all A ⊆ M, and also #(E ∩A),

for each node A of the BBD tree.
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The work used to carry out the trivial algorithm, and thus to mark each
node A ∈ T with the information (2), is at most C ·#{nodes of T } ≤ C′N. We
assume from now on that the nodes of T are marked with the information (2).

We introduce the notion of the “hull” of a node A. If A is a cuboid Q,
then we define hull (A) = Q. Otherwise, A is a punctured cuboid Q �Q′

and we define hull (A) = Q.
We will base our algorithms on the following elementary result.

Proposition 1. Let A ∈ T be an internal node other than the root, let Q̂
be a dyadic cuboid, and suppose that Q̂ ⊆ hull (A). Then the set {A1, A2},
consisting of the children of A, may be partitioned into three subsets Xin,
Xout, Xhard, with the following properties:

(a) All A′ ∈ Xin satisfy A′ ⊂ Q̂.

(b) All A′ ∈ Xout satisfy A′ ∩ Q̂ = ∅.

(c) All A′′ ∈ Xhard satisfy Q̂ ⊆ hull (A′′).

(d) Xhard is empty or consists of a single node A′′.

Proof. The node A is an internal node, and is nor the root neither a leaf.
Therefore, A is non-empty, and is either a dyadic cuboid or else a punctured
dyadic cuboid. Let Q = hull(A). We will define a set Q′ as follows. If A
is a cuboid, we set Q′ = ∅. Otherwise, A is a punctured cuboid and we
define Q′ so that A = Q�Q′. In both cases, A = Q\Q′, and Q′ is properly
contained in Q = hull (A). We proceed by cases.

Case 1: Suppose A is split. Let Q1 and Q2 be the two dyadic cuboids ob-
tained by “bisecting” Q. Then Q′ is contained in either Q1 or Q2. Without
loss of generality, say Q′ ⊆ Q1. Then the children of A are A1 = Q1�Q′

and A2 = Q2. The hull of the cuboid A2 is Q2.

Since Q̂ ⊆ hull (A) = Q, we have either Q̂ = Q, Q̂ ⊆ Q2, or Q̂ ⊆ Q1.
• If Q̂ = Q, then we take Xin = {A1, A2}, Xout = ∅, Xhard = ∅.

• If Q̂ ⊆ Q2, then we take Xin = ∅, Xout = {A1}, Xhard = {A2}.

• If Q̂ ⊆ Q1 and hull(A1) = Q1, then we take Xin = ∅, Xout = {A2},
Xhard = {A1}.

In each of the three sub-cases above, properties (a),. . .,(d) hold. We still

need to handle the case where Q̂ ⊆ Q1 but hull(A1) �= Q1. In this case,
necessarily A1 = hull(A1) = Q1 \ Q′ is actually a cuboid (see Figure 2).

Therefore Q1 = A1 ∪ Q′, a disjoint union of cuboids. Since Q̂ ⊆ Q1 then
either Q̂ = Q1, Q̂ ⊆ A1 or Q̂ ⊆ Q′.

• If Q̂ = Q1, then we take Xin = {A1}, Xout = {A2} and Xhard = ∅.
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• If Q̂ ⊆ A1, then we take Xin = ∅, Xout = {A2} and Xhard = {A1}.

• If Q̂ ⊆ Q′, then we take Xin = ∅, Xout = {A1, A2} and Xhard = ∅.

In each of the three sub-cases above, properties (a),. . .,(d) hold. Thus the
Proposition holds in Case 1.

Q2

Q

Q1

A1

=

Figure 2

A2

Q’

Case 2: Suppose A is punctured, or else its hole is enlarged. Then there is

a dyadic cuboid Q̃, such that Q′ ⊂ Q̃ ⊂ Q, and the children of A are
A1 = Q � Q̃, A2 = Q̃ � Q′. Since the operation here is not a split, then
hull(A1) = Q. Recall that Q̂ ⊂ Q = hull(A). We have either Q̃ � Q̂,

Q̃ ∩ Q̂ = ∅ or Q̂ ⊆ Q̃.

• If Q̃ � Q̂, then we take Xin = {A2}, Xout = ∅, Xhard = {A1}.

• If Q̃ ∩ Q̂ = ∅, then we take Xin = ∅, Xout = {A2}, Xhard = {A1}.

• If Q̂ ⊆ Q̃ and hull(A2) = Q̃, then we take Xin = ∅, Xout = {A1},
Xhard = {A2}.

In each of the three sub-cases above, properties (a),. . .,(d) hold. We still

need to consider the case where Q̂ ⊆ Q̃ and hull(A2) �= Q̃ (see Figure 3).

In this case A2 = hull(A2) = Q̃ \ Q′ is a cuboid. Hence Q̃ = A2 ∪ Q′ is

a disjoint union of cuboids. Since Q̂ ⊆ Q̃ then either Q̂ = Q̃, Q̂ ⊆ A2 or
Q̂ ⊆ Q′.
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• If Q̂ = Q̃, then we take Xin = {A2}, Xout = {A1} and Xhard = ∅.

• If Q̂ ⊂ A2, then we take Xin = ∅, Xout = {A1} and Xhard = {A2}.

• If Q̂ ⊂ Q′, then we take Xin = ∅, Xout = {A1, A2} and Xhard = ∅.

In each of the three sub-cases above, properties (a),. . .,(d) hold. Thus, the
Proposition holds also in Case 2. We conclude that the Proposition is proven
in all cases. �

’ A2Q

Figure 3

Q

~
Q = Q     A ’ 2

Given an internal node A ∈ T other than the root, and a dyadic cuboid
Q̂ ⊂ hull (A), the computation of Xin, Xout and Xhard as in Proposition 1
is straightforward, and requires no more than C computer operations. We
exploit Proposition 1 in the following algorithm.

Algorithm RCZ0: Given a node A ∈ T other than the root and a dyadic

cuboid Q̂ ⊆ hull (A), we compute the quantities

(3) #(E ∩ Q̂ ∩A), and δmin(Q̂ ∩A,A) for all A ⊆ M.

Explanation: If A is a leaf, then E ∩ A is empty or a singleton {xA}; the
marking of A indicates which case occurs, as well as xA (in case E∩A �= ∅).
Hence, it is trivial to compute the quantities (3) when A is a leaf.
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Suppose A is an internal node that is not the root. Recall that A is the
disjoint union of its children. We partition the set of children of A into Xin,
Xout and Xhard, as in Proposition 1.

Either Xhard is empty, or Xhard = {A′′} for a single node A′′, with Q̂ ⊆
hull (A′′).

If Xhard is empty, then Q̂ ∩ A is the disjoint union of the A′ in Xin. Conse-
quently,

(4) #(E ∩ Q̂ ∩A) =
∑
A′∈Xin

#(E ∩A′), and

(5) δmin(Q̂ ∩A,A) = min
A′∈Xin

δmin(A
′,A) for all A ⊆ M,

thanks to (1). The right-hand sides of (4), (5) may be trivially computed
from our markings (2) for the nodes A′ ∈ Xin. Hence, (4) and (5) yield the
desired information (3), in case Xhard is empty.

If Xhard = {A′′}, then Q̂ ∩ A is the disjoint union of Q̂ ∩ A′′ and all the A′

in Xin. Consequently,

(6) #(E ∩ Q̂ ∩A) = #(E ∩ Q̂ ∩A′′) +
∑
A′∈Xin

#(E ∩A′), and

(7) δmin(Q̂∩A,A) = min
{
δmin(Q̂∩A′′,A), min

A′∈Xin

δmin(A
′,A)

}
for all A⊆M.

As with (4) and (5), the right-hand sides of (6) and (7) may be computed
easily from the markings (2) for A′ ∈ Xin, once we know the quantities

(8) #(E ∩ Q̂ ∩A′′), and δmin(Q̂ ∩A′′,A), for all A ⊆ M.

To compute the quantities (8), we apply Algorithm RCZ0 recursively, to the

node A′′ and the dyadic cuboid Q̂. Note that A′′ is a child of A, and that
Q̂ ⊆ hull (A′′), since A′′ ∈ Xhard. (See conclusion (c) of Proposition 1.)
Thus, if the recursive call to Algorithm RCZ0 terminates, then we obtain the
quantities (8), and substitute them into (6) and (7) to obtain the desired
information (3). Apart from recursing, the amount of work we perform while

inspecting the node A and the cuboid Q̂ is clearly bounded by C.
This completes our description of Algorithm RCZ0.

Note that Algorithm RCZ0 terminates, and takes work at most C logN.
To see this, suppose we apply Algorithm RCZ0 to a given node A0, different
from the root, and a given cuboid Q̂. Then the algorithm recursively calls
itself, withA0 replaced successively by A1, A2, . . .where Aν is a child ofAν−1
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for each ν. Since the tree T has height at most C logN, it follows that the
algorithm terminates after at most C logN recursive calls. This implies
easily that the work of Algorithm RCZ0 is at most C logN, as claimed.

The next step is as follows.

Algorithm RCZ1: Given a dyadic cuboid Q̂, we compute

(9) #(E ∩ Q̂) and δmin(Q̂,A) = min
x∈E∩�Q

δ(x,A) for each A ⊆ M.

Explanation: The root of the BBD tree T is a disjoint union of dyadic cuboids

A1, ..., AL with L ≤ 2n. The set E is contained in A1 ∪ . . . ∪ AL. For each
i = 1, ..., L, we will compute

(10) #(E ∩ Q̂ ∩Ai) and δmin(Q̂ ∩Ai,A) for each A ⊆ M.

The cubes Ai are disjoint and their union contains E. Hence, once the
quantities in (10) are obtained, the computation of the information in (9)

is obvious. For each i = 1, ..., L, either Ai ⊆ Q̂, Q̂ ∩ Ai = ∅, or Q̂ ⊆ Ai.
The information (10) is obtained trivially in the first two cases. In the third

case, we have Q̂ ⊆ Ai = hull (Ai), and Ai is a node in T that is not the root.
Hence, the desired information (10) may be read off from Algorithm RCZ0
(with A = Ai) in the non-trivial case. The work of the algorithm is at most
C logN. This concludes our description and analysis of Algorithm RCZ1.

Let Q ⊂ Rn be a dyadic cube, and let A ⊆ M be given. The cube Q∗ is a
disjoint union of 5n dyadic cubes Qν, in an obvious way. Applying Algorithm
RCZ1 to each of the Qν, we can easily compute the quantities

#(E ∩Q∗), and min{δ(x,A′) : x ∈ E ∩Q∗} for all A′ ≤ A.
This allows us to decide whether Q is almost OK(A), with work at most
C logN.

It follows easily from the definitions of “CZ(A)” and “almost OK(A)”
that a dyadic cube Q ⊂ Rn belongs to CZ(A) if and only if Q is almost
OK(A), but Q+ is not almost OK(A). (Here, Q+ is the dyadic parent
of Q. In particular, if δQ = A−1

2 , then Q+ cannot be almost OK(A), since
Q+ /∈ D(A2).)

Hence, we have proven the following result.

Lemma 1. After performing CN logN one-time work, with storage CN,
we can answer queries as follows:

Given a dyadic cube Q ⊂ Rn and a subset A ⊆ M, we can decide with
work C logN whether Q ∈ CZ(A). Here, C is a constant depending only
on m and n.

Thus, we have carried out the goal of this section.
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26. Computing CZ Cubes

In this section, we write c, C, C′, etc. to denote constants depending only
on m and n. Our goal here is to establish the following result.

CZ Computation Lemma. After performing one-time work at most
CN logN, and using storage at most CN, we can answer queries in C logN
time as follows:

Given a subset A ⊆ M and a point x ∈ Rn, we exhibit a list of all the
cubes Q ∈ CZ(A) such that (1+ cG)Q contains x.

Proof. We combine the results of several previous sections.
We begin by computing the CZ cubes containing the points of E. Recall

from Section 24 (specifically, Lemma 2 in that section), that we can compute
and store numbers δCZ(x,A) for all x ∈ E, A ⊆ M, such that

(1) cδCZ(x,A) ≤ δCZ(x,A) ≤ CδCZ(x,A) for all x ∈ E,A ⊆ M.

The work and storage to produce all the δCZ(x,A) are at most CN logN
and CN, respectively. We recall that, for each x ∈ Rn and A ⊆ M, we have

(2) δCZ(x,A) = δQ for the Q ∈ CZ(A) that contains x.

Next, we perform the one-time work associated with Theorem BBD1 in
Section 23, as well as that associated with Lemma 1 in Section 25. This
one-time work is at most CN logN, and the storage it uses is at most CN.

Fix x ∈ E and A ⊆ M. There are at most C′ dyadic cubes Q such that

(3) Q � x and cδCZ(x,A) ≤ δQ ≤ CδCZ(x,A).

Among these is the Q ∈ CZ(A) that contains x, as we see from (1), (2).
According to Lemma 1 in Section 25, we can test each dyadic cube Q satis-
fying (3), to decide whether Q ∈ CZ(A). The one and only survivor will be
the cube Q ∈ CZ(A) containing x, and the total work for the testing is at
most C logN.

Looping over all x ∈ E and A ⊆ M, we compute (and store), for each
such x and A, the cube Q ∈ CZ(A) containing x. The total work needed is
at most CN logN, and the storage needed is at most CN.

Thus, we may suppose that we have precomputed the cube Q ∈ CZ(A)
containing x and the number δCZ(x,A) = δQ for each x ∈ E, A ⊆ M.

Next, we drop our assumption that x ∈ E. Let x ∈ Rn and A ⊆ M be
given. We explain how to compute the CZ(A) cube that contains x. Using
Theorem BBD1 (from Section 23), we compute, with work at most C logN,
a point y ∈ E such that |x − y| ≤ 2dist(x, E). If x = y, then x ∈ E and the
cube Q ∈ CZ(A) containing x has already been computed and stored in the
one-time work. In that case, we may simply retrieve from memory the cube
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Q ∈ CZ(A) that contains x. Assume now that x �= y. We look up the value
of δCZ(y,A), which has been precomputed above.

We are in position to invoke Lemmas 2, 3, 4 from Section 22. With C1
as in those Lemmas, we obtain the following results:

(4) If δCZ(y,A) > C1|x−y|, then 1
2
δCZ(y,A) ≤ δCZ(x,A) ≤ 2 δCZ(y,A).

(5) If δCZ(y,A) ≤ 2C1|x − y| and 0 < |x − y| ≤ A−1
2 , then c|x − y| ≤

δCZ(x,A) ≤ C|x− y|.

(6) If |x− y| ≥ 1
2
A−1
2 , then cA−1

2 ≤ δCZ(x,A) ≤ A−1
2 .

At least one of (4), (5), (6) applies, since x �= y. Hence, with work at most C,
we can compute a number δCZ(x,A), such that

(7) cδCZ(x,A) ≤ δCZ(x,A) ≤ CδCZ(x,A).

There are at most C′ dyadic cubes Q such that

(8) Q � x and cδCZ(x,A) ≤ δQ ≤ CδCZ(x,A).

Among these is the cube Q ∈ CZ(A) containing x, as we see from (7)
and (2). Using Lemma 1 from Section 25, we can test each Q satisfying (8),
to decide whether Q ∈ CZ(A). The one and only survivor will be the cube
Q ∈ CZ(A) containing x. The work of all the testing is at most C logN.

Thus, given x ∈ Rn and A ⊆ M, we can find, with work at most C logN,
the cube Q ∈ CZ(A) containing x.

Finally, let x ∈ Rn and A ⊆ M be given, as before. As above, we find
the cube Q ∈ CZ(A) containing x. Now suppose that Q′ ∈ CZ(A), with
(1 + cG)Q′ � x. According to Lemma 2 (“Good Geometry”) in Section 21,
we must have 1

2
δQ ≤ δQ′ ≤ 2δQ. Consequently, to exhibit all the Q′ ∈

CZ(A) such that (1 + cG)Q′ � x, it is enough to search among the dyadic
cubes Q′ such that

(9) (1+ cG)Q′ � x, and 1
2
δQ ≤ δQ′ ≤ 2δQ.

There are at most C such dyadic cubes Q′. Using Lemma 1 in Section 25,
we can test each of these Q′, to see whether Q′ ∈ CZ(A).

Thus, we can output a list of all theQ′ ∈ CZ(A) such that (1+cG)Q′ � x.
The work of all the testing is at most C logN.

The proof of the CZ Computation Lemma is complete. �
Remark. For x = (x1, ..., xn) ∈ Rn we write |x|�∞ = maxi |xi|. Recall Theo-
rem BBD1 from Section 23. Suppose we replace in that theorem the Euclid-
ean norm with the �∞ norm. That is, suppose that we modify Theorem
BBD1, such that the answer to a query would now consist of two distinct
points x̃1, x̃2 ∈ E, with |x−x̃1|�∞ ≤ 2miny∈E |x−y|�∞ , and similarly, |x−x̃2|�∞
satisfies the obvious �∞ analog of the condition from Theorem BBD1. Then
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it is straightforward to adapt the proof of the CZ computation lemma,
including the results it relies on from the preceding sections, to the case
where Theorem BBD1 uses the �∞ metric. The key observation is that
|x|�∞ ≤ |x| ≤ √

n|x|�∞ for all x ∈ Rn, and that this
√
n factor does not

matter much, since our constants are allowed to depend on the dimension.
We omit the details. This remark will be used only in the Appendix.

27. Finding Representatives

The goal of this section is to give an algorithm to produce a point in E∩Q,
where Q is a given dyadic cube satisfying E ∩ Q �= ∅. Recall that we can
compute #(E ∩Q) by algorithm RCZ1 from Section 25.

We write c, C, C′, etc. here to denote constants depending only on the
dimension n, and we write X = O(Y) to indicate that |X| ≤ CY.

We proceed as in Section 25, using the BBD tree T . We retain the
notation of that section. Recall (from Section 23) that each node A ∈ T

is marked to indicate whether A ∩ E is empty or not. Additionally, recall
that with any node A ∈ T we store a “representative” xA ∈ E that satisfies
xA ∈ E ∩A in case E ∩A �= ∅. We will use the xA below.

Algorithm REP0: Given a node A ∈ T other than the root, and a dyadic

cuboid Q̂ ⊆ hull (A) such that

(0) Q̂ ∩ A ∩ E �= ∅,

we produce a “representative” x
�Q,A ∈ Q̂ ∩ A ∩ E.

Explanation: Note that our algorithm does not check whether (0) holds; it
simply runs, exhibiting a representative in case (0) holds, and doing who-
knows-what otherwise.

If A is a leaf, then A∩E is either empty (which cannot occur here, thanks
to (0)), or else the singleton {xA}. Hence, we may simply return x

�Q,A = xA
in case A is a leaf.

Suppose A is an internal node other than the root. We partition the set
of children of A into subsets Xin, Xout, Xhard, as in Proposition 1 in Section 25.
According to Proposition 1, we have either

(1) Xhard is empty, and Q̂ ∩A is the union of the A′ in Xin, or else

(2) Xhard = {A′′} for a node A′′ (a child of A), and Q̂ ∩A is the union of

Q̂ ∩A′′ with the nodes A′ in Xin.

We check whether there exists an A′ ∈ Xin with E ∩ A′ �= ∅. If so, then
we simply return x

�Q,A = xA′ for such an A′. We then have x
�Q,A ∈ E ∩A′ =

Q̂∩A′∩E ⊆ Q̂∩A∩E, thanks to the defining properties of xA′ , A′, and Xin.
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Otherwise (that is, if E∩A′ = ∅ for all A′ ∈ Xin) then, by (0), we cannot

be in case (1) above; we must be in case (2), and, moreover, Q̂ ∩ E ∩ A =

Q̂ ∩ E ∩A′′ �= ∅. In this case, since A′′ ∈ Xhard, we have Q̂ ⊆ hull (A′′), by
conclusion (c) of Proposition 1 in Section 25. Hence, we may find a point

x
�Q,A ∈ Q̂∩E∩A by recursively calling Algorithm REP0 for the node A′′ and

the cuboid Q̂.

This concludes our description of Algorithm REP0. Since A′′ is a child
of A above, and since the BBD tree has height O(logN), it follows that
Algorithm REP0 terminates, and that the work of the algorithm is O(logN),
once we have constructed the BBD tree.

Algorithm REP1: Given a dyadic cuboid Q̂, we decide whether E ∩ Q̂ = ∅;

and if E ∩ Q̂ �= ∅, then we exhibit a “representative” x
�Q ∈ E ∩ Q̂.

Explanation: The root of the BBD tree T is a disjoint union of dyadic cuboids

A1, ..., AL with L ≤ 2n. The set E is contained in
⋃L
i=1A

i. For each dyadic

cuboid Ai, we detect whether Ai intersects Q̂. Since Ai and Q̂ are dyadic
cuboids, then also Q̂∩Ai is a dyadic cuboid, whenever non-empty. For each i
such that Q̂ ∩ Ai is non-empty, we apply Algorithm RCZ1 for the dyadic
cuboid Q̂∩Ai to compute #(E∩ Q̂∩Ai). If #(E∩ Q̂∩Ai) = 0 for all i, we

conclude that E∩ Q̂ = ∅. Otherwise, for some i we have E∩ Q̂∩Ai �= ∅ with
Q̂ ∩ Ai being a dyadic cuboid contained in Ai = hull(Ai). Hence, we may

exhibit a point in E ∩ Q̂ by running Algorithm REP0 for the node Ai ∈ T
and the dyadic cuboid Q̂∩Ai. After one-time work O(N logN) with storage
O(N), Algorithm REP1 requires work O(logN).

Let Q be a dyadic cube. Then Q∗ is a disjoint union of 5n obvious dyadic
cubes, and Q∗∗ is a disjoint union of 25n obvious dyadic cubes. Hence, by
applying Algorithm REP1, we can perform the following computations.

Algorithm Is-Cube-Empty(Q): Given a dyadic cube Q, we decide whether
E ∩Q∗∗ = ∅. We return “yes” if E ∩Q∗∗ = ∅ and “no” otherwise.

Algorithm Find-Representative(Q): Given a dyadic cube Q such that E ∩
Q∗∗ �= ∅, we return a point xQ ∈ E∩Q∗∗, with the property that xQ ∈ E∩Q∗

if E ∩Q∗ �= ∅.

The algorithm Find-Representative(Q) is guaranteed to function prop-
erly only when its input Q is a dyadic cube such that E ∩ Q∗∗ �= ∅. We
make no claim regarding Find-Representative(Q) when its input fails to be
a dyadic cube with E ∩ Q∗∗ �= ∅. After one-time work O(N logN) with
storage O(N), the execution of the algorithms Is-Cube-Empty(Q) and Find-
Representative(Q) requires work O(logN).
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28. Partitions of Unity

In this section, C, c stand for constants depending only on m and n. Recall
that J+x (F) denotes the m-jet of the function F : Rn → R at the point x ∈ Rn.
Let Q be a dyadic cube in Rn. Let θ̃Q ∈ Cm(Rn) be a function such that

(1) 0 ≤ θ̃Q ≤ 1 on Rn,

(2) θ̃Q ≥ c on Q,

(3) θ̃Q = 0 outside (1+ cG
2

)Q,

(4) |∂βθ̃Q(x)| ≤ Cδ−|β|
Q for x ∈ Rn, |β| ≤ m.

It is easy to satisfy conditions (1),..., (4), e.g., by taking θ̃Q to be an
appropriate spline. (See, e.g., (3) of Section 54.) Furthermore, we assume
that θ̃Q is picked so that the following query can be answered in work at
most C:

Algorithm PU1: (“Find jet of θ̃Q”) Given a dyadic cube Q, and a point

x ∈ Rn, compute the m-jet J+x (θ̃Q).

Given A ⊂ M, the Calderón-Zygmund decomposition CZ(A) is a cover
of the entire Rn. Consequently (2) implies that

(5)
∑

Q∈CZ(A)

θ̃Q ≥ c on Rn.

For any x ∈ Rn, there are at most C cubes Q ∈ CZ(A) such that x ∈
Supp(θ̃Q), according to (3) and to the Corollary to Lemma 2 in Section 21.
We conclude that the left-hand side of (5) is finite everywhere. For Q ∈
CZ(A), we define

θA
Q = θ̃Q

/ ∑
�Q∈CZ(A)

θ̃
�Q.

The function θA
Q ∈ Cm(Rn) is well defined, non-negative and finite by (5),

and

(6) θA
Q(x) = 0 for x �∈ (1+ cG/2)Q.

We also have

(7)
∑

Q∈CZ(A)

θA
Q = 1 on Rn.
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Therefore, the collection θA
Q (Q ∈ CZ(A)) constitutes a partition of unity

on Rn. Let x ∈ Rn, and let Q ∈ CZ(A) be such that x ∈ (1+ cG)Q.

According to Lemma 2 from Section 21,

(8) If Q̂ ∈ CZ(A), x ∈ (1+ cG)Q̂ then necessarily 1
2
δQ ≤ δ

�Q ≤ 2δQ.

Recall that by the Corollary to Lemma 2 in Section 21, there are at most
C cubes Q̂ ∈ CZ(A) such that x ∈ (1 + cG)Q̂. We conclude from (3), (4)
and (8), that for any |β| ≤ m,

(9)

∣∣∣∣∣∂β
[ ∑

�Q∈CZ(A)

θ̃
�Q

]
(x)

∣∣∣∣∣ ≤ ∑
�Q∈CZ(A)

x∈(1+cG) �Q

Cδ
−|β|
�Q

< C′δ−|β|
Q .

Combining (9) with (5), we see that for any Q ∈ CZ(A),

(10)
∣∣∂βθA

Q(x)
∣∣ ≤ C′δ−|β|

Q for all x ∈ Rn, |β| ≤ m.

Note that (6), (7) and (10) are the standard properties of partitions of
unity that are usually used in Cm-extension problems.

Algorithm PU2: (“Find jet of θA
Q”) Given A ⊂ M, a dyadic cube Q ∈ CZ(A)

and a point x ∈ Rn, compute J+x (θ
A
Q).

Explanation: First, we apply the CZ computation lemma from Section 26.
According to that lemma, presuming a one-time work, we can produce in
C logN time, the list of all cubes Q̂ ∈ CZ(A) such that x ∈ (1 + cG)Q̂.
Denote this list by L. By the Corollary to Lemma 2 in Section 21, �(L) < C.
According to (3),

J+x

( ∑
�Q∈CZ(A)

θ̃
�Q

)
=

∑
�Q∈L

J+x (θ̃�Q).

Thus, using Algorithm PU1, we can compute both J+x (θ̃Q) and

J+x

( ∑
�Q∈CZ(A)

θ̃
�Q

)
within C computer operations. From these two m-jets, we can read off
J+x (θ

A
Q). This algorithm uses at most C logN work and storage. The one-

time work required is CN logN operations and CN storage. Here, C is a
constant depending only on m and n.

In the special case A = ∅, we can produce the above list L within C
computer operations, thanks to Lemma 5 in Section 21. Hence, it takes
only C operations to execute Algorithm PU2 when A = ∅.



Fitting a Cm-Smooth Function to Data II 129

Chapter IV - Main Algorithm

29. The Main Algorithm and the Main Lemma

In this section we present the main procedure of our algorithm. Recall that
J+x (F) denotes the m-jet of the function F at the point x and that P+ is the
space of all polynomials of degree m on Rn. Recall that for two polynomials
P,Q ∈ P+ and x ∈ Rn, we denote by P �+

x Q the unique polynomial in P+

for which ∂β(P �+
x Q − PQ)(x) = 0 for |β| ≤ m. In this section we denote

by C,C′ constants depending only on m and n.

In Section 14, we introduced an order relation < on subsets of M, the
set of multi-indices of order at most m− 1. The minimal subset of M under
< is M itself. For any proper subset A ⊂ M, recall that we write A− to
denote the predecessor of A under the order <.

Next, we will present a procedure for the computation of a certain poly-
nomial, to be denoted by fx(A0, Q0, x0, P0). A standard convention in com-
puter programming, is that text between /* ... */ is not part of the actual
algorithm, but rather serves to ease the reading of the algorithm.

The Main Algorithm Procedure fx(A0, Q0, x0, P0).

/* Returns a polynomial in P+, to be viewed as a jet at x.
Defined for A0 ⊂ M,Q0 ∈ CZ(A0), x0 ∈ E ∩Q∗∗

0 , P0 ∈ P, x ∈ (1+ cG)Q0. */
Line 1: If A0 = M then define fx(A0,Q0, x0, P0) := P0, else
Line 2: { Let A′ be the least A ⊂ M such that Q0 ∈ CZ(A′).
Line 3: If A′ < A0, then define fx(A0,Q0, x0, P0) := fx(A

′,Q0, x0, P0),
Line 4: else
Line 5: { Produce a list Q1, ...,Qkmax of all the cubes
Line 6: Q ∈ CZ(A−

0 ) such that x ∈ (1+ cG)Q.
Line 7: For each k = 1, ..., kmax do the following:
Line 8: { If E ∩Q∗∗

k = ∅, then set fk := P0, else
Line 9: { If x0 ∈ Q∗

k, then set xk := x0 and Pk := P0, else
Line 10: { Define xk := Find-Representative(Qk).
Line 11: Define Pk := Find-Neighbor(P0,A0, xk).
Line 12: } /* Now we have found xk, Pk in all cases */
Line 13: Define fk := fx(A

−
0 ,Qk, xk, Pk).

Line 14: } /* Now we have found fk in all cases */
Line 15: } /* End of the k-loop starting in line 7 */

Line 16: Define fx(A0,Q0, x0, P0) :=

kmax∑
k=1

J+x

(
θ

A−
0
Qk

)
�+
x fk.

Line 17: }
Line 18: }
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Thanks to the algorithms from the previous sections, we can carry out
the above algorithm for computing fx(A0, Q0, x0, P0). Let us elaborate on

the execution of the Main Algorithm. Recall that the letters C,C′, C̃ stand
for various constants depending only on m and n.

We can execute Line 2, thanks to Lemma 1 from Section 25. The
amount of work needed here isC logN, presuming one-time work ofCN logN
time and CN storage.

We can execute Line 3 since, recursively, we can evaluate fx(A
′, Q0, x0,

P0) when A′ < A0 and Q0 ∈ CZ(A′), x0 ∈ E ∩Q∗∗
0 , P0 ∈ P, x ∈ (1+ cG)Q0.

We can execute Lines 5-6 according to the CZ Computation Lemma
from Section 26. The work needed here is C logN, presuming one-time work
of time CN logN and storage CN.

Note that kmax ≤ C according to the Corollary to Lemma 2 from Sec-
tion 21. Hence the loop in Lines 8-15 is executed at most a constant
number of times.

We can execute Lines 8-10 by applying the algorithms Is-Cube-Empty
and Find-Representative from Section 27. We need C logN operations for the
execution of Lines 8-10, presuming the standard CN logN one-time work.

Regarding Line 11, the algorithm Find-Neighbor is discussed in Sec-
tion 15, and requires C operations, given CN logN one-time work.

We can execute Line 13 since, recursively, we can evaluate fx(A
−
0 , Qk, xk,

Pk) as A−
0 < A0 and Qk ∈ CZ(A−

0 ), xk ∈ E ∩Q∗∗
k , Pk ∈ P, x ∈ (1+ cG)Qk.

We can execute Line 16 thanks to Algorithm PU2 from Section 28. This
takes C logN computer operations. (As a matter of fact, C computer op-

erations suffice here as the cubes Q̂ ∈ CZ(A−
0 ) with x ∈ (1 + cG)Q̂ were

already computed.)
By an easy induction on A (with respect to our order relation <), it

follows that the number of operations needed to execute fx(A0, Q0, x0, P0),
once we have done the one-time work, is at most C logN. Let us summarize
the above discussion.

Proposition. For any A0 ⊂ M, Q0 ∈ CZ(A0), x0 ∈ E ∩ Q∗∗
0 , P0 ∈ P, x ∈

(1 + cG)Q0, we can compute the polynomial fx(A0, Q0, x0, P0) with work at
most C logN, given that we have previously done one-time work of CN logN
operations and CN storage.

So far we have shown that the procedure for the computation of fx(A0, Q0,
x0, P0) is efficient. Next, we explain why this procedure may actually be
useful. The properties of fx(A0, Q0, x0, P0) are stated in the following lemma,
whose proof occupies Sections 30,..., 33. Recall that for x ∈ Rn, δ > 0, we
have set

B+(x, δ) = {P ∈ P+ : |∂βP(x)| ≤ δm−|β| for |β| ≤ m}.
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Recall from Section 10 the basic blobs Γ(x, �) (x ∈ E, � ≥ 0), and recall the
constants �(A0) and A3(A0) from Section 14 and Section 17, respectively.

Let A0 ⊂ M be a given subset of M.

Main Lemma for A0:

Suppose that

(1) Q0 ∈ CZ(A0),

(2) x0 ∈ E ∩Q∗∗
0 with x0 ∈ E ∩Q∗

0 when E ∩Q∗
0 �= ∅,

(3) M0 > 0,

(4) P0 ∈ Γ(x0, �(A0),M0).

Then, there exists F ∈ Cm((1+ cG)Q0), with the following properties:

(5) J+x (F− P0) ∈ A3(A0) ·M0 · B+(x, δQ0) for all x ∈ (1+ cG)Q0.

(6) Jx(F) ∈ Γ(x, 0, A3(A0) ·M0) for all x ∈ E ∩ (1+ cG)Q0.

(7) J+x (F) = fx(A0, Q0, x0, P0) for all x ∈ (1+ cG)Q0.

(8) If x0 ∈ (1+ cG)Q0, then also Jx0(F) = P0.

Chapter V - Proofs

30. Preparation for the Proof: Collections of Polyno-
mials

This is the first in a sequence of four sections that are dedicated to the proof
of the Main Lemma from the preceding section. In this section we collect
some results, to be used in the next sections, on certain sets of polynomi-
als. In these four sections, the letters c, C, c′, C̃, etc. denote some positive
constants depending only on m and n; also, p, p̄, p̃, etc. will denote positive
integer constants depending only on m and n. The values of these constants
are not necessarily the same in different appearances.

We will work in the space R�(A), for non-empty subsets A ⊆ M. For
a ∈ R�(A) we use a = (aα)α∈A as coordinates in R�(A).

For x ∈ Rn and ∅ �= A ⊆ M, let πA,x : P → R�(A) be the following linear
map:

(1) πA,x(P) = (∂αP(x))α∈A .

For ∅ �= A ⊆ M, δ > 0 we also set

(2) BA(δ) =

{
(aα)α∈A :

∑
α∈A

δ|α|−m|aα| ≤ 1
}

⊂ R�(A).
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Recall the definition of B(x, δ) from Section 1. It is straightforward to
verify that for any x ∈ Rn,

(3) BA(δ) is C-equivalent to πA,x {B(x, δ)} .

Let x ∈ Rn, P ∈ P,A ⊆ M. If there exists α ∈ A with ∂αP(x) �= 0, then we
set,

(4) αA,x(P) = max{α ∈ A : ∂αP(x) �= 0},

where the maximum in (4) is taken with respect to our order < on multi-
indices (see Section 14). In the case where ∂αP(x) = 0 for all α ∈ A, we
will set αA,x(P) to be the zero multi-index, the minimal element in M. Thus
αA,x(P) is defined in all cases. For x ∈ Rn, ∅ �= A ⊆ M and δ > 0 denote

(5) RA(x, δ) =
{
P ∈ P : ∀β ≥ αA,x(P), |∂βP(x)| ≤ δm−|β|

}
.

The set RA(x, δ) is centrally-symmetric, but it is not necessarily convex. It
clearly satisfies

(6) B(x, δ) ⊆ RA(x, δ),

for any non-empty A ⊆ M.

Lemma 1. Let Ω ⊂ P be a centrally-symmetric convex set, ∅ �= A ⊆ M,
x ∈ Rn, δ > 0, K ≥ 1. Then the following are equivalent:

(A) BA(δ) ⊆ KπA,x {Ω ∩ RA(x, δ)}.

(B) There exist polynomials {Pα}α∈A with the following properties: For
any α ∈ A,

(i) ∂βPα(x) = δα,β for any β ∈ A,

(ii) |∂βPα(x)| ≤ Kδ|α|−|β| for any β ∈ M with β ≥ α,

(iii) δm−|α|Pα ∈ KΩ.

Proof. For α∈A, denote aδ(α) = (δm−|α|δα,β)β∈A∈R�(A). According to (2),

(7) BA(δ) = conv {±aδ(α) : α ∈ A},

where conv denotes convex hull. Suppose (A) holds. By (7), for each α ∈ A

there exists P′α ∈ K[Ω ∩ RA(x, δ)] such that πA,x(P
′
α) = aδ(α). That is,

∂βP′α(x) = δm−|α|δα,β for β ∈ A.

In particular, αA,x(P
′
α) = α. Since P′α ∈ KRA(x, δ), then |∂βP′α(x)| ≤ Kδm−|β|

for any β ≥ α. We denote Pα = δ|α|−mP′α. Then |∂βPα(x)| ≤ Kδ|α|−|β| for
α ∈ A, β ≥ α, and also ∂βPα(x) = δα,β when α, β ∈ A. Additionally,
δm−|α|Pα ∈ KΩ for α ∈ A. Consequently, the polynomials {Pα}α∈A satisfy
(i), (ii) and (iii). Thus we proved that (A) implies (B).
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To obtain the other direction, suppose that (B) holds. Then there exist
polynomials Pα (α ∈ A) that satisfy (i), (ii) and (iii). Denote P′α = δm−|α|Pα.
Then by (i), (ii), (iii) we know that P′α ∈ K[Ω∩RA(x, δ)], and (i) also implies
that πA,x(P

′
α) = aδ(α). Let (λα)α∈A be any real numbers with

∑
α |λα| ≤ 1.

Let
P =

∑
α∈A

λαP
′
α.

If P ≡ 0, clearly P ∈ K[Ω ∩ RA(x, δ)]. Suppose now that P �≡ 0. Since KΩ
is convex and symmetric, we know that P ∈ KΩ. In addition, αA,x(P) =
max{α ∈ A : λα �= 0}, and for any β ≥ αA,x(P),

|∂βP(x)| ≤
∑
α∈A

|λα||∂
βP′α(x)| ≤

∑
α∈A

|λα|Kδ
m−|β| ≤ Kδm−|β|,

since P′α ∈ KRA(x, δ) and αA,x(P
′
α) = α. Hence, P ∈ KRA(x, δ). To summa-

rize, for any real numbers (λα)α∈A with
∑
α |λα| ≤ 1, we have∑

α∈A

λαP
′
α ∈ K[Ω ∩ RA(x, δ)].

Therefore, conv {±P′α : α ∈ A} ⊆ K[Ω ∩ RA(x, δ)]. Projecting, we obtain
that

conv {±aδ(α) : α∈A} = conv {±πA,x(P
′
α) : α∈A} ⊆ KπA,x {Ω ∩ RA(x, δ)} ,

and (A) follows from (7). �
Consider condition (B) from Lemma 1; when δ gets smaller, the condition

just becomes easier to satisfy. Thus, if δ < δ̄ and (B) holds for δ̄, then (B)
also holds for δ. By Lemma 1, condition (A) enjoys the same property; if
δ < δ̄ then

(8) BA(δ̄) ⊆ KπA,x

{
Ω ∩ RA(x, δ̄)

} ⇒ BA(δ) ⊂ KπA,x {Ω ∩ RA(x, δ)} .

An important property of the sets we consider is related to scaling. Fix
δ > 0, and let τδ : P → P be the map

τδ(P)(x) = δmP
(
δ−1x

)
.

It is straightforward to check that for any ∅ �= A ⊆ M,

(9) B(0, δ) = τδ {B(0, 1)} ,

(10) RA(0, δ) = τδ {RA(0, 1)} ; and

(11) ∀P ∈ P, πA,0(τδP) ∈ BA(δ) ⇔ πA,0(P) ∈ BA(1).



134 C. Fefferman and B. Klartag

Also, (τδP) �0 (τδQ) = δm · τδ(P �0 Q). From the definition (10) of
Section 12, it is straightforward to conclude thatΩ ⊂ P is Whitney t-convex
at 0 with Whitney constant A, if and only if τδΩ is Whitney t-convex at 0
with Whitney constant A.

Thus, when we study B(0, δ),RA(0, δ) or BA(δ), it is usually enough to
focus on the case δ = 1.

Lemma 2. Let Ω ⊂ P be a centrally-symmetric convex set, x ∈ Rn,
∅ �= A ⊆ M, δ > 0, K ≥ 1. Assume that,

(12) BA(δ) ⊆ KπA,x {Ω ∩ RA(x, δ)} ,

(13) BA(δ) �⊂ KπA,x {Ω ∩ B(x, δ)} .

Then there exists Ā ⊆ M such that Ā < A and

(14) BĀ(δ) ⊆ CKpπĀ,x {Ω ∩ B(x, δ)} ,

where C, p > 0 are constants that depend solely on m and n.

Proof. By translating, we may assume that x = 0. Furthermore, in
view of the scaling relations (9), (10) and (11), it is clear that our assump-
tions (12), (13), the convexity of Ω and our conclusion (14) are all invariant
under the scaling P(x) �→ δmP

(
δ−1x

)
(P ∈ P). Therefore it is enough to

treat the case δ = 1.
We will split the proof into two parts. Part I of the proof uses only the

assumption (12), while (13) is exploited in the second part.

Part I: Fix α ∈ A (the set A is non-empty by assumption). Let a(α) ∈ R�(A)

be the unit vector a(α) = (δα,β)β∈A. Then a(α) ∈ BA(1), according to (2).
By (12), there exists some polynomial

(15) Pα ∈ K [Ω ∩ RA(0, 1)]

such that πA,0(Pα) = a(α). That is, for any β ∈ A,

(16) ∂βPα(0) = δα,β.

For β ∈ M we define

‖β‖ =

n∑
j=1

(m + 1)j
( j∑
k=1

βk

)
.

It is trivial to verify that for β, β̄ ∈ M, if β̄ < β, then ‖β̄‖ < ‖β‖. Let
α ∈ A and β, β̄ ∈ M be such that β �= β̄ and ∂βPα(0) �= 0, ∂β̄Pα(0) �= 0.
Define

Iα,β,β̄ =

{
k ∈ Z :

1

2Km! dim P
<

∣∣∣∣∣2k‖β̄‖∂β̄Pα(0)2k‖β‖∂βPα(0)

∣∣∣∣∣ < 2Km! dim P

}
.
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Since β �= β̄, then ‖β‖ − ‖β̄‖ is a non-zero integer. Consequently,

�(Iα,β,β̄) ≤ 1+ log2

[
(2Km! dim P)2

]
< C log(K+ 1).

The number of different sets of the form Iα,β,β̄ is bounded by a constant
depending only m and n. Hence,

#

( ⋃
α∈A,β �=β̄∈M

∂β̄Pα(0) �=0,∂βPα(0) �=0

Iα,β,β̄

)
< C′ log(K+ 1).

Therefore, there exists an integer k0 ≤ 0, with 0 < |k0| ≤ �C′ log(K+1)�+1,
such that k0 �∈ Iα,β,β̄ for any relevant α, β, β̄. Denote λ = 2k0 . Then,

(17)
(
c
K

)p ≤ λ < 1
for some constants c, p depending only on m and n. In addition, for any
α ∈ A, β, β̄ ∈ M such that β �= β̄, ∂βPα(0) �= 0, ∂β̄Pα(0) �= 0 we have
k0 �∈ Iα,β,β̄ and thus

(18)
∣∣∣λ‖β̄‖∂β̄Pα(0)

λ‖β‖∂βPα(0)

∣∣∣ �∈ ( 1
2Km!dimP

, 2Km! dim P
)
.

Next, for α ∈ A, consider the quantity

(19) Mα = max
β∈M

λ‖β‖|∂βPα(0)|.

For any α ∈ A we have ∂αPα(0) = 1 by (16), and thus,

(20) Mα ≥ λ‖α‖|∂αPα(0)| = λ‖α‖ > 0.

The numbers whose maximum is considered in (19) are well separated from
one another (except for zeros); this is the content of (18). Let φ(α) ∈ M be
such that β = φ(α) achieves the maximum in (19). According to (18), for
any β �= φ(α),

(21) (2Km! dim P)λ‖β‖|∂βPα(0)| ≤ λ‖φ(α)‖|∂φ(α)Pα(0)|.

If β ∈ A but β �= α, then λ‖β‖∂βPα(0) = 0 < Mα, by (16) and (20).
Thus the maximum in (19) cannot be obtained by β ∈ A with β �= α.
Consequently,

(22) φ(α) ∈ A =⇒ φ(α) = α.

Next, we use the fact that Pα ∈ KRA(0, 1), which we know from (15). Recall
the definition (5) of the set RA(0, 1). From (16) we have that

(23) α = αA,0(Pα).
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Since Pα ∈ KRA(0, 1) then |∂βPα(0)| ≤ K for all β > α = αA,0(Pα).
Combining with (16), we find that for all β > α,

(24) λ‖β‖|∂βPα(0)| ≤ Kλ‖β‖ < Kλ‖α‖|∂αPα(0)|
because ‖β‖ > ‖α‖ and 0 < λ < 1. Suppose for a moment that φ(α) = β

for some β > α. Then (24) implies that

λ‖φ(α)‖|∂φ(α)Pα(0)| < Kλ
‖α‖|∂αPα(0)|,

in contradiction with (21). Thus our momentary assumption was false, and
hence,

(25) ∀α ∈ A, φ(α) ≤ α.
Denote Ā = φ(A). According to (22), (25) and Lemma 1 from Sec-

tion 14, we have that Ā ≤ A. Let ψ : Ā → A be such that φ(ψ(α)) = α for
all α ∈ Ā. By (21), for any α ∈ Ā and β �= α,

(26) λ‖β‖|∂βPψ(α)(0)| ≤ (2m! dim P)−1 · λ‖α‖|∂αPψ(α)(0)|.

According to (20) and (17), for all α ∈ Ā,

(27) λ‖α‖|∂αPψ(α)(0)| = Mψ(α) ≥ λ‖ψ(α)‖|∂ψ(α)Pψ(α)(0)|

= λ‖ψ(α)‖ > λp̄ > 1
CKp

for some constants C, p, p̄ > 0 depending only on m and n. The left hand
side of (27) is thus non-zero, and for α ∈ Ā we may define

(28) P̄α =
(
λ‖α‖∂αPψ(α)(0)

)−1 · Pψ(α).

Then by (26) and (28),

(29) λ‖α‖∂αP̄α(0) = 1, and for β �= α, λ‖β‖|∂βP̄α(0)| ≤ (2m! dim P)
−1
.

Next, (15), (27) and (28) imply that for any α ∈ Ā,

(30) P̄α ∈ CKp̃Ω.
Consider the matrix A =

(
λ‖β‖∂βP̄α(0)

)
α,β∈Ā

. By (29), the matrix A has

ones on the main diagonal. Furthermore, since �(Ā) ≤ dim P, then according
to (29) the sum of the absolute values of the off-diagonal elements in any
row of A does not exceed 1

2
. Hence A is invertible, and the norm of A−1 as

an operator on l∞(Rn) is not larger than 2. Denote the elements of A−1 by
A−1 = (aα,β)α,β∈Ā. Then,

(31) |aα,β| ≤ 2 for all α, β ∈ Ā.
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Next, we set, for α ∈ Ā

(32) P′α = λ‖α‖
∑
γ∈Ā

aγ,αP̄γ.

By the definition of the inverse matrix A−1, for any α, β ∈ Ā,

(33) ∂βP′α(0) = λ‖α‖−‖β‖ ∑
γ∈Ā

aγ,αλ
‖β‖∂βP̄γ(0) = δα,β.

Furthermore, by (29), (31) and (32), for any β �∈ Ā,

(34) |∂βP′α(0)| ≤ 2λ‖α‖
∑
γ∈Ā

|∂βP̄γ(0)| ≤ 2λ‖α‖
∑
γ∈Ā

1

λ‖β‖
≤ Cλ‖α‖−‖β‖.

According to (33) and (34), for any α ∈ Ā,

(35) P′α ∈ C
λC
B(0, 1) ⊆ C′Kp̄B(0, 1),

where the second inclusion follows from (17). Recall that Ω is convex and
centrally-symmetric. By (17), (30), (31) and (32), we get that for any α ∈ Ā,

(36) P′α ∈ CKpΩ.
SinceΩ and B(0, 1) are convex and centrally-symmetric, (35) and (36) imply
that

conv {±P′α}α∈Ā ⊆ CKp[Ω ∩ B(0, 1)].

Projecting, we get that

(37) πĀ,0 {conv {±P′α}α∈Ā} ⊆ CKpπĀ,0 {Ω ∩ B(0, 1)} .

However, BĀ(1) = πĀ,0 {conv {±P′α}α∈Ā} by (33). Therefore (37) implies
that

(38) BĀ(1) ⊆ CKpπĀ,0 {Ω ∩ B(0, 1)} .

It only remains to show that Ā < A; once we have that, (38) implies the
conclusion of the lemma. Note that up to now, we did not use our assump-
tion (13). It will play a rôle in the proof that Ā < A.

Part II: We begin with proving that there exists α̂ ∈ A with φ(α̂) �∈ A.
Assume the opposite, i.e.,

(39) φ(α) ∈ A for all α ∈ A.

By (22) we have that φ(α) = α for all α ∈ A. Let α ∈ A and β < φ(α) = α.
According to (21) and (16),

(40) λ‖β‖|∂βPα(0)| ≤ (2K dim P)−1 · λ‖α‖|∂αPα(0)|
= (2K dim P)

−1 · λ‖α‖ < Kλ‖β‖,
since K ≥ 1, 0 < λ < 1 and ‖β‖ < ‖α‖.
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Therefore (40) implies that for any β < α,

(41) |∂βPα(0)| ≤ K.
Recall that Pα ∈ KRA(0, 1) by (15). According to (5) and (23), also for
any β ≥ α,

(42) |∂βPα(0)| ≤ K.
Combining (41) and (42) we get that Pα ∈ KB(0, 1) for all α ∈ A. By (15),
we conclude that

(43) conv {±Pα}α∈A ⊆ KΩ ∩ KB(0, 1) = K [Ω ∩ B(0, 1)] .

(Recall that Ω,B(0, 1) are convex and centrally-symmetric.) However, put-
ting δ = 1 in (2) and using (16) we obtain

(44) BA(1) = πA,0 {conv {±Pα}α∈A} .

According to (43) and (44) we have that

(45) BA(1) ⊆ KπA,0 {Ω ∩ B(0, 1)} ,

in contradiction with (13). Therefore, our assumption (39) was false, and
consequently there exists α̂ ∈ A with φ(α̂) �∈ A. In particular, φ(α̂) �= α̂,
and hence φ is not the identity map. The relations (22) and (25) are exactly
the assumptions of Lemma 1 from Section 14. By the conclusion of that
lemma, we know that Ā = φ(A) < A, as φ is not the identity map. This
completes the proof. �

A set A ⊆ M is called a “monotonic set”, if for any multi-indices α
and β,

α ∈ A, |β| ≤ m − 1− |α| ⇒ α+ β ∈ A.

Suppose A ⊆ M is a monotonic set. The fundamental property of A is that
for any P ∈ P and x, y ∈ Rn,

(46) πA,x(P) = 0 =⇒ πA,y(P) = 0.

Indeed, (46) follows at once, since for any α ∈ A,

∂αP(y) =
∑

|β|≤m−1−|α|

∂α+βP(x)

β!
(y − x)β = 0,

where the sum vanishes because α+ β is always in A.

Recall that for two subsets Ω1, Ω2 ⊂ P and x ∈ Rn, we denote

Ω1�xΩ2 = {P �xQ : P ∈ Ω1, Q ∈ Ω2}.
As before, we write conv(Ω) to denote the convex hull of a set Ω ⊂ P.
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Lemma 3. Let Ω ⊆ B(0, 1) be a centrally-symmetric convex set, and let
K ≥ 1. Assume that ∅ �= A ⊆ M, and that

(47) BA(1) ⊆ KπA,0{Ω}.

Then there exists a monotonic set A′ ⊆ M, with A′ ≤ A, and

BA′(1) ⊆ CKpπA′,0{conv [Ω�0 B(0, 1)]}

where C, p are constants depending only on m and n.

Proof. Our assumptions (47), and Ω ⊆ B(0, 1) ⊂ RA(0, 1) imply that

(48) BA(1) ⊆ KπA,0{Ω ∩ RA(0, 1)}.

Now, (48) is precisely the assumption (12) of Lemma 2, in the case x = 0,
δ = 1. Most of the proof of Lemma 2 used only this assumption, namely
Part I of that proof. In particular, the construction of 0 < λ < 1, the set
Ā ≤ A and the polynomials P̄α in the proof of Lemma 2, was based on (12)
only.

We may thus repeat the reasoning from Part I of Lemma 2, based on (48).
Therefore we obtain 0 < λ < 1 that satisfies (17), a set Ā ≤ A, and
polynomials P̄α (α ∈ Ā) that satisfy (28),..., (30). This means that,

(49) 1
(CK)p

< λ < 1,

(50) P̄α ∈ CKpΩ for any α ∈ Ā,

and for all α ∈ Ā,

(51) λ‖α‖∂αP̄α(0) = 1, and for β �= α, λ‖β‖|∂βP̄α(0)| ≤ 1
2m!dim P

.

Next, we denote

A′ = {α+ γ : α ∈ Ā, |γ| ≤ m− 1− |α|},

and let

α′
1+ γ1, ..., α

′
tmax + γtmax (α′

t ∈ Ā, |γt| ≤ m − 1− |α′
t| for t = 1, ..., tmax)

be an enumeration of A′. The set A′ is clearly monotonic, and satisfies that
A′ ≤ Ā (since Ā ⊆ A′). Since Ā ≤ A, then by transitivity we also have
A′ ≤ A. For γ ∈ M we will consider the polynomial x �→ xγ on Rn. With a
slight abuse of notation, we denote this polynomial by xγ; for example, we
write that xγ ∈ P. We define polynomials P′t for t = 1, ..., tmax as follows:

(52) P′t =
(α′
t)!

(α′
t+γt)!

xγt �0 P̄α′
t
.

The polynomial xγt belongs to CB(0, 1). According to (50) and (52), we
conclude that

(53) P′t ∈ CKp[Ω�0 B(0, 1)].
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From (51) and (52) we obtain that for any β ∈ M,

(54)
∣∣λ‖β‖∂β+γtP′t(0) − δβ,α′

t

∣∣ ≤ 1
2dim P

,

and that

(55) ∂βP′t(0) = 0 whenever β− γt �∈ M

(i.e., whenever β−γt contains negative coordinates). Note that (54) and (55)
together provide bounds for ∂βP′t(0) for all β ∈ M.

Consider now the matrix A =
(
λ‖α

′
s‖∂α

′
s+γsP′t(0)

)
t,s=1,...,tmax

. According

to (54) and (55), the matrix A is very close to the identity matrix; the
norm of A− Id on l∞(Rn) is bounded by 1

2
. Consequently, the matrix A is

invertible, and the inverse matrix A−1 = (at,s)t,s=1,...,tmax satisfies that

(56) |at,s| ≤ 2 for all t, s = 1, ..., tmax,

and that for all t, s = 1, ..., tmax,

(57)

tmax∑
r=1

λ‖α
′
s‖∂α

′
s+γsP′r(0)ar,t = δs,t.

Next, we define polynomials Pα for α ∈ A′ as follows:

(58) Pα′
t+γt

= λ‖α
′
t‖
tmax∑
r=1

ar,tP
′
r.

By (58) and (57), for any α, β ∈ A′, α = α′
t+ γt, β = α′

s+ γs,

(59) ∂βPα(0) = ∂α
′
s+γsPα′

t+γt
(0) =

tmax∑
r=1

λ‖α
′
t‖∂α

′
s+γsP′r(0)ar,t = δs,t = δα,β.

The set conv[Ω�0B(0, 1)] is convex, by definition, and it is also centrally-
symmetric. Thus (49), (53), (56) and the definition (58) imply that for any
α ∈ A′,

(60) Pα ∈ 2tmax · CKp · conv [Ω�0 B(0, 1)] ⊆ C′Kpconv [Ω�0 B(0, 1)] .

Combining (60) and the convexity and central-symmetry of conv[Ω �0
B(0, 1)] we get that

(61) πA′,0 {conv {±Pα}α∈A′} ⊆ CKpπA′,0 {conv[Ω�0 B(0, 1)]} .

According to (59), we know that BA′(1) = πA′,0 {conv {±Pα}α∈A′}. Hence
by (61),

BA′(1) ⊆ CKpπA′,0 {conv[Ω�0 B(0, 1)]} .

Since A′ is monotonic and A′ ≤ A, the lemma is proven. �
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Lemma 4. Let Ω ⊂ P be a centrally-symmetric convex set, ∅ �= A ⊆ M,
x ∈ Rn, δ > 0, K ≥ 1. Assume that Ω is Whitney t-convex at x with Whitney
constant A > 1. Assume also that

(62) BA(δ) ⊆ KπA,x {Ω ∩ B(x, δ)} .

Then, there exists Ā ⊆ M, such that Ā is monotonic, Ā ≤ A, and

(63) BĀ(δ) ⊆ CAKpπĀ,x {Ω ∩ B(x, δ)} ,

where C, p > 0 are constants that depend solely on m and n.

Proof. By translating and rescaling, according to (9), (10), (11) and the
discussion around them, we may assume that x = 0, δ = 1. Denote Ω′ =
Ω∩B(0, 1). Based on (62), we may invoke Lemma 3 for the set Ω′. By the
conclusion of that lemma, we find Ā ⊆ M, such that Ā is monotonic, Ā ≤ A,
and

(64) BĀ(1) ⊆ CKpπĀ,0 {conv[Ω
′ �0 B(0, 1)]} .

From our assumptions, the set Ω is Whitney t-convex at 0 with Whitney
constant A. According to Lemma 2 from Section 12, also Ω′ = Ω ∩ B(0, 1)

is Whitney t-convex at 0 with Whitney constant CA. This implies that

(65) Ω′ �0 B(0, 1) = [Ω′ ∩ B(0, 1)]�0 B(0, 1) ⊆ CAΩ′.

By using (64) and (65), we get that

(66) BĀ(1) ⊆ C′AKpπĀ,0 {conv(Ω′)} = C′AKpπĀ,0 {Ω ∩ B(0, 1)} ,

since conv(Ω′) = Ω′ = Ω ∩ B(0, 1), and the lemma is proven. �
We would like our treatment to include also the degenerate case where

A = ∅. Thus, we will also consider the ridiculous space R�(A) for A = ∅;
here the space R�(∅) (= R0) simply means the singleton {0}. We also define
the (trivial) projection π∅,x : P → R�(∅) by setting

π∅,x(P) = 0

for all x ∈ Rn, P ∈ P. Also, B∅(δ) = {0} for all δ > 0.

Lemma 5. LetΩ ⊂ P be a centrally-symmetric convex set, x ∈ Rn,A ⊆ M,
δ > 0, K ≥ 1 be given. Assume that

(67) BA(δ) ⊆ KπA,x {Ω ∩ B(x, δ)} , and

(68) 0 ∈ πA,x

{
Ω \ K−1B(x, δ)

}
.

Then there exists Ā ⊆ M with Ā < A such that

(69) BĀ(δ) ⊆ 2K2πĀ,x {Ω ∩ B(x, δ)} .



142 C. Fefferman and B. Klartag

Proof. As before, we will translate and rescale, according to (9), (10)
and (11). Thus we may assume that x = 0, δ = 1. Let P ∈ Ω\K−1B(0, 1) be
such that πA,0(P) = 0. The existence of such a polynomial P is guaranteed
by (68). Then,

(70) ∂βP(0) = 0 for β ∈ A.

Let α̂ ∈ M be chosen such that

(71) |∂α̂P(0)| = max
β∈M

|∂βP(0)|.

Since P �∈ K−1B(0, 1), necessarily |∂α̂P(0)| > K−1 > 0. Also, α̂ �∈ A because
of (70). Set

(72) Pα̂ = 1
∂α̂P(0)

P ∈ KΩ,
where Pα̂ ∈ KΩ because P ∈ Ω and | 1

∂α̂P(0)
| < K. Denote Ā = A∪ {α̂}. Then

A ⊂ Ā and A �= Ā, hence Ā < A. By (70), (72)

(73) ∂βPα̂(0) = δβ,α̂ for β ∈ Ā.

In addition, since α̂ was chosen to maximize in (71), we deduce from (72)
that |∂βPα̂(0)| ≤ 1 for all β ∈ M. Therefore,

(74) Pα̂ ∈ B(0, 1).

Next, by (67) there exist polynomials

(75) P′α ∈ K [Ω ∩ B(0, 1)] for α ∈ A

with

(76) ∂βP′α(0) = δα,β for α, β ∈ A.

Since P′α ∈ KB(0, 1) by (75), then for any α ∈ A,

(77) ∀β ∈ M, |∂βP′α(0)| ≤ K, and in particular |∂α̂P′α(0)| ≤ K.
Denote, for α ∈ A,

(78) Pα = P′α− ∂α̂P′α(0) · Pα̂.
By (73), (76) and (78),

(79) ∂βPα(0) = δα,β for α, β ∈ Ā.

According to (78), (72), (75) and (77) we know that

(80) Pα ∈ (K+ K · K)Ω ⊂ 2K2Ω for α ∈ Ā.
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Additionally, for any α ∈ A, β ∈ M, by (74), (77) and (78)

|∂βPα(0)| ≤ |∂βP′α(0)| + |∂α̂P′α(0)| · |∂βPα̂(0)| ≤ K+ K · 1 = 2K.

Thus Pα ∈ 2KB(0, 1) for any α ∈ A. Together with (80) and (74), this gives

(81) Pα ∈ 2K2 [Ω ∩ B(0, 1)] for α ∈ Ā.

Note that (79) implies that BĀ(1) = conv {±πĀ,0(Pα)}α∈Ā. By convexity
and central-symmetry, (81) gives

BĀ(1) ⊆ 2K2πĀ,0 {Ω ∩ B(0, 1)} ,

which is exactly the desired inclusion (69). This finishes the proof. �
In the proof of the next lemma we will make use of the following simple

fact. Suppose K, T are centrally-symmetric, bounded convex sets in a finite
dimensional vector space V. Then,

(82) K ⊆ T + 1
3
K ⇒ 1

2
K ⊆ T.

This is easily seen: The left hand side of (82) implies that for any functional
f ∈ V∗ we have 2

3
supx∈K f(x) ≤ supx∈T f(x). Hence K ⊆ 3

2
T̄ ⊆ 2T , where T̄

is the closure of T .

Lemma 6. There exists a constant C0 > 1 depending only on m and n for
which the following holds: Let Ω ⊂ P be a centrally-symmetric convex set,
x ∈ Rn,A ⊆ M, δ > 0, K ≥ 1. Assume that Ω ⊆ B(x, δ), and that

(83) BA(δ) ⊆ KπA,x {Ω} .

Let y ∈ Rn be such that |x − y| < δ
C0K

. Then,

(84) BA(δ) ⊆ 2KπA,y {Ω} .

Proof. Pick P ∈ Ω. Then P ∈ B(x, δ) and hence |∂βP(x)| ≤ δm−|β| for all
β ∈ M. By Taylor’s theorem, for any α ∈ A,

(85) |∂αP(y) − ∂αP(x)| =

∣∣∣∣ ∑
1≤|β|≤m−1−|α|

∂α+βP(x)

β!
(y− x)β

∣∣∣∣
≤ C′ ∑

1≤|β|≤m−1−|α|

δm−(|α|+|β|)|x− y||β| ≤ C′′ |x − y|

δ
δm−|α|,

since |x− y| < δ
C0K

< δ. The inequality (85) implies that, for any P ∈ Ω,

(86) πA,x(P) − πA,y(P) ∈ C |x−y|
δ
BA(δ) ⊆ C

C0K
BA(δ).
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We set C0 = 3C > 1, where C is the constant from (86). By combining (83)
with (86) we get that

(87) 1
K
BA(δ) ⊆ πA,x{Ω} ⊆ πA,y{Ω} + 1

3K
BA(δ).

Since all the sets in (87) are bounded, convex and centrally-symmetric,
then (82) entails

1

2K
BA(δ) ⊆ πA,y {Ω} ,

and the lemma is proven. �

31. Preparation for the Proof: Properties of the Basic
Lengthscales

Recall the definition of σ(x, �), Γ(x, �,M) from Section 10. Recall also Prop-
erties 0,..., 4 of these blobs, from Section 13, and the definition of the con-
stant �∗ from Section 14.

Properties 0,..., 4 from Section 13 are the only properties of the Γ ’s and
σ’s that are relevant to the proof of the Main Lemma. In particular, one
may replace the blobs Γ and the sets σ with any other family of blobs and
sets, as long as these five properties still hold. The Main Algorithm and the
proof of the Main Lemma would remain valid, even with this new family of
blobs (see [16] for a different family of blobs that satisfy these crucial five
properties). We will make use of σ(x, �), Γ(x, �,M) for x ∈ E,M > 0 and
0 ≤ � ≤ �∗. Since �∗ is a constant depending only on m and n, and we
use � only in the range 0 ≤ � ≤ �∗, then we may view the constants c�, C� in
Properties 0, 1, 2, 3, 4 from Section 13, as constants depending only on m
and n.

Lemma 1. There exist constants C,C0 > 1 depending only on m and n
for which the following holds: Let A ⊆ M, x, y ∈ E, K ≥ 1, 1 ≤ � ≤ �∗.
Assume that δ > C0K|x− y|. Suppose that

(1) BA(δ) ⊆ KπA,x {σ(x, �) ∩ B(x, δ)} .

Then,

(2) BA(δ) ⊆ CKπA,y {σ(y, �− 1) ∩ B(y, δ)} .

Proof. We choose C0 > 1 to be larger than the constant C0 from Lemma 6
from the preceding section. Set Ω = σ(x, �)∩B(x, δ). The fact that |x−y| <
δ
C0K

and (1) are the assumptions of Lemma 6 from the preceding section.
By the conclusion of that lemma,

(3) BA(δ) ⊆ 2KπA,y {Ω} = 2KπA,y {σ(x, �) ∩ B(x, δ)} .
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Since |x− y| < δ
C0K

< δ, then the sets B(x, δ) and B(y, δ) are C-equivalent,

by (3) from Section 12. Therefore (3) translates to

(4) 1
CK
BA(δ) ⊆ πA,y {σ(x, �) ∩ B(y, δ)} .

Next, we use Property 2 from Section 13 and the fact that |x−y| < δ
C0K

, to
obtain that

(5) σ(x, �) ⊆ C [σ(y, �− 1) + B(x, y)] ⊆ C′
[
σ(y, �− 1) + B

(
y, δ
C0K

)]
.

Since C0K > 1, the relation (2) from Section 12, gives

(6) B

(
y, δ
C0K

)
⊆ 1
C0K
B(y, δ).

Thus (4), (5) and (6) imply that

(7) 1
C′KBA(δ) ⊆ πA,y

{[
σ(y, �− 1) + 1

C0K
B(y, δ)

]
∩ B(y, δ)

}
.

Recall (11) from Section 12, and note that C0K ≥ 1. According to (11) from
Section 12 and (7),

(8) 1
C′KBA(δ) ⊆ πA,y

{
[σ(y, �− 1) ∩ 2B(y, δ)] + 1

C0K
B(y, δ)

}
.

The sets BA(δ) and πA,y{B(y, δ)} are C-equivalent, by (3) from Section 30.
Then (8) translates into

(9) 1
C′KBA(δ) ⊆ πA,y {[σ(y, �− 1) ∩ 2B(y, δ)]} + C′′

C0K
BA(δ).

We further stipulate that C0 > 3C′C′′, for C′, C′′ the constants from (9).
Thus, (9) implies that

(10) 1
C′KBA(δ) ⊆ πA,y {σ(y, �− 1) ∩ 2B(y, δ)} + 1

3C′KBA(δ).

All the involved sets are bounded, convex and centrally-symmetric. Recall
the elementary fact (82) from Section 30. Therefore from (10) we deduce that

1
2C′KBA(δ) ⊆ πA,y {σ(y, �− 1) ∩ 2B(y, δ)} ⊆ 2πA,y {σ(y, �− 1) ∩ B(y, δ)}

and the lemma follows, with C0 a large enough constant depending solely
on m and n. �

Lemma 2. Let A ⊆ M, x ∈ E, δ > 0 and K1, K2 > 0. Suppose that
0 ≤ � ≤ �∗ satisfies

(11) BA(δ) ⊆ K1πA,x {σ(x, �) ∩ B(x, δ)} .

Let M > 0, P ∈ P be such that

(12) P ∈ Γ(x, �,M) + K2MB(x, δ).
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Then there exists P̃ ∈ Γ(x, �, r1M) such that

(13) πA,x(P − P̃) = 0, P − P̃ ∈ r2MB(x, δ),

where r1 = C(K1K2 + 1) and r2 = C(K1 + 1)K2. Here C is a constant
depending only on m and n.

Proof. According to (12), there exists

(14) P′ ∈ Γ(x, �,M) such that P − P′ ∈ K2MB(x, δ).

Since πA,x{B(x, δ)} is C-equivalent to BA(δ) by (3) from Section 30, we con-
clude from (14) that

(15) πA,x(P − P′) ∈ CK2MBA(δ).

Combining (11) and (15), we see that

(16) πA,x(P − P′) ∈ CK1K2MπA,x {σ(x, �) ∩ B(x, δ)} .

In view of (16) there exists

(17) P′′ ∈ CK1K2M[σ(x, �) ∩ B(x, δ)]

such that πA,x(P − P′) = πA,x(P
′′). Set P̃ = P′ + P′′. Then,

(18) πA,x(P − P̃) = 0.

Furthermore, by (14) and (17),

(19) P̃ = P′ + P′′ ∈ Γ(x, �,M) + CK1K2Mσ(x, �) ⊆ Γ(x, �, r1M)

for r1 = C(1+ K1K2), according to Property 1 from Section 13. Also, again
by (14) and (17),

(20) P− P̃ = (P−P′)−P′′ ∈ K2MB(x, δ)+CK1K2MB(x, δ) ⊆ r2MB(x, δ),

for r2 = C(1 + K1)K2. The statements (19), (18) and (20) are exactly the
conclusions of the lemma. The lemma is thus proven. �

Recall the definition (OK1) and (OK2) of the basic lengthscales δ(x,A) ∈
[0,∞] (A ⊆ M, x ∈ E) from Section 18. Recall also Lemma 1 from Sec-
tion 30. Let ∅ �= A ⊆ M and x ∈ E. By Lemma 1 from Section 30, the basic
property of δ(x,A) is equivalent to the following: If 0 < δ < δ(x,A) then

(21) BA(δ) ⊆ CA1(A)πA,x {σ(x, �(A)) ∩ RA(x, δ)} ,

and if δ > δ(x,A), then

(22) BA(δ) �⊂ cA1(A)πA,x {σ(x, �(A)) ∩ RA(x, δ)} .
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According to the remark following Lemma 1 in Section 18, inclusion (21)
holds also for δ = δ(x,A), provided 0 < δ(x,A) < ∞. By the definition of
the constant A0 in Section 17, we may assume that

(23) A0 > max
{
C, c−1

}
where C, c are as in (21), (22), respectively.

Therefore (21) and (22) imply the following. Fix x ∈ E, ∅ �= A ⊆ M,
0 < δ < ∞. If 0 < δ ≤ δ(x,A), then

(24) BA(δ) ⊆ A0A1(A)πA,x {σ(x, �(A)) ∩ RA(x, δ)} ,

and if δ > δ(x,A), then

(25) BA(δ) �⊂ A−1
0 A1(A)πA,x {σ(x, �(A)) ∩ RA(x, δ)} .

Recall also that for a dyadic cube Q with δQ ≤ A−1
2 and a subset A ⊆ M,

we say that Q is OK(A) if for all x ∈ E ∩Q∗,

(26) A2δQ ≤ δ(x,A) .

If A = ∅, then δ(x, ∅) = +∞ for all x ∈ E, and thus Q is always OK(∅).
A cube Q is almost OK(A) if

(27) �(E ∩Q∗) ≤ 1 or Q is OK(Ā) for some Ā ≤ A.

In order to show that a dyadic cube Q with δQ ≤ A−1
2 is OK(A), for

∅ �= A ⊆ M, it is sufficient to prove that for all x ∈ Q∗ ∩ E,

(28) BA(A2δQ) ⊆ A−1
0 A1(A)πA,x {σ(x, �(A)) ∩ RA(x,A2δQ)} ,

as follows from (25) and (26).

Lemma 3. There exists a constant 0 < c1 < 1, depending only on m
and n, for which the following holds: Let ∅ �= A ⊆ M, Q a dyadic cube with
δQ ≤ A−1

2 , x ∈ E ∩Q∗∗. Suppose that

(29) BA(A2δQ) ⊆ c1A−1
0 A1(A) πA,x {σ(x, �(A) + 1) ∩ B(x,A2δQ)} .

Then the cube Q is OK(A).

Proof. According to (28) and to (6) from Section 30, it is sufficient to show
that for any y ∈ E ∩Q∗,

(30) BA(A2δQ) ⊆ A−1
0 A1(A) πA,y {σ(y, �(A)) ∩ B(y,A2δQ)} .

Let y ∈ E ∩Q∗. We will show that y satisfies (30). Note that x, y ∈ Q∗∗,
and hence |x − y| ≤ √

nδQ∗∗ = 25
√
nδQ. According to the definition of p�

and A0 from Section 17, we may suppose that

(31) p� ≥ 2 and A0 > 25
√
nmax{C,C0}, for C,C0 from Lemma 1.
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From (2) of Section 17 and from (31) we know that A2 ≥ A20A1(M) >
25

√
nC0A

−1
0 A1(A). Consequently ,

(32) |x− y| ≤ √
nδQ∗∗ = 25

√
nδQ<

1
C0A

−1
0 A1(A)

A2δQ<
1

C0(c1A
−1
0 A1(A))

A2δQ,

since c1 < 1.
We now select the constant c1 such that Cc1 = 1, where C > 1 is the

constant from Lemma 1. Then by (31) and by (1) from Section 17,

(33) c1A
−1
0 A1(A) ≥ c1A−1

0 A1(∅) ≥ c1A−1
0 ·A20 ≥ 1.

In view of (29), (32) and (33), we may apply Lemma 1 (for δ = A2δQ,
K = c1A

−1
0 A1(A) ≥ 1 and � = �(A)+1; note that � ≤ �∗). We conclude that

(34) BA(A2δQ) ⊆ Cc1A−1
0 A1(A)πA,y {σ(y, �(A)) ∩ B(y,A2δQ)}

= A−1
0 A1(A)πA,y(σ(y, �(A)) ∩ B(y,A2δQ)).

Now (30) follows from (34). The lemma is proven. �

Lemma 4. Let ∅ �= A ⊆ M, Q a dyadic cube with δQ ≤ A−1
2 , x ∈ E∩Q∗∗.

Let also 1 < K ≤ A20A1(A). Suppose that ν ∈ {0, 1} satisfies

(35) BA(A2δQ) ⊆ KπA,x {σ(x, �(A) − ν) ∩ RA(x,A2δQ)} ; and

(36) BA(A2δQ) �⊂ KπA,x {σ(x, �(A) − ν) ∩ B(x,A2δQ)} .

Then there exists Ā < A such that the cube Q is OK(Ā).

Proof. Our assumptions (35) and (36) are precisely the requirements of
Lemma 2 from the preceding section. By the conclusion of that lemma,
there exists Ā < A, such that

(37) BĀ (A2δQ) ⊆ CKp · πĀ,x {σ(x, �(A) − ν) ∩ B(x,A2δQ)} .

We have K ≤ A20A1(A) by assumption. Hence (37) implies that

(38) BĀ (A2δQ) ⊆ C (A20A1(A)
)p · πĀ,x {σ(x, �(A) − ν) ∩ B(x,A2δQ)} .

Since Ā < A, then �(Ā) + 1 ≤ �(A) − 1 ≤ �(A) − ν. By Property 4 from
Section 13,

(39) σ(x, �(A) − ν) ⊆ C′σ(x, �(Ā) + 1).

According to (1) from Section 17,

(40) A1(Ā) ≥ (A20A1(A)
)p#

.

From the definition of A0 and p# in Section 17, we may assume that

(41) A0 is larger than CC′
c1

and p# > p+ 1

where C, p are the constants from (38), C′ is the constant from (39) and c1
is the constant from Lemma 3.
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Then (42) and (41) imply that

(42) CC′ (A20A1(A)
)p ≤ c1A−1

0 A1(Ā).

From (38), (39) and (40) we conclude that

(43) BĀ (A2δQ) ⊆ c1A−1
0 A1(Ā) πĀ,x

{
σ(x, �(Ā) + 1) ∩ B(x,A2δQ)

}
.

The estimate (43) and the fact that x ∈ E ∩ Q∗∗ are the assumptions of
Lemma 3. (Note also that Ā �= ∅ since Ā < A.) By that lemma, we
conclude that Q is OK(Ā). Since Ā < A, the lemma is proven. �

32. Preparation for the Proof: Analysis of Find-Neighbor

Recall from Section 20 the definition of the Calderón-Zygmund decomposi-
tion CZ(A), associated with any subset A ⊆ M. Throughout this section,
assume that we are given a subset A0 ⊂ M with A0 �= M, a dyadic cube Q0
with δQ0 ≤ A−1

2 , a polynomial P0 ∈ P, M0 > 0 and x0 ∈ Rn that satisfy:

(FN1) x0 ∈ E ∩Q∗∗
0 . If E ∩Q∗

0 �= ∅, then x0 ∈ E ∩Q∗
0.

(FN2) Q0 ∈ CZ(A0), and Q0 �∈ CZ(A) for any A < A0.

(FN3) P0 ∈ Γ(x0, �(A0),M0).

Recall the procedure Find-Neighbor from Section 15. In the current sec-
tion we analyze the outcome of the procedure Find-Neighbor, assuming that
(FN1), (FN2) and (FN3) hold.

Lemma 1. We have

(FN1′) x0 ∈ E ∩Q∗
0.

(FN2′) The cube Q0 is OK(A0).
For any A < A0, the cube Q0 is not almost OK(A).

Proof. Assume on the contrary that Q0 is almost OK(A) for some A < A0.
Then Q0 is contained in a maximal almost OK(A)-cube Q. Hence Q ∈
CZ(A). According to Lemma 3 from Section 21, we know that CZ(A) is a
refinement of CZ(A0). Since Q0 ∈ CZ(A0) by (FN2), it is impossible for Q
strictly to contain Q0. Hence necessarily Q0 = Q ∈ CZ(A), contradicting
the assumption (FN2). Therefore

(1) Q0 is not almost OK(A) for any A < A0 .
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This establishes the second part of (FN2′). Recall that A0 �= M and that M

is the minimal element in our order relation <. Therefore M < A0 and (1)
states that in particular Q0 is in not almost OK(M). By the definition of
almost OK(M) from Section 20,

(2) #(E ∩Q∗
0) > 1 ,

and by (FN1) we conclude (FN1′). Next, according to (FN2) we know that
Q0 ∈ CZ(A0), and hence Q0 is almost OK(A0). By (1) and (2), necessarily
Q0 is OK(A0). This finishes the proof. �
Lemma 2. For all x ∈ E ∩Q∗

0,

(3) BA0(A2δQ0 ) ⊆ A0A1(A0)πA0,x

{
σ(x, �(A0)) ∩ B(x,A2δQ0)

}
.

Proof. If A0 = ∅ then (3) trivially holds. Assume A0 �= ∅. By (FN2′), the
cube Q is OK(A0). Since x ∈ E ∩Q∗

0, then (26) from the preceding section
yields,

A2δQ0 ≤ δ(x,A0).
Consequently, (24) from the preceding section implies that

(4) BA0(A2δQ0 ) ⊆ A0A1(A0) πA0,x

{
σ(x, �(A0)) ∩ RA0(x,A2δQ0)

}
.

Assume on the contrary that (3) does not hold. That is,

(5) BA0(A2δQ0 ) �⊂ A0A1(A0) πA0,x

{
σ(x, �(A0)) ∩ B(x,A2δQ0)

}
.

The relations (4) and (5) are precisely the assumptions of Lemma 4 of the
preceding section, for ν = 0,A = A0 and K = A0A1(A0) ≤ A20A1(A0).
The conclusion of that lemma implies that Q0 is OK(A), for some A < A0.
This contradicts (FN2′). Therefore, our assumption (5) was false. Conse-
quently, (3) holds and the lemma is proven. �
Lemma 3. For all x ∈ E ∩Q∗∗∗

0 ,

(6) BA0(A2δQ0 ) ⊆ CA0A1(A0)πA0,x

{
σ(x, �(A0) − 1) ∩ B(x,A2δQ0)

}
.

where C > 0 is a constant depending only on m and n.

Proof. By (FN1′) we know that x0 ∈ E ∩Q∗
0. According to Lemma 2,

(7) BA0(A2δQ0 ) ⊆ A0A1(A0)πA0,x0

{
σ(x0, �(A0)) ∩ B(x0, A2δQ0)

}
.

Let x ∈ E ∩Q∗∗∗
0 . Then since x, x0 ∈ Q∗∗∗

0 ,

(8) |x− x0| ≤
√
nδQ∗∗∗

0
≤ CδQ0 = CA0A1(A0)

A2
· A2δQ0
A0A1(A0)

.
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Assume, as we may (see Section 17), that,

(9) A0 > CC0 and p# ≥ 2
where C,C0 are the constants from (8) and from Lemma 1 of Section 31,
respectively. Recall from (2) of Section 17 that A2 ≥ (A0A1(A0))

2. There-
fore (8) and (9) entail that

(10) |x− x0| <
1
C0

· A2δQ0
A0A1(A0)

.

The statements (7) and (10) are the assumptions of Lemma 1 from Section 31
(for K = A0A1(A0) ≥ 1, � = �(A0) and δ = A2δQ0). By the conclusion of
that lemma,

BA0(A2δQ0 ) ⊆ CA0A1(A0)πA0,x {σ(x, �(A0) − 1) ∩ B(x,A2δQ0 )} ,

and the lemma is proven. �
Lemma 4. The set A0 is monotonic.

Proof. According to (FN1′), we know that x0 ∈ E ∩Q∗
0. By Lemma 2,

(11) BA0(A2δQ0 ) ⊆ A0A1(A0)πA0,x0 {σ(x0, �(A0)) ∩ B(x0, A2δQ0 )} .

Assume on the contrary that the set A0 is not monotonic. In particular,
A0 �= ∅. According to Property 3 from Section 13 the set σ(x0, �(A0)) is
Whitney t-convex at x0 with Whitney constant C̃ > 1. Thus, based on (11),
we may apply Lemma 4 from Section 30 for Ω = σ(x0, �(A0)), δ = A2δQ0 ,
K = A0A1(A0) ≥ 1). By the conclusion of that lemma, there exists a
monotonic set A ≤ A0 such that

(12) BA(A2δQ0) ⊆ CC̃(A0A1(A0))
p · πA,x0 {σ(x0, �(A0)) ∩ B(x0, A2δQ0 )} .

Since A is monotonic and A0 is not monotonic, evidently A < A0. Hence
�(A) + 1 ≤ �(A0), and by Property 4 from Section 13,

(13) σ(x0, �(A0)) ⊆ C′σ(x0, �(A) + 1).

Recall from (1), Section 17 that

(14) A1(A) ≥ (A20A1(A0))p#
.

By the definition of A0, p# from Section 17, we may assume that

(15) A0 is larger than CC̃C′
c1

and p# > p+ 1

where C, C̃, p are the constants from (12), C′ is the constant from (13) and c1
is the constant from Lemma 3 of Section 31. Then (12), (13) and (15) imply
that

(16) BA(A2δQ0) ⊆ c1A−1
0 A1(A) · πA,x0 {σ(x0, �(A) + 1) ∩ B(x0, A2δQ0)} .
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Since x0 ∈ E∩Q∗
0, we may invoke Lemma 3 from Section 31, based on (16).

That Lemma implies that Q0 is OK(A). Since A < A0, this contradicts
(FN2′). Hence our assumption, that A0 is not monotonic, is absurd. The
lemma is proven. �

Recall that A−
0 is the predecessor of A0 in our order relation on subsets

of multi-indices. The decomposition CZ(A−
0 ) is a refinement of CZ(A0), by

Lemma 3 from Section 21. Cubes in CZ(A−
0 ) may be much smaller than their

containers in CZ(A0). Nevertheless, based on Lemma 2 from Section 30,
we will show that these smaller cubes satisfy the same conditions as their
containers in CZ(A0).

Lemma 5. Let Q̂ ∈ CZ(A−
0 ) be such that (1+ cG)Q̂∩ (1+ cG)Q0 �= ∅. Let

x ∈ E ∩ Q̂∗∗. Then,

(17) BA0(A2δ�Q) ⊆ CA0A1(A0)πA0,x

{
σ(x, �(A0) − 1) ∩ B(x,A2δ�Q)

}
,

where C is a constant depending only on m and n.

Proof. First, note that A−
0 makes sense, as A0 �= M; and that we may

suppose A0 �= ∅, since (17) holds trivially for A0 = ∅. Second, by Lemma 7

from Section 21, we know that Q̂ ⊆ Q∗
0. Therefore, x ∈ E ∩ Q∗∗∗

0 , and by
Lemma 3,

(18) BA0(A2δQ0 ) ⊆ CA0A1(A0)πA0,x {σ(x, �(A0) − 1) ∩ B(x,A2δQ0 )} .

According to Lemma 6 from Section 21, we have

δ
�Q ≤ CδQ0 .

Suppose first that δ
�Q ≥ δQ0

2
. Then,

(19)
δQ0
2

≤ δ
�Q ≤ CδQ0 .

Consequently, the sets BA0(A2δQ0), B(x,A2δQ0) are C′-equivalent to the sets
BA0(A2δ�Q), B(x,A2δ�Q), respectively, because of (19). From (18) we con-

clude (17). This completes the proof, for the case δ
�Q ≥ δQ0

2
.

We may thus restrict our attention to the case where

(20) δ
�Q <

δQ0
2
.

From (6) of Section 30 we have B(x, δ) ⊆ RA0(x, δ). Hence the inclusion (18)
implies that

(21) BA0(A2δQ0 ) ⊆ rπA0,x {σ(x, �(A0) − 1) ∩ RA0(x,A2δQ0)} ,

for r = C1A0A1(A0), where C1 is a constant depending only on m and n.
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By (20) we know that δ
�Q+ = 2δ

�Q < δQ0 . According to (21) and to (8) from
Section 30, we get that

(22) BA0(A2δ�Q+ ) ⊆ rπA0,x

{
σ(x, �(A0) − 1) ∩ RA0(x,A2δ�Q+ )

}
,

for r = C1A0A1(A0). The sets B(x,A2δ�Q), BA0(A2δ�Q) are C2-equivalent
to B(x,A2δ�Q+ ), BA0(A2δ�Q+ ), respectively, for some constant C2 depending
only on m and n. Assume on the contrary that (17) does not hold, with
constant C = C1C

2
2. That is, assume on the contrary that

(23) BA0(A2δ�Q) �⊂ C1C22A0A1(A0) πA0,x

{
σ(x, �(A0) − 1) ∩ B(x,A2δ�Q)

}
.

The definition of the constant C2 implies that

(24) BA0(A2δ�Q+ ) �⊂ rπA0,x

{
σ(x, �(A0) − 1) ∩ B(x,A2δ�Q+ )

}
.

for r = C1A0A1(A0), the same r as in (22). We assume, as we may, that

(25) A0 > C1 where C1 is the constant from (22) and (24) .

Consequently, K := C1A0A1(A0) satisfies K < A20A1(A0). Note also that

x ∈ E ∩ Q̂∗∗ ⊆ E ∩ (Q̂+)∗∗. Using (22) and (24), we may apply Lemma 4 of

Section 31 with ν = 1,Q = Q̂+ and K as just defined. According to that
lemma, we obtain A < A0 such that Q̂+ is OK(A). The fact that A < A0
implies that A ≤ A−

0 , and by the definition of almost OK from Section 20,

the cube Q̂+ is almost OK(A−
0 ). On the other hand, Q̂ ∈ CZ(A−

0 ), δ�Q <
δQ0
2
< A−1

2 and thus Q̂+ cannot be almost OK(A−
0 ). Thus we arrive at a

contradiction, and (23) is false. This proves the lemma. �

For x ∈ Rn, A ⊆ M and a point a ∈ R�(A) we put

π−1
A,x(a) = {P ∈ P : πA,x(P) = a}.

The set π−1
A,x(a) is an affine subspace in P.

Lemma 6. Let Q̂ and x be as in Lemma 5. Then,

(26) π−1
A0,x

(0) ∩ σ(x, �(A0) − 2) ⊆ CB(x,A2δ�Q) ,

where C is a constant depending only on m and n.

Proof. We consider first the case where δ
�Q < A

−1
2 . In this case, we prove

the stronger statement,

(27) π−1
A0,x

(0) ∩ σ(x, �(A0) − 3) ⊆ CB(x,A2δ�Q) .
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Indeed (27) implies (26), since σ(x, �(A0) − 2) ⊆ C̃σ(x, �(A0) − 3) by Prop-
erty 4 from Section 13. We focus on proving (27). According to Lemma 5,

BA0(A2δ�Q) ⊆ rπA0,x

{
σ(x, �(A0) − 1) ∩ B(x,A2δ�Q)

}
for r = C′A0A1(A0). Since σ(x, �(A0)−1) ⊆ C̃σ(x, �(A0)−3) by Property 4
from Section 13, we deduce that

(28) BA0(A2δ�Q) ⊆ rπA0,x

{
σ(x, �(A0) − 3) ∩ B(x,A2δ�Q)

}
.

for r = CA0A1(A0). Let us assume by contradiction that,

(29) 0 ∈ πA0,x

{
σ(x, �(A0) − 3) \ r−1B(x,A2δ�Q)

}
for the same r = CA0A1(A0), as in (28). We will show that (29) cannot hold.
The statements (28) and (29) are precisely the assumptions of Lemma 5 from
Section 30 (for Ω = σ(x, �(A0) − 3), δ = A2δ�Q, K = r = CA0A1(A0) ≥ 1).
That lemma implies that for some A < A0,

(30) BA(A2δ�Q) ⊆ rπA,x

{
σ(x, �(A0) − 3) ∩ B(x,A2δ�Q)

}
,

for r = 2(CA0A1(A0))
2. Note that �(A) + 1 ≤ �(A0) − 3 as A < A0. We

conclude from Property 4 of Section 13 that σ(x, �(A0)−3) ⊆ Ĉσ(x, �(A)+1).
Consequently, (30) implies that

(31) BA(A2δ�Q) ⊆ rπA,x

{
σ(x, �(A) + 1) ∩ B(x,A2δ�Q)

}
,

for r = C′(A0A1(A0))2. The sets BA(A2δ�Q), B(x,A2δ�Q) are C-equivalent to
the sets BA(A2δ�Q+ ), B(x,A2δ�Q+ ), respectively. Therefore, by (31),

(32) BA(A2δ�Q+ ) ⊆ rπA,x

{
σ(x, �(A) + 1) ∩ B(x,A2δ�Q+ )

}
,

for r = C̃(A0A1(A0))
2. Recall that A < A0, and that by (1) from Section 17,

(33) A1(A) ≥ (A20A1(A0))
p# .

We stipulate, as we may, that

(34) A0 >
C̃
c1
, and p# ≥ 3,

where C̃ is the constant from (32) and c1 is the constant from Lemma 3 of
Section 31. Then, (33) and (34) give

(35) C̃(A0A1(A0))
2 < c1A

−1
0 A1(A).

From (32) and (35) we get,

(36) BA(A2δ�Q+ ) ⊆ c1A−1
0 A1(A) πA,x

{
σ(x, �(A) + 1) ∩ B(x,A2δ�Q+ )

}
.
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Recall that δ
�Q < A

−1
2 , and thus δ

�Q+ ≤ A−1
2 . Also, note that A �= ∅, since

A < A0. Since x ∈ E ∩ Q̂∗∗ ⊆ E ∩ (Q̂+)∗∗, by (36) the requirements of

Lemma 3 from Section 31 are fulfilled, for Q = Q̂+. The conclusion of that
lemma asserts that the cube Q̂+ is OK(A). Since A < A0, the cube Q̂+ is
almost OK(A−

0 ) by the definition of almost OK(A−
0 ). This contradicts the

fact that Q̂ is in CZ(A−
0 ). Thus, our assumption (29) is false. That is,

π−1
A0,x

(0) ∩ σ(x, �(A0) − 3) ⊆ r−1B(x,A2δ�Q),

for r = CA0A1(A). Since r ≥ 1, we conclude (27). In particular, the lemma
is proven for the case where δ

�Q < A
−1
2 .

Suppose now that δ
�Q = A−1

2 . According to Lemma 3 from Section 21,

the Calderón-Zygmund decomposition CZ(A−
0 ) is a refinement of CZ(A0).

Since Q0 ∈ CZ(A0) and (1 + cG)Q0 ∩ (1 + cG)Q̂ �= ∅, by Lemma 8 from

Section 21 we may pick a cube Q̃ ∈ CZ(A−
0 ) such that

Q̃ ⊆ Q0 and (1+ cG)Q̃ ∩ (1+ cG)Q̂ �= ∅.
By (FN2), we know that Q̃ �= Q0. Since δQ0 ≤ A−1

2 , we conclude that

δ
�Q ≤ A−1

2

2
. Since δ

�Q = A−1
2 and (1+ cG)Q̃ ∩ (1+ cG)Q̂ �= ∅, Lemma 2 from

Section 21 implies that

(37) δ
�Q = 1

2
A−1
2 .

Lemma 4 from Section 21, based on (37), yields that Q̃∗∗ ∩ E �= ∅. Pick

x̃ ∈ Q̃∗∗ ∩ E. We know that δ
�Q < A−1

2 , Q̃ ∈ CZ(A−
0 ), x̃ ∈ Q̃∗∗ ∩ E and

(1 + cG)Q̃ ∩ (1 + cG)Q0 �= ∅. Thus, we are in the case already treated,
and hence by (27),

(38) π−1
A0,̃x

(0) ∩ σ(x̃, �(A0) − 3) ⊆ CB(x̃, A2δ�Q) ⊆ CB(x̃, 1) ,

where the last inclusion follows since A2δ�Q ≤ 1.
Recall that (1 + cG)Q̃ ∩ (1 + cG)Q̂ �= ∅ with δ

�Q = A−1
2 , δ�Q ≤ A−1

2 and

x̃ ∈ Q̃∗∗, x ∈ Q̂∗∗. Consequently,

(39) |x− x̃| < CA−1
2 .

Let us pick any

(40) P ∈ π−1
A0,x

(0) ∩ σ(x, �(A0) − 2).

To obtain (26), it is sufficient to show that

(41) P ∈ CB(x,A2δ�Q) = CB(x, 1) .
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From (40) and Property 2 of Section 13, there exists P̃ ∈ P such that

(42) P̃ ∈ Cσ(x̃, �(A0) − 3), and P̃ − P ∈ CB(x, x̃) ⊆ C′B(x̃, A−1
2 ) ,

where the last inclusion follows from (39). According to (40), we know
that πA0,x(P) = 0. Lemma 4 tells us that A0 is monotonic. By (46) from
Section 30, also πA0,̃x(P) = 0. Projecting the right hand side of (42), we get
that

(43) πA0,̃x(P̃) = πA0,̃x(P̃ − P) ∈ πA0,̃x{C
′B(x̃, A−1

2 )} ⊆ πA0,̃x{C̃A
−1
2 B(x̃, 1)}

⊆ C̄A−1
2 BA0(1) ,

where the last two inclusions follow from (2) of Section 12 and (3) from

Section 30, respectively. Since x̃ ∈ E ∩ Q̃∗∗, Q̃ ∈ CZ(A−
0 ) and (1 + cG)Q̃ ∩

(1+ cG)Q0 �= ∅, we may apply Lemma 5. By the conclusion of that lemma,

BA0(A2δ�Q) ⊆ CA0A1(A0)πA0,̃x

{
σ(x̃, �(A0) − 1) ∩ B(x̃, A2δ�Q)

}
,

and hence,

(44) 1
C̃A0A1(A0)

BA0(1) ⊆ πA0,̃x

{
σ(x̃, �(A0) − 3) ∩ B(x̃, 1)

}
,

where we have used (37), as well as Property 4 from Section 13. Recall that
A2 > A0A1(A0) according to Section 17. Using (43) and (44) we deduce
that there exists

(45) P′ ∈ C[σ(x̃, �(A0) − 3) ∩ B(x̃, 1)]

such that

(46) πA0,̃x(P
′) = πA0,̃x(P̃).

According to (42), (45) and (46), we have that

P′ − P̃ ∈ π−1
A0,̃x

(0) ∩ Cσ(x̃, �(A0) − 3).

With the help of (38), we conclude that

(47) P′ − P̃ ∈ CB(x̃, 1) .

Combining (42) with (47) and (45), we see that

P = (P− P̃) + (P̃−P′) +P′ ∈ C′B(x̃, A−1
2 ) +CB(x̃, 1) +CB(x̃, 1) ⊆ C̃B(x̃, 1).

From (39), we get that P ∈ C′′B(x, 1) and thus (41) is proven. Therefore,
we have proved that (40) implies (41) under the assumption that δ

�Q = A−1
2 .

Equivalently,

π−1
A0,x

(0) ∩ σ(x, �(A0) − 2) ⊆ CB(x,A2δ�Q)

also in the case δ
�Q = A−1

2 . The lemma is thus proven in all cases. �

We set, for any x ∈ E, P̃0 ∈ P and M > 0,

(48) Γ
�
A0

(x, P̃0,M) = Γ(x, �(A0) − 1,M) ∩ π−1
A0,x

(πA0,x(P̃0)).
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Lemma 7. Let x ∈ E be such that x ∈ Q̂∗∗ for some cube Q̂ ∈ CZ(A−
0 )

with (1+ cG)Q̂ ∩ (1+ cG)Q0 �= ∅. Then,

(49) Γ
�
A0

(x, P0, CM0) �= ∅.

Moreover, for any A > 1 and P ∈ Γ �
A0

(x, P0, AM0),

(50) P − P0 ∈ CAM0B(x,A2δQ0 ).

Here C is a constant depending only on m and n.

Proof. By (FN3), we know that

(51) P0 ∈ Γ(x0, �(A0),M0) ⊆ Γ(x, �(A0) − 1, CM0) + CM0B(x0, x)

where the inclusion follows from Property 2 of Section 13. By Lemma 7 from
Section 21, we have x, x0 ∈ Q∗∗∗

0 , and hence |x0 − x| ≤ √
nδQ∗∗∗

0
≤ CδQ0 .

Therefore (51), with the help of (3) from Section 12, implies that

(52) P0 ∈ Γ(x, �(A0) − 1, CM0) + CM0B(x, δQ0).

Recall that A2 > 1 by (2) from Section 17. Thus (2) from Section 12
entails that B(x, δQ0) ⊆ 1

A2
B(x,A2δQ0). Together with (52), this gives

(53) P0 ∈ Γ(x, �(A0) − 1, CM0) + C
A2
M0B(x,A2δQ0).

Since x ∈ E ∩Q∗∗∗
0 , Lemma 3 implies that

(54) BA0(A2δQ0 ) ⊆ CA0A1(A0)πA0,x {σ(x, �(A0) − 1) ∩ B(x,A2δQ0 )} .

The inclusions (54) and (53) are the assumptions of Lemma 2 from Section 31
(with K1 = CA0A1(A0), K2 = C

A2
, δ = A2δQ0 , � = �(A0) − 1). By the

conclusion of that lemma, with the help of the definition (48), there exists
P̃ ∈ P such that

(55) P̃ ∈ Γ#
A0

(x, P0, r1M0) ∩ [P0+ r2M0B(x,A2δQ0)]

for r1 = C̃

(
1+ CA0A1(A0)

A2

)
, r2 = C̃

A2
(1+CA0A1(A0)). Note that r1 < C

′ and

r2 < C
′ since A2 ≥ A0A1(A0) by (2) from Section 17. The statement (55)

implies, in particular, that,

(56) Γ
�
A0

(x, P0, C
′M0) �= ∅.

We thus conclude (49), the first part of the lemma. We move to the second
part of the lemma. According to (55),

(57) P̃ − P0 ∈ CM0B(x,A2δQ0) .
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Pick

(58) P ∈ Γ �
A0

(x, P0, AM0) ⊆ Γ(x, �(A0) − 1,AM0),

where the inclusion is justified by (48). Then by (55), (58), and the defini-
tion (48) of Γ �,

(59) P − P̃ ∈ Γ(x, �(A0) − 1,AM0) − Γ(x, �(A0) − 1, CM0)

⊆ C̃AM0σ(x, �(A0) − 1) ⊆ C′AM0σ(x, �(A0) − 2),

where we used Property 1 and Property 4 from Section 13. Note also that
by (55) and (58) we have

(60) πA0,x(P − P̃) = 0.

According to the assumptions of the present lemma, there exists Q̂∈CZ(A−
0 )

with x ∈ E ∩ Q̂∗∗ and (1 + cG)Q̂ ∩ (1 + cG)Q0 �= ∅. We may thus apply
Lemma 6, based on (59) and (60). We get that

(61) P − P̃ ∈ CAM0B(x,A2δ�Q).

According to Lemma 6 from Section 21, δ
�Q ≤ CδQ0 . Consequently, (61)

implies that

(62) P − P̃ ∈ C′AM0B(x,A2δQ0 ).

Combining (57) and (62), we obtain the desired estimate (50). The lemma
is thus proven. �
Lemma 8. Let Q̂, Q̃ ∈ CZ(A−

0 ) be two cubes, such that (1+cG)Q0 intersects

both (1+cG)Q̂ and (1+cG)Q̃. Assume also that (1+cG)Q̂∩(1+cG)Q̃ �= ∅.
Let x1 ∈ E∩ Q̂∗∗, x2 ∈ E∩ Q̃∗∗. Let also P1, P2 ∈ P and A > 1. Assume that

(63) P1 ∈ Γ �
A0

(x1, P0, AM0), P2 ∈ Γ �
A0

(x2, P0, AM0) .

Then,

(64) P1− P2 ∈ CAM0B(x1, A2δ�Q),

where C > 0 is a constant depending only on m and n.

Proof. By (63), P2 ∈ Γ �
A0

(x2, P0, AM0). According to the definition (48)

of Γ#,

(65) πA0,x2(P2− P0) = 0 .

Lemma 4 entails that A0 is monotonic. We will now use the basic property
of monotonic sets; according to (46) from Section 30, also

(66) πA0,x1(P2− P0) = 0 .
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Next, (48) and (63), followed by Property 2 from Section 13, imply that,

(67) P2 ∈ Γ(x2, �(A0)−1,AM0)⊆Γ(x1, �(A0)−2, CAM0)+CAM0B(x2, x1).

By our assumptions, (1 + cG)Q̂ ∩ (1 + cG)Q̃ �= ∅, and Q̂, Q̃ ∈ CZ(A−
0 ).

By Lemma 2 from Section 21 we know that δ
�Q and δ

�Q are comparable.

Recall that x1 ∈ Q̂∗∗, x2 ∈ Q̃∗∗. Therefore,

(68) |x1− x2| < Cδ�Q .

Consequently B(x2, x1) ⊆ CB(x1, δ�Q) and by (67) we can assert that

(69) P2 ∈ Γ(x1, �(A0) − 2, CAM0) + CAM0B(x1, δ�Q) .

Recall that A2 > 1 by (2) of Section 17. Thus (2) from Section 12 implies
that B(x1, δ�Q) ⊆ 1

A2
B(x1, A2δ�Q). Using (69) we deduce that

(70) P2 ∈ Γ(x1, �(A0) − 2, CAM0) + C
A2
AM0B(x1, A2δ�Q) .

Note that x1 and Q̂ satisfy the requirements of Lemma 5; indeed, x1 ∈
Q̂∗∗ ∩ E by our assumptions, and (1 + cG)Q̂ ∩ (1 + cG)Q0 �= ∅. By the
conclusion of Lemma 5,

(71) BA0(A2δ�Q) ⊆ CA0A1(A0)πA0,x1

{
σ(x1, �(A0) − 1) ∩ B(x1, A2δ�Q)

}
⊆ C′A0A1(A0)πA0,x1

{
σ(x1, �(A0) − 2) ∩ B(x1, A2δ�Q)

}
,

where the second inclusion is correct since σ(x1, �(A0)− 1)⊆C′σ(x, �(A0)− 2)
by Property 4 from Section 13. The inclusions (71) and (70) are precisely
the assumptions of Lemma 2 from Section 31 (K1 = C′A0A1(A0), K2 = C

A2
,

δ = A2δ�Q, � = �(A0) − 2,M = CAM0). By the conclusion of that lemma,
there exists

(72) P̂ ∈ Γ
(
x1, �(A0) − 2, C̃AM0

(
1+ C′A0A1(A0)

A2

))
such that

(73) P2− P̂ ∈ CAM0

A2
(1+A0A1(A0)) · B(x1, A2δ�Q)

and

(74) πA0,x1(P̂ − P2) = 0 .

Recall that P1 ∈ Γ �
A0

(x1, P0, AM0) by (63). The definition (48) of Γ �
A0

, to-
gether with (66) and (74) imply that

(75) πA0,x1(P̂ − P1) = 0 .
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Furthermore, since P1 ∈ Γ �
A0

(x1, P0, AM0) by (63), the definition (48) entails
that

(76) P1 ∈ Γ(x1, �(A0) − 1,AM0) ⊆ Γ(x1, �(A0) − 2, CAM0)

where the last inclusion follows from Property 4 from Section 13. Using
Property 1 from that section, together with (72), (76) we get that

(77) P̂ − P1 ∈ C̃AM0

(
1+ C′A0A1(A0)

A2

)
σ(x1, �(A0)−2)

⊆ CAM0σ(x1, �(A0) − 2),

since A2 > A0A1(A0) by (2) from Section 17. Given (75) and (77), Lemma 6
tells us that

(78) P̂ − P1 ∈ CAM0B(x1, A2δ�Q) .

(We may invoke Lemma 6 since x1 ∈ E∩ Q̂∗∗, Q̂ ∈ CZ(A−
0 ) and (1+ cG)Q̂∩

(1+ cG)Q0 �= ∅.) Now, (73), (78) and the fact that A2 > A0A1(A0), imply
that

(79) P1− P2 ∈ CAM0B(x1, A2δ�Q) .

The statement (79) is the conclusion of the lemma. �
Recall the definition of the procedure “Find-Neighbor” from Section 15.

Let P̃0 ∈ P,A ⊆ M, x ∈ E. Then,

P = Find-Neighbor(P̃0,A, x)

is a polynomial in P that satisfies the following: For any M > 0,

(80) Γ
�
A(x, P̃0,M) �= ∅ ⇒ P ∈ Γ �

A(x, P̃0, CM),

where C > 0 is a constant depending only on m and n. We will conclude
this section with the following lemma, which is a reformulation of Lemma 8.

Lemma 9. Let Q̂, Q̃ ∈ CZ(A−
0 ) be two cubes such that

(1+ cG)Q̂ ∩ (1+ cG)Q̃ �= ∅.
Assume also that both (1+cG)Q̂ and (1+cG)Q̃ intersect (1+cG)Q0. Suppose

that x1 ∈ E ∩ Q̂∗∗, x2 ∈ E ∩ Q̃∗∗, and that for ν = 1, 2,

(81) Either xν = x0 and Pν = P0, or else Pν = Find-Neighbor(P0,A0, xν) .

Then,

(82) P1− P2 ∈ CM0B(x1, A2δ�Q)

where C is a constant depending only on m and n.
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Proof. Fix ν ∈ {1, 2}. We will show that

(83) Pν ∈ Γ �
A0

(xν, P0, CM0) .

We split the proof of (83) to two cases, corresponding to the two cases
in our assumption (81). Suppose first that xν = x0 and Pν = P0. Then
Pν = P0 ∈ Γ(xν, �(A0),M0) by (FN3). Using Property 1 from Section 13,
we deduce that

(84) Pν = P0 ∈ Γ(xν, �(A0) − 1, CM0) .

Then (84) and the definition (48) of Γ# imply that

Pν = P0 ∈ Γ �
A0

(xν, P0, CM0).

Therefore (83) is proven in the case where xν = x0 and Pν = P0.

It remains to handle the second case of our assumption (81); that is,
when Pν = Find-Neighbor(P0,A0, xν). According to Lemma 7, the sets

Γ
�
A0

(x1, P0, CM0) and Γ
�
A0

(x2, P0, CM0)

are non-empty. Therefore, the basic property (80) of Find-Neighbor implies
that

Pν ∈ Γ �
A0

(xν, P0, C
′M0).

Hence (83) is proven also in the case where Pν = Find-Neighbor(P0,A0, xν).

Thus (83) holds in all cases. We may thus apply Lemma 8, based on (83)
for ν = 1, 2. Lemma 8 implies (82) and the lemma is proven. �

Remark. Suppose that x ∈ Q̂∗∗ ∩ E for some cube Q̂ ∈ CZ(A−
0 ) such that

(1+ cG)Q̂ ∩ (1+ cG)Q0 �= ∅.

Suppose also that either x = x0, P = P0 or else P = Find-Neighbor(P0,A0, x).
Then we actually proved in Lemma 9 (see (83)) that

(85) P ∈ Γ �
A0

(x, P0, CM0) .

We will use the last remark, as well as Lemma 7 and Lemma 9, in the
next section. Recall that (FN1), (FN2) and (FN3) were the fundamental as-
sumptions in the present section. Thus, when we apply Lemma 7, Lemma 9
or other results from the current section, we have to make sure that (FN1),
(FN2) and (FN3) hold.
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33. The proof of the Main Lemma

Recall that P+ stands for the space of all polynomials of degree m in Rn.
The space P, of all polynomials of degree m − 1 in Rn, embeds naturally
in P+. Recall also that we denote, for x ∈ Rn, δ > 0,

B+(x, δ) = {P ∈ P+ : |∂βP(x)| ≤ δm−|β| for all |β| ≤ m}.

Clearly, for P ∈ P, we have P ∈ B+(x, δ) if and only if P ∈ B(x, δ). Recall
that J+x (F) stands for the m-jet at x of a function F : Rn → R.

We will prove the Main Lemma for A0 by induction on the set A0 with
respect to the order relation <. The minimal set in the order is M. Next,
we establish the Main Lemma for M, the base of our induction.

33.1. The case A0 = M

Recall the assumptions of the Main Lemma for M from Section 29. Thus,
assume that we are given a dyadic cube Q0 with δQ0 ≤ A−1

2 , a polynomial
P0 ∈ P, M0 > 0 and x0 ∈ Rn that satisfy:

(AM1) x0 ∈ E ∩Q∗∗
0 . If E ∩Q∗

0 �= ∅, then x0 ∈ E ∩Q∗
0.

(AM2) Q0 ∈ CZ(M).

(AM3) P0 ∈ Γ(x0, �(M),M0) = Γ(x0, 1,M0).

To establish the lemma, we need to exhibit a function F ∈ Cm ((1+ cG)Q0)
such that:

(1) J+x (F) = fx(M, Q0, x0, P0) for all x ∈ (1+ cG)Q0 ,

where fx(M, Q0, x0, P0) is defined in the Main Algorithm from Section 29,

(2) J+x (F− P0) ∈ A3(M)M0 · B+(x, δQ0) for all x ∈ (1+ cG)Q0 ,

(3) Jx(F) ∈ Γ(x, 0, A3(M)M0) for all x ∈ E ∩ (1+ cG)Q0 ,

(4) If x0 ∈ (1+ cG)Q0 then Jx0(F) = P0 .

To that end, we set

(5) F(x) = P0(x) for all x ∈ (1+ cG)Q0 ,

a polynomial on (1+ cG)Q0. Thus,

(6) J+x (F) = P0 for all x ∈ (1+ cG)Q0 ,

and therefore (2) and (4) trivially hold.
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According to Line 1 of the Main Algorithm, we know that

P0 = fx(M, Q0, x0, P0), for all x ∈ (1+ cG)Q0,

and consequently (1) holds.

It remains to establish (3). According to (6), we need to prove that

(7) P0 ∈ Γ(x, 0, A3(M)M0) for all x ∈ (1+ cG)Q0 ∩ E .
By (AM2) we know that Q0 ∈ CZ(M), and hence the cube Q0 is al-
most OK(M). Recall the definition of “almost OK(M)” from Section 20.
Since Q0 is almost OK(M), then either

Case 1: #(E ∩Q∗
0) ≤ 1,

or

Case 2: Q0 is OK(A) for some A ≤ M and #(E ∩Q∗
0) > 1.

Suppose we are in Case 1. If E ∩ Q∗
0 = ∅ then (7) holds vacuously

as E ∩ (1 + cG)Q0 ⊆ E ∩ Q∗
0 = ∅. Otherwise, #(E ∩ Q∗

0) = 1. According
to (AM1), the point x0 is the unique element in E∩Q∗

0. According to (AM3),
we know that

(8) P0 ∈ Γ(x0, 1,M0) ⊆ Γ(x0, 0, CM0)

where the inclusion follows by Property 4 from Section 13. The definitions
of A3(M) and A0 in Section 17 imply that

(9) A3(M) = A20A1(M) ≥ A0 ≥ C ,
where C is the constant from (8). Since (1 + cG)Q0 ⊆ Q∗

0, and x0 is the
unique point in E ∩Q∗

0, then (8) and (9) imply (7). This finishes Case 1.

We move our attention to Case 2. Then #(E∩Q∗
0) > 1 andQ0 is OK(A),

for some A ≤ M. As M is minimal, Q0 is OK(M). Let us pick

(10) x ∈ E ∩ (1+ cG)Q0 ⊆ E ∩Q∗
0 .

Recall the definition of OK(M), that is (1) from Section 20. Since Q is
OK(M) and x ∈ E ∩Q∗

0, then according to (1) from Section 20,

A2δQ0 ≤ δ(x,M),

and from the definition of δ(x,M) (e.g., (24) of Section 31) we know that

(11) BM(A2δQ0) ⊆ A0A1(M)πM,x {σ(x, 1)} .
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Recall that πM,x, as defined in (1) from Section 30, is an isomorphism of P

and R�(M). Thus, applying π−1
M,x to both sides in (11) we get that

(12) π−1
M,x {BM(A2δQ0)} ⊆ A0A1(M)σ(x, 1) .

According to (3) from Section 30, the left hand side of (12) is C-equivalent
to B(x,A2δQ0). Therefore,

(13) B(x,A2δQ0) ⊆ CA0A1(M)σ(x, 1) .

Both x and x0 belong to Q∗∗
0 , by (AM1) and (10). Thus

(14) |x− x0| ≤
√
nδQ∗∗

0
≤ CδQ0 ≤ A0δQ0 ≤ A2δQ0 ,

according to the definition of A0, A2 from Section 17. By (13) and (14),

(15) B(x, x0) ⊆ B(x,A2δQ0 ) ⊆ CA0A1(M)σ(x, 1) .

Next, according to (AM3) followed by Property 2 from Section 13,

(16) P0 ∈ Γ(x0, 1,M0) ⊆ Γ(x, 0, CM0) + CM0B(x, x0) .

Combining (15) with (16), we see that

(17) P0 ∈ Γ(x, 0, CM0) + CA0A1(M)M0σ(x, 1) .

By applying Property 4 and Property 1 from Section 13 to (17), we conclude
that

(18) P0 ∈ Γ (x, 0, CA0A1(M)M0) .

Assume, as we may, that

(19) A0 > C where C is the constant from (18) .

According to (3) from Section 17, we have that A3(M) = A20A1(M) >

CA0A1(M), where C is the constant from (18). From (18) we thus conclude
that

P0 ∈ Γ (x, 0, A3(M)M0) .

The point x ∈ (1 + cG)Q0 ∩ E is arbitrary, and hence (7) is proven. This
completes the proof of the Main Lemma for M.
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33.2. The Main Lemma in an easy case

We have established the base of the induction. Let A0 ⊂ M be such that
A0 �= M. Assume that the Main Lemma was proven for all A < A0. Let us
now prove the Main Lemma for A0.

Thus, suppose we are given a dyadic cube Q0 with δQ0 ≤ A−1
2 , a poly-

nomial P0 ∈ P, M0 > 0 and x0 ∈ Rn that satisfy:

(ML1) x0 ∈ E ∩Q∗∗
0 . If E ∩Q∗

0 �= ∅, then x0 ∈ E ∩Q∗
0.

(ML2) Q0 ∈ CZ(A0).

(ML3) P0 ∈ Γ(x0, �(A0),M0).

To establish the Main Lemma for A0, we need to exhibit a function
F ∈ Cm ((1+ cG)Q0) such that:

(MLC1) J+x (F) = fx(A0, Q0, x0, P0) for all x ∈ (1+ cG)Q0,

where fx(A0, Q0, x0, P0) is defined in the Main Algorithm from Section 29,

(MLC2) J+x (F− P0) ∈ A3(A0)M0 · B+(x, δQ0) for all x ∈ (1+ cG)Q0,

(MLC3) Jx(F) ∈ Γ(x, 0, A3(A0)M0) for all x ∈ E ∩ (1+ cG)Q0,

(MLC4) If x0 ∈ (1+ cG)Q0 then Jx0(F) = P0.

We split the proof into two cases, according to whether there exists
A < A0 such that Q0 ∈ CZ(A), or whether there is no such A. We will next
treat the first, easy, case.

Thus, suppose there exists A < A0 such that Q0 ∈ CZ(A). We may
assume that A < A0 is the minimal subset of M, with respect to our order
relation, such that

(ML2′) Q0 ∈ CZ(A).

In particular �(A) < �(A0) and hence (ML3) and Property 4 from Section 13
imply that

(ML3′) P0 ∈ Γ(x0, �(A), CM0) = Γ(x0, �(A),M′
0)

where

(20) M′
0 = CM0 .

Note that (ML1), (ML2′) and (ML3′) are precisely the assumptions of the
Main Lemma for A, with M′

0 in place of M0. Since A < A0, we may apply
the induction hypothesis, to get a function F ∈ Cm ((1+ cG)Q0) such that:
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(21) J+x (F) = fx(A, Q0, x0, P0) for all x ∈ (1+ cG)Q0 ,

(22) J+x (F− P0) ∈ A3(A)M′
0 · B+(x, δQ0) for all x ∈ (1+ cG)Q0 ,

(23) Jx(F) ∈ Γ(x, 0, A3(A)M′
0) for all x ∈ E ∩ (1+ cG)Q0 ,

(24) If x0 ∈ (1+ cG)Q0 then Jx0(F) = P0 .

We will show that the function F satisfies the conclusions of the Main Lemma
for A0. That is, we will establish (MLC1), (MLC2), (MLC3) and (MLC4).

First, (MLC4) holds, because of (24). Since A < A0, then by the defini-
tions of A3(A0) and A0 from Section 17, we have that

(25) A3(A0) ≥ A0A3(A) > CA3(A) where C is the constant from (20) .

According to (20) and (25), we immediately conclude that (22) implies
(MLC2), and that (23) implies (MLC3). It remains to prove (MLC1).

Recall the Main Algorithm from Section 29. According to Lines 2-3 in
the Main Algorithm, since A is the minimal subset of M such that Q0 ∈
CZ(A), then

(26) fx(A0, Q0, x0, P0) = fx(A, Q0, x0, P0) .

Now (21) and (26) imply (MLC1). We have thus proven that the function F
satisfies the conclusions (MLC1), (MLC2), (MLC3) and (MLC4). Therefore
the Main Lemma for A0 is proven in the case where there exists A < A0
such that Q0 ∈ CZ(A).

33.3. The Main Lemma in the non-trivial case

In this section we prove the Main Lemma for A0 in the remaining case,
where there is no A < A0 with Q0 ∈ CZ(A). Therefore, we assume here, in
addition to (ML1), (ML2) and (ML3), that

(ML4) A0 �= M, and for all A < A0, we have that Q0 �∈ CZ(A).

Our goal is to prove the conclusions of the Main Lemma for A0, i.e., the
existence of a function F ∈ Cm((1+ cG)Q0) that satisfies (MLC1), (MLC2),
(MLC3) and (MLC4) from Section 33.2.

Let Q1, ..., Qkmax be an enumeration of all cubes Q ∈ CZ(A−
0 ) such that

(1 + cG)Q ∩ (1 + cG)Q0 �= ∅. For each cube Qk, we will define a point
xk ∈ Q∗∗

k and a polynomial Pk ∈ P. Later on, we will apply the induction
hypothesis for the cubes Qk, the points xk and the polynomials Pk. Fix
1 ≤ k ≤ kmax. To define xk and Pk in the case where Q∗∗

k ∩ E = ∅, we
simply set

(27) xk = center of Qk and Pk = P0.
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Clearly xk ∈ Q∗∗
k in this case. We still need to define xk and Pk when

Q∗∗
k ∩ E �= ∅. Thus, suppose that Q∗∗

k ∩ E �= ∅. If x0 ∈ Q∗
k, then we set

(28) xk = x0 and Pk = P0.

(Obviously xk = x0 ∈ Q∗
k ∩ E ⊆ Q∗∗

k here.) In the case where x0 �∈ Q∗
k, we

define

(29) xk = Find-Representative(Qk) and Pk = Find-Neighbor(P0,A0, xk),

where Algorithm Find-Representative is described in Section 27, and Algo-
rithm Find-Neighbor is presented in Section 15. The defining property of
Find-Representative from Section 27 shows that xk ∈ Q∗∗

k . This completes
the definition of xk and Pk in all cases.

Thus, for each 1 ≤ k ≤ kmax we have defined a representative xk ∈ Q∗∗
k

and a polynomial Pk ∈ P. The representative xk satisfies that xk ∈ E

whenever Q∗∗
k ∩ E �= ∅; this follows at once by (28), (29) and the defining

property of Find-Representative from Section 27.

In the next two lemmas, we will make use of Lemma 7, Lemma 9 and
property (85) from Section 32. Note that the basic assumptions (FN1),
(FN2) and (FN3) from Section 32 hold, in view of (ML1), (ML2), (ML3)
and (ML4). Therefore we may safely use results from Section 32 (see also
the last paragraph in Section 32).

Lemma 1. Let 1 ≤ k ≤ kmax. Then,

(30) Pk− P0 ∈ CM0B(xk, A2δQ0) .

Furthermore, if Q∗∗
k ∩ E �= ∅, then

(31) Pk ∈ Γ(xk, �(A−
0 ), CM0).

Here, C is a constant depending only on m and n.

Proof. Suppose first that E ∩Q∗∗
k = ∅. Then Pk = P0 according to (27),

and hence (30) trivially holds. Therefore the lemma is proven for the case
where E∩Q∗∗

k = ∅, and we may thus confine our attention to the case where
E ∩ Q∗∗

k �= ∅. Consequently, xk ∈ Q∗∗
k ∩ E, and the cube Qk ∈ CZ(A−

0 )

satisfies (1 + cG)Qk ∩ (1 + cG)Q0 �= ∅. According to (28), (29) we either
have that xk = x0, Pk = P0, or else Pk = Find-Neighbor(P0,A0, xk). We may
thus invoke (85) from Section 32, and conclude that

(32) Pk ∈ Γ �
A0

(xk, P0, CM0) .

Since Qk ∈ CZ(A−
0 ), xk ∈ Q∗∗

k ∩E and (1+cG)Qk∩(1+cG)Q0 �= ∅, then
the requirements of Lemma 7 from Section 32 are satisfied. From (32) and
from the conclusion of that lemma (the “Moreover” part), we deduce that

(33) Pk− P0 ∈ C′M0B(xk, A2δQ0 ) .

Therefore (30) is proven.
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We move to the proof of (31). Recall the definition of Γ#, that appears
in (48) from Section 32. According to (32),

(34) Pk ∈ Γ(xk, �(A0) − 1, CM0) .

Since �(A−
0 ) ≤ �(A0) − 1, then by combining (34) with Property 4 from

Section 13, we get that

(35) Pk ∈ Γ(xk, �(A−
0 ), C

′M0) .

This completes the proof of (31). The lemma is thus proven. �

Lemma 2. Let 1 ≤ µ, ν ≤ kmax be such that (1+ cG)Qµ∩ (1+ cG)Qν �= ∅.
Then,

(36) Pµ− Pν ∈ CM0B(xµ, A2δQµ) ,

where C is a constant depending only on m and n.

Proof. Suppose first that E ∩ Q∗∗
µ = ∅ and E ∩ Q∗∗

ν = ∅. In this case,
by (27),

Pµ = P0, Pν = P0

and (36) trivially holds.
Next, suppose that E ∩ Q∗∗

µ = ∅ but E ∩ Q∗∗
ν �= ∅. Since E ∩ Q∗∗

µ = ∅,
then Pµ = P0 by (27). Additionally, by Lemma 4 from Section 21, we know
that

(37) δQµ = A−1
2 .

According to Lemma 1,

(38) Pν− P0 ∈ CM0B(xν, A2δQ0 ) ⊆ CM0B(xν, A2δQµ) ,

since δQµ = A−1
2 ≥ δQ0 . Recall that xν ∈ Q∗∗

ν , xµ ∈ Q∗∗
µ and that the dyadic

cubes Qµ, Qν satisfy (1+ cG)Qµ∩ (1+ cG)Qν �= ∅. Since δQµ = A−1
2 ≥ δQν

then |xν − xµ| < CδQµ . Consequently, (38) translates, with the help of (3)
from Section 12, to

(39) Pν− Pµ = Pν− P0 ∈ CM0B(xµ, A2δQµ) ,

and (36) is established, in the case where E ∩Q∗∗
µ = ∅, E ∩Q∗∗

ν �= ∅.
Note that since (1 + cG)Qµ ∩ (1 + cG)Qν �= ∅, and Qµ, Qν ∈ CZ(A−

0 ),
then Lemma 2 of Section 21 implies that the sidelengths δQν and δQµ have
the same order of magnitude. Furthermore, since xµ ∈ Q∗∗

µ , xν ∈ Q∗∗
ν , then

(40) |xµ− xν| < CδQν .
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We conclude that B(xν, A2δQν) and B(xµ, A2δQµ) are C-equivalent. There-
fore, (36) is actually symmetric in µ and ν; reversing their rôles merely
changes the constant C in (36). By this symmetry, the lemma is also proven
for the case where E ∩Q∗∗

µ �= ∅, E ∩Q∗∗
ν = ∅.

It remains to consider the case where both E∩Q∗∗
µ and E∩Q∗∗

ν are non-
empty. Let us verify the requirements of Lemma 9 from Section 32, with
Qµ, Qν, xµ, xν, Pµ, Pν in place of Q̂, Q̃, x1, x2, P1, P2. By their definition, Qµ
and Qν belong to CZ(A−

0 ). One of the assumptions of the present lemma
was that (1+ cG)Qµ∩ (1+ cG)Qν �= ∅. Note also that the list Q1, ..., Qkmax
is defined to consist of all cubes Q ∈ CZ(A−

0 ) such that (1 + cG)Q ∩ (1 +

cG)Q0 �= ∅. Consequently, (1 + cG)Q0 intersects both (1 + cG)Qµ and
(1+cG)Qν. In addition, we know that xµ ∈ E∩Q∗∗

µ and xν ∈ E∩Q∗∗
ν . Hence,

Qµ, Qν, xµ and xν satisfy the requirements of Lemma 9 from Section 32.
Thanks to (28), (29), also the polynomials Pµ and Pν satisfy the assumptions
of Lemma 9 from Section 32. Therefore, we may apply that lemma, and
conclude that,

Pµ− Pν ∈ CM0B(xµ, A2δQµ).

Thus (36) is established, and the lemma is proven. �
We have defined the cubes Q1, ..., Qkmax ∈ CZ(A−

0 ), and to each cube
we have associated a point xk ∈ Q∗∗

k and a polynomial Pk ∈ P. Next, we
will construct certain functions Fk ∈ Cm((1 + cG)Qk). Fix 1 ≤ k ≤ kmax.
Suppose first that Q∗∗

k ∩ E = ∅. In this case we simply set

(41) Fk = P0.

We obviously have that Fk ∈ Cm((1 + cG)Qk). In order to define Fk in the
case where Q∗∗

k ∩ E �= ∅, we will invoke the induction hypothesis, the Main
Lemma for A−

0 . Thus, suppose that Q∗∗
k ∩ E �= ∅. We know that

(42) Qk ∈ CZ(A−
0 ).

Next, we claim that

(43) xk ∈ E ∩Q∗∗
k , with xk ∈ E ∩Q∗

k whenever E ∩Q∗
k �= ∅ .

Indeed, if x0 ∈ Q∗
k then xk = x0 ∈ Q∗

k by (28), and (43) obviously holds.
If x0 �∈ Q∗

k, then (43) follows from (29) and the defining property of Find-
Representative from Section 27. Thus, we have proved (43) in all cases.

Let us set

(44) M′
0 = CM0 > 0

where C is the constant from (31).
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According to (42), (43), (44) and (31), the cube Qk, the point xk, the poly-
nomial Pk and the positive number M′

0 satisfy the requirements of the Main
Lemma for A−

0 . Since A−
0 < A0, by the induction hypothesis we may apply

the Main Lemma for A−
0 . According to the conclusion of the Main Lemma

for A−
0 , there exists a function Fk ∈ Cm((1 + cG)Qk) with the following

properties:

(45) J+x (Fk− Pk) ∈ A3(A−
0 )M

′
0 B

+(x, δQk) for all x ∈ (1+ cG)Qk ,

(46) Jx(Fk) ∈ Γ(x, 0, A3(A−
0 )M

′
0) for all x ∈ E ∩ (1+ cG)Qk ,

(47) J+x (Fk) = fx(A
−
0 , Qk, xk, Pk) for all x ∈ (1+ cG)Qk ,

where fx(A
−
0 , Qk, xk, Pk) is defined by the Main Algorithm, and

(48) If xk ∈ (1+ cG)Qk then Jxk(Fk) = Pk .

This completes the definition of the function Fk ∈ Cm((1 + cG)Qk) in the
case where Q∗∗

k ∩ E �= ∅. Therefore, Fk ∈ Cm((1 + cG)Qk) is defined for
all 1 ≤ k ≤ kmax. We summarize the properties of the functions Fk in the
following lemma.

Lemma 3. Let 1 ≤ k ≤ kmax. Then,

(FK1) J+x (Fk− Pk) ∈ CA3(A−
0 )M0B

+(x, δQk) for all x ∈ (1+ cG)Qk ,

(FK2) Jx(Fk) ∈ Γ(x, 0, CA3(A−
0 )M0) for all x ∈ E ∩ (1+ cG)Qk ,

(FK3) If x0 ∈ (1+ cG)Qk then Jx0(Fk) = P0 .

Furthermore, if Q∗∗
k ∩ E �= ∅, then,

(FK4) J+x (Fk) = fx(A
−
0 , Qk, xk, Pk) for all x ∈ (1+ cG)Qk ,

where fx(A
−
0 , Qk, xk, Pk) is defined by the Main Algorithm. Here C is a

constant depending only on m and n.

Proof. Suppose first that Q∗∗
k ∩ E �= ∅. Recall that M′

0 = CM0, according
to (44). Then (FK1), (FK2) and (FK4) follow from (45), (46) and (47),
respectively. It remains to prove (FK3). Suppose x0 ∈ (1+ cG)Qk ⊆ Q∗

k.
According to the definition (28), we have that xk = x0 and Pk = P0. There-
fore xk ∈ (1+ cG)Qk, and by (48) necessarily

Jx0(Fk) = Jxk(Fk) = Pk = P0,

and (FK3) follows. The lemma is thus proven in the case where Q∗∗
k ∩E �= ∅.

Suppose now that Q∗∗
k ∩ E = ∅. Then (FK2) vacuously holds. Additionally,

Fk = Pk = P0 by (41) and (27), and hence (FK1), (FK3) trivially hold. This
completes the proof. �
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Recall the functions θ
A−
0
Qk

(k = 1, ..., kmax) from Section 28. Fix 1 ≤ k ≤kmax.
According to the discussion in Section 28, the function θ

A−
0
Qk

is a Cm-function
whose support is contained in (1 + cG/2)Qk. Since Fk ∈ Cm((1 + cG)Qk),

then θ
A−
0
Qk

(x)Fk(x) is a Cm-function on the entire Rn. Next, for any x ∈
(1+ 2cG)Q0, we set

(49) F(x) =

kmax∑
k=1

θ
A−
0
Qk

(x)Fk(x).

Then F is a Cm-function on (1 + cG)Q0, since it is a finite sum of Cm-
functions. We will see that F satisfies (MLC1),..., (MLC4) from Section 33.2.
Note that it follows from (49) that for any x ∈ (1+ cG)Q0,

(50) J+x (F) =

kmax∑
k=1

J+x

(
θ

A−
0
Qk

)
�+
x J

+
x (Fk).

Lemma 4. Let x ∈ (1+ cG)Q0. Then,

(MLC1′) J+x (F) = fx(A0, Q0, x0, P0), where fx(A0, Q0, x0, P0) is defined by
the Main Algorithm in Section 29.

(MLC2′) J+x (F− P0) ∈ A3(A0)M0 B
+(x, δQ0).

(MLC3′) If x ∈ E then Jx(F) ∈ Γ(x, 0, A3(A0)M0).

(MLC4′) If x = x0 then Jx(F) = P0.

Proof. We start with establishing (MLC1′). Recall the Main Algorithm.
Recall also our assumption (ML4). Since A0 �= M, according to (ML4),
then in the computation of fx(A0, Q0, x0, P0), the Main Algorithm reaches
the execution of Line 2. According to (ML4), for all A < A0 we have
Q0 �∈ CZ(A). Thus, the Main Algorithm reaches the execution of Line 5.

Denote by L the list of the cubes that are being produced in Lines 5-6 of
the Main Algorithm in the course of computing fx(A0, Q0, x0, P0). According
to Lines 5-6 of the Main Algorithm, we know that

(51) L = {Q ∈ CZ(A−
0 ) : x ∈ (1+ cG)Q}.

Since x ∈ (1 + cG)Q0, we conclude from (51) that (1 + cG)Q0 intersects
(1 + cG)Q for all Q ∈ L. Consequently, all cubes in L appear in the list
Q1, ..., Qkmax. (Recall the definition of Q1, ..., Qkmax from the beginning of
Section 33.3.) Furthermore, we claim that for any 1 ≤ k ≤ kmax,
(52) If x ∈ Supp

(
θ

A−
0
Qk

)
then Qk ∈ L,

where, as usual, for any function g, we write Supp(g) to denote the closure
of the set {x ∈ Rn : g(x) �= 0}.
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Indeed, if x ∈ Supp(θA−
0
Qk

)
then x ∈ (1+ cG)Qk according to the discus-

sion in Section 28. Since Qk ∈ CZ(A−
0 ), then (52) follows from (51). The

cubes in L are enumerated in Lines 5-6 of the Main Algorithm in the course
of computing fx(A0, Q0, x0, P0). Let Qk1 , ..., Qkimax be an enumeration of
the cubes in L, that corresponds to the enumeration in Lines 5-6 of the
Main Algorithm. We conclude from (50) and (52) that

(53) J+x (F) =

imax∑
i=1

J+x

(
θ

A−
0
Qki

)
�+
x J

+
x (Fki).

Indeed, if Qk �∈ L then θ
A−
0
Qk

vanishes in a neighborhood of x, and hence (50)
reduces to (53). Note that Lines 8-15 of the Main Algorithm are being
executed exactly once for each cube Qki (i = 1, ..., imax), during the com-
putation of fx(A0, Q0, x0, P0). Fix 1 ≤ i ≤ imax. Consider the ith execution
of the loop in Lines 8-15 of the Main Algorithm. In this execution of the
loop, the Main Algorithm deals with the cube Qki , and computes a a certain
polynomial fki ∈ P+. (The indexing in Lines 8-15 is slightly different from
here. The polynomial fki is referred to as fk in the Main Algorithm.) We
claim that, for 1 ≤ i ≤ imax,
(54) IfQ∗∗

ki
∩E = ∅ then fki = P0, and otherwise fki = fx(A

−
0 , Qki , xki , Pki).

Indeed, consider first the case where Q∗∗
ki
∩E = ∅. Then (54) holds according

to Line 8 of the Main Algorithm. Suppose now that Q∗∗
ki
∩ E �= ∅. Observe

that the definition of xki , Pki in (28), (29) agrees with the computation
of xk, Pk in Lines 9-11 of the Main Algorithm. In view of Line 13 of the
Main Algorithm, (54) holds also in the case whereQ∗∗

ki
∩E �= ∅. Therefore (54)

holds in all cases.

Recall the definition of the functions Fk, for k = 1, ..., kmax. Fix 1 ≤ i ≤
imax. If Q∗∗

ki
∩ E = ∅, then Fki = P0 according to (41), and consequently

J+x (Fki) = P0 = fki by (54). If Q∗∗
ki
∩ E �= ∅, then (FK4) and (54) show that

J+x (Fki) = fki . We conclude that

(55) J+x (Fki) = fki for any 1 ≤ i ≤ imax.
Therefore, by (53) and (55),

(56) J+x (F) =

imax∑
i=1

J+x

(
θ

A−
0
Qki

)
�+
x fki .

Inspection of Line 16 of the Main Algorithm shows that the right hand side
of (56) equals fx(A0, Q0, x0, P0). We conclude from (56) that

J+x (F) = fx(A0, Q0, x0, P0).

Thus (MLC1′) is proven.
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Next, we will prove (MLC2′). Recall that L =
{
Qk1 , ..., Qkimax

}
satis-

fies (51). By the Corollary to Lemma 2 from Section 21 we deduce that

(57) imax ≤ C .
Also, by (51), clearly imax = #(L) ≥ 1, since CZ(A−

0 ) is a tiling of Rn.
Set δ = δQk1 . Since x ∈ (1+ cG)Qki ∩ (1+ cG)Qk1 for i = 1, ..., imax, then
Lemma 2 from Section 21 implies that

(58) 1
2
δ ≤ δQki ≤ 2δ for any i = 1, ..., imax .

According to the assumption of the present lemma, x ∈ (1+ cG)Q0 ⊆ Q∗∗∗
0 .

Since x ∈ (1 + cG)Qk1 and Qk1 ∈ CZ(A−
0 ) then Lemma 6 from Section 21

implies that

(59) δ = δQk1 ≤ CδQ0 .

Next, we use property (10) from Section 28, pertaining to the functions θ
A−
0
Qk

.
According to that property, for any i = 1, ..., imax,

(60) J+x

(
θ

A−
0
Qki

)
∈ Cδ−m

Qki
B+(x, δQki ) ⊆ C′δ−mB+(x, δ) ,

where the last inclusion follows from (58). Since the θ’s are a partition of
unity, their sum is one, and (53) implies that

(61) J+x (F) = Pk1 +

imax∑
i=1

J+x

(
θ

A−
0
Qki

)
�+
x [J+x (Fki) − Pk1 ] .

Recall that x ∈ (1 + cG)Qki for each i = 1, ..., imax. According to (FK1),
for any i = 1, ..., imax,

(62) J+x (Fki − Pki) ∈ CA3(A−
0 )M0 B

+(x, δQki ) ⊆ C′A3(A−
0 )M0B

+(x, δ) ,

where the last inclusion follows from (58). Furthermore, for all i = 1, ..., imax
we have that (1 + cG)Qki ∩ (1 + cG)Qk1 �= ∅, since both cubes contain x.
Lemma 2 implies that for i = 1, ..., imax,

(63) Pki − Pk1 ∈ CM0 B(xk1 , A2δQk1 ) = CM0 B(xk1 , A2δ) .

Since xk1 , x ∈ Q∗∗
k1

, we know that |x−xk1 | < Cδ. Consequently, (63) together
with (2) ,(3) from Section 12 entail that for any i = 1, ..., imax,

(64) Pki − Pk1 ∈ C′M0 B(x,A2δ) ⊆ C̃Am2M0B(x, δ) ⊆ CAm2M0B
+(x, δ) .

Using (62) and (64), we may state that, for any i = 1, ..., imax,

(65) J+x (Fki) − Pk1 ∈ C̃Am2 A3(A−
0 )M0B

+(x, δ) .
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From (60) and (65), with the help of (9) from Section 12, we get that for
any i = 1, ..., imax,

(66) J+x

(
θ

A−
0
Qki

)
�+
x [J+x (Fki) − Pk1 ] ∈ CAm2 A3(A−

0 )M0B
+(x, δ) .

Combining (57), (61) and (66), we obtain

(67) J+x (F) ∈ Pk1 + CAm2 A3(A
−
0 )M0B

+(x, δ) .

Next, according to Lemma 1, we know that,

(68) Pk1 − P0 ∈ CM0B(xk1 , A2δQ0 ) ⊆ CAm2M0B(xk1 , δQ0) ,

where we used (2) from Section 12. Since x, xk1 ∈ Q∗∗
k1

, then |xk1 − x| ≤
Cδ ≤ C′δQ0 by (59). Consequently, (68), together with (3) from Section 12,
imply that

(69) Pk1 − P0 ∈ C′Am2M0B(x, δQ0) ⊆ C′Am2M0B
+(x, δQ0) .

By combining (59), (67) and (69) we conclude that,

(70) J+x (F) − P0 ∈ CAm2 A3(A−
0 )M0B

+(x, δQ0) .

Assume, as we may from the discussion in Section 17, that the constant A0
satisfies

(71) A0 > C where C is the constant from (70).

According to (3) of Section 17, we know that A3(A0) = A0A
m
2 A3(A

−
0 ).

Thus (70) and (71) imply that

(72) J+x (F− P0) ∈ A3(A0)M0 B
+(x, δQ0) ,

since J+x (P0) = P0, and (MLC2′) is proven.

Next, we will establish (MLC3′). Suppose that x ∈ E. According
to (FK2), for any i = 1, ..., imax,

(73) Jx(Fki) ∈ Γ (x, 0, CA3(A
−
0 )M0) ,

since x ∈ (1+ cG)Qki ∩ E. By (73) and Property 1 from Section 13, for all
i = 1, ..., imax,

(74) Jx(Fki) − Jx(Fk1) ∈ C′A3(A−
0 )M0 · σ (x, 0).

We apply (65) twice, and deduce that for i = 1, ..., imax,

(75) Jx(Fki−Fk1) = Jx(Fki−Pk1)+Jx(Pk1−Fk1) ∈ 2C̃Am2 A3(A−
0 )M0B(x, δ) .



Fitting a Cm-Smooth Function to Data II 175

According to (74) and (75), for any i = 1, ..., imax,

(76) Jx(Fki − Fk1) ∈ C′Am2 A3(A
−
0 )M0 [σ(x, 0) ∩ B(x, δ)] .

Recall that σ(x, 0) is Whitney t-convex at x with Whitney constant C, by
Property 3 from Section 13. The definition of Whitney t-convexity (10) from
Section 12, together with (60) and (76), implies that for any i = 1, ..., imax,

(77) Jx

(
θ

A−
0
Qki

)
�x [Jx(Fki − Fk1)] ∈ C̃Am2 A3(A−

0 )M0 · σ(x, 0).
Next, we rewrite (53), discarding some information, as

(78) Jx(F) = Jx(Fk1) +

imax∑
i=1

Jx

(
θ

A−
0
Qki

)
�x [Jx(Fki − Fk1)] .

Recall that imax ≤ C, by (57). Therefore (77) and (78) lead to

(79) Jx(F) ∈ Jx(Fk1) + CAm2 A3(A
−
0 )M0 · σ(x, 0).

Next we apply (73) for i = 1, together with (79) and Property 1 from
Section 13. We conclude that

(80) Jx(F) ∈ Γ(x, 0, CAm2 A3(A−
0 )M0).

Assume, as we may, that

(81) A0 > C where C is the constant from (80).

According to (3) from Section 17 we know that A3(A0) = A0A
m
2 A3(A

−
0 ),

and hence (80), (81) imply

Jx(F) ∈ Γ(x, 0, A3(A0)M0).

Therefore (MLC3′) is proven.

It remains to prove (MLC4′). Next, suppose that x = x0. By restrict-
ing (53) to (m− 1)-jets, we get

(82) Jx(F) = Jx0(F) =

imax∑
i=1

Jx0

(
θ

A−
0
Qki

)
�x0 Jx0(Fki).

For each i = 1, ..., imax we have that x = x0 ∈ (1 + cG)Qki , and hence,
according to (FK3), we know that Jx0(Fki) = P0. Thus (82) entails that

Jx0(F) =

imax∑
i=1

Jx0

(
θ

A−
0
Qki

)
�x0 P0 = P0,

since the θ’s are partition of unity and their sum is one. Therefore (MLC4′)
is established. This completes the proof of the lemma. �
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According to Lemma 4, each x∈(1+cG)Q0 satisfies (MLC1′),...,(MLC4′).
By comparing (MLC1′),. . . ,(MLC4′) with (MLC1),. . . ,(MLC4) from Sec-
tion 33.2, we see that the conclusions of the Main Lemma for A0 hold true.
Thus, we have proven the conclusions of the Main Lemma for A0 under
the assumptions (ML1),...,(ML4). Consequently, the Main Lemma for A0
is proven also in the non-trivial case. This finishes the proof of the Main
Lemma for A0 in all cases.

The Main Lemma for A0 is therefore established, for all A0 ⊆ M.

Remark. Note that we actually used only Properties 1, 2, 3, 4 from Sec-
tion 13 in order to prove the Main Lemma. Property 0 will be used only
when applying the Main Lemma in the next section.

34. Applications of the Main Lemma

In this section, we will apply the Main Lemma for ∅, whose proof was
completed in the previous section. Recall from Section 29 the formula-
tion of the Main Lemma for ∅. Recall from Section 14 and Section 17, that
�∗ = �(∅) + 1, A2, A3(∅) are constants depending only on m and n. Accord-
ing to Lemma 5 of Section 21, the tiling CZ(∅) consists of all dyadic cubes of
sidelength A−1

2 . In the particular case where x0 ∈ E∩Q∗
0, the Main Lemma

for ∅ from Section 29 reads as follows:

Lemma 1. Suppose that Q0 ⊂ Rn is a dyadic cube of sidelength A−1
2 ,

x0 ∈ E ∩Q∗
0 and M0 > 0. Let P0 ∈ P be such that

P0 ∈ Γ(x0, �∗ − 1,M0).

Then, there exists
F ∈ Cm((1+ cG)Q0)

with the following properties:

(1) |∂β(F− P0)(x)| ≤ CM0 for all |β| ≤ m, x ∈ (1+ cG)Q0.

(2) Jx(F) ∈ Γ(x, 0, CM0) for all x ∈ E ∩ (1+ cG)Q0.

(3) J+x (F) = fx(∅, Q0, x0, P0) for all x ∈ (1+ cG)Q0.

(4) If x0 ∈ (1+ cG)Q0, then also Jx0(F) = P0.

Here, C > 0 is a constant depending only on m and n.

The polynomial fx(∅, Q0, x0, P0) in (3) was computed by the Main Algo-
rithm in Section 29. As a first application of Lemma 1, we will prove the
following theorem.
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Theorem 3. Suppose we are given the following data:

• A finite set E ⊂ Rn of size N.

• For each x ∈ E, two real numbers f(x) ∈ R and σ(x) ≥ 0.
• A point x0 ∈ E and a polynomial P0 ∈ P.

Then, there exists F ∈ Cm(Rn) with Jx0(F) = P0 such that the following hold:

(I) Suppose M > 0 satisfies that P0 ∈ Γ(x0, �∗,M). Then,

‖ F ‖Cm(Rn)≤ CM and |F(x) − f(x)| ≤ CMσ(x) for all x ∈ E.
(II) The algorithm to be described below, receives the given data, performs

one-time work, and then responds to queries.

A query consists of a point x ∈ Rn, and the response to the query is
the jet J+x (F).

The one-time work takes CN logN operations, and CN storage. The
time to answer a query is C logN.

Here, C is a constant depending only on m and n.

We start with describing the relevant algorithm.

The algorithm promised in Theorem 3

As in (2) from Section 10, we will consider the blobs,

(5) Γ(x, 0,M)= {P∈P : |P(x)−f(x)|≤Mσ(x), |∂βP(x)|≤M for |β| ≤ m−1}.

In the one-time work, as is described in Section 10, we will construct from
(Γ(x, 0,M))x∈E the ALPs that give rise to blobs that are C-equivalent to
Γ(x, �,M) for x ∈ E, 0 ≤ � ≤ �∗. We will also perform the one-time work
that is described in Section 9, in Section 23 and in Sections 24,...,26.

Next, we subdivide Rn into dyadic cubes of sidelength A−1
2 . Let Ω0 be

the set all dyadic cubes Q of sidelength A−1
2 , such that E∩Q∗ �= ∅. For each

x ∈ E, there are at most 5n cubes Q ∈ Ω0 such that x ∈ Q∗. These cubes
may be calculated in a straightforward manner, using C operations (for a
fixed x ∈ E). By inspecting all points x ∈ E, we may find all the cubes of Ω0
using CN computer operations. Note that #(Ω0) < CN.

Let us fix a linear order ≺ on the cubes of Ω0, say, lexicographic order
on the centers of the cubes (lexicographic order with respect to the stan-
dard coordinates). Within CN logN computer operations, we may sort Ω0
according to the order ≺. To summarize,

(6) At the one-time work, we compute and store the ordered list Ω0, con-
suming CN logN computer operations and CN storage.



178 C. Fefferman and B. Klartag

For each Q ∈ Ω0, we compute a representative xQ ∈ E ∩Q∗, as follows.

(7) If x0∈E∩Q∗ then xQ := x0, and otherwise xQ := Find-Representative(Q).

The computation of those representatives requires CN logN operations, and
may be performed during the process of computing the list Ω0. (As a matter
of fact, this task may be carried out using only CN operations, in the course
of the computation of Ω0. We will not use this fact.)

Next, with each Q ∈ Ω0 we will associate a polynomial PQ. Fix Q ∈ Ω0.
If xQ = x0 we will simply set PQ := P0. Otherwise, we compute a polyno-
mial PQ such that

(8) PQ is a C-original vector of the blob Γ(xQ, �∗ − 1),

where C-original vectors are defined in Section 2. The computation of PQ as
in (8) is done using Algorithm ALP3 from Section 5. For a fixed Q ∈ Ω0 the
computation of PQ requires C operations, once we have precomputed the Γ ’s.
During the one-time work, we also compute and store xQ, PQ (Q ∈ Ω0). The
total time required for the computation of the points xQ and the polynomi-
als PQ does not exceed CN logN, and the amount of storage needed is no
more than CN.

This completes the description of the one-time work of our algorithm.
The resources being spent for the one-time work are bounded by CN logN
computer operations and CN storage, for C depending only on m and n.

We move to the implementation of the query-algorithm. Thus, suppose
we are given a point x ∈ Rn. We define Ω0(x) = {Q ∈ Ω0 : x ∈ (1+ cG)Q}.
Note that #(Ω0(x)) < C.

It is straightforward to compute, say, the centers of all dyadic cubes Q
of sidelength A−1

2 such that x ∈ (1 + cG)Q. This computation requires C
computer operations, and produces the centers of all the cubes in Ω0(x).
We still need to locate these cubes in Ω0 (i.e., to identify their indices in
the list Ω0); this is done using C binary searches in the ordered list Ω0,
each consuming C′ logN work. Therefore Ω0(x) is recovered within C logN
operations.

Once Ω0(x) is obtained, the algorithm computes and returns the poly-
nomial

(9) P̄x :=
∑

Q∈Ω0(x)
J+x
(
θ∅Q
)�+

x fx(∅, Q, xQ, PQ).

Thanks to Algorithm PU2 from Section 28, we may compute all the jets
J+x
(
θ∅Q
)

within C logN operations. (As a matter of fact, C operations suffice
here; see the last paragraph in Section 28. We will not make use of this
improvement here.)
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The computation of the polynomials fx(∅, Q, xQ, PQ) is described in the
Main Algorithm, Section 29, and requires no more than C logN computer
operations, given our one-time work.

This completes the description of the query-algorithm. The query-algo-
rithm clearly terminates within C logN operations.

Next we will prove that the polynomials P̄x, as defined in (9), are the
m-jets of a function F that satisfies (I) from Theorem 3.

Lemma 2. Let E, f, σ, x0, P0 be as in Theorem 3. Then, there exists F ∈
Cm(Rn) for which the following holds: Suppose M > 0 satisfies that

(10) P0 ∈ Γ(x0, �∗,M).

Then,

(11) |F(x) − f(x)| ≤ CMσ(x) for all x ∈ E,

(12) ‖ F ‖Cm(Rn)≤ CM,

(13) J+x (F) = P̄x for all x ∈ Rn, where P̄x is defined in (9); and

(14) Jx0(F) = P0.

Here, C > 0 denotes a constant depending only on m and n.

Proof. We begin with analyzing the definition (8) of the polynomials PQ.
Let Q ∈ Ω0. If xQ �= x0, then according to the defining property of a “C-
original vector” from Section 2, the polynomial PQ satisfies the following:

(15) Let M′ > 0 and assume that Γ(xQ, �∗ − 1,M′) �= ∅. Then PQ ∈
Γ(xQ, �∗ − 1, CM′).

In the case where xQ = x0, we know from (10) that

(16) PQ = P0 ∈ Γ(xQ, �∗,M).

Fix a cube Q ∈ Ω0. According to Property 2 from Section 13,

(17) Γ(x0, �∗,M) ⊆ Γ(xQ, �∗ − 1, CM) + CMB(x0, xQ).

In particular, from (10) and (17) we see that

(18) Γ(xQ, �∗ − 1, CM) �= ∅.

Thus, if xQ �= x0, then (15), (18) imply that

(19) PQ ∈ Γ(xQ, �∗ − 1, CM) ⊆ C′MB(xQ, 1),

where the last inclusion follows from (5) and Property 4 of Section 13. (Note
that in (19) we use a trivial property of the Γ ’s, the fact that Γ(x, 0,M) ⊆
MB(x, 1), which is not included in Properties 0,...,4 from Section 13.)
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If xQ = x0, then (19) follows from (16). Thus, (19) holds in all cases.
Now (19), together with (3) of Section 12, implies that for all x ∈ (1+cG)Q,

(20) |∂βPQ(x)| ≤ CM for all |β| ≤ m.

(Recall that |x−xQ| ≤ CδQ ≤ C for all x ∈ (1+ cG)Q.) We will now invoke
Lemma 1, for the cube Q, the point xQ ∈ E ∩Q∗, the polynomial PQ and
M0 = CM, based on (19). By the conclusion of the lemma, there exists
FQ ∈ Cm((1+ cG)Q), with the following properties:

(21) |∂β(FQ− PQ)(x)| ≤ CM for all |β| ≤ m, x ∈ (1+ cG)Q.

(22) Jx(FQ) ∈ Γ(x, 0, CM) for all x ∈ E ∩ (1+ cG)Q,

(23) J+x (FQ) = fx(∅, Q, xQ, PQ) for all x ∈ (1+ cG)Q,

where fx(∅, Q, xQ, PQ) is defined by the Main Algorithm from Section 29,
and

(24) If xQ ∈ (1+ cG)Q, then JxQ(FQ) = PQ.

The cube Q ∈ Ω0 is arbitrary, hence a function FQ ∈ Cm((1 + cG)Q) that
satisfies (21),...,(24) exists for all Q ∈ Ω0. We define a function F : Rn → R

by setting

(25) F(x) =
∑
Q∈Ω0

θ∅Q(x)FQ(x).

Since Supp(θ∅Q) ⊆ (1 + cG/2)Q and FQ ∈ Cm((1 + cG)Q), then each
summand in the right-hand side of (25) is a well-defined Cm(Rn)-function.
The sum in (25) is finite, since #(Ω0) < ∞. Hence F is a Cm(Rn)-function.
For any x ∈ Rn, we have that x ∈ Supp(θ∅Q) only for Q ∈ Ω0(x). There-
fore (25) implies that

(26) J+x (F) =
∑

Q∈Ω0(x)
J+x
(
θ∅Q
)�+

x J
+
x (FQ).

For any Q ∈ Ω0 we have δQ = A−1
2 , and by (10) of Section 28,

(27) |∂β(θ∅Q)(x)| ≤ C for all |β| ≤ m and x ∈ Rn.

Our estimates (20),(21) and (27) imply that for any Q ∈ Ω0,
(28) |∂β(θ∅QFQ)(x)| < CM for all |β| ≤ m and x ∈ Rn,

as Supp(θ∅Q) ⊆ (1+ cG/2)Q. In view of the fact that #(Ω0(x)) < C for
any x ∈ Rn, we deduce from (26) and (28) that

(29) |∂βF(x)| < CM for all |β| ≤ m, x ∈ Rn.
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Thus, (12) is proven. Furthermore, from (23) and (26) we conclude that,

(30) J+x (F) =
∑

Q∈Ω0(x)
J+x
(
θ∅Q
)�+

x fx(∅, Q, xQ, PQ) for all x ∈ Rn.

By comparing (30) with (9), we arrive at (13). Next, we focus on prov-
ing (11). Fix x ∈ E. We need to show that

(31) Jx(F) ∈ Γ(x, 0, CM).

Let us also fix a cube Q ∈ Ω0(x). Then, since the θ’s are a partition of
unity,

(32) Jx(F) = Jx(FQ) +M
∑

Qν∈Ω0(x)
Jx

(
θ∅Qν ·

FQν − FQ

M

)
.

According to (20), (21) we know that for any Qν ∈ Ω0(x),
(33) Jx(FQν − FQ) ∈ CMB(x, 1),

since x ∈ (1+ cG)Q∩ (1+ cG)Qν. By applying (22) twice, we conclude that
for any Qν ∈ Ω0(x),
(34) Jx (FQν − FQ) ∈ Γ(x, 0, CM) − Γ(x, 0, CM) ⊆ C′Mσ(x, 0),

where the inclusion follows from Property 1 of Section 13. Next, we invoke
the Whitney t-Convexity of σ(x, 0), according to Property 3 from Section 13.
The Whitney t-Convexity, based on (33), (34) and (27), entails that for any
Qν ∈ Ω0(x),

(35) Jx

(
θ∅Qν ·

FQν−FQ
M

)
= Jx

(
θ∅Qν
)�x Jx(FQν−FQ

M

)
∈ Cσ(x, 0).

Recall that #(Ω0(x)) < C. From (32), (35) and (22), we obtain that

(36) Jx(F) ∈ Γ(x, 0, CM) + C′Mσ(x, 0) ⊆ Γ(x, 0, C̃M),

where the last inclusion follows from Property 1 of Section 13. The inclu-
sion (36) is precisely the desired estimate (31). Hence (11) is proven. It
remains to prove (14). By the definition of xQ, PQ, for any cube Q ∈ Ω0(x0)
we have xQ = x0, PQ = P0. According to (24) and (26), we have

Jx0(F) =
∑

Qν∈Ω0(x0)
Jx0
(
θ∅Qν
)�x0 P0 = P0,

since the θ’s constitute a partition of unity. Thus (14) follows and the lemma
is proven. �
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Lemma 2 implies that the output of our query-algorithm, that is, the
polynomials P̄x defined in (9), are the m-jets of a function that satisfies (I)
from Theorem 3. This completes the proof of Theorem 3. �
Remark. In Theorem 3, we prescribe the (m − 1)-jet of F at a given
point x0. We would like to mention without proof, that it is equally easy
to prescribe the m-jet of F at the given point x0. Denote by πx0 : P+ → P

the linear map that satisfies ∂β(πx0P)(x0) = ∂βP(x0) for all |β| ≤ m−1 and
P ∈ P+. Suppose we alter the formulation of Theorem 3 as follows:

• Replace “P0 ∈ P” with “P+
0 ∈ P+”.

• Replace “Jx0(F) = P0” with “J+x0(F) = P+
0 ”.

• Replace “P0 ∈ Γ(x0, �∗,M)” with “P+
0 ∈ MB+(x0, 1) and πx0(P

+
0 ) ∈

Γ(x0, �∗,M)”.

Then the modified theorem holds true. We invite the reader to fill in the
proof.

We are now in a position to prove Theorem 2 from Section 1. Theorem 2
follows from the following theorem.

Theorem 4. Suppose we are given the following data:

• A finite set E ⊂ Rn.

• For each x ∈ E, two real numbers f(x) ∈ R and σ(x) ≥ 0.
Assume that #(E) = N. Then, there exists F ∈ Cm(Rn) with the following
properties:

(A) If F̃ ∈ Cm(Rn) and M > 0 satisfy

(37) ‖ F̃ ‖Cm(Rn)≤M and |F̃(x) − f(x)| ≤Mσ(x) for x ∈ E,
then

(38) ‖ F ‖Cm(Rn)≤ CM and |F(x) − f(x)| ≤ CMσ(x) for x ∈ E.
(B) There is an algorithm, that receives the given data, performs one-time

work, and then responds to queries.

� A query consists of a point x ∈ Rn, and the response to the query
is the jet J+x (F).

� The one-time work takes CN logN operations, and CN storage.
The work to answer a query is C logN.

Here, C is a constant depending only on m and n.
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Proof. Let us pick x0 ∈ E, and let P0 ∈ P be such that

(39) P0 is a C-original vector of the blob Γ(x0, �∗).

We will compute the ALPs that give rise to blobs that are C-equivalent to
the Γ ’s in the one-time work, using CN logN operations and CN storage.
Having already constructed those ALPs, we may compute the polynomial P0
using Algorithm ALP3 from Section 5, using no more than C operations.

We will now invoke Theorem 3, for E, f, σ and x0, P0. By the conclusion
of that theorem, we obtain a certain function F. We will show that F sat-
isfies (A) and (B). Note that (B) follows from (II) of Theorem 3. We still
need to prove (A). Suppose that F̃ ∈ Cm(Rn) and M > 0 are such that

(40) ‖ F̃ ‖Cm(Rn)≤M and |F̃(x) − f(x)| ≤Mσ(x) for x ∈ E.

We will show that

(41) ‖ F ‖Cm(Rn)≤ CM and |F(x) − f(x)| ≤ CMσ(x) for x ∈ E.

To that end, note that Property 0 from Section 13 and (40) imply that

(42) Jx0(F̃) ∈ Γ(x0, �∗, CM).

In particular Γ(x0, �∗, CM) �= ∅. By (39), and by the defining property of
“C-original vectors” from Section 2,

(43) P0 ∈ Γ(x0, �∗, C′M).

From (43), and according to (I) of Theorem 3, we conclude (41). Thus,
given (40) we deduce (41). This is exactly the content of (A). The proof is
thus complete. �
Remark. An alternative implementation for Theorem 4 moves work from
the query algorithm into the one-time work. The idea is as follows. Let
F ∈ Cm(Rn) be as in Theorem 4. For x ∈ E, let Px = J+x (F).

The algorithm given above for Theorem 4 allows us to compute (and
store) all the jets Px (x ∈ E), with work CN logN and storage CN. We view
this as part of the one-time work.

The proof of the classical Whitney extension theorem produces a function
F̃ ∈ Cm(Rn), with J+x (F̃) = Px for every x ∈ E, and with ‖ F̃ ‖Cm(Rn) ≤
C‖ F ‖Cm(Rn). (Here, C depends only on m and n.) Thus, F̃ serves as well
as F in Theorem 4. The methods of this paper allow us easily to answer
queries as follows: Given a query point x ∈ Rn, we produce the jet J+x (F̃).
We omit the details.
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For x ∈ Rn and M > 0 we define the blob Σ(x) = (Σ(x,M))M>0 by
setting

Σ(x,M) =
{
Jx(F) :‖ F ‖Cm(Rn)≤M, and ∀x ∈ E, |F(x) − f(x)| ≤Mσ(x)} .

The set Σ(x,M) is convex and increasing with M, hence Σ(x) is a blob.

Lemma 3. Let x0 ∈ E. Then the blobs Σ(x0) and Γ(x0, �∗) are C-equivalent,
for a constant C depending only on m and n.

Proof. Fix M > 0, and let P0 ∈ Σ(x0,M). According to Property 0 from
Section 13, we have that

P0 ∈ Γ(x0, �∗, CM).

Since P0 ∈ Σ(x0,M) is arbitrary, we conclude that Σ(x0,M) ⊆ Γ(x0, �∗, CM).
Next, suppose P0 ∈ Γ(x0, �∗,M). We will apply Theorem 3, for E, f, σ and for
x0, P0. According to (I) from Theorem 3, there exists a function F ∈ Cm(Rn)

with P0 = Jx0(F) such that

‖ F ‖Cm(Rn)≤ CM, and ∀x ∈ E, |F(x) − f(x)| ≤ CMσ(x).
Therefore, P0 ∈ Σ(x0, CM). Hence Γ(x0, �∗,M) ⊆ Σ(x0, CM). This com-
pletes the proof. �
Lemma 4. Let x ∈ Rn be such that x �∈ E, and let x0 ∈ E be such that

|x− x0| ≤ 2min
y∈E

|x − y| = 2dist(x, E).

Then, Σ(x) is C-equivalent to the blob[
Γ(x0, �∗) + B(x, |x− x0|)

] ∩ B(x, 1).

Here, C is a constant depending only on m and n.

Proof. Fix M > 0, and let P ∈ Σ(x,M). By the definition of Σ(x,M),
there exists a function F ∈ Cm(Rn) such that

(44) Jx(F) = P,

(45) ‖ F ‖Cm(Rn)≤M, and

(46) |F(y) − f(y)| ≤Mσ(y) for all y ∈ E.

According to (44) and (45),

(47) P ∈MB(x, 1).

Furthermore, by (45), (46) and Property 0 from Section 13,

(48) Jx0(F) ∈ Γ(x0, �∗, CM).
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The function F satisfies (45). By Taylor’s theorem, Jw(F) − Jz(F) ∈
CMB(z,w) for any z,w ∈ Rn (see also (3) from Section 1). From (44) we
thus conclude that,

(49) P − Jx0(F) = Jx(F) − Jx0(F) ∈ CMB(x, x0).

According to (48) and (49),

(50) P ∈ Γ(x0, �∗, CM) + CMB(x, x0).

Since P is an arbitrary polynomial in Σ(x,M), then (50) and (47) tell us
that for any M > 0,

(51) Σ(x,M) ⊆ [Γ(x0, �∗, CM) + CMB(x, x0)
] ∩ CMB(x, 1).

This proves half of the conclusion of the lemma. We now focus on proving
the second half. Let M > 0 and let

(52) P ∈ [Γ(x0, �∗,M) +MB(x, x0)
] ∩MB(x, 1).

Then there exists P0 ∈ Γ(x0, �∗,M) such that

(53) P − P0 ∈MB(x, x0) ⊆ CMB(x, dist(x, E)),

since, by our assumptions, |x − x0| ≤ 2dist(x, E). Since P0 ∈ Γ(x0, �∗,M),
then according to Lemma 3, we have that P0 ∈ Σ(x0, CM). By the definition
of Σ(x0, CM), there exists F′ ∈ Cm(R) with Jx0(F

′) = P0 such that

(54) ‖ F′ ‖Cm(Rn)≤ C′M, and ∀x′ ∈ E, |F′(x′) − f(x′)| ≤ CMσ(x′).
Next, fix y ∈ E. Then, by (54), (53) and the definition of F′,

(55) Jy(F
′) − P = (Jy(F

′) − Jx0(F
′)) + (P0− P)

∈ CMB(x0, y) + CMB(x, dist(x, E)).

However, according to (3) of Section 12,

(56) B(x0, y) = B(x0, |y− x0|) ⊆ CB(x, |y − x0| + |x− x0|).

Furthermore, since |x− x0| ≤ 2dist(x, E) ≤ 2|x− y| then,

(57) |y − x0| + |x− x0| ≤ (|y − x| + |x − x0|) + |x− x0| ≤ 5|y − x|.

From (56) and (57) we deduce that B(x0, y) ⊆ C′B(x, 5|y − x|) ⊆ CB(x, y).
By combining the last inclusion with (55), we conclude that for any y ∈ E,

(58) Jy(F
′) − P ∈ C′MB(x, y) + CMB(x, dist(x, E)) ⊆ C̃MB(x, y),

as dist(x, E) ≤ |x − y|. Denote Ẽ = E ∪ {x}. To any y ∈ Ẽ we associate a
polynomial P̃y ∈ P as follows: P̃y = Jy(F

′) if y ∈ E, and P̃y = P if y = x.
Note that x �∈ E, and hence the P̃y’s are well-defined.
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We would like to apply Whitney’s theorem, as described in Section 1 (see
also [35] or [32, Section VI]). According to (54), we have that

(59) P̃y− P̃z = Jy(F
′) − Jz(F

′) ∈ CMB(y, z) for any y, z ∈ E.

We use (54) for the case y ∈ E, and we use (52) for the case y = x, to obtain
that

(60) P̃y ∈ CMB(y, 1) for all y ∈ Ẽ.

Based on (58), (59) and (60) we may invoke Whitney’s theorem, for
the set Ẽ and the polynomials {P̃y}y∈E. By the conclusion of Whitney’s
theorem, there exists F̃ : Rn → R with ‖ F̃ ‖Cm(Rn)≤ C̃M such that

(61) Jy(F̃) = P̃y = Jy(F
′) for all y ∈ E, and also Jx(F̃) = P̃x = P.

According to (61) and (54), the function F̃ witnesses that P ∈ Σ(x, ĈM).
Since P is an arbitrary polynomial in [Γ(x0, �∗,M) +MB(x, x0)]∩MB(x, 1),
we conclude that for any M > 0,

(62) [Γ(x0, �∗,M) +MB(x, x0)] ∩MB(x, 1) ⊆ Σ(x, CM).

The lemma follows from (62) and (51). �
Theorem 5. Suppose we are given the following data:

• A finite set E ⊂ Rn.

• For each x ∈ E, two real numbers f(x) ∈ R and σ(x) ≥ 0.

Assume that #(E) = N. Then there is an algorithm, that gets the given data,
performs one-time work, and then responds to queries. A query consists of a
point x ∈ Rn, and the response to the query is an ALP A (of length at most
dim P) such that K(A) is C-equivalent to the blob Σ(x) = (Σ(x,M))M>0
defined by,

Σ(x,M) =
{
Jx(F) :‖ F ‖Cm(Rn)≤M, and ∀y ∈ E, |F(y) − f(y)| ≤Mσ(y)}.

The one-time work requires CN logN operations and CN storage. The
time to answer a query is C logN. Here, C is a constant depending only
on m and n.

Proof. Let us describe the relevant algorithm. First, we perform all the
one-time work of the algorithm from Theorem 3, and also all the one-time
work related to Theorem BBD1 from Section 23. This one-time work re-
quires CN logN operations, and CN storage, as stated in Theorem 3 and in
Theorem BBD1.
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We will now present the query-algorithm. Suppose we are given a point
x ∈ Rn. We need to produce an ALP A, such that K(A) is C-equivalent
to Σ(x). To that end, note that according to Theorem BBD1 from Section 23,
we may compute within C logN operations, a point x0 ∈ E such that

(63) |x− x0| ≤ 2dist(x, E).

Note also that the ALPs that give rise to blobs that are C-equivalent to
the Γ ’s are computed in the one-time work of our algorithm. According
to (63), we may easily detect whether x ∈ E or x �∈ E. In case where x ∈ E,
our query-algorithm returns an ALP A of length dim P such that K(A) is
C-equivalent to Γ(x, �∗). Such an ALP was already computed in the one-time
work (see Section 10), and by Lemma 3 we have that K(A) is C-equivalent
to Σ(x).

In the case where x �∈ E, we compute, within C computer operations, an
ALP A such that the blob K(A) is C-equivalent to

(64) [Γ(x0, �∗) + B(x, x0)] ∩ B(x, 1).

Indeed, we simply need to apply Algorithm ALP6 and Algorithm ALP7 from
Section 5. From the explanation in Section 5 we know that the ALP returned
by Algorithm ALP6 has length at most dim P. Lemma 4 tells us that the blob
in (64) is C-equivalent to Σ(x). Our query algorithm clearly uses at most
C logN computer operations. The proof is complete. �

In the following two sections, we will discuss several variants of the the-
orems and algorithms presented in this section. These variants will be for-
mulated precisely, in Theorem 6, Theorem 7 and Theorem 8, but we will
not supply full details pertaining their proofs. Instead, we will indicate the
necessary modifications of the above arguments, that lead to the proofs of
Theorems 6, 7, 8. Filling in the missing details is quite routine, given the
proofs of Theorem 3, Theorem 4 and Theorem 5 on which we have elaborated
throughout this manuscript.

35. Linear Dependence on Input

In this section, we strengthen Theorem 4 from Section 34, by producing an
extension function F that depends linearly on the given f. We write c, C, C′,
etc., to denote constants depending only on m and n.

Let us recall from Section 16 the concept of a linear map of depth k. Sup-
pose L : RN −→ P+ is a depth k linear map, given by a D+ ×N matrix L′.
(Here, D+ = dim P+.) Then at most Ck of the entries of L′ are non-zero.
In order to specify the depth k linear map L, it is sufficient to indicate which
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entries of L′ are non-zero, and then specify the values of those non-zero en-
tries. By using this representation, we may hold a depth k linear map using
C ·(k+1) storage (see Section 16). We call this representation the “compact
representation” of L.

Theorem 6. Suppose we are given the following data:

• A finite set E ⊂ Rn.

• A number σ(x) ≥ 0 for each x ∈ E.

Assume that #(E) = N.

Then, there exists a collection of linear maps {Lx : x ∈ Rn}, where Lx :
R#(E) → P+ for each x ∈ Rn, such that the following hold.

(A) For each x ∈ Rn, the linear map Lx : R#(E) → P+ is of depth C (and
thus depends only on at most C′ among the N coordinates of its input).

(B) Suppose f := (f(y))y∈E, where f(y) ∈ R for all y ∈ E (i.e., f ∈ R#(E)).
Then there exists a function Ff ∈ Cm(Rn) such that:

(B1) J+x (Ff) = Lx [f] for all x ∈ Rn.

(B2) If F̃ ∈ Cm(Rn) and M > 0 satisfy

‖ F̃ ‖Cm(Rn)≤M and |F̃(x) − f(x)| ≤Mσ(x) for x ∈ E,
then

‖ Ff ‖Cm(Rn)≤ CM and |Ff(x) − f(x)| ≤ CMσ(x) for x ∈ E.

(C) There is an algorithm, that takes the given data, performs one-time
work, and then responds to queries.

A query consists of a point x ∈ Rn, and the response to the query is
the depth-C linear map Lx, given in its compact representation.

The one-time work takes CN logN operations, and CN storage. The
time to answer a query is C logN.

Here, C is a constant depending only on m and n.

The proof of this theorem is identical to the proof given in the previous
sections, with a few obvious modifications. The main modification, is that
rather than computing Γ(x, �,M) and σ(x, �,M) using ALPs, we bring in
the PALPs described in Section 6, Section 11 and Section 16. We supply
details.
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We define N̄ = N. We suppose that the index of an input point, an
integer between 1 and N, may be stored in a single memory word. Thus
assumption (2) from Section 6 is verified. We formally think of (f(x))x∈E as
depending linearly on ξ ∈ R�(E) = RN̄, and we write f = fξ to denote this
formal linear dependence. For a fixed x ∈ E, the linear projection ξ �→ fξ(x)

from RN̄ to R is (trivially) of depth 1. Therefore (1) from Section 11 holds,
with k = 1. Recall from Section 11 that we are able to compute PALPs
A(x, �) with the following properties.

(1) For each x ∈ E, 0 ≤ � ≤ �∗, the PALP A(x, �) and the ALP A(x, �)
constructed from E, σ, fξ in Section 10 agree at ξ, for every ξ ∈ RN̄.

(2) For each x ∈ E, 0 ≤ � ≤ �∗ the PALP A(x, �) is of depth at most C′.

(3) The computation of the PALPs A(x, �), for x ∈ E, 0 ≤ � ≤ �∗, requires
no more than CN logN operations and CN storage.

Next, based on the construction of the PALPs A(x, �), we were able to

describe in Section 16 the procedure, Find-Parametrized-Neighbor(�P0,A, x),

defined for A ⊆ M, x ∈ E and a depth-k parametrized polynomial �P0. (Re-
call from Section 16 the concept of a depth-k parametrized polynomial.)
The output of Find-Parametrized-Neighbor is a depth-Ck parametrized poly-
nomial �P with the following property:

(4) Fix ξ ∈ RN̄. Set P0 = �P0(ξ), P = �P(ξ) and f = fξ. Then P is
the polynomial returned by Find-Neighbor(P0,A, x) with initial data
E, σ, f.

Assuming we have already computed the PALPs A(x, �), the procedure Find-
Parametrized-Neighbor terminates within C′ computer operations.

Next, we describe the (trivial) modifications needed, to adapt the Main
Algorithm to the new situation. The first change, is that all the polynomials
in the Main Algorithm (except for the jets of the θ’s), are now being replaced
with parametrized polynomials. In particular, fx(A0, Q0, x0, P0) is replaced

by �fx(A0, Q0, x0, �P0) where �P0 is a parametrized polynomial. The second
change is that Line 11 is replaced by

Line 11′: Define �Pk := Find-Parametrized-Neighbor(�P0,A0, xk).

Suppose that �P0 is a parametrized polynomial of depth C, for some con-
stant C depending only on m and n, and denote �P = �fx(A0, Q0, x0, �P0).
By an easy induction on A0 ⊆ M we obtain that for any Q0 ∈ CZ(A0), x0 ∈
E ∩Q∗∗

0 , x ∈ (1+ cG)Q0, the following hold:

(5) �P is a parametrized polynomial of depth C′.

(6) Fix ξ ∈ RN̄ and set P0 = �P0(ξ), P = �P(ξ) and f = fξ. Then P is the
polynomial returned by fx(A0, Q0, x0, P0) with initial data E, σ, f.
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(7) The computation of �fx(A0, Q0, x0, �P0) requires C logN computer oper-
ations, given one-time work of at most CN logN operations and CN
storage.

We may now move to the proof of Theorem 4 in Section 34. Again, only
obvious modifications are needed. We just need to replace (8), (9) and (39)
from Section 34 with

(8′) �PQ is a parametrized C-original vector for the PALP A(xQ, �∗).

(9′) �Px :=
∑

Qν∈Ω0(x)
J+x
(
θ∅Qν
)�+

x
�fx(∅, Qν, xQν , �PQν)

(39′) �P0 is a parametrized C-original vector for the PALP A(x0, �∗).

We compute �P0 in (39′) and �PQ in (8′) with the help of Algorithm PALP3 from
Section 6. Since the PALPs A(x, �∗) (x ∈ E) are of depth C, it follows from

the defining properties of Algorithm PALP3 that �P0 and �PQ are parametrized
polynomials of depth C′. By using (5), (6) and (7), it is straightforward to
obtain the following result: For any x ∈ Rn,

(8) The polynomial �Px is a parametrized polynomial of depth C.

(9) The polynomial P̄x computed in (9) of Section 34 with initial data

E, σ, fξ, x0, �P0(ξ) equals the polynomial �Px(ξ) from (9′) with initial

data E, σ, x0, �P0.

(10) The computation of �Px requires C logN computer operations, given
one-time work of at most CN logN operations and CN storage.

It is now easy to deduce the conclusions of Theorem 6. Indeed, conclu-
sion (A) follows from (8), conclusion (B) follows from (9) and Theorem 4
from Section 34, and (C) follows from (10). The proof of Theorem 6 is
complete.

36. Different Types of Input

So far in this manuscript, we were mainly concerned with an efficient com-
putation of a function F : Rn → R, having a nearly minimal Cm-norm under
certain restrictions on the values that the function F may attain on a given
set E ⊂ Rn.

In this section we will consider more general types of constraints on
the desired function F. Rather than restricting the values that F may at-
tain on the set E, we will impose conditions on the full jets Jx(F) (x ∈ E).
In particular, we will discuss algorithms for efficiently computing a function
F : Rn → R, having prescribed jets of various orders at the points of E, such
that ‖ F ‖Cm(Rn) has the smallest possible order of magnitude.
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Recall the definition of Whitney t-convex sets, from Section 12.

Theorem 7. Suppose we are given the following data:

• A finite set E ⊂ Rn.

• For each x ∈ E, an (m − 1)-jet f(x) ∈ P, and a centrally-symmetric
convex set σ(x) ⊂ P, defined by at most, say, 2 dim P linear inequali-
ties.

Assume that #(E) = N, and that for each x ∈ E, the set σ(x) is Whitney
t-convex at x, with Whitney constant W0.

Then, there exists F ∈ Cm(Rn) with the following properties:

(I) If F̃ ∈ Cm(Rn) and M > 0 satisfy

‖ F̃ ‖Cm(Rn)≤M and Jx(F̃) ∈ f(x) +Mσ(x) for x ∈ E,
then

‖ F ‖Cm(Rn)≤ CM and Jx(F) ∈ f(x) + CMσ(x) for x ∈ E.
Here C is a constant depending only on m, n and W0.

(II) There is an algorithm, that receives the given data, performs one-time
work, and then responds to queries.

A query consists of a point x ∈ Rn, and the response to the query is the
jet J+x (F).

The one-time work takes C′N logN operations, and C′N storage. The
work to answer a query is C′ logN.

Here C′ is a constant depending only on m and n.

Note that Theorem 4 is a particular case of Theorem 7, in which all the
sets σ(x) ⊂ P take the form

(1) σ(x) = {P ∈ P : |P(x)| ≤ σ′(x)}
for all x ∈ E, where σ′ : E → [0,∞) is some function. The centrally-
symmetric convex set σ(x) in (1) is Whitney t-convex at x, with Whitney
constant 1. An additional interesting example of a Whitney t-convex set, is

(2) σ(x) =
{
P ∈ P : ∂βP(x) = 0 for all |β| ≤ σ′(x)}

for all x ∈ E, where σ′ : E → {0, ...,m − 1}. Note that σ(x) as in (2) is
Whitney t-convex at x with Whitney constant 1.

The proof of Theorem 7 is almost identical to the proof of Theorem 4.
Next we will describe the differences between the two arguments. Thus, let
E, f, σ be as in Theorem 7. From now on, in this section C,C′, C̃, etc. denote
constants depending only on m,n and W0.
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Recall the definition of the Γ ’s and the σ’s from Section 10. In order to
prove Theorem 7, we need to replace (2) of Section 10 with

(2′) Γ(x, 0,M) = {P ∈ P : |∂αP(x)| ≤ M for |α| ≤ m− 1 ,

and P ∈ f(x) +Mσ(x)}

for all x ∈ E. Having replaced (2) from Section 10 with (2′), we inductively
define the sets Γ(x, �,M) and σ(x, �) for all x ∈ E,M > 0 and � ≥ 0 exactly
as in Section 10. Since σ(x) is given by at most 2 dim P linear inequalities,
then the blob Γ(x, 0) defined in (2′) is already given by an obvious ALP
of length not exceeding 3 dim P. Therefore we may carry out the recursive
computation of the ALPs A(x, �) such that K(A(x, �)) is C-equivalent to
Γ(x, �), exactly as described in Section 10. The resources needed for the
computation are still CN logN time and CN storage (with C depending
only on m and n).

The new blobs Γ(x, �) and convex sets σ(x, �), that were constructed in
the preceding paragraph, are the basic blobs that are relevant to the proof of
Theorem 7, and they will replace the basic blobs defined in Section 10. Let
us discuss the properties of the new basic blobs, in comparison to Section 13.
Property 0 from Section 13 needs to be replaced with the following:

Property 0′:

(a) Let F ∈ Cm(Rn) and M > 0 be given. Assume that

‖ F ‖Cm(Rn)≤ M and Jx(F) ∈ f(x) +Mσ(x) for all x ∈ E .
Then Jx(F) ∈ Γ(x, �, C�M) for all x ∈ E, � ≥ 0, where C� depends solely
on �,m, n and W0.

(b) Let F ∈ Cm(Rn) be such that

‖ F ‖Cm(Rn)≤ 1 and Jx(F) ∈ σ(x) for all x ∈ E .
Then Jx(F) ∈ C�σ(x, �) for all x ∈ E, � ≥ 0, where C� depends solely
on �,m, n and W0.

We claim that Property 0′, as well as Properties 1,...,4 from Section 13,
hold also with our new definition of the Γ ’s and σ’s, when the constants
C,C′, etc. are allowed now to depend also on W0. Indeed, an inspection of
the definition (2′) shows that Property 0′ from the present section, and Prop-
erties 1,...,4 from Section 13, all hold for � = 0, with constants depending
only on m,n and W0. As in Section 13, the proof for a general � follows by
induction. There are only the most trivial differences between the inductive
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proof in Section 13 and the argument needed here. We omit the straightfor-
ward details. We have thus explained how to establish Property 0′, as well
as Properties 1,...,4 from Section 13, in the context of the new Γ ’s and σ’s.

Except for the slightly different construction of the Γ ’s and σ’s, in order
to prove Theorem 7 we use the same algorithms and the same arguments as
those used in the proof of Theorem 4, with the main difference being that
the constants depend now also on W0, in addition to m and n.

Recall the first paragraph from Section 31. According to this paragraph,
Properties 0,...,4 from Section 13 are the only information we use regarding
the Γ ’s and the σ’s. (The only exception is (19) of Section 34, which trivially
holds also here.) In order to adapt the arguments and algorithms that
appear throughout the manuscript to suit the proof of Theorem 7, we simply
note that Properties 1,...,4 from Section 13 may also be used in the new
context, with the new Γ ’s and σ’s. Indeed, this is the content of the previous
paragraphs (with C,C′ being constants depending only on m,n and W0).
Regarding Property 0 from Section 13, we would like to replace its use
with Property 0′. In relation with the proof of Theorem 4, Property 0 was
used only in (42) of Section 34. In that occurrence, the adaptation of the
argument to fit into the proof of Theorem 7, using Property 0′ in place of
Property 0 from Section 13, is very simple.

Thus, Theorem 7 follows along the lines of the proof of Theorem 4. We
invite the reader to fill in the details.

We will conclude this section with a remark related to scale invariance.
Let us denote τδ(x) = δx for δ > 0 and x ∈ Rn. Suppose F : Rn → R is an
unknown function, and that the only information we have regarding F is its
Cm-norm, ‖ F ‖Cm(Rn). Suppose δ > 0 is a known number, that may be very
large or very small. Then it is impossible to guess what is even the order
of magnitude of ‖ F ◦ τδ ‖Cm(Rn), without having more information on the
function F. In other words, the Cm-norm does not behave well under scaling.
To overcome this irritating point, one might want to consider scaling-friendly
versions of the Cm-norm. For instance, the semi-norm,

Nm(F) = sup
x∈Rn

max
|β|=m

|∂βF(x)|

is an obvious candidate. Note that if Nm(F) ≤ M for some function
F : Rn → R, then by Taylor’s theorem,

(3) Jx(F) − Jy(F) ∈ CMB(x, y) for all x, y ∈ Rn.

Property (3) was almost the only property of the norm ‖ · ‖Cm(Rn) that was
relevant in this manuscript. It is thus possible to modify slightly our discus-
sion, and obtain an extension algorithm, with respect to the semi-norm Nm.
We will not carry out the details, but one may prove the following result.
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Theorem 8. Suppose we are given the following data:

• A finite set E ⊂ Rn.

• For each x ∈ E, an (m − 1)-jet f(x) ∈ P, and a centrally-symmetric
convex set σ(x) ⊂ P, defined by at most, say, 2 dim P linear inequali-
ties.

Assume that #(E) = N, and that for each x ∈ E, the set σ(x) is Whitney
t-convex at x, with Whitney constant W0.

Then, there exists F ∈ Cm(Rn) with the following properties:

(I) If F̃ ∈ Cm(Rn) and M > 0 satisfy

Nm(F̃) ≤M and Jx(F̃) ∈ f(x) +Mσ(x) for x ∈ E,
then

Nm(F) ≤ CM and Jx(F) ∈ f(x) + CMσ(x) for x ∈ E.
Here, C is a constant depending only on m,n and W0.

(II) There is an algorithm, that takes the given data, performs one-time
work, and then responds to queries.

A query consists of a point x ∈ Rn, and the response to the query is the
jet J+x (F).

The one-time work takes C′N logN operations, and C′N storage. The
time to answer a query is C′ logN.

Here, C′ is a constant depending only on m and n.

Let us just mention briefly the main point of change between the proof
of Theorem 8 and the proof of Theorem 4. Actually, all we need to do is
define

Γ(x, 0,M) = f(x) +Mσ(x), and σ(x, 0) = σ(x)

(compare with the definition from Section 10, or with (5) from Section 34).
We may re-run our arguments, based on this new definition of Γ(x, 0,M)
and σ(x, 0), and obtain a family of blobs and convex sets that satisfy the
obvious analogues of Properties 0,. . . ,4 from Section 13. This leads to an
analogue of the Main Lemma for Theorem 8.

To deduce Theorem 8 from the analogue of the Main Lemma, we may
take advantage of scale-invariance and translation-invariance to assume that
our set E is contained in a single dyadic cube of sidelength A−1

2 . This allows
us to bypass the arguments in Section 34. Thus the proof of Theorem 8 is
actually a rather straightforward generalization of the proof of Theorem 4.
We omit the details.
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Appendix - Computation in Finite Precision

37. Representing Real Numbers in the Computer

Our algorithms deal with real numbers. We need to store and retrieve real
numbers from the computer memory; we add, subtract, multiply, divide and
compare real numbers, and also, when computing the Caldéron-Zygmund
cubes, we make use of the operations of logarithm, powers of two and round-
ing to the nearest integer.

As we are aiming at a rigorous, asymptotic analysis of our algorithms,
we need to specify the precise abstract model of computation underlying the
discussion. When we work with non-discrete objects, such as real numbers,
selecting a computational model is not an obvious task.

A näıve approach, would be to consider a standard von Neumann com-
puter, able to work with exact real numbers and perform all the above
operations exactly, in infinite precision. It was brought to our attention
that this model of computation, and in particular the unrestricted use of
the “round to nearest integer” operation, leads to some suspiciously efficient
algorithms. For example, it was shown in [28] (see also [23]) that in this
model of computation there exists a polynomial-time algorithm, that solves
a problem for which there is no known sub-exponential algorithm in the
standard, discrete, models of computation.

Thus, some caution is needed when analyzing the performance of algo-
rithms involving real numbers. In [19] we have described a simpler algorithm,
and we have selected there a model of computation able to work with exact
real numbers. In that model of computation, an operation is one of the
following.

(1) An exact addition, subtraction, multiplication or division of real num-
bers.

(2) A comparison of two real numbers x and y, i.e. the decision as to
whether x > y, x = y or x < y.

(3) Reading or writing of a real number from a specified memory cell.

This model of computation, referred to as real RAM (RAM stands for Ran-
dom Access Machine), is quite standard, see e.g. [27, Section 1.4]. It is also
common to strengthen this model, by allowing exponents, logarithms and
trigonometric functions (again see [27, Section 1.4]). We refer the reader e.g.
to [24] for a critical discussion of this model. Unfortunately, this widely ac-
cepted model of computation does not suit the algorithms in this manuscript;
we are currently unaware of an efficient computational approach to the space
tilings CZ(A), that avoids the use of “rounding to the nearest integer”.
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There are several other reasonable models of computation, that are more
appropriate for the analysis of our algorithms. We chose to use a finite-
precision computer, in which a real number is represented, to some accuracy,
using registers of S̄ bits. It takes the computer one unit of time to perform
simple manipulations on one or two registers. In particular, we may add,
subtract, multiply, divide, round and compare S̄-bit registers, within one unit
of time. Since our registers are finite, these operations cannot be performed
with perfect precision. We suppose, as in [25, Section 4.2.2], that these
operations are as accurate as possible. We will assume explicit bounds for the
error that may be caused by each operation. The list of allowed operations,
and the assumptions we make on each of them, appear in the following
section. In Sections 39–57 we provide a detailed analysis of the performance
and accuracy of our algorithms, in the S̄-bit-precision model of computation.

We have elected the finite-precision model of computation, since it seems
to the authors close in spirit to our understanding of real-life digital com-
puters. We would like to emphasize that the model of computation we chose
is in no sense canonical. It is also possible to analyze our algorithms using
other models. For instance, we could have considered a real RAM, with
the addition of “rounding” and “powers of two” operations in a bounded
domain; in this model all of the computations are exact, but we are allowed,
for instance, to round real numbers to the nearest integer only if they lie in
the interval [0, S], for some given number S.

Our main goal in the analysis below is to verify that our algorithms are
honest and make sense, and that we avoid the subtle problems related to
computation with real numbers mentioned above. We confine attention to
the main algorithm presented in this manuscript, i.e., the one which appears
in the formulation of Theorem 2 or Theorem 4.

This discussion, of course, is of purely theoretical nature. It would be
interesting to examine whether our algorithms, or at least some of the ideas
in them, may be also of some practical use. Needless to say, all algorithms in
this manuscript are well suited for implementation in any standard computer
language, such as FORTRAN, PASCAL or C. A thorough study of an optimized
implementation is beyond the scope of this article.

38. The Model of Computation

For an integer S̄ ≥ 1, we work with “machine numbers” of the form k · 2−S̄,
with k an integer and |k| ≤ 2+2S̄. Our model of computation is an idealized
von Neumann computer [34], able to handle machine numbers. We also
make the following assumptions:

• Two machine numbers x and y satisfying |x| ≤ 2� and |y| ≤ 2�
′

with
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�, �′ ≥ 0 and �+ �′ ≤ S̄ can be “multiplied” to produce a machine number
x⊗ y satisfying |x⊗ y − xy| ≤ 2−S̄.

We suppose it takes one unit of “work” to compute x⊗ y.

We assume that 0⊗ x = x⊗ 0 = 0 and that x⊗ 1 = 1⊗ x = x.

We assume that if |x| ≤ 2� and |y| ≤ 2�
′
, for �, �′ integers, then |x ⊗ y|

≤ 2�+�′.
• If x is any machine number other than zero, then we suppose we can pro-

duce a machine number “1/x” in one unit of “work”, such that |“1/x” −
1/x| ≤ 2−S̄.

We assume that “1/x” = 1 when x = 1.

We assume that if |x| ≥ 2�, for an integer �, then |“1/x”| ≤ 2−�.

• Two machine numbers x and y satisfying |x| ≤ � and |y| ≤ �′ for integers
� and �′ such that � + �′ ≤ 2S̄ may be added to produce their exact sum
x+ y, which is again a machine number.

We assume it takes one unit of “work” to compute x+ y.

• If x is any machine number, then −x is again a machine number.

We assume it takes one unit of “work” to compute −x.

• If x and y are machine numbers, then we can decide whether x < y,
y < x, or x = y.

We assume this takes one unit of “work”.

• If x is a machine number other than zero, then we can compute the
greatest integer � such that 2� ≤ |x|.

We assume this takes one unit of “work”.

• If x is a machine number and � is an integer with |�| ≤ S̄, then we can
compute the greatest integer ≤ 2�x. (If this integer lies outside [−2S̄,+2S̄],
then we produce an error message, and abort our computation.)

We assume this takes one unit of “work”.

• We assume we can add, subtract, multiply and divide integers of absolute
value ≤ 2S̄, in one unit of “work”.

If we compute x/y in integer arithmetic, for integers x, y (y �= 0) of
absolute value at most 2S̄, then we obtain the greatest integer ≤ the
real number x/y. If our desired answer lies outside [−2S̄,+2S̄], then we
produce an error message and abort our computation.

• Given integers x, y of absolute value ≤ 2S̄, we can decide whether x < y,
y < x, or x = y.

We assume this takes one unit of “work”.
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• If � is an integer, with |�| ≤ S̄, then we can compute exactly the machine
number 2�. We assume this takes one unit of “work”.

• We assume we can read or write a machine number from /to the RAM
with one unit of “work”.

• We assume we can store the address of any memory cell in a single S̄-bit
word.

Under these assumptions, we say that we work with “S̄-bit machine num-
bers” (though the actual implementation of those machine numbers seems
to require at least 2S̄+2 bits.) Note that it is possible to simulate arithmetic
of tS̄-bit machine numbers, using a computer working with S̄-bit machine
numbers. The amount of “work” for each elementary operation is a constant
depending only on t. Consequently, we are only interested in the order of
magnitude of S̄.

We will show that when our algorithms receive their input as S0-bit
machine numbers, and if S̄ ≥ CS0, for a constant C depending only on m
and n, then the output produced by our algorithm is accurate to within S0
bits. We will verify that the work and storage required are as promised,
CN logN for the one-time work and C logN for the query time, with CN
storage, for C being a constant depending only on m and n. Since we are
really interested only in the order of magnitude of S̄, this implies that we
can eventually take S̄ = S0.

In Sections 39,. . . ,57 we assume the above model of computation.
Throughout those sections, S̄ will always denote the precision of our

model of computation, as was just described.

39. Data Structures

Let D ≥ 1 be given. We will work with ALPs in RD.
Let S be a positive integer, and let Υ ≥ 1. We define an “S-bit FALP

with constant Υ” to be an ALP

(DS1) A =
[
(λ�j) 1≤�≤L

1≤j≤D
, (b�)1≤�≤L, (σ�)1≤�≤L, M∗

]
in RD, with the following properties.

(DS2) L ≥ 1.
(DS3) 2−S ≤ σ� ≤ 2S for each � (1 ≤ � ≤ L).
(DS4) 2−S ≤M∗ ≤ 2S.
(DS5) |b�| ≤ 2S for each � (1 ≤ � ≤ L).
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(DS6) |λ�j| ≤ 2S for each �, j (1 ≤ � ≤ L, 1 ≤ j ≤ D).

(DS7) Suppose we are given λ′�j (1 ≤ � ≤ L, 1 ≤ j ≤ D) and b′� (1 ≤ � ≤ L),
such that for all �, j we have

|λ′�j− λ�j| ≤ 2−S and |b′�− b�| ≤ 2−S .

Then the ALP A is Υ-equivalent to the ALP

A′ =
[
(λ′�j) 1≤�≤L

1≤j≤D
, (b′�)1≤�≤L , (σ�)1≤�≤L , M∗

]
.

(Recall that two ALPs A,A′ are C-equivalent, if the blobs to which they
give rise are C-equivalent.)

“FALP” stands for “Fault-tolerant ALP”. If also each λ�j, b�, σ� and M∗
in (DS1) is a machine number, then we say that A is an “S-bit MALP with
constant Υ”.

40. Remarks on FALPs and MALPs

Lemma 1. Let

A = [(λ�j) 1≤�≤L
1≤j≤D

, (b�)1≤�≤L, (σ�)1≤�≤L,M∗]

be an S-bit FALP with constant Υ. Let

A′ = [(λ′�j) 1≤�≤L
1≤j≤D

, (b′�)1≤�≤L, (σ
′
�)1≤�≤L,M

′
∗],

with |λ′�j − λ�j|, |b′� − b�|, |σ′� − σ�|, |M′
∗ − M∗| ≤ 2−(S+1). Then A′ is an

(S+ 1)-bit FALP with constant 4Υ2. Moreover, A′ is 2Υ-equivalent to A.

Proof. Let A′′ = [(λ′′�j), (b′′�), (σ′�), M
′
∗], with |λ′′�j−λ

′
�j|, |b′′� −b

′
�| ≤ 2−(S+1).

We will show that A′′ is 4Υ2-equivalent to A′. To see this, note that |λ′′�j−λ�j|,
|b′′� − b�| ≤ 2−S. Hence, by (DS7), the ALPs

Ã′′ = [(λ′′�j), (b′′�), (σ�), M∗] and Ã′ = [(λ′�j), (b′�), (σ�), M∗]

are both Υ-equivalent to A; hence they are Υ2-equivalent to each other.
Since also 1

2
≤ σ′�/σ� ≤ 2 and 1

2
≤ M′

∗/M∗ ≤ 2, we know that A′ is

2-equivalent to Ã′, and similarly A′′ is 2-equivalent to Ã′′. Consequently, A′

and A′′ are 4Υ2-equivalent, which proves (DS7) for A′, with 4Υ2 and S+ 1
in place of Υ and S. Properties (DS2,...,DS6) hold trivially for A′, with S+1

in place of S. Therefore, A′ is an (S+1)-bit FALP with constant 4Υ2. Also,
since Ã′ is Υ-equivalent to A, and since Ã′ is 2-equivalent to A′, it follows
that A is 2Υ-equivalent to A′. �
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As a special case of the above, let

A = [(λ�j) , (b�) , (σ�) , M∗]

be an S-bit FALP, with constant Υ.
Define

A′ = [(λ′�j), (b�) , (σ�) , M∗]

by setting

λ′�j = λ�j if |λ�j| > 2−(S+1) ,

λ′�j = 0 if |λ�j| ≤ 2−(S+1) .

Then A′ is an (S + 1)-bit FALP with constant 4Υ2, and, moreover, A and
A′ are 2Υ-equivalent.

Passing from A to A′, we can ensure that any non-zero λ′�j will have

absolute value at least 2−(S+1).
We give the name “Rounding Down” to the process of passing from A

to A′ as above.
If A is an S-bit MALP with constant Υ and length L in RD, then we

can “round A down” in our model of computation, with work at most CDL,
where C is a universal constant. (Of course, when S ≥ S̄, rounding down of
an S-bit MALP requires no computer operations at all; in this case, A = A′.)

Lemma 2. Suppose

A =
[
(λ�j) 1≤�≤L

1≤j≤D
, (b�)1≤�≤L, (σ�)1≤�≤L,M∗

]
is an S-bit FALP with constant Υ. Then the matrix (λ�j) has rank D.
(In particular, L ≥ D.)

Proof. Suppose not. Then there exists v0 ∈ RD with v0 = (v01, . . . , v
0
D) �= 0,

yet
∑

j
λ�jv

0
j = 0 for each �. Fix j0 with v0j0 �= 0, and fix M ≥ M∗, with

Mσ� ≥ |b�| for each �. (Recall that σ� �= 0 since A is an S-bit FALP. Hence,
we can find such an M.)

Set
A′ = [(λ�j+ 2

−Sδ�1δjj0) 1≤�≤L
1≤j≤D

, (b�)1≤�≤L, (σ�)1≤�≤L,M∗] ,

where δ is the Kronecker delta. Since A is an S-bit FALP, the ALPs A,A′

must be Υ-equivalent. In particular, for our M, we have KM(A) ⊆ KΥM(A′).
On the other hand, for any T ∈ R, we have Tv0 ∈ KM(A), since for each �
we know that ∣∣∣∣∑

j

λ�jTv
0
j − b�

∣∣∣∣ = |b�| ≤ Mσ�.
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Hence, Tv0 ∈ KΥM(A′) for any T ∈ R. In particular,∣∣∣∣∑
j

(λ1j+ 2
−Sδjj0) Tv

0
j − b1

∣∣∣∣ ≤ ΥMσ1

for all T ∈ R. That is, |(2−Sv0j0) · T − b1| ≤ ΥMσ1 for all T ∈ R. That’s

absurd, since S, v0j0 , b1,M, σ1, Υ are independent of T , and v0j0 �= 0. The
proof is complete. �
Lemma 3. Let S ≥ 1 be an integer, and let

A = [(λ�j) 1≤�≤D
1≤j≤D

, (b�)1≤�≤D , (σ�)1≤�≤D , M∗]

be an ALP of length D in RD, satisfying the following:

(a) All numbers |λ�j| , |b�|, σ�,M∗ are ≤ 2S;

(b) All numbers σ�,M∗ are ≥ 2−S;

(c) | det(λ�j)| ≥ 2−S.

Then A is an S′-bit FALP with constant Υ, where S′ = ĈS, Υ = 2, and Ĉ
depends only on D.

Proof. Let C, C′, etc. denote constants depending only on D.
Let A′ = [(λ�j+µ�j), (b�+β�), (σ�) ,M∗] with |µ�j| , |β�| < ε, and with ε > 0
to be picked below.

We will show that the ALPs A and A′ are 2-equivalent. To see this, let
M ≥M∗. Then

KM(A) =
{
v = (v1, . . . , vD) ∈ RD :

∣∣∣∣∑
j

λ�jvj−b�

∣∣∣∣ ≤ Mσ� for � = 1, . . . , D
}

and

KM(A′) =

{
v = (v1, . . . , vD) ∈ RD :∣∣∣∣[∑

j

λ�jvj− b�

]
+

[∑
j

µ�jvj− β�

]∣∣∣∣ ≤Mσ� for � = 1, . . . , D

}
.

We have |
∑

j
µ�jvj − β�| ≤ Cε(1 + |v|) for any v ∈ RD. Suppose v ∈

KM(A). Then |
∑

j
λ�jvj| ≤ |b�| + Mσ� ≤ 2S(1+M) ≤ C ·22SM for each �,

thanks to our assumptions on b�, σ�, M∗.
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Since |λ�j| ≤ 2S and | det(λ�j)| ≥ 2−S, it follows that

|v| ≤ C · 2CSM,

hence ∣∣∣∑
j
µ�jvj− β�

∣∣∣ ≤ Cε(1+ |v|) ≤ 2−SM ≤ Mσ�

provided we take ε < 2−CS for large enough C. (Here again we use our
assumptions on the size of M∗, σ�.) Thus,∣∣∣∑

j
λ�jvj− b�

∣∣∣, ∣∣∣∑
j
µ�jvj− β�

∣∣∣ ≤ Mσ� for each �,

and consequently v ∈ K2M(A′). Hence, v ∈ KM(A) implies v ∈ K2M(A′).

Conversely, suppose v ∈ KM(A′). Then∣∣∣∣∑
j

λ�jvj

∣∣∣∣ ≤ |b�| +

[
|β�| +

∑
j

|µ�j| |vj|

]
+Mσ� ≤ 2S+ Cε(1+ |v|) +Mσ� ,

for each �. Since also |λ�j| ≤ 2S and | det(λ�j)| ≥ 2−S, it follows that

|v| ≤ C2CS · [1 + Cε(1+ |v|) +Mσ�] ≤ C′2CS · [1+ ε|v| +Mσ�] .

Taking ε < 2−C′′S, we can absorb the ε|v| on the far right into the left-hand
side. Hence, |v| ≤ C · 2C·S ·M. This in turn yields

|β�| +
∑
j

|µ�j| |vj| ≤ C2C·SεM ≤ 2−SM ≤ Mσ� ,

provided we take ε < 2−C′′′S for a large enough C′′′. (Here again, we use our
hypothesis on the size of M∗ and σ�.) Now we know that∣∣∣∣(∑

j

λ�jvj− b�

)
+

(∑
j

µ�jvj− β�

)∣∣∣∣ ≤ Mσ� , and∣∣∣∣∑
j

µ�jvj− β�

∣∣∣∣ ≤ |β�| +
∑
j

|µ�j||vj| ≤ Mσ� ,

for all �. Hence, ∣∣∣∑
j
λ�jvj− b�

∣∣∣ ≤ 2Mσ�,

i.e., v ∈ K2M(A). Thus, v ∈ KM(A′) implies v ∈ K2M(A).

We have shown that A and A′ are 2-equivalent, provided ε = 2−C·S for
a large enough integer constant C, depending only on D.

This means that A satisfies (DS7), with Ĉ · S in place of S, and with
Υ = 2. Also, we see that A satisfies (DS2...6), with Ĉ ·S in place of S. Thus,
A is a C · S bit FALP, with Υ = 2. The proof is complete. �
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As an example of the previous result, let S0 ≥ 1 be an integer, and
assume that

(*) S0 ≥ C and S̄ ≥ CS0,
where C is a large enough constant depending only onD. Let δ be a machine
number with 2−S0 ≤ δ ≤ 2+S0 , and let Bδ be the ALP in RD given by:

(a) λ�j = δ�j (Kronecker delta) for �, j = 1, . . . , D;

(b) b� = 0 for � = 1, . . . , D;

(c) σ� := “δm�” for � = 1, . . . , D, wherem� is an integer, and 0 ≤ m� ≤ D
for each �;

(d) M∗ = 2−S0 .

In (c), we attempt to compute δm� using our model of computation, so σ�
will equal δm� plus a roundoff error. The roundoff error will be smaller
than 1

2
δm� because of (*).

Then the ALP Bδ is a CS0-bit MALP with constant 2, where C depends
only on D. This follows at once from Lemma 3. The computation of the
MALP Bδ requires C work, with C depending only on D.

Lemma 4. Let A be an S-bit FALP with constant Υ in RD. Let M > 0.

Suppose u, v ∈ RD, with v ∈ KM(A) and |u| ≤ 2−2S/D.

Then v+ u ∈ KΥM(A).

Proof. Let u = (u1, . . . , uD) , v = (v1, . . . , vD), A = [(λ�j), (b�), (σ�), M∗].
By hypothesis, we have |λ�j| ≤ 2S and |uj| ≤ 2−2S

D
, and therefore, setting

b′� = b� +
∑D

j=1
λ�juj,

we obtain |b′� − b�| ≤ 2−S for each �. Since A is an S-bit FALP with con-
stant Υ, it follows that A and A′ are Υ-equivalent, where A′ = [(λ�j), (b′�),
(σ�), M∗].

Since v ∈ KM(A), we know that M ≥ M∗, and |
∑

j
λ�jvj − b�| ≤ Mσ�

for each �.

Since ∑
j
λ�j(vj+ uj) − b′� =

∑
j
λ�jvj− b�,

it follows that |
∑

j
λ�j(vj + uj) − b′�| ≤ Mσ� for each �, with M ≥ M∗, i.e.,

v + u ∈ KM(A′). Recalling that A′ and A are Υ-equivalent, we conclude
that v+ u ∈ KΥM(A). �
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41. Elementary Row Operations on FALPs

Permuting rows. Suppose A is an S-bit FALP with constant Υ, and let π be
a permutation of the rows of A.

Then Aπ is again an S-bit FALP with constant Υ. Moreover, Aπ is
1-equivalent to A (i.e., they give rise to the same blob).

Stripping away zeros. Suppose

A = [(λ�j) 1≤�≤L
1≤j≤D

, (b�)1≤�≤L , (σ�)1≤�≤L ,M∗]

is an S-bit MALP with constant Υ, and suppose λ�j = 0 whenever L̄ < � ≤ L,
1 ≤ j ≤ D. Then

Ã = [(λ�j) 1≤�≤L̄
1≤j≤D

, (b�)1≤�≤L̄, (σ�)1≤�≤L̄, M̃∗]

is the ALP arising from A by “stripping away zeros”, where

M̃∗ = max{M∗,max{|b�|/σ� : L̄ < � ≤ L}}.
(Recall that all σ� are non-zero.)

Trivially, Ã is a 2S-bit FALP with constant Υ, because |b�|/σ� ≤ 22S,
and hence M̃∗ ≤ 22S. The ALPs A and Ã are 1-equivalent. We make here
the assumption that

(0) S ≥ 100 and S̄ ≥ 100S.

Thus, in our model of computation, we can compute M̃∗ only up to a round-
off error of absolute value ≤ 2−S̄ ≤ 2−10S. Our attempt to compute Ã with
imperfect arithmetic yields

Ã′ =
[
(λ�j) 1≤�≤L̄

1≤j≤D
, (b�)1≤�≤L̄ , (σ�)1≤�≤L̄ , M̃

′
∗
]

with
|M̃′

∗ − M̃∗| ≤ 2−10S .

By Lemma 1 in Section 40, we see that Ã′ is a (2S + 1)-bit MALP with
constant 4Υ2. Also, obviously, Ã′ is 2-equivalent to Ã. Consequently,

(a) Ã′ and A are 2-equivalent

(b) Ã′ can be computed from A in our model of computation; the work is
≤ CDL, with C a universal constant

(c) Ã′ is a (2S+ 1)-bit MALP with constant 4Υ2.

Thus, we can “strip away zeros” in our model of computation.



Fitting a Cm-Smooth Function to Data II 205

Addition of rows. Let

A =
[
(λ�j) 1≤�≤L

1≤j≤D
, (b�)1≤�≤L , (σ�)1≤�≤L ,M∗

]
be an S-bit MALP with constant Υ. Assume that

(1) S ≥ 1000 and S̄ ≥ 1000S.

Suppose we are given an integer �0 (1 ≤ �0 ≤ L) and machine numbers β�
(� = 1, . . . , L), satisfying:

(2) β�0 = 0;

(3) |β�| ≤ 22S for all �; and

(4) |β�| · σ�0 ≤ 2σ� for all �.

Let

Ã =
[
(λ�j+ β�λ�0j) 1≤�≤L

1≤j≤D
, (b�+ β�b�0)1≤�≤L , (σ�)1≤�≤L,M∗

]
,

and let Ã′ be the ALP arising from attempting to compute Ã in our model
of computation.

Thus,

Ã′ =
[
(λ�j+ β�λ�0j+ ε�j) , (b�+ β�b�0 + ε�) , (σ�) ,M∗

]
,

where the ε’s are round-off errors; we have |ε�j|, |ε�| ≤ 2−S̄ ≤ 2−103S,

All entries of Ã′ are machine numbers. Note that A and Ã are 3-equiv-
alent. In fact, suppose v ∈ KM(A). Then M ≥M∗; and we have∣∣∣∑

j
λ�jvj− b�

∣∣∣ ≤Mσ� for each �,

and therefore∣∣∣∣[∑
j

λ�jvj− b�

]
+ β�

[∑
j

λ�0jvj− b�0

]∣∣∣∣ ≤ Mσ�+M|β�|σ�0 ≤ 3Mσ�

by assumption (4). Hence, v ∈ K3M(Ã). Since β�0 = 0, we can also write

λ�j = λ̃�j− β�0 λ̃�0j, b� = b̃�− β�0 b̃�0 ,

where λ̃�j and b̃� denote the entries of Ã. Hence the same argument as above
shows that

v ∈ KM(Ã) implies v ∈ K3M(A) .
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Thus, A and Ã are 3-equivalent, as claimed. We will check that Ã is a
100S-bit FALP, with constant 9Υ. To see this, we first recall the definition:

Ã = [(λ̃�j) , (b̃�) , (σ�) ,M∗]

with
λ̃�j = λ�j+ β�λ�0j , b̃� = b� + β�b�0 .

Since |λ�j| ≤ 2S for all �, j, and also |b�| ≤ 2S for all �, and since |β�| ≤ 22S,
we find that

|̃λ�j| , |b̃�| ≤ 2S+ 22S · 2S ≤ 23S+1 .
Also, M∗ and σ� ≥ 2−S > 2−(3S+1). In addition, Ã has length L ≥ 1, since
the same is true of A. Now suppose we compare Ã with

Ã# = [(λ̃�j + θ�j) , (b̃�+ θ�) , (σ�) ,M∗] ,

with |θ�j| , |θ�| ≤ 2−100S .

We know by our previous argument applied to Ã#, that Ã# is 3-equiv-
alent to

A# = [(λ̃�j+ θ�j − β�[λ̃�0j+ θ�0j]) , (b̃�+ θ� − β�[b̃�0 + θ�0 ]) , (σ�) ,M∗]

= [(λ�j + {θ�j − β�θ�0j}) , (b� + {θ� − β�θ�0 }) , (σ�), M∗] ,

and the quantities in curly brackets are less than 2−S.
Since A is an S-bit MALP with constant Υ, it follows that A# is Υ-equiv-

alent to A, which in turn is 3-equivalent to Ã.

So: Ã# is 3-equivalent to A#;
A# is Υ-equivalent to A ; and
A is 3-equivalent to Ã .

Thus, Ã is 9Υ-equivalent to Ã#, which proves (DS7) for Ã, with 9Υ and
100S in place of Υ and S.
It follows that Ã is a 100S-bit FALP with constant 9Υ.

Now, comparing Ã to Ã′, and invoking Lemma 1 from Section 40, we
see that Ã′ is a 101S-bit MALP, with constant 4 · (9Υ)2; and that Ã′ is
2 · (9Υ)-equivalent to Ã, which is 3-equivalent to A. Summarizing, we have
the following results:

(A) Ã′ is computable with work ≤ CDL in our model of computation,
where C is a universal constant.

(B) Ã′ and A are 200Υ-equivalent.

(C) Ã′ is a 101S-bit MALP with constant 103Υ2.

Thus, we may perform “addition of rows” in our model of computation.
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42. Echelon Form

(0) Let A =
[
(λ�j) 1≤�≤L

1≤j≤D
, (b�)1≤�≤L , (σ�)1≤�≤L ,M∗

]
be an S-bit FALP with constant Υ. Suppose we are given L̄ with 0 ≤ L̄ ≤ D.
(Recall that L ≥ D for a FALP.)

We say that A is “in echelon form through row L̄” if the following hold.

(EF1) |λ��| ≥ 2−S for all � ≤ L̄.

(EF2) λ�j = 0 for � ≤ L̄, 1 ≤ j < �.
(EF3) λ�j = 0 for � > L̄, 1 ≤ j ≤ L̄.

(Note that our definition of Echelon form for FALPs is slightly different from
the one we used for ALPs; the pivots are no longer flexible. In this entire
Appendix, we work only with the FALPs definition.)

If A is in echelon form through row L= length (A), then we say it is in
“echelon form”.

Note that any S-bit FALP A is in echelon form through row zero, since
(EF1, 2, 3) then hold vacuously.

Note also that any S-bit FALP A in echelon form through row L̄ satisfies
D ≥ L̄. Hence, any S-bit FALP A in echelon form satisfies D ≥ L. Since we
noted that L ≥ D for any FALP, it follows that length (A) = L = D for an
S-bit FALP in echelon form.

Lemma 1. Let A as in (0) be an S-bit MALP with constant Υ, in echelon
form through row L̄. Assume that

(1) S ≥ 1000 and S̄ ≥ 1000S.

Then there exist S′, Υ′, and an ALP

(2) A′ = [(λ′�j) 1≤�≤L
1≤j≤D

, (b′�)1≤�≤L , (σ′�)1≤�≤L ,M
′
∗] ,

with the following properties:

(3) A′ is an S′-bit MALP with constant Υ′.

(4) S′ = CS where C is a universal constant.

(5) Υ′ is determined by Υ.

(6) Either L̄ = D or A′ is in echelon form through row L̄+ 1.

(7) A and A′ are Υ′-equivalent.

(8) In our model of computation, A′ can be computed from A with work
≤ C0DL, for a universal constant C0.
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Proof. First, we “round down”. Thus, without loss of generality, we may
suppose

(9) |λ�j| ≥ 2−S whenever λ�j �= 0.

If L̄ = D, then we may simply take A′ = A, and properties (3), . . ., (8) hold
trivially.
Suppose L̄ �= D. Then in fact L̄ < D. Since A is an S-bit FALP, we know that
the matrix (λ�j) has rank D. If we had λ�,L̄+1 = 0 for all � > L̄, then thanks
to (EF2,3), any D ×D submatrix of (λ�j) would have determinant zero, as
we see by expanding by minors using successively columns 1, 2, . . . , L̄ + 1.
Consequently, λ�,L̄+1 �= 0 for some � ≥ L̄+1. For all � ≥ L̄+1 with λ�,L̄+1 �= 0,
we compute

(10) σ�/|λ�,L̄+1| (with a roundoff error),

and pick �0 yielding the minimum computed ratio. Note that 2−S ≤ σ� ≤
2+S, and 2−S ≤ |λ�,L̄+1| ≤ 2+S here, thanks to (9) and to (DS3), (DS6) from
Section 39.

According to (1), the quotients (10) are computed to within a small
percentage error. Hence, the �0 chosen by our computer will satisfy

(11)
∣∣∣ λ�,L̄+1

λ�0,L̄+1

∣∣∣ σ�0 ≤ 1.01 σ� for all �.

By permuting rows, we may assume without loss of generality that �0 = L̄+1.
In particular, λL̄+1,L̄+1 �= 0, so that (9) yields

(12) |λL̄+1,L̄+1| ≥ 2−S.

We now define β� = 0 for � ≤ L̄+1, and β� = −λ�,L̄+1/λ�0,L̄+1 (as computed)
for � > L̄+ 1. Note that β� is computed to within a small percentage error
by our computer, since either λ�,L̄+1 = 0 or else numerator and denominator
have absolute values between 2−S and 2+S, where 1000S ≤ S̄. Therefore, (11)
implies

(13) |β�|σ�0 ≤ 2σ� for each �, and we have |β�| ≤ 22S.

(Recall that by our assumptions from Section 38, |x| ≤ 2�, |y| ≤ 2�
′ ⇒

|x⊗ y| ≤ 2�+�′, and |x| ≥ 2−� ⇒ |“1/x”| ≤ 2�.)
Also,

(14) λ�,L̄+1 + β�λ�0,L̄+1, as computed by our computer, will have absolute

value at most 2100S · 2−S̄.
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We now perform “addition of rows” on A, using the coefficients β�(1 ≤� ≤L),
as explained in Section 41. This is allowed, thanks to (13) and to (1). We
obtain an ALP A′ satisfying (2) ,..., (5), as well as (7), (8). Moreover,
A′ is a 101S-bit MALP, with constant 103Υ that is 200Υ-equivalent to A.
Regarding (6), we would be happy if A′ were in echelon form through row
L̄ + 1. Unfortunately, that isn’t true, because of roundoff errors. More
precisely, we have

|λ′��| ≥ 2−S for � = 1, . . . , L̄+ 1,

λ′�j = 0 for j < � ≤ L̄+ 1

λ′�j = 0 for j ≤ L̄ and � > L̄+ 1

but merely
|λ′
�,L̄+1

| ≤ 2100S2−S̄ for � > L̄+ 1 .

To achieve (6), we “round down” our MALP A′, regarding it as a 101S-bit
MALP, so that any λ′�j with |λ′�j| ≤ 2−102S is redefined to be zero. We obtain
from A′ the 102S-bit MALP

A′′ = [(λ′′�j), (b
′′
�), (σ

′′
�),M

′′
∗],

with the following properties:

(15)

⎡⎢⎢⎢⎢⎣
|λ′′��| ≥ 2−102S for all � = 1, . . . , L̄+ 1 ,

λ′′�j = 0 for j < � ≤ L̄+ 1

λ′′�j = 0 for j ≤ L̄+ 1 and � > L̄+ 1

⎤⎥⎥⎥⎥⎦
Here, A′′ is a 102S-bit MALP with constant Υ′′ determined by Υ. More-
over, A′′ is 2000Υ-equivalent to A′, which is 200Υ-equivalent to A. Thus,
enlarging Υ′′, we find that

(16) A′′ is Υ′′-equivalent to A,

and that

(17) A′′ is a 102S-bit MALP with constant Υ′′, where

(18) Υ′′ is determined by Υ.

In view of (15),...,(18) and the definition of Echelon form through row L̄+1,
we see that conclusions (2),...,(7) all hold for A′′. Moreover, reviewing how
we obtained A′′ from A, we see easily that (8) holds as well. The proof of
the lemma is complete. �
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Repeatedly applying Lemma 1, then stripping away zeros, as for ALPs,
we obtain the following result.

Lemma 2. Let A be an S-bit MALP with constant Υ, of length L in RD.
Assume that

(a) S ≥ Ĉ and S̄ ≥ ĈS where Ĉ is a constant depending only on D.

Then there exist S′, Υ′, and an S′-bit MALP A′ with constant Υ′, satisfying
the following conditions:

(b) S′ = CS, where C is an integer constant depending only on D.

(c) Υ′ is determined by Υ and D.

(d) A and A′ are Υ′-equivalent.

(e) As an S′-bit MALP, A′ is in echelon form.

(f) In our model of computation, A′ can be computed from A, with work
at most CD2L, where C is a universal constant.

Note that we need to apply Lemma 1 at most D times, in order to prove
Lemma 2. Thus, Lemma 2 holds provided we take Ĉ ≥ 105CD, where C is
the constant from (4).

43. Applications of Echelon Form

In this section, we will make use of a certain constant C∗∗
D , depending only

on the dimension D. We make the assumption that

(*) C∗∗
D is a large enough constant determined by D.

Rather than specifying the value of C∗∗
D here, we will assume several lower

bounds for C∗∗
D in this section. Those lower bounds will always be by quan-

tities that depend solely on D. Eventually, we take C∗∗
D to be a constant

determined by D that satisfies those constraints.

Algorithm MALP1: Given an S-bit MALP A in RD with constant Υ such

that S ≥ C∗∗
D and S̄ ≥ C∗∗

DS, we produce an S′-bit MALP A′ in RD with
constant Υ′, in echelon form, and Υ′-equivalent to A. Here, S′ = CDS for a
constant CD depending only on D; and Υ′ depends only on Υ and D.

Explanation: This is the content of Lemma 2 in the preceding section. (We

assume that C∗∗
D ≥ Ĉ from Lemma 2.) The work of the algorithm is at most

CD· length (A), with CD depending only on D.
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Algorithm MALP2: Given an S-bit MALP A in RD with constant Υ such

that S ≥ C∗∗
D and S̄ ≥ C∗∗

DS, we compute a number M̂ such that cΥ,DM̂ ≤
onset (A) ≤ CΥ,DM̂, where cΥ,D and CΥ,D depend only on Υ and D.

Explanation: We place A into echelon form using algorithm MALP1, then

take M̂ to be the threshold of the MALP A′ in echelon form. This works,
since A′ and A are Υ′-equivalent, and since the onset of a FALP in echelon
form is equal to its threshold. The work of the algorithm is at most CD·
length (A), where CD depends only on the dimension D.

Algorithm MALP3: Let π : RD → RD̄ be the projection onto the last D̄

coordinates. Given an S-bit MALP A in RD with constant Υ such that S ≥
C∗∗
D and S̄ ≥ C∗∗

DS, we produce an S′′-bit MALP A′′ in RD̄ with constant Υ′′,
with the following properties:

• K(A′′) is CΥ,D-equivalent to πK(A), where CΥ,D depends only on Υ,D.

• S′′ = CDS, where CD depends only on D.

• Υ′′ depends only on Υ and D.

• length (A′′) = D̄.

Explanation: Using Algorithm MALP1, we find an S′-bit MALP A′ in RD,
with constant Υ′, satisfying the conditions given in Algorithm MALP1. Set

A′ =
[
(λ′�j) 1≤�≤D

1≤j≤D
, (b′�)1≤�≤D , (σ

′
�)1≤�≤D , M

′
∗
]
.

(Recall that a MALP in echelon form must have length exactly D.) Then

A′′ =

[
(λ′�j)D−D̄+1≤�≤D

D−D̄+1≤j≤D
, (b′�)D−D̄+1≤�≤D , (σ

′
�)D−D̄+1≤�≤D , M

′
∗

]
satisfies

K(A′′) = πK(A′),

as we see by “backsolving” for vD−D̄, vD−D̄−1, . . . , v1 to obtain (v1, . . . , vD) ∈
KM(A′) from any given (vD−D̄+1, . . . , vD) ∈ KM(A′′). (Here, we use the
triangular form of (λ′�j) given by (EF1,2) from Section 42. See the corre-
sponding argument in Section 5.)

Consequently, K(A′′) is CΥ,D-equivalent to πK(A). Also, length (A′′)=D̄.
It remains to check that A′′ is an S′′-bit MALP with constant Υ′′, as in the
statement of the algorithm. To see this, we note that, since A′ is an S′-bit
MALP in echelon form, we have

|λ′�j| , |b′�| , |σ
′
�| , M

′
∗ ≤ 2S

′
,

σ′� , M
′
∗ ≥ 2−S′
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and ∣∣∣∣det

(
(λ′�j)D−D̄+1≤�≤D

D−D̄+1≤j≤D

)∣∣∣∣ ≥ 2−D̄S′ ,

thanks to the triangular form of (λ′�j) and the estimates

|λ′��| ≥ 2−S′ .

The above estimates, together with Lemma 3 in Section 40, show that A′′

is an S′′-bit MALP with constant Υ′′ = 2, as claimed. Thus, A′′ does what
we claimed it would do.

The work of the algorithm is at most CD· length (A), since we read off
A′′ from A′, which is produced from A by Algorithm MALP1.

Algorithm MALP4: Let S ≥ 1 be an integer such that S ≥ C∗∗
D and S̄ ≥ C∗∗

DS.

Let T : RD → RD be a linear map with ‖ T ‖, ‖ T−1 ‖≤ 2S, where ‖ · ‖
stands, say, for the Hilbert-Schmidt norm. Suppose that “ T” is a given
matrix of machine numbers, whose elements differ from the corresponding
elements in T by at most 2−S̄/2.

Let A be an S-bit MALP in RD with constant Υ. Then we produce an
S′-bit MALP A′ in RD with constant Υ′, such that K(A′) is Υ′-equivalent
to TK(A). Here, S′ = C′

DS with C′
D depending only on D, and Υ′ depends

only on Υ and D. Also, length (A′) = length (A).

Explanation: We write CD, C
′
D, etc. to denote constants depending only

on D. Denote by “T−1” the result of our attempt to compute T−1 in our
model of computation (starting from the matrix “T”). Thus, the elements
of “T−1” differ from the corresponding elements of T−1 by roundoff errors
that are at most CD2

CDS · 2−S̄/2 in absolute value. Let T−1 be given by the
matrix (τij) 1≤i≤D

1≤j≤D
. Then if

A = [(λ�j) , (b�) , (σ�) ,M∗] ,

and if we could do arithmetic without roundoff errors, then we would set

A′ =

[(∑
i

λ�i τij

)
, (b�) , (σ�) ,M∗

]
,

and we would have K(A′) = TK(A). We examine the effect of roundoff
errors. Since |λ�i| ≤ 2S, |τij| ≤ 2S, it follows that the roundoff error in

computing
∑

i
λ�iτij is at most CD · 2CDS · 2−S̄/2 in absolute value. (See

Section 38.) So, in trying to compute A′, we produce

(*1) A′′ =

[(∑
i

λ�iτij+ε�j

)
, (b�) , (σ�) ,M∗

]
, with |ε�j| ≤ C′

D · 2CDS 2−S̄/2.
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Let us examine also

(*2) A′′′ =

[(∑
i

λ�iτij+ε�j+ε
′′′
�j

)
, (b�+δ

′′′
� ), (σ�),M∗

]
, with |ε′′′�j|, |δ′′′� | ≤ 2−3S.

Assume, as we may, that C∗∗
D is larger than 10(CD + C′

D), and recall that
S ≥ C∗∗

D and S̄ ≥ C∗∗
DS. Under our assumptions on S and S̄, we have

|ε�j+ ε
′′′
�j| ≤ |ε�j| + |ε′′′�j| ≤ 21−3S. Then,

K(A′′) = TK(Ã) and K(A′′′) = TK(A∗),

where Ã and A∗ are ALPs of the form

Ã = [(λ�j+ η̃�j) , (b�) , (σ�), M∗] ,

A∗ =
[(
λ�j + η∗�j

)
, (b�+ δ

′′′
� ) , (σ�) ,M∗

]
,

with

|η̃�j| ≤ C′′
D2
CDS · 2−S̄/2 , |η∗�j| ≤ C′′

D · 2−2S , |δ′′′� | ≤ 2−3S .

(We used the fact that ‖ T ‖≤ 2S.) Assume, as we may, that C∗∗
D is larger

than, say, 100(C′′
D+ CD). Since A is an S-bit MALP with constant Υ,

(*3) It follows that Ã and A∗ are both Υ-equivalent to A; hence, they are
Υ2-equivalent to each other.

(*4) Consequently, A′′ and A′′′ are Υ2-equivalent (to each other).

Moreover, we have

(*5) 2−S ≤ σ� ≤ 2+S and 2−S ≤M∗ ≤ 2+S, |b�| ≤ 2+S

since A is an S-bit MALP. We have also

(*6)

∣∣∣∣∣∑
i

λ�iτij + ε�j

∣∣∣∣∣ ≤ D22S+ C′
D · 2CDS2−S̄/2 ≤ 2C′′

DS.

Thus, (*1) and (*2) imply (*4); and we have (*5) and (*6). Comparing these
results with the definition of an S-bit FALP, we see that A′′ is a CDS-bit
FALP with constant Υ2. Since A′′ arises from a machine computation, its
entries are machine numbers. Thus,

(*7) A′′ is a CDS-bit MALP with constant Υ2.

On the other hand, from (*3), we see that

(*8) K(A′′) is Υ-equivalent to TK(A).

Since also length (A′′) = length (A), we obtain the conclusions asserted in
Algorithm MALP4, with Υ′ = Υ2, S′ = CDS. The work of the algorithm is
at most CD· length (A).
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Algorithm MALP5: Let D = D1 + D2. Given Ai an S-bit MALP in RDi

with constant Υ such that S ≥ C∗∗
D and S̄ ≥ C∗∗

DS, for i = 1, 2; we produce
an S′-bit MALP Ã with constant Υ′ in RD1+D2 , with length (Ã) = D1+D2,
such that K(Ã) is Υ′-equivalent to K(A1)×K(A2). Here, S′ = CD1,D2S with
CD1,D2 depending only on D1 and D2; and Υ′ depends only on Υ, D1, D2.

Explanation: We write C,C′, . . . for constants depending only on D1, D2;
and we write Υ′, Υ′′, to denote constants depending only on Υ,D1, D2. Using
Algorithm MALP1, we first place Ai in echelon form in RDi . Let Ãi be an
S′-bit MALP in echelon form in RDi , with constant Υ′, and with Ãi being
Υ′-equivalent to Ai (S′ = CS). It is enough to carry out Algorithm MALP5
with Ai replaced by Ãi. In an obvious way, we produce an ALP Ã in
RD1+D2 , such that K(Ã) = K(Ã1) × K(Ã2). We must show that Ã is an
S′′-bit MALP with constant Υ′′. (Here, S′′ = C′S.) To see this, we first
note that Ã satisfies (DS2 ,..., 6) in the definition of FALPs, with S replaced
by S′, simply because Ã1, Ã2 are S′-bit MALPs. Also, the entries of Ã are
machine numbers, since Ã1, Ã2 are MALPs. It remains to show that (DS7)
holds for suitable S′′, Υ′′. To see this, we use the fact that Ã1, Ã2 are in
echelon form. In particular, we have

Ãi =

[(
λ̃i�j

)
1≤ �≤Di
1≤ j≤Di

, (b̃i�)1≤ �≤Di , (σ̃i�)1≤ �≤Di , M̃
i
∗

]
for i = 1, 2,

with

Λ̃i =
(
λ̃i�j

)
=

⎛⎜⎝ λ̃i11 ∗
. . .

0 λ̃iDiDi

⎞⎟⎠ ,

where the diagonal entries λ̃i�� have absolute value at least 2−S′ .
For the “direct sum”

Ã = [(λ̃�j) , (b̃�) , (σ̃�) , M̃∗] ,

the matrix (λ̃�j) has the form

(λ̃�j) =

(
Λ̃1 0

0 Λ̃2

)
.

Hence, | det(λ̃�j)| = | det Λ̃1| · | det Λ̃2| ≥ 2−(D1+D2)S
′
. We know that |̃λ�j|,

|b̃�|, σ̃�, M̃∗ ≤ 2S
′

and that σ̃�, M̃∗ ≥ 2−S′.
It now follows from Lemma 3 in Section 40 that Ã is a CS′-bit FALP

with constant 2. Hence, our Ã has all the properties asserted in Algo-
rithm MALP5. (Clearly, length (Ã) = D1+D2.) The work of the algorithm is
at most C ·(length(A1)+ length(A2)), with C depending only on D1 and D2.
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Algorithm MALP6: Given two S-bit MALPs A,B in RD with constant Υ

such that S ≥ C∗∗
D and S̄ ≥ (C∗∗

D)2S, we compute an S′-bit MALP C in
RD with constant Υ′, such that length(C) = D, and K(C) is Υ′-equivalent
to K(A) + K(B). Here, S′ = CS with C depending only on D; and Υ′ is
determined by Υ and D.

Explanation: Write C,C′, etc. for constants depending only on D; and
Υ′, Υ′′, . . . for constants depending only on Υ,D. Using Algorithm MALP5,
we produce a CS-bit MALP C+ in R2D, with constant Υ′, such that

(†1) K(C+) is Υ′-equivalent to K(A) × K(B).

Next, let T : RD⊕ RD → RD⊕ RD be defined by

(†2) T(v,w) = (v, v+w).

Recall that C+ is a CS-bit MALP with constant Υ′. Then S̄ ≥ C∗∗
D · CS

and CS ≥ C∗∗
D under the legitimate assumption that C∗∗

D ≥ C. Using Algo-
rithm MALP4, we produce a C′S-bit MALP C++ in R2D with constant Υ′′,
such that

(†3) K(C++) is Υ′′-equivalent to T(K(C+)).

Finally, let π : RD⊕RD → RD be the projection (v,w) �→ w. Since C∗∗
D ≥ C′,

then S̄ ≥ C∗∗
D · C′S, and we may apply Algorithm MALP3 for C++. Using

Algorithm MALP3, we produce a C′′S-bit MALP C in RD, with constant Υ′′′,
such that

(†4) K(C) is Υ′′′-equivalent to πK(C++).

Then (†1),. . ., (†4) show that K(C) is Υ′′′′-equivalent to K(A) + K(B).
Also, length (C) = D, since C arises by applying Algorithm MALP3.

Thus, C has the desired properties.
The work of the algorithm is at most CD· (length(A) + length (B)),

where CD depends only on D.

Not all of our ALP algorithms go over to MALPs. In particular, if A is
an S-bit MALP with constant Υ in RD, and if T : RD → RD̄ is the injection
(v1, . . . , vD) �→ (v1, . . . , vD, 0, . . . , 0), with D̄ > D, then TK(A) has the form
K(A+) with the matrix (λ�j) of the ALP A+ having rank < D̄; consequently,
by Lemma 2 from Section 40, A+ is not an S′-bit MALP for any S′.

Algorithm MALP7: Suppose we are given S-bit MALPs Ai with constant Υ

in RD, for i = 1, . . . , T . We compute an S-bit MALP A with constant Υ
in RD, such that K(A) = K(A1) ∩· · ·∩ K(AT), and length(A) = length(A1)
+ · · ·+ length(AT).
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Explanation: We concatenate the λ’s, b’s, σ’s arising from the Ai in a obvious

way, and we take the maximum of the M∗’s arising from the Ai. Thus, we
form A. Since the Ai are S-bit MALPs with constant Υ, so is A. (That’s
trivial from the definition of FALPs and MALPs.) Also, one sees at once
that K(A) and length (A) are as claimed . The work of the algorithm is at
most CD · (length(A1) + · · ·+ length(AT)), with CD depending only on D.

Algorithm MALP8: Let π : RD1 ⊕ RD2 → RD2 be the projection

(v1, . . . , vD1 , w1, . . . , wD2) �→ (w1, . . . , wD2).

We are given an S-bit MALP A in RD1 ⊕ RD2 with constant Υ such that
S ≥ C∗∗

D1+D2
and S̄ ≥ C∗∗

D1+D2
· S, and a vector (w̄1, . . . , w̄D2) ∈ RD2 where

|w̄i| ≤ 2S for each i, and each w̄i is a machine number. Then we produce
(v̄1, . . . , v̄D1) ∈ RD1 , with each v̄i a machine number of absolute value ≤ 2CS,
and having the following property:

Suppose (v1, . . . , vD1) ∈ RD1 and M > 0 satisfy

(#1) (v1, . . . , vD1 , w̄1, . . . , w̄D2) ∈ KM(A).

Then

(#2) (v̄1, . . . , v̄D1 , w̄1, . . . , w̄D2) ∈ KΥ∗M(A),

where Υ∗ depends only on Υ, D1, D2.

Here, C depends only on D1 and D2.

Explanation: We write C,C′, etc., for constants depending only on D1, D2;
and we write Υ′, Υ′′, . . . for constants depending only on Υ, D1, D2. Using
Algorithm MALP1, we first produce from A a CS-bit MALP A′ with con-
stant Υ′ in RD1⊕RD2 , such that A′ is in echelon form, and A′ is Υ′-equivalent
to A.

Then, in (#1) and (#2), we may replace A by A′. From now on, we
suppose this has been done. We write vectors in RD1 ⊕ RD2 as

(v1, . . . , vD1 , vD1+1, . . . , vD1+D2),

and we suppose A′ = [(λ�j), (b�), (σ�), M∗], where � and j vary from 1 to
D1+D2. Since A′ is in echelon form, we have (with S′ = CS):

(#3) |λ�j|, |b�|, σ�, M∗ ≤ 2S
′
;

(#4) |λ��|, σ�, M∗ ≥ 2−S′;

(#5) λ�j = 0 for j < �.
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Given (w̄1, . . . , w̄D2) = (v̄D1+1, . . . , v̄D1+D2 ) ∈ RD2 , we attempt to compute
successively v̄D1 , v̄D1−1, . . . , v̄1 by “backsolving” the equations

(#6)
∑
j

λ�j v̄j = b� for � = D1, D1− 1, . . . , 1

using our model of computation. Because of round-off errors, the (v̄1, . . . , v̄D)
we compute does not exactly solve (#6). However, thanks to (#3), (#4)
and (#5), and our assumptions on the w̄i we obtain

(#7) |v̄j| ≤ 2CS
′

for j = 1, . . . , D1

and

(#8)

∣∣∣∣∑
j

λ�j v̄j− b�

∣∣∣∣ ≤ C2CS
′
2−S̄ for � = 1, . . . , D1.

Let A′′ = [(λ�j), (b′′�), (σ�), M∗], with

b′′� = b� for � > D1, and

b′′� =
∑
j

λ�jv̄j for � ≤ D1 .

Then

(#9) |b′′� − b�| ≤ C2CS
′ · 2−S̄ for all �,

thanks to (#8).

Hence, because A′ is an S′-bit MALP with constant Υ′, S̄ ≥ (C∗∗
D1+D2

/C′)S′,
and since C∗∗

D1+D2
is a large enough constant, we have that

(#10) A′′ is Υ′-equivalent to A′.

Note that A′′ depends on (w̄1, . . . , w̄D2). That won’t matter.

Now suppose (v1, . . . , vD1) ∈ RD1 and M > 0 satisfy

(#11) (v1, . . . , vD1 , v̄D1+1, . . . , v̄D1+D2 ) ∈ KM(A′).

Then (#10) gives

(#12) (v1, . . . , vD1 , v̄D1+1, . . . , v̄D1+D2) ∈ KΥ′M(A′′) .

In particular, for � > D1, we have

(#13)

∣∣∣∣∑
j≥�
λ�j v̄j− b

′′
�

∣∣∣∣ ≤ Υ′Mσ�.

(Here, we use (#5).) Also, (#12) gives

(#14) Υ′M ≥ M∗.
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Note that (#13) holds also for � ≤ D1, since (by definition of the b′′�) the
left-hand side of (#13) is zero. Hence, (#13) and (#14) yield

(v̄1, . . . , v̄D1 , v̄D1+1, . . . , v̄D1+D2) ∈ KΥ′M(A′′) .

(Again, we use (#5).) By (#10), it now follows that

(#15) (v̄1, . . . , v̄D1 , v̄D1+1, . . . , v̄D1+D2) ∈ K(Υ′)2M (A′).

Thus, (#11) implies (#15), which shows that our (v̄1, . . . , v̄D1) has the de-
sired property.

The work of the algorithm is at most C· length (A), with C depending
only on D1 and D2. (That’s the work of Algorithm MALP1; once we ob-
tain A′, then the “backsolving” takes work at most C, a constant depending
only on D1 and D2.)

Remark. Algorithm MALP8 replaces our discussion of original vectors for
ALPs.

Algorithm MALP9: Let D, S, Υ ≥ 1 be given. We write c, C, C′, etc., to
denote constants depending only on D, and we write Υ′, Υ∗, etc., to denote
constants depending only on Υ and D.

Let T : RD → RD be a linear map, with ‖ T ‖, ‖ T−1 ‖≤ 2S.
Suppose we are given the matrix “ T”, whose elements are machine numbers
that differ from the corresponding elements of T by at most 2−S̄/2.

Let π : RD → RD̄ be the projection onto the last D̄ coordinates.

Let A be an S-bit MALP in RD, with constant Υ and length D. Assume that
S ≥ C∗∗

D and S̄ ≥ (C∗∗
D)2S.

Let v0=(v01, . . . , v
0
D)∈ RD, where the v0i are machine numbers, with |v0i |≤2S.

From the above data, we compute a vector v1 = (v11, . . . , v
1
D) ∈ RD, with

the following properties:

(a) |v1i | ≤ 2C′S for i = 1, . . . , D.

(b) Let w ∈ RD and M > 0. Assume that

(i) πT(w− v0) = 0 and w ∈ KM(A).

Then we can express v1 as a sum

(ii) v1 = v2+ v3, where

(iii) πT(v2− v0) = 0 and v2 ∈ KΥ∗M(A), and

(iv) |v3| ≤ 2C′S · 2−S̄/2.

Moreover, if (i) holds, then

(v) v1 ∈ KΥ∗M(A).
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Explanation: Note that we will not compute v2, v3 above; we merely assert
that they exist. Their components need not be machine numbers.

We explain how to compute v1 having the desired properties. Let v̄0 =

Tv0, and let ¯̄v0 be our machine approximation to v̄0. We can compute ¯̄v0,
and we have v̄0 = (v̄01, . . . , v̄

0
D), ¯̄v = (¯̄v01, . . . , ¯̄v

0
D), with |¯̄v0i | ≤ 2CS and |¯̄v0i− v̄

0
i |

≤ 2CS · 2−S̄/2, for i = 1, . . . , D. Applying Algorithm MALP4 we obtain a CS-
bit MALP Ā with constant Υ′ and length ≤ D, such that TK(A) and K(Ā)
are Υ′-equivalent.

We now apply Algorithm MALP8 to the vector π¯̄v0 and the MALP Ā.
(This is allowed since S̄ ≥ C∗∗

D · CS.) Thus, we compute a vector

v̄1 = (v̄11, . . . , v̄
1
D) ∈ RD,

such that v̄1i is a machine number and |v̄1i | ≤ 2CS for each i = 1, . . . , D,
and having the following property:

(†) Let v̄ ∈ RD and M > 0 satisfy πv̄ = π¯̄v0 and v̄ ∈ KM(Ā).

Then πv̄1 = π¯̄v0 and v̄1 ∈ KΥ∗M(Ā) .

By our assumptions on the matrix “T”, we may compute a matrix “T−1”
of machine numbers, that differ from the actual elements of T−1 by at most
2CS·2−S̄/2. Finally, let v̂1 = T−1v̄1, and let v1 be our machine approximation
to v̂1. Thus, |v̂1 − v1| ≤ 2CS · 2−S̄/2, hence |v̄1 − Tv1| ≤ 2C

′S · 2−S̄/2.
We have computed the vector v1. We will show that it has the desired
properties. To see that v1 satisfies (a), we just recall that |v̄1| ≤ 2CS, hence
|v̂1| ≤‖ T−1 ‖ |v̄1| ≤ 2C′S, hence |v1| ≤ 2C′′S. This proves (a).

To see that v1 satisfies (b), let w ∈ RD andM > 0 satisfy πT(w−v0) = 0

and w ∈ KM(A). Then

|π(Tw) − π¯̄v0| = |πT(w− v0) + π(v̄0− ¯̄v0)| = |π(v̄0− ¯̄v0)| ≤ 2CS · 2−S̄/2

since v̄0 = Tv0 and |v̄0i − ¯̄v0i | ≤ 2CS · 2−S̄/2 . Hence, there exists u ∈ RD,
with π(Tw+u)−π¯̄v0 = 0, and |u| ≤ 2CS · 2−S̄/2. Since w ∈ KM(A), we have
Tw ∈ KΥ′M(Ā). To summarize, Ā is a CS-bit MALP with constant Υ′, and
Tw ∈ KΥ′M(Ā), |u| ≤ 2CS · 2−S̄/2. Hence, by Lemma 4 from Section 40, we
have (Tw+ u) ∈ KΥ′′M(Ā). Thus,

(Tw+ u) ∈ KΥ′′M(Ā) and π(Tw+ u) = π¯̄v0.

Consequently, (†) yields the following: πv̄1 = π¯̄v0, and v̄1 ∈ KΥ′′′M(Ā).
In particular,

(∗1) v̂1 = T−1v̄1 ∈ KΥ#M(A),
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since TK(A) is Υ′-equivalent to K(Ā). Also,

πTv̂1 = πv̄1 = π¯̄v0.

Let us set ū = v̄0− ¯̄v0 and let û = T−1ū. Then |ū| ≤ 2CS · 2−S̄/2 and hence
|û| ≤‖ T−1 ‖ · |ū| ≤ 2CS · 2−S̄/2. In addition,

(∗2) πT(v̂1+ û) = π¯̄v0+ πū = πv̄0 = πT(v0).

Since v̂1 ∈ KΥ#M(A) by (∗1) and |û| ≤ 2CS · 2−S̄/2; and since A is an S-bit
MALP with constant Υ, it follows from Lemma 4 in Section 40 that

(∗3) v̂1+ û ∈ KΥ∗M(A).

We set v2 = v̂1+ û, and v3 = v1− v2.
Thus, the desired properties (ii), (iii), are immediate from (∗2), (∗3), and

the definitions of v2, v3.

It remains to check properties (iv) and (v). We have

v3 = v1− v2 = (v1− v̂1) − û.

Since we have already seen that

|v1− v̂1| ≤ 2CS · 2−S̄/2 and |û| ≤ 2CS · 2−S̄/2,

we obtain (iv).

To check property (v), we note that, as we have already shown, v̂1 ∈
KΥ#M(A) by (∗1), |v1 − v̂1| ≤ 2CS · 2−S̄/2, and A is an S-bit MALP with
constant Υ. Applying Lemma 4 from Section 40, we conclude that v1 ∈
KΥ∗M(A). That is, (v) holds.
Thus, (ii),...,(v) hold, completing the proof of (b).

Consequently, the vector v1 has the properties asserted in the statement
of Algorithm MALP9.

The work of the algorithm is at most a constant determined by D.

Remark. Algorithm MALP9 will allow a version of Find-Neighbor in our
model of computation. To carry this out, we make the following definitions.

Recall that P is the vector space of (m−1)rst degree polynomials on Rn,
and D = dim P. We identify P with RD, by identifying P ∈ P with
(∂αP(0))|α|≤m−1. In particular, any ALP A in RD gives rise to a blob K(A)

in P, via this identification.

We say that P ∈ P is a “machine polynomial” if ∂αP(0) is a machine
number for each α (with |α| ≤ m − 1). To specify a machine polynomial P
is to specify ∂αP(0) for |α| ≤ m − 1.
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Next, let x ∈ Rn be given, and let A be a given set of multi-indices α of
order |α| ≤ m − 1. In a moment, we will apply Algorithm MALP9, taking
T : RD → RD to be the map that sends (∂αP(0))|α|≤m−1 to (∂αP(x))|α|≤m−1,
for P ∈ P. When x = (x1, ..., xn) with xi being a machine number of absolute
value ≤ 2S, it is straightforward to compute a matrix “T” that satisfies the
requirements of Algorithm MALP9, provided that S̄/S is sufficiently large.

Also, D̄ = #(A) and we take π : RD → RD̄ to be the projection

(∂αP(x))|α|≤m−1 �→ (∂αP(x))α∈A .

Note that π = πA,x where πA,x was defined in Section 30.

From Algorithm MALP9, we obtain the following algorithm.

Algorithm MALP10: Suppose we are given the following data:

• An S-bit MALP A′ in P, with constant Υ and length D, such that
S ≥ C∗∗

D and S̄ ≥ C∗∗
DS.

• A point x = (x1, . . . , xn) ∈ Rn, where each xi is a machine number of
absolute value at most 2S.

• A set A of multi-indices of order at most m− 1.

• A machine polynomial P0, with |∂αP0(0)| ≤ 2S for |α| ≤ m − 1.

Then we compute a machine polynomial P1, with the following properties:

(a) |∂αP1(0)| ≤ 2CS for |α| ≤ m − 1.

(b) Suppose P ∈ P and M ∈ (0,∞) satisfy

∂α(P − P0) (x) = 0 for α ∈ A , and P ∈ KM(A′) .

Then we can express P1 = Pmain+ Perr, with

∂α(Pmain− P0)(x) = 0 for α ∈ A , and Pmain ∈ KΥ∗M(A′) ;

and

|∂αPerr(0)| ≤ 2CS · 2−S̄/2 for |α| ≤ m − 1 .

Moreover, P1 ∈ KΥ∗M(A′). Here, C depends only on m and n; and Υ∗

depends only on Υ,m, and n.

The work of the algorithm is less than a constant depending only on m
and n.
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44. Some Low-Level Algorithms

Low-Level Algorithm 0: Let S ≥ 1 be an integer, let a ∈ [2−S, 2+S] be a
machine number, and let p be a non-zero integer, with |p| ≤ d.
Assume S̄ ≥ CS for large enough C depending only on d. Then we produce
a positive machine number t such that c′ < atp < C′, with c′, C′ depending
only on d.

Explanation: In our model of computation, it takes one unit of work to

produce an integer � such that 2� ≤ a ≤ 2�+1; and we have |�| ≤ S+ 1. We
can just set t = 2−��/p�. The work of the algorithm is at most 100.

Low-Level Algorithm 1: Let S ≥ 1 be an integer, let a, a′ ∈ [2−S, 2+S] be
machine numbers, and let k, k′ be distinct integers satisfying 0 ≤ k, k′ ≤ d.
Assume S̄ ≥ CS for large enough C depending only on d. Then we partition
[2−S, 2+S] into three intervals I, I′, J (any of which may be empty), with the
following properties:

• The endpoints of any non-empty interval I, I′ or J are machine numbers.

• a′tk
′ ≤ 1

200d
atk for all t ∈ I,

• atk ≤ 1
200d

a′tk
′
for all t ∈ I′,

•
∫
J

dt

t
≤ C′, with C′ depending only on d.

Explanation: Using Low-Level Algorithm 0, we can find t0 such that c·(a′tk
′
0 ) <

(atk0) < C · (a′tk
′
0 ) with c, C depending only on d. (The round-off error in

computing a/a′ doesn’t hurt.)
We take our three intervals to be [t0/2

C̄ , t0 · 2C̄] ∩ [2−S, 2S], and the
components of [2−S, 2S]�[t0/2

C̄, t0·2C̄] for a large enough integer constant C̄
depending only on d. It is easy to see that these intervals have the required
properties, and that the round-off errors arising in calculating t0/2

C̄, t0 · 2C̄
don’t hurt. The work of the algorithm is bounded by a universal constant.

Low-Level Algorithm 2: Let S ≥ 1 be an integer. Suppose we are given a

machine number a ∈ [2−S, 2+S], an integer p with |p| ≤ d, and an interval
I = [t�o, thi] ⊆ [2−S, 2+S], where t�o and thi are machine numbers.
Assume S̄ ≥ CS, where C is a large enough constant depending only on d.
Then we produce one of the following three outcomes:

(O1) We guarantee that atp ≥ c′ for all t ∈ I.
(O2) We guarantee that atp ≤ C′ for all t ∈ I.
(O3) We produce a machine number t0 ∈ I such that c′ ≤ atp0 ≤ C′.

Here, c′ and C′ depend only on d.



Fitting a Cm-Smooth Function to Data II 223

Explanation: If p = 0, then by examining a we can trivially produce outcome
(O1) or (O2). Otherwise, we use Low-Level Algorithm 0 to produce a machine
number t0, with c′ < atp0 < C

′. If t0 ∈ I, then we have produced (O3). If
t0 /∈ I, then we can trivially produce outcome (O1) or (O2), thanks to the
monotonicity of t �→ atp on (0,∞). The work of the algorithm is bounded
by a universal constant.

Let ρ(t) > 0 be a function on an interval I ⊂ (0,∞), and let C > 0

be a constant. We say that ρ(t) is “C-stable” on I if, for any t1, t2 ∈ I,
t1 ≤ t2 ≤ 2t1 implies C−1ρ(t1) ≤ ρ(t2) ≤ Cρ(t1).

Low-Level Algorithm 3: Let S ≥ 1 be an integer. Suppose we are given a par-

tition of [2−S, 2S] into intervals I1, . . . , Iνmax, whose endpoints are machine
numbers. For each ν = 1, . . . , νmax, suppose we are given a machine number
aν ∈ [2−S, 2+S] and an integer pν, with |pν| ≤ d. Define ρ(t) on [2−S, 2+S]
by setting ρ(t) = aνt

pν on Iν, ν = 1, . . . , νmax.
Assume that ρ(t) is C1-stable on [2−S, 2S]. (In particular, ρ(t) > 0 on
[2−S, 2S].)
Assume also that S̄ ≥ C2S, for a large enough C2 depending only on C1
and d. Then we produce one of the following three outcomes.

(Ô1) We guarantee that ρ(t) ≥ c′ on all of [2−S, 2+S].

(Ô2) We guarantee that ρ(t) ≤ C′ on all of [2−S, 2+S].

(Ô3) We produce a machine number t0∈ [2−S, 2+S] such that c′ ≤ ρ(t0) ≤ C′.

Here, c′ and C′ depend only on C1 and d.

Explanation: For each ν, we apply Low-Level Algorithm 2 to aν, pν, Iν. If for

some ν we reach outcome (O3), then we can trivially produce outcome (Ô3).

If for all ν we reach outcome (O1), then we have produced outcome (Ô1).

If for all ν we reach outcome (O2), then we have produced outcome (Ô2).

The only remaining case is as follows:
For each ν, we reach either outcome (O1) or outcome (O2).
For some ν, we reach (O1), and for some other ν, we reach (O2).
In this case, we can find two intervals Iν, Iν′, with an endpoint t0 in common,
and with Iν leading to outcome (O1) while Iν′ leads to outcome (O2). Since
ρ(t) is C1-stable, it follows that c′′ ≤ ρ(t0) ≤ C′′, where c′′, C′′ depend only
on C1 and d. Thus, we have produced outcome (Ô3).

The work of the algorithm is bounded by a constant depending only on
the number of intervals Iν.
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45. Algorithms for Rational Functions

Algorithm RF1: Let S ≥ 1 be an integer. Suppose we are given non-zero

polynomials p(t) = a0+ a1t+ · · ·+ adtd and q(t) = b0+ b1t+ · · ·+ bdtd,
with d ≥ 1.
For each coefficient λ = ai or bi, assume that λ is a machine number, and
that either λ = 0 or |λ| ∈ [2−S, 2S]. Assume S̄ ≥ CS and S ≥ C for a large
enough C depending only on d.

Then we produce a partition of [2−S, 2+S] into intervals I1, . . . , Iνmax,
such that:

(a) Each Iν is marked as being “easy” or “hard”.

(b) If Iν is easy, then we produce a machine number λν and an integer pν,
with |λν| ∈ [2−3S, 23S] and |pν| ≤ d, such that∣∣∣∣p(t)q(t)

− λνt
pν

∣∣∣∣ ≤ 1

2
|λνt

pν | for all t ∈ Iν .

(c) If Iν is hard, then

∫
Iν

dt

t
< C, with C depending only on d.

(d) vmax ≤ C, with C depending only on d.

(e) The endpoints of the intervals Iν are machine numbers.

Explanation: For each pair k, k′ with ak, ak′ �= 0, k �= k′, we apply Low-

Level Algorithm 1, thus partitioning [2−S, 2S] into (possibly empty) intervals
I(k, k′), I′(k, k′), J(k, k′), such that

(1) |ak′t
k′ | ≤ 1

200d
|akt

k| for all t ∈ I(k, k′),
(2) |akt

k| ≤ 1
200d

|ak′t
k′ | for all t ∈ I′(k, k′),

(3)

∫
J(k,k′)

dt

t
≤ C′, with C′ depending only on d.

We make an analogous construction for the monomials appearing in q(t),
thus obtaining intervals Î(k, k′), Î′(k, k′), Ĵ(k, k′). The endpoints of all the
(non-empty) intervals obtained above subdivide [2−S, 2S] into subintervals
I1, . . . , Iνmax . Note that the endpoints of the Iν are machine numbers, and
that νmax ≤ C, with C depending only on d.

We call a given Iν “hard” if it is contained in some interval J(k, k′) or
Ĵ(k, k′); if Iν is not “hard”, then it is “easy”. If Iν is hard, then

∫
Iν
dt
t

≤ C′,
with C′ depending only on d, thanks to (3) and its analogue for the Ĵ(k, k′).
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Suppose Iν is easy, and suppose ak, ak′ �= 0, with k �= k′. Then we have
either Iν ⊆ I(k, k′), Iν ⊆ I′(k, k′), or Iν ⊆ J(k, k′). The third possibility is
excluded, since Iν is easy. Hence, by (1) and (2), either

|akt
k| ≤ 1

200d
|a′
kt
k′ | on all of Iν ,

or else

|ak′t
k′ | ≤ 1

200d
|akt

k| on all of Iν .

It follows that there exists k(ν), with ak(ν) �= 0, such that

|ak′t
k′ | ≤ 1

200d
|ak(ν)t

k(ν)|

on all of Iν, for each k′ �= k(ν). Consequently,

|p(t) − ak(ν)t
k(ν)| ≤ 1

200
|ak(ν)t

k(ν)| for all t ∈ Iν.

Similarly, for some k̂(ν) with bk̂(ν) �= 0, we have

|q(t) − bk̂(ν) t
k̂(ν)| ≤ 1

200
|bk̂(ν)t

k̂(ν)| for all t ∈ Iν .

Thus, we obtain

(4)

∣∣∣∣∣p(t)q(t)
−
ak(ν)

bk̂(ν)

tk(ν)−k̂(ν)

∣∣∣∣∣ ≤ 1

50

∣∣∣∣∣ak(ν)

bk̂(ν)

tk(ν)−k̂(ν)

∣∣∣∣∣ on Iν .

We can easily compute k(ν) and k̂(ν) for each Iν. We set pν = k(ν)− k̂(ν),
and let λν be our machine approximation to ak(ν)/bk̂(ν).

Since |ak(ν)|, |bk̂(ν)| ∈ [2−S, 2S] and S̄ ≥ CS, we know that

(5)

∣∣∣∣∣ ak(ν)

bk̂(ν)

− λν

∣∣∣∣∣ ≤ 1

50

∣∣∣∣∣ ak(ν)

bk̂(ν)

∣∣∣∣∣ .
In particular, |λν| ∈ [2−3S, 2+3S]. From (4) and (5) we obtain∣∣∣∣p(t)q(t)

− λνt
pν

∣∣∣∣ ≤ 1

20
|λνt

pν | for all t ∈ Iν .

We have now demonstrated all the assertions (a),...,(e).

The work of the algorithm is at most a constant depending only on d.
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Algorithm RF2: Let S, S′ be positive integers, and suppose we are given non-

zero polynomials p(t) = a0+a1t+· · ·+adtd and q(t) = b0+b1t+· · ·+bdtd,
with d ≥ 1. Assume that each non-zero coefficient of p or q is a machine
number whose absolute value lies in [2−S′, 2+S′].

Assume that ρ(t) = p(t)
q(t)

is C1-stable on [2−S, 2S]. (In particular, we assume

that ρ(t) > 0 on [2−S, 2S].)
Assume also that S̄ ≥ C · (S + S′) and S ≥ C, where C is a large enough
constant determined by C1 and d. Then we can produce intervals Iν, ma-
chine numbers λν, and integers pν, for ν = 1, . . . , νmax, with the following
properties:

(a) |λν| ∈ [2−C(S+S′), 2+C(S+S′)] for an integer constant C depending only
on d.

(b) |pν| ≤ d.

(c) The Iν form a partition of [2−S, 2+S].

(d) The endpoints of Iν are machine numbers.

(e) c′ρ(t) ≤ λνt
pν ≤ C′ρ(t) for all t ∈ Iν, with c′ and C′ depending only

on C1 and d.

(f) νmax ≤ C′, with C′ depending only on d.

Explanation: Apply Algorithm RF1 to p and q, with S+S′ in place of S. Thus,

we obtain a partition of [2−(S′+S), 2+(S′+S)] into intervals. Intersecting these
intervals with [2−S, 2+S], and discarding any empty intervals that arise, we
obtain a partition I1, . . . , Iνmax of [2−S, 2+S] into intervals, with the following
properties.

• Each Iν is marked as being “easy” or “hard”.

• Each hard interval Iν satisfies
∫
Iν
dt
t

≤ C′, with C′ depending only
on d.

• Each easy interval Iν is marked with a machine number λν and an
integer pν, such that |pν| ≤ d, |λν| ∈ [2−3(S+S′), 23(S+S

′)], and∣∣∣∣p(t)q(t)
− λνt

pν

∣∣∣∣ ≤ 1

2
|λνt

pν | for all t ∈ Iν.

The endpoints of the Iν are machine numbers, and νmax is less than a con-
stant determined by d.

It remains to deal with the “hard” intervals Iν.
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Fix a hard interval Iν, and let tν be an endpoint of Iν. (So, tν ∈ [2−S, 2S].)
Using our model of computation, we compute tν,� := (our approximation of)
2� · tν, for all integers � with |�| ≤ C. Here, C is a large enough constant
depending only on d, to be determined later on.

Assume, as we may, that S ≥ 2C. It follows that either all the tν,� with
0 ≤ � ≤ C, or all the tν,� with −C ≤ � ≤ 0, belong to [2−S, 2S]. We know also
that νmax ≤ C and

∫
Iν′

dt
t
≤ C for each hard interval Iν′ ; here, C depends

only on d. Consequently, for an appropriate choice of the constant C, one
of the tν,� belongs to [2−S, 2S] minus the union of all the hard intervals. We
define C to be such an appropriate constant, depending only on d.

Fix such a tν,�; we can easily find it.

Since the Iν′ (ν′ = 1, . . . , νmax) form a partition of [2−S, 2S], we know
that our tν,� belongs to an easy interval Iµ. We can easily find Iµ.

Note that tν,� ∈ [2−S, 2+S], and that ĉ ≤ t/tν,� ≤ Ĉ for all t ∈ Iν, with ĉ
and Ĉ determined by d. (Here, we use the fact that tν,� differs from an
endpoint of Iν by (approximately) a factor 2�, with |�| ≤ C.) Since ρ(t) is
C1-stable on [2−S, 2S], it follows that

(*1) c′ρ(tν,�) ≤ ρ(t) ≤ C′ρ(tν,�) for all t ∈ Iν, with c′ and C′ depending
only on d and C1.

On the other hand, since tν,� belongs to the easy interval Iµ, we have

(*2) c · λµ(tν,�)pµ ≤ ρ(tν,�) ≤ C · λµ(tν,�)pµ with c and C depending only
on d.

We have already computed the λµ and pµ. We now define pν := 0, and
we take λν to be

(*3) (our machine approximation of) λµ · (tν,�)pµ .

The roundoff error in computing λν is at most 1
100
λν. From (*1) and (*2),

we therefore obtain:

(*4) c′′λνtpν ≤ ρ(t) ≤ C′′λνtpν for all t ∈ Iν, with c′′, C′′ determined by
d and C1.

Also, since tν,� ∈ [2−S, 2+S] and λµ, pµ satisfy (a) and (b) in the statement
of Algorithm RF2, then a glance at (*3) shows that λν and pν also satisfy (a)
and (b). From (*4) we obtain (e). Recall that Iν was an arbitrary hard
interval. Thus, we have satisfied (a), (b), and (e) also in the hard case.

Properties (c), (d), (f) hold, since the Iν arose from Algorithm RF1. So,
our Iν, λν, pν have all the properties asserted in Algorithm RF2.

The work of the algorithm is at most a constant depending only on d
and C1.
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46. Systems of Inequalities with Parameters

Algorithm SIP1: Let S be a positive integer. Suppose we are given machine
numbers λ�j (1 ≤ j ≤ D, 1 ≤ � ≤ L), b� (1 ≤ � ≤ L), σ� (1 ≤ � ≤ L) and
integers m� (1 ≤ � ≤ L).
Assume that 0 ≤ m� ≤ d, |λ�j| ≤ 2S, |b�| ≤ 2S, 2−S ≤ σ� ≤ 2S.
Assume also that S̄ ≥ CS and S ≥ C, for a large enough C determined by
d,D, L. Then we produce one of the following three outcomes.

(I) We guarantee that, for any δ ∈ [2−S, 2+S], there exists (v1, . . . , vD) ∈ RD

such that ∣∣∣∣ D∑
j=1

λ�jvj− b�

∣∣∣∣ ≤ Cσ�δ
−m� for � = 1, . . . , L;

and |vj| ≤ C · 2S for j = 1, . . . , D. Here C depends only on d,D, L.

(II) We guarantee that, for any δ ∈ [2−S, 2S], there does not exist (v1, . . . , vD)
∈ RD such that∣∣∣∣ D∑

j=1

λ�jvj− b�

∣∣∣∣ ≤ cσ�δ
−m� for � = 1, . . . , L;

and |vj| ≤ c · 2S for j = 1, . . . , D . Here, c depends only on d,D, L.

(III) We produce a machine number δ ∈ [2−S, 2S] such that

(A) There exists (v1, . . . , vD) ∈ RD such that∣∣∣∣ D∑
j=1

λ�jvj− b�

∣∣∣∣ ≤ Cσ�δ−m� for � = 1, . . . , L;

and |vj| ≤ C · 2S for j = 1, . . . , D . Here, C depends only on d,D, L.

(B) There does not exist (v1, . . . , vD) ∈ RD such that∣∣∣∣ D∑
j=1

λ�jvj− b�

∣∣∣∣ ≤ cσ�δ
−m� for � = 1, . . . , L ;

and |vj| ≤ c · 2S for j = 1, . . . , D . Here, c depends only on d,D, L.

Explanation: We write, c, C, C1, C
′, etc. to denote constants depending only

on d,D, L. For δ > 0 and v = (v1, . . . , vD) ∈ RD, let

(1) Q(v, δ) =

L∑
�=1

( D∑
j=1

λ�jvj− b�

)2
σ−2
� δ

2m� +

D∑
j=1

2−2S(vj)
2+ 2−2S.



Fitting a Cm-Smooth Function to Data II 229

For a fixed δ, Q(v, δ) is a quadratic function in v:

Q(v, δ) =

D∑
i,j=1

Λij vivj +

D∑
i=1

Ei vi + H .

Here, Λij = Λji, and Λij, Ei, H are polynomials in δ, λ�j, b�, σ
−1
� , 2

−S with
rational coefficients and degree at most C. Note that, as matrices, (Λij) ≥
2−2SI, where I denotes the identity matrix.
Hence, as v varies and all else remains fixed, Q(v, δ) attains a minimum.
The minimizer is obtained by solving:

2

D∑
j=1

Λijvj + Ei = 0 for i = 1, . . . , D.

Hence,

(2) ρ(δ) := min
v∈RD

Q(v, δ)

may be expressed in the form

(3) ρ(δ) = p/q,

where p and q are polynomials in (δ, λ�j, b�, σ
−1
� , 2

−S), with rational coef-
ficients and degree at most C. The coefficients of p and q depend only on
d,D, L. In fact, q = det2(Λij), and consequently

(4) q ≥ 2−CS for any (δ, λ�j, b�, σ�, S),

since (Λij) ≥ 2−2SI. By the definition of Q(v, δ), we have Q(v, δ) ≥ 2−2S,
and

Q(v, δ′) ≤ Q(v, δ) ≤
(
δ

δ′

)2d
Q(v, δ′) for 0 < δ′ < δ.

(Recall that m� ≥ 0 for � = 1, . . . , L.) Hence, by the definition of ρ(δ), we
have

(5) ρ(δ) ≥ 2−2S, and

(6) ρ(δ′) ≤ ρ(δ) ≤ ( δ
δ′
)2d

ρ(δ′) for 0 < δ′ < δ.

In particular, ρ(δ) is C1-stable on (0,∞), with C1 depending only on d.
Now recall that |λ�j|, |b�| ≤ 2S, σ−1

� ≤ 2S. Then p and q may be
regarded as polynomials in δ, with degree ≤ C and coefficients of absolute
value ≤ 2CS.

We call these polynomials p(δ) and q(δ), respectively. We attempt to
compute the coefficients of p(δ), q(δ) from the given λ�j, b�, σ�, S in our
model of computation. Thus, we obtain polynomials p̄(δ), q̄(δ) whose coef-
ficients differ from those of p(δ), q(δ) by at most 2CS · 2−S̄, due to round-off
error.
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Hence,

(7) |p̄(δ) − p(δ)| , |q̄(δ) − q(δ)| ≤ 2C
′S · 2−S̄ for 0 < δ ≤ 2S.

Also, our estimates for the size of the coefficients of p(δ), q(δ) yield

(8) |p(δ)| , |q(δ)| ≤ 2CS for 0 < δ ≤ 2S.

From (4), (5), (8), we learn that

p(δ), q(δ) ∈ [2−CS, 2+CS] for 0 < δ ≤ 2S,

and therefore (7) yields

|p̄(δ) − p(δ)| ≤ 10−3p(δ) and |q̄(δ) − q(δ)| ≤ 10−3q(δ) for 0 < δ ≤ 2S .
Consequently,

(9) p̄(δ), q̄(δ) ∈ [2−CS, 2+CS] for 0 < δ ≤ 2S, and

(10) 1
2
p̄(δ)
q̄(δ)

≤ ρ(δ) ≤ 2
p̄(δ)
q̄(δ)

for 0 < δ ≤ 2S, thanks to (3).

Let us write

(11) p̄(δ) =
∑

0≤k≤kmax

p̄kδ
k and q̄(δ) =

∑
0≤k≤kmax

q̄k δ
k.

We define new polynomials ¯̄p(δ), ¯̄q(δ) by deleting from (11) all terms with
|p̄k| ≤ 2−C∗S or |q̄k| ≤ 2−C∗S, respectively. Here, C∗ is a large enough
integer constant determined from d,D, L . Taking C∗ large enough, we learn
from (9) that

|¯̄p(δ) − p̄(δ)| ≤ 10−3 p̄(δ) , and |¯̄q(δ) − q̄(δ)| ≤ 10−3 q̄(δ) for 0 < δ ≤ 2S .

Hence, (9) and (10) yield

(12) 1
4

¯̄p(δ)
¯̄q(δ)

≤ ρ(δ) ≤ 4
¯̄p(δ)
¯̄q(δ)

for 0 < δ ≤ 2S, and

(13) ¯̄p(δ), ¯̄q(δ) ∈ [2−CS, 2+CS] for 0 < δ ≤ 2S.

By construction,

(14) ¯̄p, ¯̄q are non-zero polynomials of degree ≤ C, whose non-zero coeffi-
cients are all machine numbers belonging to

[2−CS, 2+CS] ∪ [−2+CS, −2−CS].
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Also, since ρ(δ) is C1-stable on (0,∞), it follows from (12) that

(15) ¯̄ρ(δ) := ¯̄p(δ)/¯̄q(δ) is C′
1-stable on [2−S, 2+S].

We can now apply Algorithm RF2 to the polynomials ¯̄p(δ) and ¯̄q(δ). (See
Section 45.) The algorithm applies, thanks to (14) and (15). From Algo-
rithm RF2, we obtain intervals Iν, machine numbers λν, and integers pν
(1 ≤ ν ≤ νmax), with the following properties:

(16)

⎡⎢⎢⎢⎢⎣
2−CS ≤ |λν| ≤ 2CS, |pν| ≤ C , νmax ≤ C ;

the endpoints of the Iν are machine numbers;

the Iν form a partition of [2−S, 2S] ; and

cλνδ
pν ≤ ¯̄p(δ)

¯̄q(δ)
≤ Cλνδ

pν on Iν .

⎤⎥⎥⎥⎥⎦
We define ρ̂(t) = λνt

pν for t ∈ Iν. Thus, ρ̂ is defined on [2−S, 2+S].
From (15) and (16), we have

(17) ρ̂(t) is C-stable on [2−S, 2+S].

Thanks to (16), (17), we can apply Low-Level Algorithm 3 from Section 44.
(To apply that algorithm, we first extend ρ̂(t) to [2−CS, 2CS] by taking it
to be constant on [2−CS, 2−S] and on [2S, 2CS].) Using that algorithm, we
produce one of the following outcomes:

(Ô1) We guarantee that ρ̂(t) ≥ c on all of [2−S, 2+S].

(Ô2) We guarantee that ρ̂(t) ≤ C on all of [2−S, 2+S].

(Ô3) We produce a machine number t0∈ [2−S, 2+S], such that c < ρ̂(t0) < C.

(In case where Low-Level Algorithm 3 outputs t0 ∈ [2−CS, 2−S) such that c <
ρ̂(t0) < C, we replace t0 with 2−S. Note that (Ô3) still holds, since ρ̂ is
constant on [2−CS, 2−S]. Similarly, if Low-Level Algorithm 3 outputs t0 ∈
(2S, 2CS], we replace t0 with 2S.)

From (12) and (16), we see that

cρ̂(t) ≤ ρ(t) ≤ Cρ̂(t) on [2−S, 2+S],

and therefore we may take ρ(t) in place of ρ̂(t) in (Ô1), (Ô2), (Ô3). Recall-
ing the definition (2) and the fact that Q(v, δ) increases with δ, we conclude
that we have produced one of the following three outcomes:

(Ô1) We guarantee that, for every δ ∈ [2−S, 2+S], there does not exist
v ∈ RD such that Q(v, δ) ≤ c.
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(Ô2) We guarantee that, for every δ ∈ [2−S, 2+S], there exists v ∈ RD

such that Q(v, δ) ≤ C.

(Ô3) We produce a machine number δ ∈ [2−S, 2S], with the following
properties:

(A) There exists v ∈ RD such that Q(v, δ) ≤ C.

(B) There does not exist v ∈ RD such that Q(v, δ) ≤ c.
We now recall the definition (1) of Q(v, δ).
From (1), we learn the following.

(18)

⎡⎢⎢⎢⎢⎣
Let v ∈ RD, δ > 0 , and suppose Q(v, δ) ≤ C . Then∣∣∣∣ D∑
j=1

λ�j vj − b�

∣∣∣∣ ≤ Cσ�δ
−m� for � = 1, . . . , L ; and

|vj| ≤ C · 2S for j = 1, . . . , D .

⎤⎥⎥⎥⎥⎦

(19)

⎡⎢⎢⎢⎢⎢⎢⎣

Let v ∈ RD , δ > 0 , and suppose that for some K > 0 we have∣∣∣∣ D∑
j=1

λ�j vj − b�

∣∣∣∣ ≤ Kσ�δ
−m� for � = 1, . . . , L; and

|vj| ≤ K · 2S for j = 1, . . . , D .

Then Q(v, δ) ≤ (L + D)K2 + 2−2S .

⎤⎥⎥⎥⎥⎥⎥⎦
In particular, suppose c depends only on d,D, L (as in (Ô1), . . . , (Ô3)).

Then we have (L+D)K2+ 2−2S < c for K a small enough constant depend-
ing only on d,D, L. (Here, we use our assumption that S exceeds a large
enough constant depending only on d,D, L.) Hence, (18) and (19) allow us
to understand what happens for each of the outcomes (Ô1), (Ô2), (Ô3).
Thus, we produce one of the following outcomes:

(Ô1) We guarantee that, for all δ∈ [2−S, 2+S], there does not exist (v1, . . . , vD)

∈ RD such that∣∣∣∣ D∑
j=1

λ�j vj − b�

∣∣∣∣ ≤ cσ�δ
−m� for � = 1, . . . , L

and |vj| ≤ c2S for j = 1, . . . , D .

(Ô2) We guarantee that, for all δ ∈ [2−S, 2+S], there exists (v1, . . . , vD) ∈ RD

such that ∣∣∣∣ D∑
j=1

λ�j vj − b�

∣∣∣∣ ≤ Cσ�δ
−m� for � = 1, . . . , L

and |vj| ≤ C2S for j = 1, . . . , D .
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(Ô3) We produce a machine number δ ∈ [2−S, 2S], with the following prop-
erties:

(A) There exists (v1, . . . , vD) ∈ RD such that∣∣∣∣ D∑
j=1

λ�j vj − b�

∣∣∣∣ ≤ Cσ�δ
−m� for � = 1, . . . , L

and |vj| ≤ C2S for j = 1, . . . , D .

(B) There does not exist (v1, . . . , vD) ∈ RD such that∣∣∣∣ D∑
j=1

λ�j vj − b�

∣∣∣∣ ≤ cσ�δ
−m� for � = 1, . . . , L

and |vj| ≤ c · 2S for j = 1, . . . , D .

The above three outcomes are precisely those promised in the statement
of Algorithm SIP1.
Thus, we have carried out that algorithm.
The work of the algorithm is at most a constant depending only on d,D, L.

47. Equivalence above a Threshold

Let K = (KM)M>0 and K′ = (K′
M)M>0 be two blobs in a vector space V;

and let M0 ≥ 0 and A ≥ 1 be real numbers. We say that K and K′ are
“A-equivalent above M0” if they satisfy

KM ⊆ K′
AM for M ≥M0 , and K′

M ⊆ KAM for M ≥M0 .

The following remarks are obvious:

• If K and K′ are A-equivalent, then they are A-equivalent above M0.
More generally, if K,K′ are A-equivalent above M0, then they are
A′-equivalent above M′

0, for any M′
0 ≥M0, A

′ ≥ A.

• If K and K′ are A-equivalent above M0, then they are TA-equivalent
above M0/T , for all T ≥ 1.

• If K and K′ are A-equivalent above M0, and if K′ and K′′ are Ã-
equivalent above M̃0, then K and K′′ are A · Ã-equivalent above
max(M0, M̃0).

• Let Kν, K′
ν be A-equivalent aboveM0, for each ν = 1, . . . , νmax. Then

∩1≤ν≤νmax Kν is A-equivalent to ∩1≤ν≤νmax K′
ν above M0.

• If K1,K
′
1 are A-equivalent above M0, and if K2,K

′
2 are A-equivalent

above M0, then K1+ K2 and K′
1+ K′

2 are A-equivalent above M0.
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48. Some Particular FALPs and MALPs

Recall that P stands for the vector space of all polynomials of degree at
most m − 1 on Rn, and let D = dim P. Recall the remark following Algo-
rithm MALP9 from Section 43. We identify P with RD, by identifying P ∈ P

with (∂αP(0))|α|≤m−1 ∈ RD. We write c, C, C′, etc. for constants depending
only on m and n.

For x ∈ Rn and δ > 0, and for an integer S, we set B[S](x, δ) =

(B[S](x, δ,M))M>0, where

B[S](x, δ,M) = {P ∈ P : |∂αP(x)| ≤ Mδm−|α| for |α| ≤ m−1} when M ≥ 2−S

and
B[S](x, δ,M) = ∅ for M < 2−S .

Note that B[S](x, δ) is 1-equivalent to B(x, δ) above 2−S, where B(x, δ) is
the blob considered throughout this manuscript (see, e.g., Section 10).

Algorithm PFM1: Let S be a positive integer. Assume S̄ ≥ CS and S ≥ C

for a large enough C. Given machine numbers x1, . . . , xn, δ, with |xi| ≤ 2S

for each i, and with 2−S ≤ δ ≤ 2S, we construct a C′S-bit MALP A with
constant C′, such that the blob arising from A is C′-equivalent to the blob
B[S](x, δ), where x = (x1, . . . , xn) ∈ Rn. Moreover, length (A) = D.

Explanation: Since

∂αP(x) =
∑

|β|≤m−1−|α|

1

β!
∂β+αP(0)xβ,

the blob B[S](x, δ) arises from the ALP

Ax,δ = [(λα,γ)|α|,|γ|≤m−1, (bα)|α|≤m−1, (σα)|α|≤m−1,M∗],

with λα,α+β = xβ/β! for |α| + |β| ≤ m − 1; all other λα,γ = 0; bα = 0,
σα = δm−|α| for |α| ≤ m− 1; and M∗ = 2−S.

Under our ordering on multi-indices, α always precedes α + β (for non-
zero multi-indices β), and therefore our matrix (λα,γ) is upper triangular,
with 1’s on the main diagonal. Consequently, Lemma 3 in Section 40 guar-
antees that Ax,δ is a C′S-bit FALP with constant 2.

Using our model of computation, we produce machine approximations
to the λα,γ, σα; the bα and M∗ can be represented perfectly by machine
numbers. Thus, we obtain an ALP A. Since roundoff errors change the
λα,γ, σα by at most 2CS · 2−S̄, it follows from Lemma 1 in Section 40 that A

is C′S-bit MALP with constant C′, and that A is C′-equivalent to Ax,δ.
Clearly length (A) = D. Thus, we have produced the desired MALP A.
The work of the algorithm is at most C′.
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Next, suppose we are given x ∈ Rn, σ > 0, t ∈ R, and an integer S. We
define the blob Γ [x, σ, t, S] = (ΓM)M>0 , where

ΓM = {P ∈ P : |∂αP(x)| ≤ M for |α| ≤ m− 1 and |P(x) − t| ≤Mσ}
when M ≥ 2−S; and ΓM = ∅ for M < 2−S.

Algorithm PFM2: Let S be a positive integer. Assume S̄ ≥ CS and S ≥ C for

large enough C. Given machine numbers x1, . . . xn, σ, t, with |xi| ≤ 2S for
each i; 2−S ≤ σ ≤ 2S; |t| ≤ 2S; we produce a C′S-bit MALP A with constant
C′, such that the blob arising from A is C′-equivalent to Γ [x, σ, t, S], with
x = (x1, . . . , xn) ∈ Rn. Moreover, length (A) = D.

Explanation: Fix x1, . . . , xn, σ, t, S as above. Let Γ0 and Γ1 be the blobs
defined as follows.

Γ0 =
(
Γ0M
)
M>0

and Γ1 =
(
Γ1M
)
M>0

,

Γ0M = {P ∈ P : |∂αP(x)| ≤ M for |α| ≤ m− 1} when M ≥ 2−S,

Γ0M = ∅ when M < 2−S,

Γ1M = {P ∈ P : |P(x) − t| ≤ Mσ, |∂αP(x)| ≤ M for 0 < |α| ≤ m − 1}
when M ≥ 2−S;

Γ1M = ∅ when M < 2−S.

Then Γ [x, σ, t, S] is the intersection of Γ0 and Γ1. Since Γ0 = B[S](x, 1),
our previous algorithm (Algorithm PFM1) constructs a C′S-bit MALP A0

with constant C′, such that Γ0 is C′-equivalent to the blob arising from A0.
We study Γ1 similarly. With λα,γ as in the explanation of Algorithm

PFM1, we define an ALP

A1x,σ,t,S = [(λα,γ)|α|,|γ|≤m−1 , (bα)|α|≤m−1 , (σα)|α|≤m−1 ,M∗] ,

by setting

b0 = t, bα = 0 for α �= 0 , σ0 = σ, σα = 1 for α �= 0, M∗ = 2−S .

Then Γ1 is precisely the blob arising from A1x,σ,t,S.
On the other hand, Lemmas 1 and 3 in Section 40 show that

• A1x,σ,t,S is a C′S-bit FALP with constant C′,

and that

• If we approximate the λα,γ to within an error 2C
′S · 2−S̄ by machine

numbers, then in place of A1x,σ,t,S, we obtain a C′S-bit MALP A1 with
constant C′, such that A1 and A1x,σ,t,S are C′-equivalent.
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Using our model of computation, we can compute A1. Thus, Γ1 is
C′-equivalent to the blob arising from A1.

We now apply Algorithm MALP7 followed by Algorithm MALP1, to form
an “approximate intersection” of the blobs arising from A1 and A0. (See
Section 43.)

Thus, we obtain a C′S-bit MALP A with constant C′, of length D, such
that the blob arising from A is C′-equivalent to Γ0 ∩ Γ1 = Γ [x, σ, t, S].

We have succeeded in constructing A with the desired properties.
The work of the algorithm is at most C′.

49. Set-Up

Fix m,n ≥ 1. Fix also a positive integer S0. The basic precision of our
algorithm will have the order of magnitude of S0 bits.

We will again be using the constants p#, A0, A1(A), A2, A3(A) from Sec-
tion 17, and the constant �∗ from Section 14. Recall that, in Section 17, we
demanded that A0 and p# exceed certain constants depending only onm,n.
We will impose additional similar lower bounds on A0 in the sections to fol-
low.

We assume the following conditions.

(SU1) S0 exceeds a large enough constant determined by A0, p#, m,n, and

(SU2) S̄/S0 exceeds a large enough constant determined by A0, p#, m,n.

(Recall from Section 38 that S̄ is the precision of our model of com-
putation.)

In the end, we will take A0 and p# to be the smallest powers of two
that satisfy all the lower bounds we have imposed on them. Thus, finally,
p#, A0, A2will depend only onm and n; while A1(A) andA3(A) will depend
only on m,n,A. Also, finally, (SU1) and (SU2) simply assert that S0 and
S̄/S0 exceed a large enough constant determined by m and n.

We are given a finite set E of points in Rn. Each coordinate xj of each
point x = (x1, . . . , xn) ∈ E is assumed to be a machine number. We assume
that |x| ≤ 2S0 for any x ∈ E, and that |x − y| ≥ 2−S0 for any two distinct
points x, y ∈ E.

We are given functions f : E −→ R and σ : E −→ R+. For each x ∈ E,
we assume that f(x) is a machine number, with |f(x)| ≤ 2S0 , and that σ(x)
is a machine number, with 2−S0 ≤ σ(x) ≤ 2S0 .

We write P for the vector space of (real) (m − 1)rst degree polynomials
on Rn, and we set D = dim P. We identify P with RD, by identifying P ∈ P

with (∂αP(0))|α|≤m−1 ∈ RD. To “compute a polynomial” is to compute a
vector in RD, which we identify with a polynomial P ∈ P, as above.
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50. The Basic Blobs

Here, C,C′, C̃, etc. denote constants depending only on m and n. From our
earlier paper [19], and from Section 9 we recall the tree T, whose nodes
A,B, . . . are subsets of E. We recall also the Callahan-Kosaraju decompo-
sition L, whose elements are pairs (∧1,∧2), with ∧i being a set of nodes
of T.

The Callahan-Kosaraju decomposition may be implemented in our model
of computation, under the assumptions (SU1) and (SU2) from Section 49.
Indeed, T and L, the output of the Callahan-Kosaraju algorithm, are “inher-
ently discrete” objects. The issues of precision that arise when attempting
to compute T and L are minor. In particular, the “fair split tree” of [11]
may be computed with perfect precision: We just need to work with boxes
whose vertices all have coordinates that are integer multiples of 2−CS0 , for
an integer constant C, determined by n. In addition, for any x, y ∈ E, we
may compute in our model of computation a machine number that approxi-
mates |x−y|2 to within a factor of 2. It is straightforward to see, that when
applying the “κ-WSPD algorithm” in our model of computation, we obtain
a list that satisfies the requirements of a 4κ-WSPD. Consequently, using
CN logN work and CN storage, we may compute a Callahan-Kosaraju de-
composition T,L, that satisfy the properties from Section 9 for κ = 1/2.
(Another possibility, is to switch from Euclidean norms to �∞ norms, which
may be computed exactly in our model of computation. Only the most triv-
ial changes are needed, in order to transform the arguments above to suit
the �∞ metric.)

We recall the construction of our basic blobs, from Section 10.
We set Γf(x, 0) = (Γf(x, 0,M))M>0, for all x ∈ E, where

Γf(x, 0,M) = {P ∈ P : |∂αP(x)| ≤M for |α| ≤ m−1, |P(x)−f(x)| ≤Mσ(x)}.
Once we have constructed all the blobs Γf(x, �) (x ∈ E) for a fixed � ≥ 0, we
define the Γf(x, �+ 1) as follows:

Step 1: For A ∈ T , we define Γf(A, �) =
⋂
x∈A

{Γf(x, �) + B(x, diam∞(A))}.

Step 2: For (∧1,∧2) ∈ L and i = 1, 2, define

Γf,i(∧1,∧2, �) =
⋂
A∈∧i

{Γf(A, �) + B(xA, diam∞(∪∧i))} .

Step 3: For (∧1,∧2) ∈ L, define

Γ̄f(∧1,∧2, �) = Γf,1(∧1, �) ∩ {Γf,2(∧2, �) + B(x∧1 , |x∧1 − x∧2 |�∞ )} .
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Step 4: For A ∈ T , define

Γ̄f(A, �) =
⋂

(∧1,∧2)∈L
∧1�A

Γ̄f(∧1,∧2, �) .

Step 5: For x ∈ E, define

Γf(x, �+ 1) = Γf(x, �) ∩
⋂
A∈T
A�x

Γ̄f(A, �) .

(Here, Step 3 differs trivially from its analogue in Section 10.)
We recall some of the notation from [19] (and from Section 9) that we

used in the above five steps. For each A ∈ T , xA is a “representative”,
satisfying xA ∈ A. For each (∧1,∧2) ∈ L and i = 1, 2, we write ∪∧i for the
union ∪A∈∧iA, and we take x∧i to be a “representative”, i.e., an element of
∪∧i. We write |x−y|�∞ to denote max1≤k≤n |xk−yk|, where x = (x1, . . . , xn)
and y = (y1, . . . , yn) are two given points in Rn.

We will produce C�S0-bit MALPs A(x, �) in RD, with constants C′
�, such

that the blobs K(A(x, �)) arising from A(x, �) will be C′′
� -equivalent to Γf(x, �)

above C′′′
� · 2−S0 , for � = 0, . . . , �∗. Here, C�, C

′
�, . . . denote constants de-

pending only on m,n, �. Since we will always have 0 ≤ � ≤ �∗, this means
that eventually we could treat C�, C

′
� etc. as constants depending only on

m and n. Recall that P is identified with RD by identifying P ∈ P with
(∂αP(0))|α|≤m−1 ∈ RD.

Using our work on Fault-Tolerant ALPs, we can easily mimic the above
five-step inductive procedure.

In fact, for � = 0, we create a CS0-bit MALP A(x, 0) with constant C′,
for each x ∈ E, such that K(A(x, 0)) is C′′-equivalent to Γf(x, 0) above 2−S0 .
The construction of such MALPs was carried out in Section 48.

Next, suppose that, for some given 0 ≤ � ≤ �∗ − 1, we have already
computed C�S0-bit MALPs A(x, �) (for x ∈ E), with constant C′

�, such that
the blob K(A(x, �)) is C′′

�-equivalent to Γf(x, �) above C′′′
� · 2−S0 .

Then we proceed as follows.

Step 1′: For each A ∈ T , we compute a C̃�S0-bit MALP A(A, �) with con-

stant C̃′
�, such that K(A(A, �)) is C̃′′

� -equivalent to the intersection
over x ∈ A of K(A(x, �)) + B(x, diam∞(A)) above C̃′′′

� · 2−S0 .

This can be done, thanks to Algorithm PFM1 from Section 48
and to Algorithms MALP6 and MALP7 from Section 43. Note
that we may invoke those algorithms, thanks to our assumptions
(SU1) and (SU2). Indeed, in order to apply Algorithm PFM1,



Fitting a Cm-Smooth Function to Data II 239

Algorithm MALP6 and Algorithm MALP7, we need to make sure
that S̄ ≥ (C∗∗

D)2(C�+ C)S0 and S0 ≥ (C∗∗
D + C) where D = dim P

is a constant depending only on m and n. That holds in view of
our assumptions (SU1), (SU2) and 0 ≤ � ≤ �∗ − 1.

Step 2′: For each (∧1,∧2) ∈ L and i = 1, 2, we compute a ˜̃
C�S0-bit

MALP Ai(∧1,∧2, �) with constant ˜̃
C′
�, such that K(Ai(∧1,∧2, �))

is ˜̃
C′′
�-equivalent to the intersection over A ∈ ∧i of K(Ai(A, �)) +

B(xA , diam∞(∪∧i)) above ˜̃
C′′′
� · 2−S0 .

Again, this can be done, thanks to Algorithm PFM1 from Sec-
tion 48 and Algorithms MALP6 and MALP7 from Section 43. We
may invoke those algorithms, as we have S̄ ≥ (C∗∗

D)2(C̃� + C)S0
and S0 ≥ (C∗∗

D +C), in view of our assumptions (SU1), (SU2) and
0 ≤ � ≤ �∗ − 1.

Step 3′: For each (∧1,∧2) ∈ L, we compute a Ĉ�S0-bit MALP Ā(∧1,∧2, �)

with constant Ĉ′
�, such that the blob K(Ā(∧1,∧2, �)) is Ĉ′′

� -equiva-
lent to

K(A1(∧1,∧2, �)) ∩ {K(A2(∧1,∧2, �)) + B(x∧1 , |x∧1 − x∧2 |�∞ )}

above Ĉ′′′
� · 2−S0 . Again, this can be carried out, thanks to Algo-

rithm PFM1 and Algorithms MALP6 and MALP7, with the help of
the assumptions (SU1), (SU2) and 0 ≤ � ≤ �∗ − 1.

Step 4′: For each A ∈ T , we compute a ^̂C�S0-bit MALP Ā(A, �) with con-

stant ^̂C′
�, such that the blob K(Ā(A, �)) is ^̂C′′

� -equivalent to the
intersection over all (∧1,∧2) ∈ L with ∧1 � A of K(Ā(∧1,∧2, �)),

above ^̂C′′′
� · 2−S0 . Again, this can be carried out, thanks to Al-

gorithm MALP7, with the help of (SU1), (SU2) and the fact that
0 ≤ � ≤ �∗.

Step 5′: For each x ∈ E, we compute a Č′
�S0-bit MALP A(x, � + 1) with

constant Č′
�, such that the blob K(A(x, � + 1)) is Č′′

� -equivalent
to the intersection of K(A(x, �)) with all K(Ā(A, �)) such that
A � x, above Č′′′

� · 2−S0 . Again, this can be carried out, thanks to
Algorithm MALP7, and to (SU1), (SU2) and the fact that 0 ≤ � ≤
�∗.

Thus, we can compute a C�S0-bit MALP A(x, �), for x ∈ E and 0 ≤
� ≤ �∗, with constant C′

�, such that the blob K(A(x, �)) is C′′
�-equivalent to

Γf(x, �) above C′′′
� · 2−S0 . The A(x, �) all have length D = dim P.
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One shows, as in the corresponding section with ALPs, that the work
of creating all the A(x, �), as above, is at most CN logN, using storage at
most CN.

Next, we discuss the convex sets σ(x, �) (x ∈ E, 0 ≤ � ≤ �∗).
Recall that, when we replace f by zero, then in place of Γf(x, �) we obtain

homogeneous blobs Γ0(x, �), having the form Γ0(x, �) = (Mσ(x, �))M>0 for
(non-empty, symmetric) convex sets σ(x, �) ⊂ P. Carrying out our compu-
tation of the MALPs A(x, �) (x ∈ E, 0 ≤ � ≤ �∗) as above, with f replaced
by zero, we obtain MALPs A0(x, �) (x ∈ E, 0 ≤ � ≤ �∗), such that:

• A0(x, �) is a C�S0-bit MALP with constant C′
�; and

• K(A0(x, �)) is C′′
�-equivalent to Γ0(x, �) above C′′′

� · 2−S0 .

Let
A0(x, �) =

[
(λ

[�]
iα) 1≤i≤D

|α|≤m−1
, (b

[�]
i )1≤i≤D, (σ

[�]
i )1≤i≤D,M[�]

∗
]
.

By induction on �, one checks easily that the b
[�]
i are all equal to zero. Hence,

K(A0(x, �)) = (KM(A0(x, �)))M>0, with

KM(A0(x, �)) =

{
P ∈ P :

∣∣∣∣ ∑
|α|≤m−1

λ
[�]
iα∂

αP(0)

∣∣∣∣ ≤ Mσ
[�]
i

}
if M ≥M[�]

∗ ;

KM(A0(x, �)) = ∅ if M <M
[�]
∗ .

Since K(A0(x, �)) is C′′
� -equivalent to (Mσ(x, �))M>0 above C′′′

� · 2−S0 , it fol-

lows that M
[�]
∗ ≤ C′′′′

� · 2−S0 , and that σ(x, �) is C#
� -equivalent to{

P ∈ P :

∣∣∣∣ ∑
|α|≤m−1

λ
[�]
iα∂

αP(0)

∣∣∣∣ ≤ σ
[�]
i for i = 1, . . . , D

}
.

Hence, we have computed the Γf(x, �) up to C-equivalence above C · 2−S0 ;
and we have computed the σ(x, �) up to C-equivalence.

The computations of the approximation to the Γf(x, �) and σ(x, �), as
above, require a total work of CN logN, using storage CN. It will be con-
venient also to rewrite the blobs K(A0(x, �)) in a different form, as follows.
For x ∈ E, let Tx : RD −→ RD be the linear map that takes (∂αP(0))|α|≤m−1

to (∂αP(x))|α|≤m−1 for each P ∈ P. Then ‖ Tx ‖, ‖ T−1
x ‖≤ 2CS0 , since

|x| ≤ C2S0 . Using Algorithm MALP4 from Section 43, and thanks to (SU1)
and (SU2), we may compute from A0(x, �), a CS0-bit MALP Ã0(x, �) with
constant C, such that K(Ã0(x, �)) is C-equivalent to TxK(A0(x, �)). Hence,

(∗) K(Ã0(x, �)) is C-equivalent to ({(∂αP(x))|α|≤m−1 : P ∈ Mσ(x, �)})M>0
above C · 2−S0 .
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Here, C depends only on m and n, since we take 0 ≤ � ≤ �∗. Note that
Ã0(x, �) has length D.

Let

Ã0(x, �) = [(λ̃�,xi,α) 1≤i≤D
|α|≤m−1

, (b̃�,xi )1≤i≤D, (σ̃�,xi )1≤i≤D, M̃�,x
∗ ].

Since the b�i appearing in A0(x, �) are all zero, it follows that the b̃�,xi are
all zero. Hence, applying (∗) with M = 1 (note that M̃�,x

∗ ≤ C2−S0 ≤ 1

from (*)), we find that, for x ∈ E and 0 ≤ � ≤ �∗,

(∗∗)

⎡⎢⎢⎣
{(∂αP(x))|α|≤m−1 : P ∈ σ(x, �)} is C-equivalent to{

(ξα)|α|≤m−1 ∈ RD :

∣∣∣∣ ∑
|α|≤m−1

λ̃�,xi,αξ
α

∣∣∣∣ ≤ σ̃�,xi for i = 1, . . . , D

}
.

⎤⎥⎥⎦
Here, C depends only on m and n. The λ̃�,xi,α, σ̃

�,x
i may be computed, for

all x ∈ E, 0 ≤ � ≤ �∗, with total work at most CN logN, and with storage
at most CN.

51. The Basic Lengthscales

Here, c, C, . . . stand for constants depending only on m,n. Recall that we
assume (SU1) and (SU2) from Section 49.

Recall that σ(x) ≥ 2−S0 for each x ∈ E, and that |x − y| ≥ 2−S0 for
x, y ∈ E, x �= y. Hence, given any x0 ∈ E and any (ξα)|α|≤m−1 ∈ RD, with
|ξα| ≤ 2−(m−|α|)S0 for each α, there exists F ∈ Cm(RD), with ‖ F ‖Cm(Rn)≤ C,
|F(x)| ≤ σ(x) for each x ∈ E, and ∂αF(x0) = ξα for |α| ≤ m − 1. Therefore,
Property 0 in Section 13 tells us that

(1) {(ξα)|α|≤m−1 : |ξα| ≤ 2−(m−|α|)S0 for each α}

⊂ C{(∂αP(x0))|α|≤m−1 : P ∈ σ(x0, �)}

for each x0 ∈ E, 0 ≤ � ≤ �∗.

On the other hand, we have σ(x0, �) ⊆ Cσ(x0, 0); and |∂αP(x0)| ≤ C for
each α, whenever P ∈ σ(x0, 0). Hence,

(2) {(∂αP(x0))|α|≤m−1 : P ∈ σ(x0, �)} ⊂ C{(ξα)|α|≤m−1 : ∀α, |ξα| ≤ 1} for
each x0 ∈ E, 0 ≤ � ≤ �∗.

In the previous section, we computed numbers λ̃�,x
0

i,α and σ̃�,x
0

i , such that



242 C. Fefferman and B. Klartag

(3) c

{
(ξα)|α|≤m−1 :

∣∣∣∣ ∑
|α|≤m−1

λ̃�,x
0

i,α ξ
α

∣∣∣∣ ≤ σ̃�,x0i for i = 1, . . . , D

}
⊆

{
(∂αP(x0))|α|≤m−1 : P ∈ σ(x0, �)

}
⊆ C ·

{
(ξα)|α|≤m−1 :

∣∣∣∣ ∑
|α|≤m−1

λ̃�,x
0

i,α ξ
α

∣∣∣∣ ≤ σ̃�,x0i for i = 1, . . . , D

}
.

Recall the constants A0, A1(A), A2 from Section 17, and �(A) from Sec-
tion 14. The goal of this section is to present the following algorithm.

Algorithm BL1: Given x0 ∈ E, and non-empty A ⊆ M, we compute a ma-

chine number δ(x0,A) > 0, with the following properties.

(OK1) There exist polynomials Pα ∈ P, indexed by α ∈ A, such that
∂βPα(x

0) = δβα for β, α ∈ A; and

|∂βPα(x
0)| ≤ CA1(A) · (A2δ(x0,A))|α|−|β| for α ∈ A, β ∈ M, β ≥ α ;

(A2δ(x
0,A))m−|α|Pα ∈ CA1(A) · σ(x0, �(A)) for α ∈ A .

(OK2) There do not exist polynomials Pα ∈ P, indexed by α ∈ A, such
that ∂βPα(x

0) = δβα for β, α ∈ A; and

|∂βPα(x
0)| ≤ cA1(A) · (A2δ(x0,A))|α|−|β| for α ∈ A, β ∈ M, β ≥ α ;

(A2δ(x
0,A))m−|α|Pα ∈ cA1(A) · σ(x0, �(A)) for α ∈ A .

Explanation: First, suppose A �= M. It is enough to find δ(x0,A) as above,

with σ(x0, �(A)) replaced by a convex, symmetric polyhedron σ̃ that is C-
equivalent to σ(x0, �(A)).
In view of (3), we can take

(4) σ̃ = {P ∈ P : |
∑
β∈M

λ̃i,β∂
βP(x0)| ≤ σ̃i for i = 1, . . . , D},

where the λ̃i,β = λ̃
�(A),x0

i,β , σ̃i = σ̃
�(A),x0

i have already been computed.

We set ξα,β = ∂βPα(x
0) for α ∈ A, β ∈ M � A, so that the desired

property of δ(x0,A) may be rewritten as follows. We seek δ ∈ (2−CS0 , 2+CS0)

that satisfies:

(OK1)′ There exist (ξα,β)α∈A,β∈M�A, such that

|ξα,β| ≤ CA1(A) · δ|α|−|β| for α ∈ A, β > α , and∣∣∣∣λ̃i,α+
∑

β∈M�A

λ̃i,βξα,β

∣∣∣∣ ≤ CA1(A) · σ̃iδ|α|−m for i = 1, . . . , D and α ∈ A.
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(OK2)′ There does not exist (ξα,β)α∈A,β∈M�A, such that

|ξα,β| ≤ cA1(A) · δ|α|−|β| for α ∈ A, β > α , and∣∣∣∣λ̃i,α+
∑

β∈M�A

λ̃i,βξα,β

∣∣∣∣ ≤ cA1(A) · σ̃iδ|α|−m for i = 1, . . . , D and α ∈ A.

Once we have found δ ∈ (2−CS0 , 2+CS0) satisfying (OK1)′, (OK2)′, we can
then set δ(x0,A) = (our machine approximation to) δ/A2. The percentage
error in dividing δ by A2 will be small, by (SU1) and (SU2) from Section
49, and therefore A2δ(x

0,A) ∈ [1
2
δ, 2δ]. Consequently, δ(x0,A) satisfies

(OK1), (OK2), since δ satisfies (OK1)′, (OK2)′. Thus, it is enough to find
δ ∈ (2−CS0 , 2+CS0) satisfying (OK1)′, (OK2)′.

Algorithm SIP1 from Section 46 produces one of the following outcomes.
(Again, we use (SU1) and (SU2) in order to apply Algorithm SIP1.)

Outcome 1: We guarantee that, for each δ ∈ (2−CS0 , 2+CS0), (OK1)′ holds.

Outcome 2: We guarantee that, for each δ ∈ (2−CS0 , 2+CS0), (OK2)′ holds.

Outcome 3: We have computed δ ∈ (2−CS0 , 2+CS0) satisfying (OK1)′, (OK2)′.

We will check that Outcomes 1 and 2 cannot occur here. This will complete
our specification of Algorithm BL1.

Recall that σ(x0, �(A)) and σ̃ in (4) are C-equivalent. Hence (1) and (2)
imply the following, for vectors (ξ̂α,β)α∈A,β∈M.

(5)

⎡⎢⎢⎣
|ξ̂α,β| ≤ 2−(m−|β|)S0 for α ∈ A, β ∈ M implies∣∣∣∣∑
β∈M

λ̃i,β ξ̂α,β

∣∣∣∣ ≤ Cσ̃i for i = 1, . . . , D , α ∈ A .

⎤⎥⎥⎦

(6)

⎡⎢⎣
∣∣∣∣∑
β∈M

λ̃i,β ξ̂α,β

∣∣∣∣ ≤ σ̃i for i = 1, . . .D and α ∈ A implies

|ξ̂α,β| ≤ C for α ∈ A, β ∈ M .

⎤⎥⎦
Suppose (OK1)′ holds for a given δ ∈ (2−CS0 , 2+CS0). Let (ξα,β)α∈A,β∈M�A

be as in (OK1)′, and let

ξ̂α,β = [CA1(A)]−1δm−|α| ξα,β for α ∈ A, β ∈ M � A

ξ̂α,β = [CA1(A)]−1δm−|α| δα,β for α ∈ A, β ∈ A .

Here, we take C as in (OK1)′. Then, for α ∈ A,
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∣∣∑
β∈M

λ̃i,β ξ̂α,β
∣∣ = [CA1(A)]−1δm−|α|

∣∣ ∑
β∈M�A

λ̃i,βξα,β + λ̃i,α
∣∣ ≤ σ̃i

for each i = 1, . . . , D and α ∈ A. Hence, (6) yields |ξ̂α,α| ≤ C′ for each
α ∈ A, i.e., [CA1(A)]−1 δm−|α| ≤ C′ for each α ∈ A. This cannot hold
for arbitrary δ ∈ [2−CS0 , 2+CS0 ], provided S0 is sufficiently large. (Here, we
use (SU1) from Section 49.) Therefore, Outcome 1 is impossible here.

Next, suppose we are given δ ∈ (2−CS0 , 2−2S0).

Let
ξ̂α,β = (Ĉ)−12−(m−|α|)S0 · δα,β

for α ∈ A, β ∈ M, with Ĉ large enough. Then by (5), we have

(7) (Ĉ)−1·2−(m−|α|)S0 ·|̃λi,α| =
∣∣∣∣∑
β∈M

λ̃i,β ξ̂α,β

∣∣∣∣ ≤ σ̃i for i = 1, . . . , D and α ∈ A.

Since δ ≤ 2−2S0 then δ|α|−m ≥ 22(m−|α|)S0 for α ∈ A, hence, with c as
in (OK2)′,

(8) cA1(A) · σ̃i · δ|α|−m ≥ [cA1(A) · 2(m−|α|)S0 ] 2(m−|α|)S0 σ̃i ≥ Ĉ · 2(m−|α|)S0 σ̃i,

provided S0 is sufficiently large (as in (SU1)). Taking now ξα,β = 0 for
α ∈ A, β ∈ M � A, we obtain

|ξα,β| = 0 ≤ cA1(A) · δ|α|−|β| for α ∈ A, β ∈ M � A, β > α ;

and by (7) and (8),∣∣∣∣ ∑
β∈M�A

λ̃i,βξα,β + λ̃i,α

∣∣∣∣ = |̃λi,α| ≤ Ĉ · 2(m−|α|)S0 σ̃i

≤ cA1(A) · σ̃i · δ|α|−m , with c as in (OK2)′ .

In particular, there does exist (ξα,β)α∈A,β∈M�A satisfying the inequali-
ties in (OK2)′. Thus (OK2)′ cannot hold when δ ∈ [2−CS0 , 2−2S0 ]. Conse-
quently, Outcome 2 cannot occur here.

Therefore, only Outcome 3 can occur.

This completes our specification of Algorithm BL1, in the case A �= M.
The case A = M is an easier variant of the above, in which the variables
ξα,β (α ∈ A, β ∈ M \ A) do not arise. Details are left to the reader.
The work of the algorithm is at most C, for a given x0 ∈ E, once we have
computed the ALPs Ã0(x

0, �) (0 ≤ � ≤ �∗) as in Section 50.
Hence, the total work to compute all the δ(x,A) (all x ∈ E, A ⊆ M,

A �= ∅), given the Ã0(x, �) (all x ∈ E, 0 ≤ � ≤ �∗), is at most CN.
We define δ(x,A) := + ∞ for A = ∅, since the inequalities in (OK1) can

always be satisfied vacuously.
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52. Dyadic Cubes and Cuboids

Recall the Calderón-Zygmund decompositions from Chapter III. We make
use of terminology from that chapter.

All the algorithms from Sections 23,...,27 involving the BBD Tree can be
carried out in our model of computation, without error. Indeed, we may de-
cide, with perfect precision, whether a given point x ∈ Rn whose coordinates
are machine numbers, belongs to any given dyadic cube or cuboid. (Here,
we assume that the coordinates of the vertices of the cuboid are machine
numbers, i.e., the cuboid is not absurdly large, absurdly small, or absurdly
far away.) Thus, it is straightforward to verify that the construction of the
BBD Tree in [1] may be carried out, without error.

Similarly, all the algorithms in Section 25 and Section 27 carry over
to our model of computation, without any precision issues arising. Those
algorithms are all based on the BBD Tree, and they do not use imperfect
arithmetic operations at all (they use only comparisons, to detect whether
a point belongs to a dyadic cuboid and to perform tasks of similar nature).
Regarding the approximate nearest neighbor algorithm from [1] mentioned
in Section 23: Let x, y ∈ Rn be given points, all of whose coordinates are
machine numbers. No errors arise when we compute |x − y|�∞ . Note that
the algorithms in [1], as quoted in Section 23, are well adapted to the �∞
metric (see [1, Theorem 1]). Thus, if we confine ourselves to the �∞ metric,
in place of the Euclidean metric, no numerical errors arise when computing
nearest neighbors. It is straightforward to verify that switching from the
Euclidean norm to the �∞ norm causes only the most obvious changes to
the arguments in Sections 22,...,26. (See the remark in Section 26.) Thus,
the BBD Tree algorithms are well suited for our model of computation.

We take the constant cG to be a (negative) integer power of 2, say cG =
1/32. That way, if Q is a dyadic cube, then (1 + cG)Q will be a union
of at most C dyadic cubes, with C depending only on n. Hence, given
x = (x1, . . . , xn) ∈ Rn (with each xi a machine number of absolute value
at most 2S̄/2), and given a dyadic cube Q whose vertices have coordinates
that are all machine numbers, we can decide whether x ∈ (1 + cG)Q with
work C (depending only on n). Similarly, we can decide with work C whether
x ∈ (1+ cG/2)Q.

In particular, for each dyadic cubeQ and A ⊆ M, we may detect whether
Q ∈ CZ(A), provided Q has vertices whose coordinates are machine num-
bers, and whether Q contains a point x = (x1, . . . , xn), where each xj is a ma-
chine number of absolute value at most 2S̄/2. Also, for any x = (x1, . . . , xn)

such that each xi is a machine number with |xi| ≤ 2S̄/2 for all i, and for
each A ⊆ M, we can compute the list of all cubes Q ∈ CZ(A) such that
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(1+ cG)Q � x. The work of the computation is at most C logN, with C de-
pending only on m and n. (Of course, we assume here that we have already
done the relevant one-time work; see Sections 22,...,26.)

53. Finding Neighbors

In this section, we describe a straightforward application of Algorithm
MALP10 from Section 43. Here C,C′, etc, denote constants determined bym
and n.

Algorithm Find-Neighbor (P0,A0, x)

/∗ Inputs: P0 ∈ P, A0 ⊂ M such that A0 �= M, x ∈ E, and we assume that
∂αP0(0) is a given machine number of absolute value ≤ 2A1(A0)S0 for each
α (|α| ≤ m − 1).

Outputs: P1 = Find-Neighbor (P0,A0, x) is a polynomial in P. It is
guaranteed that ∂αP1(0) is a machine number of absolute value at most
2A1(A

−
0 )S0 for each α (|α| ≤ m − 1). We compute the ∂αP1(0) for each

α(|α| ≤ m − 1). The polynomial P1 is guaranteed to have the following
property:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Suppose P ∈ P and M ≥ 2−S0 satisfy

∂α(P − P0)(x) = 0 for all α ∈ A0, and P ∈ Γ(x, �(A0) − 1,M).

Then we can express P1 = Pmain+ Perr; with Pmain, Perr ∈ P;

∂α(Pmain− P0)(x) = 0 for all α ∈ A0,

and Pmain ∈ Γ(x, �(A0) − 1, C′M);

and |∂αPerr(0)| ≤ 2A1(A−
0 )S0−S̄/2 for all α(|α| ≤ m − 1).

Here, C′ is some constant depending only on m and n.

We assume here that we have already done the one-time work to produce
MALPs that are C-equivalent to the Γ(x, �(A) − 1) above C2−S0 .

∗/

Explanation: Recall from Section 50 that we are able to construct CS0-
bit MALPs with constant C that are C-equivalent to the Γ(x, �(A) − 1)
above C2−S0 , with C being a constant depending only on m and n. By
one of the properties in Section 47, these MALPS are C2-equivalent to
the Γ(x, �(A) − 1) above 2−S0 . A straightforward application of Algorithm
MALP10 from Section 43 now leads to Algorithm Find-Neighbor. (Note that
A1(A

−
0 ) ≥ A0A1(A0) and that we may assume A0 ≥ C for an appropri-

ate constant C depending only on m and n.) The work of the Algorithm,
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not including one-time work used by the algorithm, is at most a constant
determined by m and n.

By using Algorithm MALP8 we can also perform the following task.
Given x ∈ E, we compute a polynomial P1 ∈ P, such that ∂αP1(0) is a
machine number of absolute value at most 2C

′S0 for each α (|α| ≤ m − 1),
where C′ is a constant depending only onm and n. We compute the ∂αP1(0)
for each α (|α| ≤ m− 1). The polynomial P1 is guaranteed to have the fol-
lowing property:⎡⎢⎢⎢⎣

Suppose P ∈ P and M ≥ 2−S0 satisfy P ∈ Γ(x, �∗,M).

Then we can express P1 = Pmain+ Perr; with Pmain, Perr ∈ P;
Pmain ∈ Γ(x, �∗, C′M);

and |∂αPerr(0)| ≤ 2C′′S0−S̄/2 for all α (|α| ≤ m− 1).

From (1) of Section 51, and from Property 1 of Section 13, we conclude
that P1 has the following property:[

Suppose P ∈ P and M ≥ 2−S0 satisfy P ∈ Γ(x, �∗,M).

Then P1 ∈ Γ(x, �∗, C̃M).

The work needed to perform the latter task is bounded by C, given one-
time work CN logN in space CN.

54. Partitions of Unity

Write c, C, C′, etc., for constants depending only on m,n.

Recall that, for A ⊆ M and Q ∈ CZ(A), we define

(1) θ
Q
A = θ

Q
0 /

∑
Q′∈CZ(A)

θ
Q′
0 .

Here, θQ0 is supported in (1+ cG/2)Q, satisfies θQ0 ≥ 0 everywhere, and

θ
Q
0 ≥ c on Q.

We have taken cG to be a power of two, so that (1+ cG/2)Q is a union
of at most C dyadic cubes, whenever Q is dyadic. Hence, we can decide
with work C whether a given x = (x1, . . . , xn) ∈ Rn belongs to (1+ cG/2)Q
for a given dyadic cube Q. Here, we assume that x1, . . . , xn are machine
numbers. Note that for Q ∈ CZ(A),

(2) 1 ≥ δQ ≥ c · 2−S0 ,

since δQ ≤ A−1
2 for all Q ∈ CZ(A), and since |x − y| ≥ c · 2−S0 for any two

distinct points x, y ∈ E.
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We may take

(3) θ
Q
0 (x)=

n∏
j=1

[
1−

(
2(xj− x

Q
j )

(1+ cG/2)δQ

)2]m+1

for x=(x1, ..., xn)∈(1+cG/2)Q,

(4) θ
Q
0 (x) = 0 for x �= (1+ cG/2)Q.

Here, (xQ1 , . . . , x
Q
n) is the center of Q. Note that

|∂αθ
Q
0 (x)| ≤ Cδ

−|α|
Q ≤ C · 2CS0 ,

thanks to (2), (3), (4). From (2), (3), (4), we see that ∂αθQ0 (x) may be com-
puted up to an error at most C · 2CS0−S̄, where |α| ≤ m and x = (x1, . . . , xn)

with the xj machine numbers of absolute value ≤ 2S0 . Thus, we may com-

pute J+x (θQ0 ) up to roundoff errors.

From (4), we see that

J+x

( ∑
Q′∈CZ(A)

θ
Q′
0

)
=

∑
Q′∈Cloud(x,A)

J+x (θ
Q′
0 ),

where
Cloud(x,A) = {Q′ ∈ CZ(A) : x ∈ (1+ cG)Q′}.

Recall that we can compute Cloud (x,A) in time C logN, given one-time
work CN logN in space CN.

Fix x = (x1, . . . , xn) with each xj a machine number of absolute value
≤ 2S0 . For the moment, we identify P+ with RD+ by identifying P ∈ P+

with (∂αP(x))|α|≤m. We can write∑
Q′∈Cloud (x,A)

J+x (θQ
′
0 ) = b0 + P̂, with b0 > c and P̂ ∈ P+ with P̂(x) = 0.

We can compute b0 and P̂ ∈ P+ � RD+ with an error at most C · 2CS0−S̄.
We have |b0|, |P̂| ≤ 2CS0 and b0 > c. Note that, in the ring of m-jets at x,
we have ( ∑

Q′∈Cloud (x,A)

J+x (θQ
′
0 )

)−1

= (b0)
−1 ·

m∑
�=0

(−1)�
(
P̂

b0

)�
.

Hence, ∣∣∣∣( ∑
Q′∈Cloud (x,A)

J+x (θ
Q′
0 )

)−1∣∣∣∣
�∞ ≤ 2CS0 in RD

+
,

and ( ∑
Q′∈Cloud (x,A)

J+x (θ
Q′
0 )

)−1

∈ RD+
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can be computed up to an error at most 2CS0−S̄ in time C logN given one-
time work CN logN in space CN. Multiplying J+x (θ

Q
0 ) by( ∑

Q′∈Cloud (x,A)

J+x (θ
Q′
0 )

)−1

as jets at x, we see that we can carry out the following algorithm.

Algorithm PU: Given A ⊆ M, Q ∈ CZ(A), and given x = (x1, . . . , xn) ∈ Rn,

with each xj a machine number of absolute value ≤ 2S0 , we compute machine
numbers

θQ,A,αapprox (x) (|α| ≤ m)

of absolute value ≤ 2CS0 , such that the polynomial

{J+x (θQA)}approx (y) :=
∑

|α|≤m

1

α!
θQ,A,αapprox (x) · (y− x)α

satisfies ∣∣∂α[θQA − {J+x (θ
Q
A)}approx] (x)

∣∣ ≤ 2CS0−S̄ for |α| ≤ m.

Here, C depends only on m,n.

The computation takes time C logN, given one-time work CN logN in
space CN.

55. Main Algorithm and Main Lemma

We state here the analogues of our earlier Main Algorithm and Main Lemma
for our present model of computation. Here, C, C′, . . . denote constants
determined by m,n.

The Main Algorithm Procedure fx(A0, Q0, x0, P0).

/∗ Inputs are as follows: A0 ⊆ M; Q0 ∈ CZ(A0); x0 = (x01, . . . , x
0
n) ∈

E ∩ Q∗∗
0 (hence, each x0j is a machine number of absolute value ≤

2S0 , thanks to our assumptions on E); P0 ∈ P, with each ∂αP0(0)
being a given machine number of absolute value ≤ 2A1(A0)S0 ; and x =

(x1, . . . , xn) ∈ (1+ cG)Q0, with each xj being a given machine number
(hence, |xj| ≤ C2S0 , since x0 ∈ E, and x0, x ∈ Q∗∗

0 with Q0 ∈ CZ(A0);
recall that Q0 has sidelength ≤ A−1

2 ≤ 1).
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Output is as follows: fx(A0, Q0, x0, P0) is a polynomial P+ ∈ P+. For
each α (|α| ≤ m), the quantity ∂αP+(0) is a machine number of ab-
solute value ≤ 2A3(A0)S0 . The algorithm specifies P+ by computing the
machine numbers ∂αP+(0) for |α| ≤ m. The polynomial P+ is to be
viewed as an m-jet at x.

∗/

Line 1 If A0 = M, then define fx(A0, Q0, x0, P0) := P0, else

Line 2 { Let A′ be the least A ⊆ M such that Q0 ∈ CZ(A).

Line 3 If A′ < A0, then define fx(A0, Q0, x0, P0) := fx(A
′, Q0, x0, P0),

Line 4 else

Line 5 { Produce a list Q1, . . . , Qkmax of all the cubes

Line 6 Q ∈ CZ(A−
0 ) such that x ∈ (1+ cG)Q .

Line 7 For each k = 1, . . . , kmax, do the following:

Line 8 { If E ∩Q∗∗
k = ∅, then set fk := P0, else

Line 9 { If x0 ∈ Q∗
k, then set xk := x0 and Pk := P0, else

Line 10 { Define xk := Find-Representative (Qk).

Line 11 Define Pk := Find-Neighbor (P0,A0, xk).

Line 12 } /∗ Now we have found xk, Pk, for all k for which

the “else” in Line 8 is executed ∗/

Line 13 Define fk := fx(A
−
0 , Qk, xk, Pk).

Line 14 } /∗ Now we have found fk in all cases ∗/
Line 15 } /∗ End of the k-loop starting at Line 7 ∗/
Line 16 Define fx(A0, Q0, x0, P0) = (our machine approximation to)

Line 17
kmax∑
k=1

{
J+x

(
θ

A−
0
Qk

)}
approx

�+
x fk .

/∗ Here,
{
J+x

(
θ

A−
0
Qk

)}
approx

is as in Algorithm PU ∗/

Line 18 } /∗ Balances the curly bracket at Line 5 ∗/
Line 19 } /∗ Balances the curly bracket at Line 2 ∗/.
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We check the following elementary result.

Lemma 1. Assume that the inputs to the Main Algorithm are as in the
comment “Inputs are as follows”. Then the Main Algorithm can be executed.
It takes time at most C′′ logN, given one-time work C′′N logN in space
C′′N. It produces an output P+ as described in the comment “Output is as
follows”.

Proof. We use induction on A0.

In the base case A0 = M, inspection of Line 1 shows that the Main
Algorithm executes in time at most C′′, and produces as output the poly-
nomial P0. Since we assume that each ∂αP0(0) is a machine number of
absolute value ≤ 2A1(M)S0 (see the comment “Inputs are as follows”), we
have P+ = P0 ∈ P ⊆ P+, and ∂αP+(0) is a machine number of absolute
value ≤ 2A1(M)S0 ≤ 2A3(M)S0 for |α| ≤ m − 1. (See Section 17 for the in-
equality A1(M) ≤ A3(M). In fact, all the A1’s are smaller than all the A3’s.)
For |α| = m, we have ∂αP+(0) = 0. Thus, the conclusions of Lemma 1 hold
in the base case A0 = M.

Next, suppose A0 �= M. Recall from Section 52 that we may execute
Lines 2–3 in time C logN given one-time work CN logN in space CN (see
also Section 26). We split the proof into two cases. First, suppose there
exists A < A0 such that Q0 ∈ CZ(A). Let A′ ⊂ M be as computed
in Line 2. Then A′ < A0. By inductive hypothesis (Lemma 1 for A′; note
that A1(A

′) ≥ A1(A0) and A3(A
′) ≤ A3(A0)), we can execute Line 3 in

time C′′ logN given one-time work C′′N logN in space C′′N; the algorithm
terminates, and the output fx(A0, Q0, x0, P0) is a polynomial P+ as in the
conclusion of Lemma 1.

Thus, Lemma 1 holds for A0 in the case A′ < A0. For the rest of the
proof of Lemma 1, we assume that A′ = A0 �= M. Thus, our algorithm
passes to the execution of Lines 5-6. Recall from Section 52, that all of
our algorithms for CZ cubes work with perfect accuracy in our model of
computation. Thus, as is explained in Section 29, we may execute Lines 5–6,
and the loop in Lines 8,...,14 is executed at most C times.

Let us examine the kth execution of the loop in Lines 8,...,14. Suppose
first that E ∩ Q∗∗

k �= ∅. Since Lines 8–10 involve only the CZ algorithms,
again, the analysis from Section 29 is still valid. In the case where x0 ∈ Q∗

k,
by Line 9 we have that Pk = P0 ∈ P, ∂αPk(0) is a known machine number of
absolute value at most 2A1(A0)S0 ≤ 2A1(A−

0 )S0 for each α (|α| ≤ m−1) (recall
from Section 17 that A1(A0) ≤ A1(A−

0 )); also, the coordinates of xk = x0 are
machine numbers of absolute value at most 2S0 . (See the comment “Inputs
are as follows” in the Main Algorithm.)
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In the case where x0 �∈ Q∗
k, we reach the execution of Line 10. By

the defining property of Find-Representative, we know that xk ∈ E ∩ Q∗∗
k .

When we start executing Line 11, we have the following: P0 ∈ P, ∂αP0(0)
is a known machine number of absolute value at most 2A1(A0)S0 for each
α (|α| ≤ m − 1) (see the comment “Inputs are as follows” in the Main
Algorithm); also A0 ⊂ M with A0 �= M; and xk ∈ E, thanks to Line 10.
Thus P0, A0, xk satisfy the requirements for successful execution of Find-
Neighbor. (See the comment on “Inputs” in the algorithm “Find-Neighbor”
in Section 53.) Consequently, Line 11 executes successfully, in time ≤ C′′,
given one-time work C′′N logN in space C′′N. (See Section 53.) Recall that
the output Pk produced by Find-Neighbor in Line 11 satisfies the following:
Pk ∈ P; and for each α, the quantity ∂αPk(0) is a machine number of
absolute value ≤ 2A1(A

−
0 )S0 , which we compute in executing Line 11. (See

the comment on “Outputs” in the algorithm Find-Neighbor.)
Having executed Line 11, we pass to Line 13.
Note that, in both of the cases x0 ∈ Q∗

k and x0 �∈ Q∗
k, we have shown

that the following holds, upon reaching Line 13:

(†) A−
0 ⊆ M; Qk ∈ CZ(A−

0 ) (see Lines 5, 6); xk ∈ E ∩ Q∗∗
k ; Pk ∈ P,

and for |α| ≤ m − 1, ∂αPk(0) is a machine number of absolute value
≤ 2A1(A−

0 )S0 ; x ∈ (1+ cG)Qk (see Lines 5, 6); and the coordinates of x
are machine numbers (see the comment “Inputs are as follows” in the
Main Algorithm).

The above remarks tell us that the inputs A−
0 , Qk, xk, Pk and x are as in the

comment “Inputs are as follows” in the Main Algorithm. Since also A−
0 < A0,

we may apply Lemma 1 to fx(A
−
0 , Qk, xk, Pk). Consequently, Line 13 executes

in time ≤ C′′ logN, given one-time work C′′N logN in space C′′N. Moreover,
the output fk produced by Line 13 satisfies:

(††) fk ∈ P+; for each α (|α| ≤ m), we have computed ∂αfk(0), which is a
machine number of absolute value at most 2A3(A

−
0 )S0 .

We have just proven (††) for the case E ∩ Q∗∗
k �= ∅. Inspection of Line 8

shows that (††) holds also for the case E ∩Q∗∗ = ∅; in this case fk = P0,

|∂αfk(0)| ≤ 2A1(A0)S0 ≤ 2A3(A−
0 )S0

and (††) follows; see the comment “Inputs are as follows” in the Main Algo-
rithm. (We use the fact that A1(A0) ≤ A3(A−

0 ); see Section 17.) Hence, (††)
holds for any k (1 ≤ k ≤ kmax).

The above discussion shows that we execute the k-loop (Lines 7,...,15)
in time C′′ logN, given one-time work C′′N logN in space C′′N. Thereafter,
we pass to Line 16.
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Next, we check that Lines 16, 17 can be executed in time C′′ logN,
given one-time work C′′N logN in space C′′N; and we discuss the output
fx(A0, Q0, x0, P0) produced by Lines 16, 17. Each fk satisfies (††).

To prepare for execution of the product �+
x in Line 17, we must com-

pute (a machine approximation to) (∂αfk(x))|α|≤m, given the (∂αfk(0))|α|≤m
from (††). We obtain values {∂αfk(x)}approx for |α| ≤ m; each of these is a
machine number of absolute value

≤ 2C′′′A3(A−
0 )S0 .

(This follows easily from (††), together with our earlier observation that the
coordinates of x are machine numbers of absolute value ≤ 2CS0 .) Given the
{∂αfk(x)}approx, and the output of Algorithm PU, we can compute a machine
approximation to

∂α
[{
J+x (θ

A−
0
Qk

)
}
approx

�+
x fk

]
(x) for |α| ≤ m;

and these machine approximations are all less than 2ĈA3(A
−
0 )S0 in absolute

value. Summing over k = 1, . . . , kmax, and recalling that kmax ≤ C, we
obtain (for |α| ≤ m) a machine number θα of absolute value ≤ C·2ĈA3(A−

0 )S0 ,
which serves as our approximation to

∂α

[
kmax∑
k=1

{J+x (θ
A−
0
Qk

)}approx �+
x fk

]
(x).

Expanding

y �→ ∑
|α|≤m

1

α!
θα(y− x)α

in powers of y, we obtain coefficients ψα (with round-off errors), such that
(ψα)|α|≤m is an approximation to

(
∂α

[
kmax∑
k=1

{J+x (θ
A−
0
Qk

)}approx �+
x fk

]
(0)
)

|α|≤m.

The ψα are machine numbers of absolute value ≤ 2C
#A3(A

−
0 )S0 , thanks to

our estimates for the θα and for the coordinates of x. Thus, we can exe-
cute Lines 16, 17. Their output is the polynomial

fx(A0, Q0, x0, P0) =
∑

|α|≤m

1

α!
ψαy

α,

specified by exhibiting the ψα. Since Algorithm PU takes time ≤ C′′ logN,
given one-time work C′′N logN in space C′′N, the same is true of Lines 16, 17.
(Here again, we use the fact that kmax ≤ C.)
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Moreover, fx(A0, Q0, x0, P0) ∈ P+, and for |α| ≤ m,

∂α[fx(A0, Q0, x0, P0)](0)

is a machine number of absolute value

≤ 2C#A3(A
−
0 )S0 ≤ 2A0A3(A−

0 )S0 ≤ 2A3(A0)S0 ,
which we have computed. Here, we assume that

A0 ≥ C#,

which is a legitimate assumption, as C# is a constant depending only on m
and n. The execution of the Main Algorithm for (x,A0, Q0, x0, P0) terminates
after execution of Lines 16,17. We have shown that the Main Algorithm for
(x,A0, Q0, x0, P0) runs in time C′′ logN, given one-time work C′′N logN in
space C′′N.

We have established the conclusions of Lemma 1 for the inputs (x,A0, Q0,
x0, P0). The proof of Lemma 1 is complete. �

Note that, in the proof of Lemma 1, we needed some control on the size,
e.g., of the fk, in order to avoid overflow errors in executing Lines 16,17.

Now we are ready to state the Main Lemma.

Main Lemma for A0:

Let Q0 ∈ CZ(A0), let x0 ∈ E ∩Q∗∗
0 with x0 ∈ E ∩Q∗

0 in case E ∩Q∗
0 �= ∅,

and let P0 ∈ P.
Suppose that, for each α (|α| ≤ m − 1), the quantity ∂αP0(0) is a machine
number of absolute value at most 2A1(A0)S0 .
Let M0 be a machine number, with 2−S0 ≤M0≤A1(A0)2+S0 . Assume that
P0∈Γ(x0,�(A0),M0).

Then there exists F ∈ Cm((1+ cG)Q0), with the following properties:

(I) J+x (F) − P0 ∈ A3(A0) ·M0 · B+(x, δQ0) for all x ∈ (1+ cG)Q0.

(II) Jx(F) ∈ Γ(x, 0, A3(A0) ·M0) for all x ∈ E ∩ (1+ cG)Q0.

(III) If x0 ∈ (1+ cG)Q0, then Jx0(F) = P0.

(IV) Let x = (x1, . . . , xn) ∈ (1 + cG)Q0, and assume each xj is a machine
number. Then∣∣∂α[J+x (F) − fx(A0, Q0, x0, P0)](0)

∣∣ ≤ 2A3(A0)S0−S̄/2 for |α| ≤ m.
Here, fx(A0, Q0, x0, P0) is the polynomial produced by the Main Algorithm

for inputs (A0, Q0, x0, P0). Note that A0, Q0, x0, P0 and x in (IV) are as in
the comment “Inputs are as follows” in the Main Algorithm. Hence, by
Lemma 1, fx(A0, Q0, x0, P0) is a well-defined polynomial belonging to P+.
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56. Proof of the Main Lemma

We write C, c, C′, etc. to denote constants determined by m and n. As
for the Main Lemma for “perfect arithmetic” (Section 29), we proceed by
induction on A0, with respect to our order relation < on subsets of M.

Base Case: Suppose A0 = M. Then we have Q0 ∈ CZ(M) and P0 ∈
Γ(x0, �(M),M0), with x0 ∈ E∩Q∗∗

0 such that x0 ∈ E∩Q∗ in case E ∩Q∗
0 �= ∅.

Thus, we are in the base case of the induction on A0 that proves the Main
Lemma for perfect arithmetic. In that case, we showed that F = P0 on
(1+cG)Q0 satisfies (I) and (II) in the statement of our present Main Lemma.
Also, (III) is obvious. Moreover, Line 1 of the Main Algorithm gives here
fx(M, Q0, x0, P0) = P0, i.e., ∂α[fx(M, Q0, x0, P0)](0) = ∂αP0(0) exactly, for
|α| ≤ m. Since also ∂α[J+x (F)](0) = ∂αP0(0) exactly (|α| ≤ m), it follows
that ∂α[J+x (F) − fx(M, Q0, x0, P0)](0) = 0 exactly, for |α| ≤ m. Hence, con-
clusion (IV) holds also, completing the proof of the Main Lemma in the
base case.

Induction Step: Fix A0 ⊂ M with A0 �= M, and assume that the Main
Lemma for A holds for all A < A0. We will prove the Main Lemma for A0.
Let M0, Q0, x0, P0 be as in the hypotheses of the Main Lemma for A0. We
distinguish two cases.

Trivial Case: Q0 ∈ CZ(A) for some A < A0.

Non-Trivial Case: Q0 /∈ CZ(A) for all A < A0.

In the trivial case, let A′ be minimal, subject to Q0 ∈ CZ(A′). Then
A′ < A0. By inspection of Lines 1,2,3 of the Main Algorithm, we see that

(1) fx(A0, Q0, x0, P0) = fx(A
′, Q0, x0, P0)

whenever x = (x1, . . . , xn) ∈ (1+cG)Q0 with each xj being a machine
number.

As in the trivial case of the Main Lemma for perfect arithmetic, we find
that CM0, Q0, x0, P0 satisfy the hypotheses of the Main Lemma for A′. Ap-
plying the Main Lemma for A′ (which we may do, since A′ < A0 and since
A1(A

′) ≥ A1(A0)), we obtain F ∈ Cm((1+ cG)Q0), with the following prop-
erties:

(I)′ Jx(F) − P0 ∈ A3(A′) · CM0 · B+(x, δQ0) for all x ∈ (1+ cG)Q0;

(II)′ Jx(F) ∈ Γ(x, 0, A3(A′) · CM0) for all x ∈ E ∩ (1+ cG)Q0;

(III)′ If x0 ∈ (1+ cG)Q0, then Jx0(F) = P0; and
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(IV)′ Let x = (x1, . . . , xn) ∈ (1 + cG)Q0, and assume each xj is a machine
number. Then

|∂α[J+x (F) − fx(A
′, Q0, x0, P0)](0)| ≤ 2A3(A′)S0−S̄/2 for |α| ≤ m.

Applying (1), and recalling that CA3(A
′) ≤ A3(A0) for A′ < A0, we see

that (I)′,...,(IV)′ imply the desired properties (I),...,(IV) for F. This com-
pletes the inductive step in the proof of the Main Lemma, in the trivial case.

For the rest of this section, we assume we are in the non-trivial case. Let

Q = {Q ∈ CZ(A−
0 ) : (1+ cG)Q0 ∩ (1+ cG)Q �= ∅}.

For each Q ∈ Q, we define a point xQ ∈ Rn and a polynomial PQ ∈ P, as
follows.

(2) If E ∩Q∗∗ = ∅, then we set xQ = center of Q, PQ = P0.

(3) If x0 ∈ E ∩Q∗, then we set xQ = x0, PQ = P0.

(4) If E ∩Q∗∗ �= ∅ and x0 /∈ E ∩Q∗, then we set

xQ = Find-Representative(Q).

(Note that xQ ∈ E∩Q∗∗ with xQ ∈ E∩Q∗ in case E∩Q∗ �= ∅, by the
defining property of Find-Representative.)

We then let PQ = Find-Neighbor (P0,A0, xQ). Note that P0,A0, xQ are
as required for inputs of the procedure Find-Neighbor.

Thus, in all cases, PQ ∈ P, and ∂αPQ(0) is a machine number of absolute
value at most 2A1(A

−
0 )S0 for |α| ≤ m − 1. (In Case (2) and Case (3), this

follows from our assumptions on P0 in the hypotheses of the Main Lemma,
and the inequality A1(A0) ≤ A1(A

−
0 ). In Case (4), it follows from the

defining properties of Find-Neighbor in Section 53.) Note that in Case (2),
we necessarily have δQ = A−1

2 (see Lemma 4 of Section 21).
In Case (4), the defining property of Find-Neighbor also tells us the fol-

lowing.

(5) Suppose P ∈ P and M > 2−S0 satisfy

∂α(P − P0)(xQ) = 0 for all α ∈ A0, and P ∈ Γ(xQ, �(A0) − 1,M).

Then we can express

PQ = Pmain
Q + Perr

Q , with Pmain
Q , Perr

Q ∈ P,

∂α(Pmain
Q − P0)(xQ) = 0 for all α ∈ A0,

and Pmain
Q ∈ Γ(xQ, �(A0) − 1, CM);

and |∂αPerr
Q (0)| ≤ 2A1(A−

0 )S0−S̄/2 for |α| ≤ m − 1.
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Since P0 ∈ Γ(x0, �(A0),M0), and since we are in the non-trivial case, we
may apply here the analysis of Section 32. By Lemma 7 from Section 32,
we learn the following in Case (4).

(6) There exists P ∈ P, satisfying

∂α(P − P0)(xQ) = 0 for all α ∈ A0; and P ∈ Γ(xQ, �(A0) − 1, C′M0) .

Moreover, any such P satisfies that P − P0 ∈ CM0B(xQ, A2δQ0).

Since M0 ≥ 2−S0 , then by (5) and (6), we conclude that in Case (4), we
may write PQ = Pmain

Q + Perr
Q , with Pmain

Q , Perr
Q ∈ P such that

(7) ∂α(Pmain
Q − P0)(xQ) = 0 for all α ∈ A0,

Pmain
Q ∈ Γ(xQ, �(A0) − 1, CM0),

Pmain
Q − P0 ∈ CM0B(xQ, A2δQ0); and

|∂αPerr
Q (0)| ≤ 2A1(A−

0 )S0−S̄/2 for |α| ≤ m − 1.

In Case (2) and in Case (3), we simply set Pmain
Q = PQ and Perr

Q = 0.
Note that (7) holds also in Case (3), since in this case, xQ = x0 and by our
assumptions

Pmain
Q = PQ = P0 ∈ Γ(xQ, �(A0), CM0) ⊂ Γ(xQ, �(A0) − 1, C′M0).

Thus (7) holds in Case (3) and Case (4). Note that (7) shows that Pmain
Q ∈

Γ
#
A0

(xQ, P0, CM0), in Case (3) and Case (4). (See Section 32 for the definition

of Γ#.)
Next, we claim that,

(8) Pmain
Q −Pmain

Q′ ∈ CM0B(xQ, A2δQ) whenever (1+cG)Q∩(1+cG)Q′ �= ∅;
Q,Q′ ∈ Q.

Indeed, (8) follows from (7) and Lemma 8 in Section 32, when both Q and
Q′ satisfy either (3) or (4). In case where at least one of Q,Q′ satisfies (2),
then (8) follows from (7). For instance, if Q satisfies (2), then PQ = P0 and
δQ = A−1

2 ≥ δQ0 ; hence (8) either follows from (7), or else holds trivially
since PmainQ′ = PQ′ = P0.

We recall that δQ ≥ c · 2−S0 for all Q ∈ CZ(A−
0 ), hence for all Q ∈ Q.

Recall also that |xQ| ≤ 2CS0 for Q ∈ Q (because xQ ∈ Q∗∗, Q ∈ CZ(A−
0 ),

Q0 ∈ CZ(A0), (1+ cG)Q ∩ (1+ cG)Q0 �= ∅, x0 ∈ E ∩Q∗∗
0 , and |x| ≤ C · 2S0

for x ∈ E). Therefore from (7) we obtain that in Case (4),

(9) |∂βPerr
Q (xQ)| ≤ 2A1(A−

0 )S0−S̄/2 ≤ CM0 · (A2δQ)m−|β| for |β| ≤ m− 1.

(Here, we use our hypothesis M0 ≥ 2−S0 from the Main Lemma, as well
as (SU2) from Section 49.) Note that (9) trivially holds in Cases (2) and (3),
as Perr

Q = 0 in those cases.
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Next, suppose Q,Q′ ∈ Q, with

(1+ cG)Q ∩ (1+ cG)Q′ �= ∅.

Then 1
2
δQ ≤ δQ′ ≤ 2δQ and |xQ − xQ′ | ≤ CδQ. Hence, applying (8) to Q

and Q′, and then applying (9), we learn that

(10) |∂β(PQ− PQ′)(xQ)| ≤ C′′′M0 · (A2δQ)m−|β| for |β| ≤ m− 1.

Next, recall that (Γ(xQ, �(A0) − 1,M))M>0 is C-equivalent above 2−S0 to
the blob arising from a CS0-bit MALP with constant C′. Therefore, from
Lemma 4 in Section 40, we have the following elementary result.

(11) Suppose P ∈ Γ(xQ, �(A0)−1,M),M ≥ 2−S0 , and suppose that |∂αP′(0)|
≤ 2−CS0 (for a large enough constant C determined bym and n). Then
P+P′∈Γ(xQ, �(A0) − 1,C′M).

Taking P = Pmain
Q and P′ = Perr

Q in (11), recalling that M0 ≥ 2−S0 by our
assumptions, and applying (7) and (SU2), we learn that

(12) PQ ∈ Γ(xQ, �(A0) − 1, C′M0) for Q ∈ Q in Case (4).

We have (12) also for Q ∈ Q in Case (3), since then

PQ = P0 ∈ Γ(x0, �(A0),M0) = Γ(xQ, �(A0),M0) ⊆ Γ(xQ, �(A0) − 1, C′M0).

In Case (2), there is no analogue of (12), since xQ /∈ E, and the Γ(xQ, �,M)
are undefined.

Our basic results on the polynomials PQ are (10) and (12).
We prepare to apply our induction hypothesis, namely the Main Lemma

for A−
0 .

Let Q ∈ Q be in Case (3) or (4). We will check that the cube Q, the
point xQ, the polynomial PQ, and the constant C′′M0 (for a suitable integer
constant C′′ ≥ 1 depending only on m,n), satisfy the hypotheses of the
Main Lemma for A−

0 . In fact:

• Q ∈ CZ(A−
0 ), since Q ∈ Q.

• xQ ∈ E ∩ Q∗∗, with xQ ∈ E ∩ Q∗ if E ∩ Q∗ �= ∅. (In Case (3), this
holds, since xQ = x0 ∈ E∩Q∗; in Case (4), it follows from the defining
property of the procedure Find-Representative.)

• PQ ∈ P, and, for |α| ≤ m−1, ∂αPQ(0) is a machine number of absolute
value at most 2A1(A

−
0 )S0 (as we noted immediately after (2), (3), (4)).
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• C′′M0 is a machine number satisfying

2−S0 ≤ C′′M0 ≤ C′′′A1(A0)2S0 ≤ A1(A−
0 )2

S0 ,

provided that A0 ≥ C′′′. (Recall from Section 17 that A1(A
−
0 ) ≥

A0A1(A0).)

• PQ ∈ Γ(xQ, �(A−
0 ), C

′′M0), as we see from (12).

This completes our verification of the hypotheses of the Main Lemma for A−
0 .

Applying that lemma, we obtain a function

(13) FQ ∈ Cm((1 + cG)Q), for each Q ∈ Q in Case (3) or (4), satisfying
the following:

(14) J+x (FQ) − PQ ∈ A3(A−
0 ) · C′′M0 · B+(x, δQ) for x ∈ (1+ cG)Q.

(15) Jx(FQ) ∈ Γ(x, 0, A3(A−
0 ) · C′′M0) for all x ∈ E ∩ (1+ cG)Q.

(16) If xQ ∈ (1+ cG)Q, then JxQ(FQ) = PQ.

(17) Let x = (x1, . . . , xn) ∈ (1 + cG)Q, and assume each xj is a machine
number. Then

|∂α[J+x (FQ) − fx(A
−
0 , Q, xQ, PQ)](0)| ≤ 2A3(A−

0 )S0−S̄/2 for |α| ≤ m.

Properties (14),..., (17) hold whenQ∈Q falls into Case (3) or (4). In Case (2),
we simply define

(18) FQ = P0.

Properties (13), (14), (16) hold also forQ ∈ Q in Case (2), since we then have
J+x (FQ) = JxQ(FQ) = PQ = P0. Property (15) holds vacuously in Case (2),
while property (17) makes no sense in Case (2), since fx(A

−
0 , Q, xQ, PQ) is

defined only when xQ ∈ E. (See the comment “Inputs are as follows” in the
Main Algorithm.)

With θQ
A−
0

as in Section 54, we define

(19) F =
∑
Q∈Q

θ
Q

A−
0
FQ on (1+ cG)Q0.

Note that (19) makes sense, thanks to (13), since θQ
A−
0

is supported in

(1+cG)Q. Recall that any point in Rn has a small neighborhood that meets
at most C of the supports of the θQ

A−
0

(Q ∈ CZ(A−
0 )). Consequently,

(20) F ∈ Cm((1+ cG)Q0).

We check that the above function F satisfies properties (I),...,(IV) in the
conclusion of the Main Lemma for A0.
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Regarding (I), let x ∈ (1+ cG)Q0, and let Q̂ ∈ CZ(A−
0 ) contain x. Then

(21) J+x (F− P0) = J+x (F
�Q− P0) +

∑
Q∈Q

J+x (θ
Q

A−
0
) �+

x J
+
x (FQ− F

�Q),

since ∑
Q∈Q

J+x (θQ
A−
0
) = 1.

A givenQ∈Q makes a non-zero contribution to (21) only if x∈(1 + cG)Q.
There are at most C such Q ∈ Q, and they all satisfy 1

2
δ
�Q ≤ δQ ≤ 2δ

�Q, and

(22) J+x (FQ− F
�Q) = PQ− P

�Q+ J+x (FQ− PQ) − J+x (F�Q− P
�Q)

∈ C′′′A3(A−
0 )M0B

+(x, δ
�Q) + CM0B

+(x,A2δ�Q),

thanks to (14) and (10). It therefore follows from (21) and (14), along with
our estimates for the derivatives of the θQ

A−
0

, that

(23) J+x (F− P0) ∈ [P
�Q− P0] + CivAm2 A3(A

−
0 )M0B

+(x, δ
�Q).

Next, note that

(24) P
�Q− P0 ∈ CM0B

+(x
�Q, A2δQ0 ) ⊆ C′M0B

+(x,A2δQ0 ).

If Q̂ falls into Case (4), this follows from (7); note that |x − x
�Q| ≤ Cδ

�Q <

C′δQ0 since x ∈ Q̂∩ (1+ cG)Q0, with Q̂ ∈ CZ(A−
0 ) and Q0 ∈ CZ(A0). (See

Lemma 6 from Section 21.) If instead Q̂ falls into Case (2) or (3), then (24)
holds trivially, since then P

�Q = P0.
We have δ

�Q ≤ CδQ0 , by Lemma 6 from Section 21. Consequently, (23)
and (24) together yield

J+x (F) − P0 ∈ CvAm2 A3(A
−
0 )M0B

+(x, δQ0).

This implies conclusion (I) of the Main Lemma for A0, since A3(A0) ≥
CvAm2 A3(A

−
0 ).

Next, we check conclusion (II) for our function F. Let x ∈ E∩(1+cG)Q0,

and let Q̂ ∈ CZ(A−
0 ) with Q̂ � x. Then (19) gives

(25) Jx(F) = Jx(F�Q) +
∑
Q∈Q

Jx(θ
Q

A−
0
) �x Jx(FQ− F

�Q).

The only Q ∈ Q that contribute to (25) are those satisfying x ∈ (1+ cG)Q.
There are at most C such Q ∈ Q, and they satisfy 1

2
δ
�Q ≤ δQ ≤ 2δ

�Q.
Moreover, given such a Q, we can argue as follows:

Applying (15) to Q and to Q̂, we find that

(26) Jx(FQ− F
�Q) ∈ Γ(x, 0, C′′A3(A−

0 )M0) − Γ(x, 0, C′′A3(A−
0 )M0)

⊆ C′′′A3(A−
0 )M0σ(x, 0).
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Also, (22) applies, and it gives

(27) Jx(FQ− F
�Q) ∈ CivAm2 A3(A

−
0 )M0B(x, δ

�Q).

From (26), (27), our estimates for the derivatives of θQ
A−
0

and the Whitney

t-convexity of σ(x, 0), we conclude that

(28) Jx(θ
Q

A−
0
) �x Jx(FQ− F

�Q) ∈ CvAm2 ·A3(A−
0 )M0σ(x, 0).

Putting (15) and (28) into (25), we conclude that

(29) Jx(F) ∈ Γ(x, 0, CviAm2 ·A3(A−
0 )M0) ⊆ Γ(x, 0, A3(A0)M0),

since A3(A0) ≥ CviAm2 · A3(A−
0 ). Conclusion (II) for our function F is im-

mediate from (29).
Next, we check conclusion (III). Suppose x0 ∈ (1+ cG)Q0. From (19),

(30) Jx0(F) =
∑
Q∈Q

Jx0(θ
Q

A−
0
) �x0 Jx0(FQ).

The only Q that contribute to (30) are those satisfying x0 ∈ (1 + cG)Q.
Such Q fall into Case (3), and therefore satisfy PQ = P0, xQ = x0. In
particular, such Q satisfy xQ = x0 ∈ (1+cG)Q, and therefore also Jx0(FQ) =
JxQ(FQ) = PQ = P0, by (16). Consequently, (30) implies

Jx0(F) =
∑
Q∈Q

Jx0(θ
Q

A−
0
) �x0 P0 = P0,

proving conclusion (III) of the Main Lemma for A0.

It remains to check conclusion (IV).
Let x = (x1, . . . , xn) ∈ (1+cG)Q0, and assume each xj is a machine number.
Let Q1, . . . , Qkmax be a list of all the Q ∈ CZ(A−

0 ) for which we have x ∈
(1+ cG)Q. This precise list of cubes is being computed in Lines 5, 6 of the
Main Algorithm. We assume that our enumeration here corresponds to that
in Lines 5, 6.

Then from (19) we obtain

(31) J+x (F) =

kmax∑
k=1

J+x (θ
Qk
A−
0
) �+

x J
+
x (FQk).

Note that
J+x (FQk) = P0 if E ∩Q∗∗

k = ∅ (see (18));

and if E ∩Q∗∗
k �= ∅, then the following holds:

If x0 ∈ Q∗
k, then xQk = x0 and PQk = P0, else: we use Find-Representa-

tive to find xQk ∈ E ∩Q∗∗
k , with xQk ∈ E ∩Q∗

k if E ∩Q∗
k �= ∅; then we

use Find-Neighbor to compute a polynomial PQk ∈ P.
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Comparing the above discussion with Lines 5,..., 11 of the Main Algorithm,
we find that:

(32) fk from Line 8 agrees perfectly with J+x (FQk) if E ∩Q∗∗
k = ∅.

(33) xk, Pk from Lines 9,..., 12 agree perfectly with our present xQk , PQk , in
case E ∩Q∗∗

k �= ∅.

From (33) and (17), we see that

(34) |∂α[J+x (FQk)−fx(A
−
0 , Qk, xk, Pk)](0)| ≤ 2A3(A

−
0 )S0−S̄/2 for |α| ≤ m, when-

ever E ∩Q∗∗
k �= ∅.

Here, Qk, xk, Pk are as in the Main Algorithm. Comparing (34) with Line 13
in the Main Algorithm, we conclude that |∂α[J+x (FQk)−fk](0)| ≤ 2A3(A

−
0 )S0−S̄/2

for |α| ≤ m, whenever E ∩Q∗∗
k �= ∅.

Together with (32), this shows that, when we execute Lines 16, 17 of the
Main Algorithm, we have

(35) |∂α[J+x (FQk) − fk](0)| ≤ 2A3(A−
0 )S0−S̄/2 for all |α| ≤ m, 1 ≤ k ≤ kmax.

Note also that

(36) |∂α[J+x (FQk)](0)| ≤ 2CA3(A
−
0 )S0 for |α| ≤ m.

In fact, in the case E ∩ Q∗∗
k = ∅, we have J+x (FQk) = P0 by (18), and (36)

follows from our hypotheses on P0 in the formulation of the Main Lemma
(recall that A1(A0) ≤ A3(A

−
0 )). In the case where E ∩ Q∗∗

k �= ∅, since
x ∈ (1+ cG)Qk, (14) applies, and we have

(37) |∂α[FQk−Pk](x)| ≤ A3(A
−
0 ) · C′′M0 · δm−|α|

Qk
for |α| ≤ m, 1 ≤ k ≤ kmax.

Since also |x| ≤ 2CS0 (since x ∈ (1+ cG)Q0, with x0 ∈ Q∗∗
0 ∩ E, δQ0 ≤ 1), it

follows from (37) that

|∂α[J+x (FQk − Pk)](0)| ≤ A3(A−
0 )M0 · 2CS0

for |α| ≤ m, 1 ≤ k ≤ kmax. Since M0 ≤ A1(A0)2
S0 ≤ 2A1(A

−
0 )S0 , and since

|∂αPk(0)| ≤ 2A1(A
−
0 )S0 ≤ 2A3(A

−
0 )S0 (see the text right after (4)), then (36)

follows. This completes our verification of (36).
Regarding the m-jets of our θQk

A−
0

, we recall that Algorithm PU produces

{J+x (θ
Qk
A−
0
)}approx ∈ P+, satisfying

(38) |∂α[J+x (θ
Qk
A−
0
) − {J+x (θ

Qk
A−
0
)}approx](x)| ≤ 2CS0−S̄ for |α| ≤ m, 1 ≤ k ≤ kmax.
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Recall that Algorithm PU computes the numbers ∂α{J+x (θ
Qk
A−
0
)}approx(x) for

|α| ≤ m; in particular, those numbers are machine numbers.
Since δQk ≥ 2−CS0 (because Qk ∈ CZ(A−

0 )), our estimates for derivatives

of θQA yield |∂αθ
Qk
A−
0
(x)| ≤ Cδ−|α|

Qk
≤ 2C′S0 for |α| ≤ m, 1 ≤ k ≤ kmax, hence

(39) |∂α[J+x (θ
Qk
A−
0
)](x)| ≤ 2CS0 for |α| ≤ m, 1 ≤ k ≤ kmax.

We can now use (35), (36), (38), (39) to conclude that

(40)

∣∣∣∣∂α[ kmax∑
k=1

J+x (θ
Qk
A−
0
) �+

x J
+
x (FQk) −

kmax∑
k=1

{J+x (θQk
A−
0
)}approx �+

x fk

]
(x)

∣∣∣∣
≤ 2CA3(A−

0 )S0−S̄/2 for |α| ≤ m.

(Here again, we have used the fact that |x| ≤ 2CS0 , to pass from (35), (36)
to corresponding estimates for derivatives at x.)

From (35), (36), (38) , (39), we have also∣∣∂α[{J+x (θQkA−
0
)}approx](x)

∣∣ ≤ 2CS0 and |∂αfk(x)| ≤ 2CA3(A−
0 )S0 for |α| ≤ m.

Consequently, when we execute Lines 16, 17 of the Main Algorithm, we obtain
a polynomial fx(A0, Q0, x0, P0) that satisfies

(41)

∣∣∣∣∂α[fx(A0, Q0, x0, P0) −

kmax∑
k=1

{J+x (θQk
A−
0
)}approx �+

x fk](x)

∣∣∣∣ ≤ 2CA3(A−
0 )S0−S̄/2

for |α| ≤ m.

(Here again, we use |x| ≤ 2CS0 .)
Combining (31), (40), and (41), we find that∣∣∂α[J+x (F) − fx(A0, Q0, x0, P0)](x)

∣∣ ≤ 2CA3(A−
0 )S0−S̄/2 for |α| ≤ m.

Again using |x| ≤ 2CS0 , we deduce that

(42)
∣∣∂α[J+x (F) − fx(A0, Q0, x0, P0)](0)

∣∣ ≤ 2C′A3(A−
0 )S0−S̄/2 for |α| ≤ m.

Since A3(A0) ≥ C′A3(A−
0 ), we conclude from (42) that (IV) of the Main

Lemma for A0 holds.
Thus, we have shown that our F ∈ Cm((1 + cG)Q0) satisfies all the

properties (I),...,(IV).
The proof of the Main Lemma is complete. �
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57. Applications of the main lemma

In this section, we prove an analogue of Theorem 4 that relates to our model
of computation. We assume here the model of computation from Section 38,
as well as (SU1), (SU2) from Section 49. In this section, c, C, C′, etc. stand
for constants depending only on m and n.

Theorem 9. Suppose we are given the following data:

• A finite set E ⊂ Rn, such that

∗ For x ∈ E, we have that x = (x1, ..., xn) where each xi is a ma-
chine number with |xi| ≤ 2S0 .

∗ For x, y ∈ E such that x �= y we have |x − y| ≥ 2−S0 .

• For each x ∈ E, two real numbers f(x) and σ(x), such that

∗ f(x) is a machine number that satisfies |f(x)| ≤ 2S0 .
∗ σ(x) is a machine number that satisfies 2−S0 ≤ σ(x) ≤ 2S0 .

Assume that #(E) = N. Then, there exists F ∈ Cm(Rn) with the following
properties:

(A) If F̃ ∈ Cm(Rn) and 2−S0 ≤M ≤ 2S0 satisfy

‖ F̃ ‖Cm(Rn)≤M and |F̃(x) − f(x)| ≤Mσ(x) for x ∈ E,
then

‖ F ‖Cm(Rn)≤ CM and |F(x) − f(x)| ≤ CMσ(x) for x ∈ E.

(B) There is an algorithm, in our model of computation, that receives the
given data, performs one-time work, and then responds to queries.

A query consists of a point x = (x1, ..., xn) ∈ Rn, such that xi is a
machine number with |xi| ≤ 2S0 for all 1 ≤ i ≤ n. The response to the
query is the family of coefficients

(
∂αP̄x(0)

)
|α|≤m of a polynomial P̄x

that satisfies

|∂α
(
J+x (F) − P̄x

)
(0)| ≤ 2−S̄/4 for all |α| ≤ m.

The one-time work takes CN logN operations and CN storage. The
work to answer a query is C logN.

Here, C is a constant depending only on m and n.
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We will make use of the Main Lemma for ∅ from Section 55. Recall that
CZ(∅) consists of all dyadic cubes of sidelength A−1

2 . The following lemma
is an immediate consequence of the Main Lemma for ∅ from Section 55, and
of Lemma 1 from Section 55.

Lemma 1. Suppose that Q0 ⊂ Rn is a dyadic cube of sidelength A−1
2 ,

x0 ∈ E ∩Q∗
0 and 2−S0 ≤M0 ≤ A1(∅)2+S0 . Let P0 ∈ P be such that

(1) ∂αP0(0) is a machine number that satisfies |∂αP0(0)| ≤ 2A1(∅)S0 for all
|α| ≤ m− 1.

(2) P0 ∈ Γ(x0, �∗,M0).

Then, there exists
F ∈ Cm((1+ cG)Q0)

with the following properties:

(3) |∂β(F− P0)(x)| ≤ CA3(∅)M0 for all x ∈ (1+ cG)Q0, |β| ≤ m.

(4) Jx(F) ∈ Γ(x, 0, CA3(∅)M0) for all x ∈ E ∩ (1+ cG)Q0.

(5) Let x = (x1, ..., xn) ∈ (1+ cG)Q0 be such that xi is a machine number
for all 1 ≤ i ≤ n. Then,∣∣∂α [J+x (F) − fx(∅, Q0, x0, P0)] (0)

∣∣ ≤ 2A3(∅)S0−S̄/2for all |α| ≤ m,

where fx(∅, Q0, x0, P0) is computed by the Main Algorithm in Section 55.

(6) Let x = (x1, ..., xn) ∈ (1+ cG)Q0 be such that xi is a machine number
for all 1 ≤ i ≤ n. Then the numbers

∂αfx(∅, Q0, x0, P0)(0),
for |α| ≤ m, are all machine numbers in the range [−2A3(∅)S0 , 2A3(∅)S0 ].

Here, C > 0 is a constant depending only on m and n.

Let us describe the algorithm promised in Theorem 9. We perform all
the one-time work described in Sections 48, 50, 51, 52. In addition, in the
one-time work, we subdivide Rn into dyadic cubes of sidelength A−1

2 . LetΩ0
be the set all dyadic cubes Q of sidelength A−1

2 , such that E ∩Q∗ �= ∅. As
in Section 34, we have #(Ω0) ≤ CN. We compute the list Ω0, and then
sort the cubes in Ω0 with respect to the lexicographic order on the centers
of the cubes. We store the sorted list in memory, during the one-time work.
This requires CN logN operations and CN storage.

For each Q ∈ Ω0, we compute a representative xQ := Find-Representa-
tive(Q). Then xQ ∈ E ∩Q∗, by the defining property of Find-Representative
from Section 25. We store the CN representatives in memory.
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Next, for each Q ∈ Ω0 we will compute a polynomial PQ ∈ P having the
following properties:

(7) ∂α(PQ)(0) is a machine number in the range [−2A1(∅)S0 , 2A1(∅)S0 ] for all
|α| ≤ m− 1.

(8) Suppose P ∈ P and M ≥ 2−S0 satisfy P ∈ Γ(xQ, �∗,M).
Then PQ ∈ Γ(xQ, �∗, CM).

We may compute the machine numbers (∂α(PQ)(0))|α|≤m−1 thanks to the

discussion at the end of Section 53. (We assume, as we may, that A1(∅)
exceeds the constant C′ from that discussion.) We compute and store all
the polynomials PQ in memory, during the one-time work. The total time
required for the computation of the points xQ and the polynomials PQ does
not exceed CN logN, and the storage required is no more than CN.

This completes the description of the one-time work of our algorithm.
The resources being spent for the one-time work are bounded by CN logN
computer operations and CN storage, for C depending only on m and n.

We move to describe the query algorithm. Suppose we are given a point
x ∈ Rn, whose coordinates are machine numbers with absolute values that
do not exceed 2S0 . We set Ω0(x) = {Q ∈ Ω0 : x ∈ (1 + cG)Q}. Note that
#(Ω0(x)) ≤ C. Given the one-time work, we may compute Ω0(x) using at
most C logN operations, by applying binary searches on the sorted list Ω0
(details in Section 34).

Once Ω0(x) is obtained, the algorithm computes the polynomial P̄x,
which is our machine approximation to

(9)
∑

Q∈Ω0(x)
J+x
(
θ∅Q
)�+

x fx(∅, Q, xQ, PQ).

Let us elaborate on the computation of the approximation to (9). For
each Q ∈ Ω0(x) denote fQ = fx(∅, Q, xQ, PQ). Note that from (7), we
see that x,Q, xQ, PQ satisfy the conditions in the comment “Inputs are as
follows” in Section 55. Hence, fQ is well-defined, and we may apply the
Main Algorithm from Section 55 to compute (∂αfQ(0))|α|≤m. Next, in order

to carry out the �+
x -operation, we compute the machine approximation to

(∂αfQ(x))|α|≤m. According to (6), we have that |∂αfQ(0)| ≤ 2A3(∅)S0 for all

|α| ≤ m, and therefore also our machine approximations (∂αfQ(x))approx
are never larger than 2CA3(∅)S0 in absolute value. Using Algorithm PU from
Section 54 we may compute machine numbers that approximate

(10) ∂α
(
J+x
(
θ∅Q
)�+

x fQ
)
(x) for all |α| ≤ m.
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The machine approximations are all smaller than 2CA3(∅)S0 in absolute
value, and they differ from the actual quantities in (10) by no more than
2C

′A3(∅)S0−S̄/2. Summing over Q ∈ Ω0(x), we compute numbers that are
machine approximations to

(11) ∂α
( ∑
Q∈Ω0(x)

J+x
(
θ∅Q
)�+

x fQ

)
(x) for all |α| ≤ m.

Since #(Ω0(x)) ≤ C, our machine approximations are all bounded by

2C
′A3(∅)S0 , and differ from (11) by at most 2C̃A3(∅)S0−S̄/2, according to (SU1)

and (SU2). Finally, we compute from our approximation to (11) additional
machine numbers, which are our approximations to

(12) ∂α
( ∑
Q∈Ω0(x)

J+x
(
θ∅Q
)�+

x fQ

)
(0) for all |α| ≤ m.

Since |x| ≤ 2CS0 , then our machine approximations to (12) are smaller than

2ĈA3(∅)S0 , and differ from (12) by no more than 2ĈA3(∅)S0−S̄/2. Thus we are
able to compute an approximation to the polynomial in (9), as we computed
good approximations to all of its derivatives at zero. This completes the
description of the query algorithm. The amount of work needed to carry
out the query is bounded by C logN, given the one-time work.

Remark. It is equally easy to produce, in Theorem 9, an approximation to
the derivatives of the polynomial J+x (F) at the point x, rather than at zero.
We just observe that S̄ ≥ CS0 and |x| ≤ 2CS0 , hence the roundoff errors
caused by translating from 0 to x do not hurt.

It remains to prove that the polynomials in (9) satisfy the conclusions of
Theorem 9. This is essentially the content of the following lemma.

Lemma 2. Let E, f, σ be as in Theorem 9. Then, there exists F ∈ Cm(Rn)

for which the following holds: Suppose 2−S0≤M≤(A1(∅))1/22S0 satisfies that

(13) Γ(x, �∗,M) �= ∅ for all x ∈ E.

Then,

(14) |F(x) − f(x)| ≤ C′Am2 A3(∅)Mσ(x) for all x ∈ E,

(15) ‖ F ‖Cm(Rn)≤ C′Am2 A3(∅)M,

(16) For any x ∈ Rn whose coordinates are machine numbers whose absolute
value is smaller than 2S0 , we have

|∂α
(
J+x (F) − P̄x

)
(0)| ≤ 2C′A3(∅)S0−S̄/2 for all |α| ≤ m,

where P̄x is defined in (9).

Here, C′ > 0 denotes a constant depending only on m and n.
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Proof. Recall that for any cube Q ∈ Ω0, we have defined a point xQ ∈
Q∗ ∩ E, and a polynomial PQ ∈ P such that ∂αPQ(0) is a machine number
whose absolute value does not exceed 2A1(∅)S0 , for all |α| ≤ m − 1 (see (7)).
Fix Q ∈ Ω0. By our assumption (13), we have

(17) Γ(xQ, �∗,M) �= ∅.

According to (8) and (17), we know that

(18) PQ ∈ Γ(xQ, �∗, C′M) ⊂ CMB(xQ, 1)

where the last inclusion follows from Property 4 from Section 13, and the
definition of Γ(xQ, 0,M). We will now invoke Lemma 1, for the quantity
C′M, the cube Q, the point xQ ∈ E ∩ Q∗ and the polynomial PQ, based
on (18). By the conclusion of Lemma 1, there exists FQ ∈ Cm((1 + cG)Q),
with the following properties:

(19) |∂β(FQ− PQ)(x)| ≤ CA3(∅)M for all |β| ≤ m, x ∈ (1+ cG)Q.

(20) Jx(FQ) ∈ Γ(x, 0, CA3(∅)M) for all x ∈ E ∩ (1+ cG)Q,

(21) Let x ∈ (1+cG)Qk be a point whose coordinates are machine numbers.
Then,

|∂α (J+x (FQ) − fx(∅, Q, xQ, PQ)) (0)| ≤ 2A3(∅)S0−S̄/2.
(22) Let x ∈ (1+cG)Q be a point whose coordinates are machine numbers.

Then the quantities ∂αfx(∅, Q, xQ, PQ)(0), for |α| ≤ m, are all machine
numbers in the range [−2A3(∅)S0 , 2A3(∅)S0 ].

We define a function F : Rn → R by setting

(23) F(x) =
∑
Q∈Ω0

θ∅Q(x)FQ(x).

Since Supp(θ∅Q) ⊂ (1+ cG/2)Q and FQ ∈ Cm((1+ cG)Q), then F is a well-

defined Cm(Rn)-function. For any x ∈ Rn, we have that x ∈ Supp(θ∅Q) only
for Q ∈ Ω0(x). Therefore (23) implies that

(24) J+x (F) =
∑

Q∈Ω0(x)
J+x
(
θ∅Q
)�+

x J
+
x (FQ).

For any Q ∈ Ω0 we have δQ = A−1
2 , and by the explanation in Section 54,

(25) |∂β(θ∅Q)(x)| ≤ CAm2 for all |β| ≤ m and x ∈ Rn.

Since #(Ω0(x)) ≤ C, then (18), (19), (24), (25) imply that

(26) |∂βF(x)| < CAm2 A3(∅)M for all |β| ≤ m, x ∈ Rn.

Thus, (15) is proven.
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Recall the definition (9) of P̄x, and also the discussion following that
definition. We have that, for all |α| ≤ m,

(27)

∣∣∣∣∂α(P̄x−
∑

Q∈Ω0(x)
J+x
(
θ∅Q
)�+

x fx(∅, Q, xQ, PQ)

)
(0)

∣∣∣∣ ≤ 2CA3(∅)S0−S̄/2
By (21), (24), (25) and (27) we conclude that

(28)
∣∣∂α (J+x (F) − P̄x

)
(0)
∣∣ ≤ 2ĈA3(∅)S0−S̄/2 for all |α| ≤ m.

This proves (16). Next, we prove (14). Fix x ∈ E and a cube Q ∈ Ω0(x).
Then, since the θ’s are a partition of unity,

(29) Jx(F) = Jx(FQ) +M
∑

Qν∈Ω0(x)
Jx

(
θ∅Qν ·

FQν − FQ

M

)
.

According to (20) and to Property 1 from Section 13, we know that

Jx

(
FQν − FQ

M

)
∈ C′A3(∅)σ(x, 0).

By (18) and (19), we have that

Jx

(
FQν − FQ

M

)
∈ C′A3(∅)B(x, 1).

Next, we invoke the Whitney t-Convexity of σ(x, 0), according to Property 3
from Section 13. By the Whitney t-convexity and (25),

(30) Jx

(
θ∅Qν ·

FQν−FQ
M

)
= Jx

(
θ∅Qν
)�x Jx(FQν−FQ

M

)
∈ CAm2 A3(∅)σ(x, 0).

Recall that #(Ω0(x)) < C. From (29), (30) and (20), we conclude that

(31) Jx(F)∈Γ(x, 0, CA3(∅)M)+C′Am2 A3(∅)Mσ(x, 0)⊂Γ(x, 0, C̃Am2 A3(∅)M).

Now (14) follows from (31). The lemma is thus proven. �

Proof of Theorem 9. Let 2−S0 ≤M ≤ 2S0 and suppose that F̃ ∈ Cm(Rn)

satisfies

(32) ‖ F̃ ‖Cm(Rn)≤M and |F̃(x) − f(x)| ≤Mσ(x) for all x ∈ E.

According to Property 0 from Section 13,

(33) Γ(x, �∗, CM) �= ∅ for all x ∈ E.

Assume, as we may, that (A1(∅))1/2 ≥ C for C being the constant from (33).
Now, (A) and (B) follow from Lemma 2, and from the description of the
algorithm above, since A2 and A3(∅) are constants depending only on m
and n. The theorem is thus proven. �
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Recall that S̄ is the precision of our model of computation, as presented
in Section 38. Recall from Section 38 that we are interested only in the
order of magnitude of S̄; it is possible to simulate a model of computation
with CS̄-bit machine numbers, using a model of computation that is based
on S̄-bit machine numbers. The work to simulate a single CS̄-bit operation,
using a model of computation able to work only with S̄-bit numbers, is
bounded by C′ that depends solely on C.

Recall from Section 49, that our only assumptions on S̄ and S0 are that
S̄ ≥ CS0 and S0 > C, for some constant C depending only on m and n
(since A0, p# depend only on m and n). As we are interested only in the
order of magnitude of S̄, it is possible to deduce a variant of Theorem 9, in
which S0, the precision in which the input is given, equals S̄, the precision
of our model of computation. We conclude the following theorem.

Theorem 10. Assume the model of computation from Section 38. Suppose
we are given the following data:

• A finite set E ⊂ Rn, such that for any x = (x1, ..., xn) ∈ E, we have
that each xi is a machine number.

• For each x ∈ E, two real numbers f(x) and σ(x), such that f(x), σ(x)
are machine numbers, and σ(x) > 0.

Assume that #(E) = N. Then, there exists F ∈ Cm(Rn) with the follow-
ing properties:

(A) If F̃ ∈ Cm(Rn) and M > 0 is a machine number such that

‖ F̃ ‖Cm(Rn)≤M and |F̃(x) − f(x)| ≤Mσ(x) for x ∈ E,
then

‖ F ‖Cm(Rn)≤ CM and |F(x) − f(x)| ≤ CMσ(x) for x ∈ E.
(B) There is an algorithm, in our model of computation, that receives the

given data, performs one-time work, and then responds to queries.

A query consists of a point x = (x1, ..., xn) ∈ Rn, such that xi is a
machine number for all 1 ≤ i ≤ n. The response to the query is a
family of machine numbers (qα)|α|≤m such that

|∂αF(x) − qα| ≤ 2−S̄ for all |α| ≤ m.

(It might happen that |∂αF(x)| > 2S̄ for some α, and consequently,
∂αF(x) cannot be approximated by a machine number. In that case, we
output machine numbers m0, ...,mk, with k ≤ C, such that

∣∣∂αF(x) −∑k
i=0 2

iS̄mi
∣∣ ≤ 2−S̄.)
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The one-time work takes CN logN operations and CN storage. The
work to answer a query is C logN.

Here, C is a constant depending only on m and n.

Indeed, Theorem 10 follows immediately from Theorem 9 and the dis-
cussion in Section 38, once we observe that for a machine number a, the
condition a > 0 is equivalent to a ≥ 2−S̄.
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