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Genus 3 normal coverings of the
Riemann sphere branched over 4 points

Yolanda Fuertes and Manfred Streit

Abstract
In this paper we study the 5 families of genus 3 compact Riemann

surfaces which are normal coverings of the Riemann sphere branched
over 4 points from very different aspects: their moduli spaces, the
uniform Belyi functions that factorize through the quotient by the
automorphism groups and the Weierstrass points of the non hyperel-
liptic families.

1. Introduction

The genus 3 complex algebraic curves or compact Riemann surfaces which
are normal coverings of the Riemann sphere branched over four points be-
long to 3 different non-hyperelliptic families and 2 different hyperelliptic
families already known since the work of Broughton [2] and Kuribayashi
and Komiya [10]. The former describes the finite groups that occur as au-
tomorphism groups for genus 2 and 3 compact Riemann surfaces in the
setting of Fuchsian groups, whereas Kuribayashi and Komiya obtain the al-
gebraic equations for the families of genus 3 curves and the automorphism
groups they admit. Here we make explicit not only the canonical models
for the non-hyperelliptic families, but also for every family the morphism
or meromorphic function to the Riemann sphere corresponding to taking
the quotient by its automorphism group. This is done mainly combining
representation and character theory with classical results about compact
Riemann surfaces, as developed in the second author’s paper [16]. At this
point, after a straightforward analysis of the cross ratios of the 4 branched
points, we describe their isomorphisms classes or moduli spaces. The arti-
cles [6], [4] or [12] are among a wide list of papers amid by the study of the
moduli spaces of families of curves having certain automorphism groups.
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We obtain as well the curves inside each family that admit a uniform
Belyi function (that is, a meromorphic function having at most three criti-
cal values and with the property that every point on the fiber of each critical
value has the same ramification index or, equivalently, these compact Rie-
mann surfaces have the property of satisfying an algebraic equation defined
over a number field and they have a Belyi function that provides a uni-
formization in the classical sense via its monodromy representation) which
factorize through the quotient by the automorphism group (see [15] for the
description of the genus 1 curves with a uniform Belyi function). Finally, we
find the Weierstrass points for every curve belonging to the non-hyperelliptic
families, giving explicitly the Wronskians for suitable basis of the spaces of
holomorphic differentials. The Weierstrass points are characterized by the
property of being zeros of order ≥ g of a holomorphic differential. For every
curve of genus g ≥ 2, the number of Weierstrass points is in between 2g+ 2
and g(g− 1)(g+ 1). Hyperelliptic curves are the ones having exactly 2g+ 2
Weierstrass points. However, in general it is not an easy issue to find the
Weierstrass points of a curve; for instance, it is still an open problem to
find all the Weierstrass points of the Fermat curves xn + yn = 1 for n > 6
(see [13] for a survey on this).

Acknowledgment. The first author is indebted to D. Singerman for oral
communication of Lemma 3 and for supplying very useful references as well
as to G. A. Jones for its valuable suggestions about some group theoretical
aspects of the paper. We are grateful to G. González-Dı́ez for asking us
about the moduli of these families and J. Wolfart for interesting discussions
related with the subject.

2. Preliminaries results

According to Broughton’s list [2] in terms of Fuchsian groups or Kuribayashi
and Komiya [10] in terms of algebraic curves, there exist the following 1-
complex parameter families of genus 3 compact Riemann surfaces admitting
an automorphism group G, for which the morphisms which project to the
quotient surfaces under the action of the automorphism group G, are mero-
morphic functions branched over 4 points, the branching orders specified
below:

Algebraic equation G Branch orders
(I) F1 : x4 + y4 + t(x2y2 + x2 + y2) = −1 S4 (2, 2, 2, 3)

(II) F2 : y4 = x4 − tx2 + 1 C2 � (C2 × C4) (2, 2, 2, 4)
(III) F3 : y2 = x8 − tx4 + 1 D4 × C2 (2, 2, 2, 4)
(IV) F4 : y2 = x7 − tx4 + x D6 (2, 2, 2, 6)
(V) F5 : y3 = (x2 − 1)(x2 − t) C6 (2, 3, 3, 6).
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Before starting with the analysis and description of each case and for the
sake of completeness, let us state some notation and elementary facts about
normal coverings in the framework of Fuchsian groups and rewrite, for our
particular situation, Lemma 5.2 in [6].

Due to the Uniformization Theorem, an arbitrary Riemann surface of
genus g > 1 S can be viewed as a quotient space S ∼= H/K, where H is the
upper half-plane and K is the uniformizing group, a discrete subgroup of
PSL2(R), the group of conformal automorphisms of H, which is torsion free
and acts freely on H, isomorphic to the fundamental group of the surface
and very often termed a (Fuchsian) surface group. From elementary facts
of covering space theory, every conformal automorphism α : S → S lifts to
a conformal automorphism of H, α̃, such that α̃Kα̃−1 = K, i.e: α̃ belongs
to the normalizer of K in PSL2(R), let us denote it from now on by N(K),
and vice versa. With the analogous notation, the existence of a compact
Riemann surface of genus g > 1, S ∼= H/K, admitting an automorphism
group isomorphic to G with quotient surface S/G ∼= S1

∼= H/Γ (that

is, Γ =< K, G̃ >) is, obviously, equivalent to the existence of a surface
kernel epimorphism ϕ : Γ → G (that is, Kernel(ϕ) is a surface group)
and K = Kernel(ϕ). We will say that two surface kernel epimorphisms are
equivalent if they differ by post-composition with an automorphism of G.

The signature [γ;m1,m2, . . . ,mr] of the Fuchsian group Γ encodes its
presentation as an abstract group as well as the geometric nature of the
action of G: γ is the genus of the quotient surface S1 and the {mi} are the
branching orders of the covering S → S1 (for details see [9]).

From now on we will refer to K � Γ as the normal inclusion of Fuch-
sian groups that realizes the covering S −→ S/G and to G as the cover-
ing group. By other hand, we will use the standard abbreviated notation
[m1,m2, . . . ,mr] when γ = 0.

Lemma 1. Let S ∼= H/K and S ′ ∼= H/K ′ be compact Riemann surfaces of
genus g > 1, normal coverings of the Riemann sphere CP1 branched over
{a1, a2, a3, a4} and {a′1, a′2, a′3, a′4}, respectively, with covering group G; K
and K ′ surface groups, K � Γ and K ′ � Γ′ the normal inclusions that
realize the coverings, and let us denote by ϕ and ϕ′ the surface kernel epi-
morphisms, respectively. Then, a conformal automorphism M : CP1 → CP1

with M(ai) = a′i lifts to a conformal automorphism between S and S ′ if and
only if there exists an automorphism of G, τ , such that ϕ′ ◦ η = τ ◦ϕ, where
η is the isomorphism between the groups Γ and Γ′ induced by M .

Proof. This lemma is a corollary of Lemma 5.2 in [6] which is the general
result. �
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Remark 2. For the well known equivalence between compact Riemann
surfaces or algebraic curves and their algebraic function fields, morphisms
f : S → S ′ correspond to function field extensions of degree equal to the de-
gree of the morphisms, that is, f∗(C(S ′)) ↪→ C(S) and [C(S) : f∗(C(S ′)] =
deg(f). In particular, normal coverings with covering group G correspond
to Galois function field extensions and, of course, the function field of the
quotient surface is the fixed field under the action of the Galois group of the
extension; namely, C(S ′) ∼= (C(S))G. We refer to [5] for basic and general
background about algebraic curves or compact Riemann surfaces and their
morphisms.

3. Case (I). Moduli of the family F1

The 1-complex dimensional family of genus 3 compact Riemann surfaces
admitting an automorphism group isomorphic to S4 with branching data
(2, 2, 2, 3), F1, was first studied by Wiman in [18] and later on, among others,
by Rodŕıguez and González-Aguilera in [12].

For every t ∈ C−{±2, −1}, the corresponding smooth projective curve
is given by (see e.g. [12])

(3.1) St ≡
{
x4 + y4 + z4 + t(x2y2 + x2z2 + y2z2) = 0

}
� CP2;

and, in fact, this is a canonical model for each associated genus 3 compact
Riemann surface in F1. In the following brief account we try to give as
explicit as possible the connection between the surface kernel construction
and the canonical model though most of the information are already available
in the cited papers, but we feel that this might be helpful for a better
understanding of the following.

In order to calculate the number of different epimorphisms ϕ from a
Fuchsian quadrangle group of signature [2, 2, 2, 3], Γ = 〈x, y, z | x2 = y2 =
z2 = (xyz)−3 = 1〉, to the finite group S4, the character table of S4 is helpful

C 1A 2A 2B 3A 4A
| C | 1 6 3 8 6

() (12) (12)(34) (123) (1234)
ψ1 1 1 1 1 1
ψ2 1 −1 1 1 −1
ψ3 2 0 2 −1 0
ψ4 3 1 −1 0 −1
ψ5 3 −1 −1 0 1

where we use the standard Atlas notation. For parity reasons two of
the order two elements x, y and z should be mapped to elements of the
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classes 2A where the remaining element should be mapped to an element
of the class 2B. Notice also that a subgroup of S4 containing both a
transposition and a three cycle is the whole group. Thus the number
of different epimorphisms equals the number of solutions of the equations
x2

1 = x2
2 = x2

3 = x3
4 = x1x2x3x4 = 1, xi ∈ S4. This number nϕ can be easily

calculated by using the well known formula, c.f. [8]

nϕ := 3
|2A|||2A||2B||3A|

|S4|
5∑

i=1

ψi(x1)ψi(x2)ψi(x3)ψi(x4)

ψi(1)2
= 216.

Of course to obtain the number of different surface kernels we have to bring
into account that two chosen image quadruples lead to the same surface
kernel if and only if they differ by an automorphism of the group S4. Being
a complete group, i.e. Aut(S4) = S4, we obtain the total number of different
kernels inside the [2, 2, 2, 3] quadrangle group to be nϕ/24 = 9. It is easy to
verify that the epimorphisms which lead to different surface kernels can be
chosen in the following way:

Lemma 3. For every fuchsian group Γ with signature [2, 2, 2, 3], there exist
the following 9 non-equivalent surface epimorphisms ϕj

l : Γ → S4 ( l, j =
1, 2 and 3):

ϕ1
1(x) = (12)(34) ϕ2

1(x) = (14)(23) ϕ3
1(x) = (13)(24)

ϕ1
1(y) = (12) ϕ2

1(y) = (12) ϕ3
1(y) = (12)

ϕ1
1(z) = (23) ϕ2

1(z) = (23) ϕ3
1(z) = (23)

ϕ1
2(x) = (12) ϕ2

2(x) = (12) ϕ3
2(x) = (12)

ϕ1
2(y) = (12)(34) ϕ2

2(y) = (14)(23) ϕ3
2(y) = (13)(24)

ϕ1
2(z) = (23) ϕ2

2(z) = (23) ϕ3
2(z) = (23)

ϕ1
3(x) = (12) ϕ2

3(x) = (12) ϕ3
3(x) = (12)

ϕ1
3(y) = (23) ϕ2

3(y) = (23) ϕ3
3(y) = (23)

ϕ1
3(z) = (12)(34) ϕ2

3(z) = (14)(23) ϕ3
3(z) = (13)(24).

Proof. None of the triples are simultaneously conjugate. �

Generically these kernels belong to biholomorphically inequivalent or
non isomorphic Riemann surfaces. However it might occur that some of
these kernels are conjugate inside PSL2(R), that is, in some bigger Fuchsian
group ∆ containing the group [2, 2, 2, 3]. It is an easy observation that ∆
has to be a triangle group.
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Lemma 4. a) The possible inclusions of a Fuchsian group of signature
[2, 2, 2, 3] inside a triangle group ∆i are the following

i) Γ1 = [2, 2, 2, 3]1 ≤ [2, 3, 7] = ∆1 with index 7.
i′) Γ1′ = [2, 2, 2, 3]1′ ≤ [2, 3, 7] = ∆1′ with index 7.
ii) Γ2 = [2, 2, 2, 3]2 ≤ [2, 3, 8] = ∆2 with index 4.
iii) Γ3 = [2, 2, 2, 3]3 � [2, 3, 9] = ∆3 with index 3.
iv) Γ4 = [2, 2, 2, 3]4 � [2, 4, 6] = ∆4 with index 2.

b) In case iii) the nine different kernels belong to only three biholomorphically
inequivalent Riemann surfaces, i.e. the orbit of a kernel inside [2, 3, 9] under
conjugation has length 3. In case iv) we find 5 different Riemann surfaces.
In case i), i′) and ii) there are 9 biholomorphically inequivalent Riemann
surfaces.

Proof. a) The proof that those triangle groups are the only possible funch-
sian groups which contain a quadrangle group with signature [2, 2, 2, 3] is
done in [3] using a simple area argument. According to Theorem 1 in [14],
the existence of the above inclusions of Fuchsian groups comes from the ex-
istence of the following permutation representations θi of the action of the
generators of the corresponding triangle group, ∆i, on the set of left coset
representatives of ∆i/Γi, for i = 1, 2, 3 and 4; namely:

θ1 : [2, 3, 7] → S7 θ1′ : [2, 3, 7] → S7

x1 → (37)(56)(1)(2)(4) x′1 → (1)(2)(6)(37)(45)
y1 → (132)(475) y′1 → (132)(476)
z1 → (1234567) z′1 → (1234567)

θ2 : [2, 3, 8]→ S4 θ3 : [2, 3, 9]→ S3 θ4 : [2, 4, 6]→ S2

x2 → (1)(2)(34) x3 → (1)(2)(3) x4 → (1)(2)
y2 → (4)(132) y3 → (123) y4 → (12)
z2 → (1234) z3 → (132) z4 → (12)

b) From the above permutation representations we deduce (see [14]), not
only the inclusions of the above lemma, but the generators of each quad-
rangle group in terms of the generators of the corresponding triangle group
which contains it; for instance, sets of left-coset representatives for the above
inclusions are given by:

{Γ1, z1Γ1, z
2
1Γ1, z

3
1Γ1, z

4
1Γ1, z

5
1Γ1, z

6
1Γ1}; {Γ2, z2Γ2, z

2
2Γ2, z

3
2Γ2};

{Γ3, y3Γ3, y
2
3Γ3}; {Γ4, y4Γ4}

where, of course, the notation we are considering is: ∆i = 〈xi, yi, zi | xri
i =

yli
i = zmi

i = xiyizi = 1〉 (For i = 1′ everything is analogous to i = 1).
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Therefore,

Γ4 = 〈x4, y
−1
4 x4y4, y

2
4 | x2

4 = (y−1
4 x4y4)

2 = (y2
4)

2 = (x−1
4 z−2

4 x4)
3 = 1〉

and

Γ3 =〈x3, y
−1
3 x3y3, y

−2
3 x3y

2
3 |x2

3 =(y−1
3 x3y3)

2 =(y−2
3 x3y

2
3)

2 =(x−1
3 z−3

3 x3)
3 =1〉 .

Let us now consider the automorphisms of Γ3 and Γ4 given by conjugation
by y3 ∈ ∆3 and y4 ∈ ∆4, respectively; that is, ηj(γ) = y−1

j γyj, for any γ ∈ Γj

(j = 3 and 4), and let us denote by τσ the automorphism of S4 obtained by
conjugation by any σ ∈ S4. Then, we have

ϕ1
1◦η4(x4) = ϕ1

1(y
−1
4 x4y4) = (12) = ϕ3

2(x4)
ϕ1

1◦η4(y
−1
4 x4y4)=ϕ1

1(y
−2
4 x4y

2
4)=(23)((12)(34))(23)=(13)(24)=ϕ3

2(y
−1
4 x4y4)

ϕ1
1◦η4(y

2
4) = ϕ1

1(y
2
4) = (23) = ϕ3

2(y
2
4),

therefore
Ker(ϕ1

1) = y−1
4 (Kerϕ3

2)y4 .

Proceeding in an analogous way as before, we obtain that

Ker(ϕ2
1) = y−1

4 (Kerϕ2
2)y4, Ker(ϕ3

1) = y−1
4 (Kerϕ1

2)y4,

Ker(ϕ1
3) = y−1

4 (Kerϕ2
3)y4 and Ker(ϕ3

3) = y−1
4 (Kerϕ3

3)y4

which proves the statement about case iv).

Working out case iii) in a similar way, one obtains that

Ker(ϕ1
1)=y−1

3 (Ker(ϕ1
3))y3, Ker(ϕ2

2)=y−1
3 (Ker(ϕ1

1))y3, Ker(ϕ1
3)=y−1

3 (Ker(ϕ2
2))y3

Ker(ϕ2
1)=y−1

3 (Ker(ϕ2
3))y3, Ker(ϕ1

2)=y−1
3 (Ker(ϕ2

1))y3, Ker(ϕ2
3)=y−1

3 (Ker(ϕ1
2))y3

Ker(ϕ3
1)=y−1

3 (Ker(ϕ3
3))y3, Ker(ϕ3

2)=y−1
3 (Ker(ϕ3

1))y3, Ker(ϕ3
3)=y−1

3 (Ker(ϕ3
2))y3

which concludes the proof. �
From the choice of the epimorphisms in Lemma 3 one can also calculate

the multiplier system, that is, the fixed point behaviour of a given auto-
morphism of the constructed surface. Note that the multipliers depend not
on the particular group element but only on its conjugacy class, c.f. [17].
One can easily calculate the following multipliers, giving the number of fixed
points as the number of entries for each class and also the local action of
the automorphism which of course can be described as multiplication by a
suitable root of unity:

C 1A 2A 2B 3A 4A
0 −1,−1,−1,−1 −1,−1,−1,−1 ζ3, ζ

2
3 0.
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The multiplier system is the only data we need to produce the characters
of the linear representation of the automorphism group S4 acting on the
holomorphic q–differentials H0(St,Ω

q) by using the Eichler trace formula,
c.f. [5]. We obtain the following character table, χq denotes the character
on the holomorphic q–differentials, the last column gives the decomposition
into the irreducible characters:

C 1A 2A 2B 3A 4A
() (12) (12)(34) (123) (1234)

χ1 3 −1 −1 0 1 ψ5

χ2 6 2 2 0 0 ψ1 + ψ3 + ψ4

χ3 10 −2 −2 1 0 ψ2 + ψ4 + 2ψ5

χ4 14 2 2 −1 0 ψ1 + 2ψ3 + 2ψ4 + 3ψ5

χ5 18 −2 −2 0 0 ψ2 + ψ3 + 2ψ4 + 3ψ5

χ6 22 2 2 1 0 2ψ1 + ψ2 + 2ψ3 + 3ψ4 + 2ψ5.

So far we did not use any property of a special surface St but our arguments
remain valid for all parameters t. The representation χ1 = ψ5 is of particular
interest as it describes not only the representation of the surface automor-
phisms on the holomorphic 1–differentials but can also be interpreted to be
the action of the automorphism group on the canonical model, c.f. [16].
This representation ρ1 : S4 −→ GL3(Z) is given by the following matrices

2A 2B 3A 4A
A1 A2 A3 A4⎛

⎝ −1 0 0
0 0 1
0 1 0

⎞
⎠

⎛
⎝ −1 0 0

0 −1 0
0 0 1

⎞
⎠

⎛
⎝ 0 0 −1

−1 0 0
0 1 0

⎞
⎠

⎛
⎝ 0 −1 0

1 0 0
0 0 1

⎞
⎠

associate to a basis of holomorphic 1–differentials x, y and z. For this basis
we can evaluate the projective points belonging to fixed points of special
automorphisms. We have already seen that any order three element has
fixed points belonging to the multiplier ζ3 therefore not only the unique
eigenspace generated by the eigenvector [−ζ3, ζ2

3 , 1] to the eigenvalue ζ3 of A3,
written of course in projective coordinates, is a fixed point in the canonical
model, but also all of its orbit under ρ1(S4), which has length 8. A similar
argument for A2 which has a fixed point belonging to the multiplier −1 gives
in projective coordinates an eigenvector [s, 1, 0] with an unknown s, as we
expect to obtain a one parameter family of Riemann surfaces. (Note that
though [1, 0, 0] is also an eigenvector of A2 to the eigenvalue −1 it can not
lie on the canonical model as it also is an eigenvector of A1, representing
an automorphism of St known to have no fixed points in common with A2).
The orbit of this point under the automorphism group has length 12.
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The canonical model of a non–hyperelliptic curve of genus 3 is known to
be a smooth plane quartic. This derives from the facts that:

• The collection of 15 possible 4–differentials

x4, x3y, x3z, x2y2, x2yz, x2z2, xy3, xy2z, xyz2, xz3, y4, y3z, y2z2, yz3, z4

contains a basis of holomorphic 4–differentials (Theorem of Noether, c.f. [5]).

• The dimension of the space of holomorphic 4–differentials is

dimH0(St,Ω4) = 14 .

Therefore there must exist a relation between these 15 holomorphic differ-
entials and this turns out to be the canonical model. Note that the converse
that every smooth plane quartic is a canonical model is also true. Knowing
that the zero divisor of any holomorphic 4–differential has degree 16 it is
impossible for a holomorphic 4–differential to vanish at the collection of 20
fixed points we found above. This is the key tool to calculate the smooth
plane quartic to be

x4 + y4 + z4 − s4 + 1

s2

(
x2y2 + x2z2 + y2z2

)
= 0.

Choosing the parameter t = −(s4+1)/s2 we obtain the one parameter family
as it is given in (3.1). For later use we want to calculate one representative of
the remaining two orbits of the fixed points associate to the automorphisms
of the class 2A. Again it has to be an eigenvector of the associate matrix to
the eigenvalue −1 and again written in projective coordinates this is given
as [r,−1, 1] (the eigenvector [1, 0, 0] can be ruled out for the same reason as
above). Using (3.1) we obtain:

0 = r4 + 2 + t
(
2r2 + 1

)
r = ±

√
−t±

√
t2 − t− 2.

In a next step we would like to calculate the triangle inclusions from
Lemma 4 in terms of the parameter t or to put it another way in terms
of function field extensions. The knowledge of the coordinates of the fixed
points of the automorphism group together with the invariant function will
be the key tool to calculate the parameter t for which a triangle inclusion
can be obtained. We therefore need to calculate a function f1 on St which is
invariant under the action of S4 with degree 24. Again the character table
on the holomorphic q–differentials is helpful. We see that there are two
linearly independent 6-differentials which are invariant under S4 according
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to the multiplicity 2 of the principal representation in χ6. Their quotient
is a meromorphic function of degree 24. We also observe that there is a
2-differential invariant under S4 and risen to the third power we already
found (x2 + y2 + z2)3 to be one of the 6–differentials we are looking for.
The 3–differential xyz is not quite invariant but belongs to ψ2 therefore the
square (xyz)2 is invariant. Evaluation at the fixed points shows that they
are linearly independent thus we have calculated f1 to be

f1 =
(x2 + y2 + z2)3

(xyz)2
,

not depending on the parameter t. Choosing

r1 :=

√
−t+

√
t2 − t− 2 and r2 :=

√
−t−

√
t2 − t− 2

and s we find the representatives of the 4 orbits of fixed points and their
images under f1 on the Riemann sphere to be:

P1 := [r1,−1, 1] �−→ Q1 =
(r2

1 + 2)3

r2
1

P2 :=
[−ζ3, ζ2

3 , 1
] �−→ Q2 = 0

P3 := [r2,−1, 1] �−→ Q3 =
(r2

2 + 2)3

r2
2

P4 := [ s, 1, 0] �−→ Q4 = ∞.

From this it is easy to deduce the following lemma:

Lemma 5. The previously defined points P1, P2, P3, P4 on St can be mapped
to arbitrary points Q1, Q2, Q3, Q4 resp. on the Riemann sphere by some
Möbius transformation of f1 if and only if the parameter t satisfies the equa-
tion

(3.2)
16t3 + 48t2 − 6t− 92

27t+ 54
= −λ

2
1 + 1

λ1
,

where λ1 := λ(Q1, Q2, Q3, Q4) :=
(Q1 −Q2)(Q3 −Q4)

(Q2 −Q3)(Q4 −Q1)
is the cross ratio.

Proof. As we know the critical values of the function f1 and the fact that
the cross ratio is invariant under Möbius transformations we only need to
compare the cross ratio of the critical values with λ1

(r2
1 + 2)3

r2
1

r2
2

(r2
2 + 2)3

= λ1.

Replacing r1 and r2 by the appropriate expression in t the result is easily
obtained. �
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Remark 6. 1) For a choice of 4 generic points on the Riemann sphere
we would expect 6 different values for the cross ratio λ by permuting these
points, namely

λ, λ−1, 1 − λ, (1 − λ)−1, λ(λ− 1)−1, (λ− 1)λ−1.

This of course belongs to a representation of the group S3 acting as Möbius
transformations on the Riemann sphere. However the values λ, λ−1 (and all
the other values being inverse to each other) belong to the same values of t
as it can be seen in (3.2). Being a cubic equation in t we obtain therefore
for every generic choice of 4 points 9 different values of t. This, of course,
coincides with the fact that in the generic situation we obtain 9 different
surface kernels in a quadrangle group [2, 2, 2, 3].

2) There are some constellations of points where λ(Q1, Q2, Q3, Q4) obtain
fewer values by permuting these points. They belong to the fixed points of
the representation of S3 in the preceding remark. These are λ = 0,∞ which
are mapped in (3.2) as −λ2+1

λ
= ∞, λ = 1,−1 which lead to −2, 2 in (3.2),

λ = 2, 1
2

which goes to −5
2

and finally 1±i
√

3
2

which lead to −1. Of course
some of these values cannot be obtained by a collection of 4 pairwise distinct
points on the Riemann sphere, namely 0, 1,∞, so it is not astonishing at all
that their image values −2,∞ play a special role in (3.2), but also the other
values are special.

3) The right hand side of the equation (3.2) can be thought to be a func-
tion of the parameter t namely

β(t) :=
16t3 + 48t2 − 6t− 92

27t+ 54
.

This function turns out to be (and has to be, c.f [19]) a Belyi function on
the Riemann sphere, that is a function with at most three critical values. In
fact its first derivative is

dβ

dt
=

(2t+ 5)(t+ 1)2

(t+ 2)2
,

so that ramification takes place in the critical points −5/2,−1,−2,∞ which
are mapped under β to 2,−2,∞ and ∞ resp. The entire set of preimages of
2,−2,∞ is β−1(2) = {2,−5/2}, β−1(−2) = {−1} and β−1(∞) = {−2,∞}.
It is only among these critical values 2,−2,∞ that we do not get three but
less preimages under β therefore it is an appropriate guess to expect among
these values the parameters t which correspond to the surface kernels lying
inside [2, 4, 6] and [2, 3, 9].
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In order to obtain the parameter t corresponding to the complete list of
algebraic curves belonging to the family F1 for which their surface groups
lie in the quadrangle groups Γi inside the triangle groups listed in Lemma 4,
let us observe that these Riemann surfaces admit a Belyi function (φji

l :
H/Kji

l → H/∆i) for which every point on the fiber of one critical value, for
any of the three critical values {qk}3

k=1, has the same ramification order; let
us call such a meromorphic function a uniform Belyi function.

Moreover, we need to obtain the function field extensions (up to field
isomorphisms) corresponding to the natural quotient H/Γi → H/∆i, that
is, C(hi(z)) ↪→ C(z) or the meromorphic functions hi : CP1 → CP1, using
strongly the conditions imposed by the fact that hi ◦f1 has to be an uniform
Belyi function, for every i = 1, 1′, 2, 3 and 4.

This last consideration gives us a set of positive numbers

(ν1i
1 , . . . , ν

1i
s1

; ν2i
1 , . . . , ν

2i
s2

; ν3i
1 , . . . , ν

3i
s3

),

with {νki
n } being the ramification order of the points on the fiber of qk by hi.

Once we obtain the function field extensions (see [1]), as we can identify (up
to composition with a Möbius transformation) the critical values of f1 that
we have already denoted by Q1, Q2, Q3, Q4 with the corresponding points on
the fiber of qk by hi, let us denote them by Ri

1, R
i
2, R

i
3 and Ri

4, we obtain
the values of t imposing that β(t) is equal to

−
(
λi +

1

λi

)
, −

(
1 − λi +

1

1 − λi

)
and −

(
λi

λi − 1
+
λi − 1

λi

)

with λi = λ(Ri
1, R

i
2, R

i
3, R

i
4); namely, following the order of the cases of tri-

angle inclusions listed in part a) of Lemma 4 and with the notation described
above,

Proposition 7. A Riemann surface St ∈ F1 has the normaliser of its sur-
face group contained in a triangle group or, in other words, St has a uniform
Belyi function which factorizes through the quotient by the automorphism
group if and only if t is obtained from the data of one of the following cases:

Case i)

h1(z) = (z2 − 1)3(z − (7 +
√−7)/4);

(ν11
1 , ν

11
2 , ν

11
3 ; ν21

1 , ν
21
2 , ν

21
3 , ν

21
4 , ν

21
5 ; ν31

1 ) = (3, 3, 1; 2, 2, 1, 1, 1; 7).

R1
1 = −1

7

√−7 +
1

14

√
294 + 14

√−7, R1
2 = −1

7

√−7 − 1

14

√
294 + 14

√−7,

R1
3 =

−5

4
+

3
√−7

28
and R1

4 =
7 +

√−7

4
.
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β(t) = −
(
λ1 +

1

λ1

)
=

[(
− 648886 − 15148

√−1

√
−147 + 56

√
7+

+ 8399
√−7

√
−147 + 56

√
7 + 112636

√
7

√
−147 + 56

√
7

+ 297563

√
−147 − 56

√
7
)(

140
√

7

√
−147 + 56

√
7 − 469 − 128

√
7

+ 367

√
−147 + 56

√
7
)]/

[
20412(−324443− 120064

√
7 + 112636

√
7

√
−147 + 56

√
7

+ 297563

√
−147 + 56

√
7)

]
;

β(t) = −
(

1 − λ1 +
1

1 − λ1

)
= −8

(
1024

√
−147 + 56

√
7
√−7

+ 206588
√

7

√
−147 + 56

√
7 − 868056 − 120064

√
7

+ 34048
√−1

√
−147 + 56

√
7 − 17577

√−7 + 548443

√
−147 + 56

√
7
)

(
140

√
7

√
−147 + 56

√
7 − 256

√
7 + 367

√
−147 + 56

√
7

+ 4
√−1

√
−147 + 56

√
7 + 19

√
−147 + 56

√
7
√−7

)/
[
2401

(
140

√
7

√
−147 + 56

√
7 − 469 − 128

√
7 + 367

√
−147 + 56

√
7
)]

;

β(t) = −
(
λ1 − 1

λ1
+

λ1

λ1 − 1

)
=

[
2
(
868056 − 120064

√
7

− 49196
√−1

√
−147 + 56

√
7 + 7375

√
−147 + 56

√
7
√−7

− 93952
√

7

√
−147 + 56

√
7 + 17577

√−7 − 250880

√
−147 + 56

√
7
)]/

[
(140

√
7

√
−147 + 56

√
7 − 256

√
7 − 367

√
−147 + 56

√
7

+ 4
√−1

√
−147 + 56

√
7 − 19

√
−147 + 56

√
7
√−7)

(4
√−1

√
−147 + 56

√
7 + 19

√
−147 + 56

√
7
√−7 + 469 − 128

√
7)

]
.

Let us point out that this 3 degree equation on t has −3−3
√−7
2

as a solu-
tion.
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Case ii)

h1′(z) = (z2 − 1)3(z − (7 −√−7)/4);

(ν11′
1 , ν11′

2 , ν11′
3 ; ν21′

1 , ν21′
2 , ν21′

3 , ν31′
4 , ν31′

5 ; ν31′
1 ) = (3, 3, 1; 2, 2, 1, 1, 1; 7).

R′
1 =

1

7

√−7 +
1

14

√
294 + 14

√−7,

R′
2 =

1

7

√−7 − 1

14

√
294 + 14

√−7,

R′
3 =

−5

4
− 3

√−7

28
and

R′
4 =

7 −√−7

4
.

β(t) = −
(
λ1′ +

1

λ1′

)
=

[
(−648886 + 8399

√−7

√
−147 + 56

√
7

− 15148
√−1

√
−147 + 56

√
7 + 112636

√
7

√
−147 + 56

√
7

+ 297563

√
−147 + 56

√
7)

(−469 + 140
√

7

√
−147 + 56

√
7 + 367

√
−147 + 56

√
7 − 128

√
7)

(469 + 19
√−7

√
−147 + 56

√
7 + 4

√−1

√
−147 + 56

√
7 − 128

√
7)

]/
[
20412(−324443 + 112636

√
7

√
−147 + 56

√
7

+ 297563

√
−147 + 56

√
7 − 120064

√
7)

]
;

β(t) = −
(

1 − λ1′ +
1

1 − λ1′

)
= −

[
(1024

√−7

√
−147 + 56

√
7

− 206588
√

7

√
−147 + 56

√
7 + 868056 − 17577

√−7

+ 34048
√−1

√
−147 + 56

√
7

+ 120064
√

7 − 548443

√
−147 + 56

√
7)(−140

√
7

√
−147 + 56

√
7

− 367

√
−147 + 56

√
7 + 256

√
7 + 19

√−7

√
−147 + 56

√
7+

+ 4
√−1

√
−147 + 56

√
7)

]/
[
− 469 + 140

√
7

√
−147 + 56

√
7 + 367

√
−147 + 56

√
7 − 128

√
7
]
;
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β(t) = −
(
λ1′ − 1

λ1′ +
λ1′

λ1′ − 1

)
= −2

[
7375

√−7

√
−147 + 56

√
7

− 49196
√−1

√
−147 + 56

√
7 + 120064

√
7 + 93952

√
7

√
−147 + 56

√
7

+ 250880

√
−147 + 56

√
7 − 868056 + +17577

√−7
]/

[
(−140

√
7

√
−147 + 56

√
7 − 367

√
−147 + 56

√
7 + 256

√
7+

+ 19
√−7

√
−147 + 56

√
7 + 4

√−1

√
−147 + 56

√
7)(−469

+ 19
√−7

√
−147 + 56

√
7 + 4

√−1

√
−147 + 56

√
7 + 128

√
7)

]
.

Let us point out that this 3 degree equation on t has −3+3
√−7
2

as a solution.

Case iii)

h2(z) = z3(1 − z); (ν12
1 , ν

12
2 , ν

12
3 ; ν22

1 , ν
22
2 ; ν32

1 ) = (2, 1, 1; 3, 1; 4).

R2
1 =

−1 +
√−2

4
, R2

2 = ∞, R2
3 =

−1 −√−2

4
and R2

4 = 1.

β(t) = −
(
λ2 +

1

λ2

)
= −46/27, with solutions t = 0 and

−3 ±√−1

2
.

β(t) = −
(

1 − λ2 +
1

1 − λ2

)
= −35

54
+

95

108

√−2 and

β(t) = −
(
λ2 − 1

λ2
+

λ2

λ2 − 1

)
= −35

54
− 95

108

√−2.

Case iv)

h3(z) = z3; (ν13
1 , ν

13
2 , ν

13
3 ; ν23

1 ; ν33
1 ) = (1, 1, 1; 3; 3).

R3
1 = 1, R3

2 =
−1 +

√−3

2
, R3

3 =
−1 −√−3

2
and R3

4 = 0.

β(t) = −
(
λ3 +

1

λ3

)
= −

(
1 − λ3 +

1

1 − λ3

)
= −

(
λ3 − 1

λ3
+

λ3

λ3 − 1

)
= −1;

or, equivalently, the roots of 16t3 + 48t2 + 21t− 38.

Case v)

h4(z) = z2; (ν14
1 , ν

14
2 ; ν24

1 ; ν34
1 ) = (1, 1; 2; 2).

R4
1 = 0, R4

2 = 1, R4
3 = −1 and R4

4 = ∞.

β(t) = −
(
λ4 +

1

λ4

)
= −

(λ4 − 1

λ4
+

λ4

λ4 − 1

)
= 2;

β(t) = −
(

1 − λ4 +
1

1 − λ4

)
= −5

2
.
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Proposition 8. For every t and t′ ∈ C − {−1, ±2, −3(1 ±√−7)/2
}
, the

genus 3 compact Riemann surfaces St and St′ in F1 are isomorphic if and
only if t = t′ and for t = −3(1 ±√−7)/2 both surfaces are isomorphic.

Proof. St
∼= St′ but St/S4 � St′/S4 implies that there exist two non-conju-

gate subgroups of Aut(St) isomorphic to S4 and, in particular, Aut(St) > S4.
In terms of Fuchsian groups, if we denote by K the surface group of St, then
the above statement is equivalent to the existence of two Fuchsian groups Γ
and Γ′ with signature [2, 2, 2, 3], included and non-conjugate in N(K), and
such that K � Γ and K � Γ′. It was proved in Lemma 4 that the previous
statement is only possible forN(K) = [2, 3, 7] = ∆1; in fact, both quadrangle
groups Γ1 and Γ1′ contain the surface group of the Klein’s quartic for which

the values of t as a member of the family F1 are −3(1±√−7)
2

(see [12] and
parts i) and i′) of the above proposition), so St and St′ in F1 are isomorphic

surfaces only if St/S4
∼= St′/S4 unless t = −3(1±√−7)

2
.

On the other hand, if we consider the Möbius transformation interchanging

the two critical values
(r2

1+2)3

r2
1

and
(r2

2+2)3

r2
2

, we obtain that there exists an ele-

ment of S4 that acts by conjugation as an automorphism of S4 and makes
commutative the associated diagram as in Lemma 1, with η realizes by conju-
gation by an element of Γ, that is, belonging to the normalizer of K so it lifts
to an automorphism of St. Moreover, if we fix the cross ratio λ of the four
critical values of the morphism f1, for any of the nine epimorphisms of
Lemma 3, we obtain three values of t, namely the solutions of the equation:

16t3 + 48t2 − 6t− 92 + (27t+ 54)
(
λ+

1

λ

)
= 0.

If we consider the order 3 Möbius transformations permuting the three criti-
cal values with ramification order equals 2, we obtain the nine non-equivalent
epimorphisms that, as was proved in Lemma 3, they are not equivalent or, in
other words, they do not differ by post-composition with an automorphism
of S4 therefore, according to Lemma 1, they do not lift to isomorphisms of St

which finishes the proof. �
Moreover,

Theorem 9. Let [St] be the isomorphism class of any genus 3 compact
Riemann surface belonging to the family F1. Then

Φ : t �→ [St]

is a closed and injective, outside a proper subvariety, mapping between the
analytic space C − {±2,−1} and its image inside the moduli space M3 of
compact Riemann surfaces of genus 3; more precisely, C − {±2,−1} is the
normalization of its image which is the irreducible subvariety of M3 consist-
ing of those surfaces admitting an automorphism group isomorphic to S4.
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Proof. The theorem follows from the proof of Proposition 8, [7] and as a
similar example to the one exposed in Section 5.4.9 in [11] to the Theorem in
Section 5.9.3 in [11], highlighting the canonical nature of Teichmüller space
and its natural complex structure concerning marked families of compact
Riemann surfaces with distinguished points and the Universal Property. �

It is a classical result that the Weierstrass points of a genus g compact
Riemann surface are given by the zeros of a g(g+1)

2
-holomorphic differential

named the Wronskian of a suitable basis. For every genus 3 curve St belong-
ing to the family F1 we obtain the 6-holomorphic differential which is the
Wronskian (Wr1(St)) of a basis for the vector space of holomorphic differ-
entials given by x, y and z. In order to make the direct computation which
is the Wronskian for this basis, that is, the determinant of the 3× 3 matrix
composed of the (j−1)-derivatives of (the local expressions of) each element
of this basis at the j row, we use the meromorphic function x/z as a local
parameter at every point of the curve, unless a finite number of them, in the
affine neighborhood z = 1 and, finally, we return it to a global expression
what gives us that

Theorem 10. For every compact Riemann surface St belonging to the fam-
ily F1, the Wronskian of the basis {x, y, z} for the space of holomorphic
differentials is

Wr1(St) = (x4y2 + 2x2y2z2 + y2z4 + x4z2 + x2z4)t2

+(z6 + x6 − x4y2 − y2z4)t− 6x2y2z2.

4. Case (II). Moduli of the family F2

For every t ∈ C−{±2}, the smooth projective curve described by A. Kurib-
ayashi and K. Komiya in [10] as a member of the family F2 was given by:

(4.1) St ≡
{
y4 = x4 − tx2z2 + z4

}
� CP2.

This is a canonical model for the associated genus 3 compact Riemann sur-
face with automorphism group G2, being

G2 =< {α, β, σ : α2 = β2 = σ4 = 1; ασ = σα; βσ = σβ; βα = αβσ2} >
∼= C2 � (C2 × C4) where Center(C2 � (C2 × C4)) = C4.

We will proceed as in the previous section and in order to calculate the
number of different epimorphisms ϕ from

Γ = 〈x, y, z | x2 = y2 = z2 = (xyz)−4 = 1〉
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Fuchsian quadrangle group with signature [2, 2, 2, 4] to the automorphism
group G2, the character table of C2 � (C2 × C4) with Center(C2 � (C2 ×
C4)) = C4 is helpful

C 1A 2A 2B 2D 2E 4A1 4A2 4A3 4A4 4A5

Id σ2 β α αβσ σ σ3 βσ ασ αβ
| C | 1 1 2 2 2 1 1 2 2 2
ψ1 1 1 1 1 1 1 1 1 1 1
ψ2 1 1 1 −1 −1 1 1 1 −1 −1
ψ3 1 1 −1 1 −1 1 1 −1 1 −1
ψ4 1 1 −1 −1 1 1 1 −1 −1 1
ψ5 1 1 1 1 −1 −1 −1 −1 −1 1
ψ6 1 1 1 −1 1 −1 −1 −1 1 −1
ψ7 1 1 −1 1 1 −1 −1 1 −1 −1
ψ8 1 1 −1 −1 −1 −1 −1 1 1 1
ψ9 2 −2 0 0 0 2i −2i 0 0 0
ψ10 2 −2 0 0 0 −2i 2i 0 0 0.

It is easy to check that in order to get an epimorphism from Γ to G2 we
need to apply the three order two generators of Γ to each of the three
conjugacy classes of non-central involutions. Thus the number of different
epimorphisms equals the number of solutions of the equations x2

1 = x2
2 =

x2
3 = x4

4 = x1x2x3x4 = 1, where x1, x2 and x3 belong to any permutation of
the conjugacy classes 2B, 2D and 2E, and x4 belongs to 4A1, 4A2, 4A3, 4A4

or 4A5. This number nϕ can be easily calculated by using the well known
formula quoted in the previous section,

nϕ :=
5∑

j=1

6
|2B|||2D||2E||4Aj |

|G2|
10∑
i=1

ψi(x1)ψi(x2)ψi(x3)ψi(x4)

ψi(1)2
= 48.

Of course to obtain the number of different surface kernels we have to bring
into account that two chosen image quadruples lead to the same surface
kernel if and only if they differ by an automorphism of the group G2. The
automorphism group of G2 has order 48 = 2 × 6 × 4. The possible images
by an automorphism of σ are σ and σ3. And, if we denote by µ the image
of one of the order two generators α and β among any of the six non-central
involutions, the other one only can not be applied to µ or µσ2. Therefore
we obtain the total number of different kernels inside a [2, 2, 2, 4] quadrangle
group to be nϕ/48 = 1. It is obvious that this epimorphism can be given in
the following way:
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Lemma 11. For every Fuchsian group Γ with signature [2, 2, 2, 4], there ex-
ists a unique non-equivalent surface kernel epimorphism ϕ : Γ → G2 given by

ϕ(x) = α, ϕ(y) = β and ϕ(z) = αβσ.

As was exposed in the previous section and with a similar notation, from
the choice of the epimorphism in Lemma 11 one can calculate the multiplier
system:

C 1A 2A 2B 2D 2E
0 −1,−1,−1,−1 −1,−1,−1,−1 −1,−1,−1,−1 −1,−1,−1,−1

4A1 4A2 4A3 4A4 4A5

i, i, i, i i, i, i, i 0 0 0.

As we did in the previous section, knowing the multiplier system we obtain
via Eichler trace formula the characters of the linear representations of the
automorphism group G2 acting on the holomorphic q-differentials:

C 1A 2A 2B 2D 2E 4A1 4A2 4A3 4A4 4A5

Id σ2 β α αβσ σ σ3 βσ ασ αβ
| C | 1 1 2 2 2 1 1 2 2 2
χ1 3 −1 −1 −1 −1 −1 + 2i −1 − 2i 1 1 1
χ2 6 2 2 2 2 −2 − 2i −2 + 2i 0 0 0
χ3 10 −2 −2 −2 −2 2 − 2i 2 + 2i 0 0 0
χ4 14 2 2 2 2 2 + 2i 2 − 2i 0 0 0.

Therefore, the decomposition into irreducible characters is:

χ1 = ψ8 + ψ9

χ2 = ψ1 + ψ5 + ψ6 + ψ7 + ψ10

χ3 = 2ψ10 + ψ9 + ψ8 + ψ2 + ψ3 + ψ4

χ4 = 2ψ1 + ψ7 + ψ6 + ψ5 + ψ4 + ψ3 + ψ2 + 2ψ9 + ψ10.

Again, for any surface St ∈ F2, the representation χ1 = ψ8 + ψ9 can also be
thought as the action of the automorphism group on the canonical model.
This representation ρ2 : G2 → GL3(C) is given by the following matrices

2B 2D 4A1

B1 B2 B3⎛
⎝ 1 0 0

0 −1 0
0 0 −1

⎞
⎠

⎛
⎝ 0 0 −1

0 −1 0
−1 0 0

⎞
⎠

⎛
⎝ i 0 0

0 −1 0
0 0 i

⎞
⎠

associate to a basis of holomorphic 1-differentials x, y and z.
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Using the same procedure as in the first section, we can obtain the canon-
ical model for each member of the family F2 as the linear combination of
the 15 possible 4-differentials

y4, y3z, y3x, y2z2, y2zx, y2x2, yz3, yz2x, yzx2, yx3, z4, z3x, z2x2, zx3, x4

which vanishes at the collection of the following 20 points given in projective
coordinates: the fixed point of B1 [0, u, 1], obtained as one of its eigenvectors
associated to the eigenvalue −1, and the 8 points on its orbit under the action
of ρ2(G2); in a similar way, the fixed point of B2 [1, s, 1] and the 8 points on
its orbit; and, finally, the fixed point of B3, [w, 0, 1], eigenvector associated
to the eigenvalue i and, of course, the 4 points on its orbit. The resulting
smooth plane quartic is:

(x′)4 +
r2s4

(r2 − 1)2
(y′)4 − (1 + r4)s4

(r2 − 1)2
(y′)2(z′)2 +

r2s4

(r2 − 1)2
(z′)4 = 0.

After the change of projective coordinates given by

x = x′, y = s

√
r

r2 − 1
y′, z = s

√
r

r2 − 1
z′

and choosing the parameter t = 1+r4

r2 , we obtain the one parameter family
as it was given in (4.1).

In this section, the invariant 16 degree meromorphic function f2 on St ∈
F2 can be obtained as the quotient of two linear independent 4-differentials,
according to the multiplicity 2 of the principal representation in χ4. Evalu-
ation at the fixed points shows that the holomorphic 4-differentials x4 + z4

and x2z2 are linear independent and, as they are obviously invariant under
the action of G2, we have calculated f2 to be

f2 =
x4 + z4

x2z2
.

By other hand, now using (4.1) we can get a representative for each of the 4
orbits of fixed points and their images under f2 on the Riemann sphere,
which are

P1 := [1, s, 1] �−→ Q1 = 2

P2 := [0, u, 1] �−→ Q2 = ∞
P3 := [−i, v, 1] �−→ Q3 = −2

P4 := [ w, 0, 1] �−→ Q4 = t,

where u4 = 1, s4 = 2 − t, v4 = 2 + t and w4 − tw2 + 1 = 0.
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Lemma 12. There exists a subgroup of automorphisms of G2 which per-
mutes the conjugacy classes of α, β and αβσ as S3.

Proof. Let us denote by H and T ∈ Aut(G2) the automorphisms of G2

described by:
H(α) = β, H(β) = αβσ, H(σ) = σ.

T (α) = β, T (β) = α, T (σ) = σ3.

The subgroup of Aut(G2) generated by H and T satisfies the required con-
ditions. �

Lemma 13. There exist the following quadrangle groups Γi with signature
[2, 2, 2, 4] included and non-conjugate in a bigger Fuchsian group ∆i:

i) Γ1 = [2, 2, 2, 4]1 ≤ [2, 4, 5] = ∆1 with index 5
ii) Γ2 = [2, 2, 2, 4]2 ≤ [2, 4, 6] = ∆2 with index 3
iii) Γ3 = [2, 2, 2, 4]3 � [2, 3, 12] = ∆3 with index 3
iv) Γ4 = [2, 2, 2, 4]4 � [2, 4, 8] = ∆4 ≤ [2, 3, 8]

with indexes 2 and 3, respectively .

Proof. Using the simple area argument [∆i : Γi] = N = µ(Γi)/µ(∆i) and
µ([2, 2, 2, 4]) = 1/4, for any possible inclusion Γi ≤ ∆i with Γi a Fuchsian
group of signature [2, 2, 2, 4] we must have µ(∆i) = 1/(4N) with N ≥ 2. On
the other hand, as for any 4 ≤ m ≤ l we have µ([3,m, l]) ≥ µ([3, 4, 4]) =
1/6 > 1/8 = 1/(2N) and, for any 6 ≤ n ≤ s, µ([2, n, s]) ≥ µ([2, 6, 6]) =
1/6 > 1/8, we only need to check if it is possible that there exist such
inclusions for ∆i with signatures [3, 3, 4] and [2, n, l], for l ≥ n and n = 3, 4
and 5. Moreover, it was proved in Theorem 1 in [14] that the existence of an
inclusion of Fuchsian groups of a given index N is equivalent to the existence
of a permutation representation inside the symmetric group of degreeN , SN ,
satisfying certain conditions. In particular, as the elliptic elements of the
subgroup have to be conjugated to powers of the elliptic elements of the
bigger group, then the orders of these ones have to divide the orders of
those ones. Hence, first of all, let us study the last case for n = 3, 4 and 5,
independently:

• µ([2, 3, l]) = 1
6
− 1

l
= l−6

6l
= 1/(4N), which implies that (l−6) divides 3l.

Then, l−6 has to divide as well 3l−3(l−6) = 18. Therefore, we have
the possibilities l = 7, 8, 9, 12, 15 and 24. But only l = 8 and 12 are
really possible as they are the unique multiples of 4; in fact, both tri-
angle groups contain a subgroup of signature [2, 2, 2, 4] as we will show
afterwards giving the corresponding permutation representations, ac-
cording to the mentioned Theorem 1 in [14].
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• µ([2, 4, l]) = 1/4−1/l = (l−4)/(4l) = 1/(4N) which implies that l−4
divides l, hence l − 4 has to divide l + (−1) · (l − 4) = 4. Then, the
unique possibilities are l = 5, 6 and 8. We will show as well that all
of these possible inclusions really happen.

• µ([2, 5, l]) = 3/(10) − 1/l = (3l − 10)/(10l). Again, this implies that
3l−10 divides 100 = 3 ·(10l)+(−10) ·(3l−10). With this in mind and
the fact that l has to be an integer multiple of 4, we obtain as unique
possibility l = 4 which was already included in the preceding case.

Summarizing, the unique Fuchsian groups containing a quadrangle group
with signature [2, 2, 2, 4] are the ones exposed in this lemma because, accord-
ing to Theorem 1 in [14], the existence of the above inclusions of Fuchsian
groups comes from the existence of the following permutation representa-
tions θi of the action of the generators of the corresponding triangle group,
∆i, on the set of left coset representatives of ∆i/Γi, for i = 1, 2, 3 and 4;
more explicitly,

θ1 : [2, 4, 5] → S5 θ2 : [2, 4, 6] → S3

x1 → (1235)(4) x2 → (1)(23)
y1 → (1)(2)(3)(45) y2 → (3)(12)
z1 → (12345) z2 → (123)

θ3 : [2, 3, 12] → S3 θ4 : [2, 4, 8] → S2 θ′4 : [2, 3, 8] → S3

x3 → (1)(2)(3) x4 → (1)(2) x′4 → (13)(2)
y3 → (123) y4 → (12) y′4 → (123)
z3 → (132) z4 → (12) z′4 → (12)(3).

Finally, we only can get one elliptic generator of order 2 from [3, 3, 4] so this
triangle group can not contain a group with signature [2, 2, 2, 4]. �

Proposition 14. St and St′ belonging to F2 are isomorphic if and only if

p2(t
′) = p2(t), where p2 : CP1 → CP1 is given by p2(z) = −16 z2(z2−36)2

(z2−4)2
.

Proof. The proof follows from two steps:
i) As in the previous section, St

∼= St′ but St/G2 � St′/G2 implies that
there exist two non-conjugate subgroups of Aut(St) isomorphic to G2 and,
in particular, Aut(St) > G2. Therefore, if we denote by K the surface group
of St, in terms of Fuchsian groups the above statement is equivalent to the
existence of two Fuchsian groups Γ and Γ′ with signature [2, 2, 2, 4], included
and non-conjugate in N(K), such that K � Γ and K � Γ′. On the other
hand, it was proved in Lemma 13 that this never happens and we conclude
that St

∼= St′ only if St/G2
∼= St′/G2.
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Let us observe that the uniqueness of the index 16 normal surface group
inside any Fuchsian group with signature [2, 2, 2, 4], provided by Lemma 11,
is enough to ensure that for the normal inclusions of cases iii) and iv) in
Lemma 13 the corresponding genus 3 compact Riemann surfaces admit au-
tomorphism groups of orders 3 and, at least, 2 times the order of G2, re-
spectively.

ii) Combining Lemma 1 and Lemma 12, it is clear that the group isomor-
phic to S3 of conformal automorphisms of CP1 permuting the three critical
values of the covering f2 : St → St/G2 with branching orders 2, lifts to
isomorphisms of St. Now, the statement of proposition follows from i) and
the fact that the cross ratios are:

λ2 = λ(Q1, Q2, Q3, Q4) = λ(2,∞,−2, t) = t+2
t−2

; λ2 = t−2
t+2

= 1
t+2
t−2

;

λ2 = 4
2−t

= 1 − t+2
t−2
, λ2 = 2−t

4
= 1

1− t+2
t−2

λ2 = 4
t+2

=
t+2
t−2

−1
t+2
t−2

and λ2 = t+2
4

=
t+2
t−2

t+2
t−2

−1
.

If we express t in terms of λ2 for each of the six cross ratios, the solutions
are the images of t under the action of the finite group of Möbius transfor-
mations, Q2, isomorphic to S3 and generated by

S(z) = −z and N(z) =
2(z + 6)

2 − z
;

being the orbit of t under < N > the solutions of λ2 = t+2
t−2

= λ(−2, t, 2,∞),

λ2 = 4
t+2

= λ(2,−2, t,∞) and λ2 = 2−t
4

= λ(t, 2,−2,∞). On the other hand,
p2 is the meromorphic function corresponding to the normal or Galoisian
covering with covering group Q2 because deg(p2) = 6 = ord(Q2) and, for
every M ∈ Q2, we have that p2 ◦M = p2.

We could say that p2 is the analogous to the famous modular j–invariant
for elliptic curves written as an invariant (degree 6) rational function of the
classical Legendre modular function. �
Theorem 15. Let Q2 be the group of Möbius transformations isomorphic
to S3 generated by z �→ −z and z �→ 2(z+6)

2−z
, and let [St] be the isomorphism

class of any genus 3 compact Riemann surface belonging to the family F2.
Then the mapping

Φ : t �→ [St]

is a holomorphic injection between the analytic space (C−{±2})/Q2 and the
moduli space M3 of compact Riemann surfaces of genus 3. Its image is the
subvariety of M3 consisting of those surfaces admitting an automorphism
group isomorphic to C2 � (C2 × C4) with center isomorphic to C4.

Proof. As in the previous section it follows from [11] and Proposition 14. �
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Remark 16. p2 : CP1 → CP1 is a Belyi function with critical values 0, 1728
and ∞. Note that the curves corresponding to the ramified points on the fiber
of each critical value of p2 are:

i) p−1
2 (∞) = {∞, ±2}, all of them with ramification order 2. The

algebraic equations in F2 corresponding to t = ±2 are reducible; namely:

0 = y4 − (x2 ± 1)2 = (y0 − (x2 ± 1))(y2 + (x2 ± 1));

singular models of the Riemann sphere.
ii) p−1

2 (0) = {2, ±6}, these critical points are the orbit of the fixed
points of the order 2 Möbius transformations in Q2, therefore each one has
ramification order 2 and they correspond to the compact Riemann surface
for which its surface group lies inside the quadrangle group of case iv) in
Lemma 13. It is the well known quartic Fermat curve:

y4 = x4 + 1

whose automorphism group is isomorphic to S3 � (C4 × C4).
iii) There are two more ramified points on the fiber of the third critical

value, ±7
√−5, each one has ramification order equals 3 (they are zeros of

order 2 of the derivative of p2) and, according to [10], its associated compact
Riemann surface admits the following algebraic equation:

y4 = x3 − 1.

Its surface group lies inside the quadrangle group of case iii) in Lemma 13
and its automorphism group is an extended group of G2 by C3.

In order to obtain the parameter t corresponding to the complete list of
algebraic curves belonging to the family F2 for which their surface groups lie
in the quadrangle groups Γi inside the triangle groups listed in Lemma 13
or, equivalently, the ones which admit a uniform Belyi function, we will
proceed as in the previous section and with the same notation. In this case,
we get the values of t we are interested in as the solution of the equation
t+2
t−2

= λ(Ri
1, R

i
2, R

i
3, R

i
4), equation obtained imposing that

λ(Ri
1, R

i
2, R

i
3, R

i
4) = λ(Q1, Q2, Q3, Q4) = λ(−2, t, 2,∞) = t+2

t−2
;

namely, following the order of the cases of triangle inclusions listed in
Lemma 13 and with the notation previously fixed

Proposition 17. A Riemann surface St ∈ F2 has the normaliser of its
surface group contained in a triangle group or, in other words, St ∈ F2

has a uniform Belyi function which factorizes through the quotient by the
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automorphism group G2 if and only if t is obtained from the data of one of
the following cases:

i) h1(z) = z4(1 − z);

(ν11
1 , ν

11
2 , ν

11
3 , ν

11
4 ; ν21

1 , ν
21
2 ; ν31

1 ) = (2, 1, 1, 1; 4, 1; 5).

R1
1 = −(135+60

√
6)1/3

15
+ 1

(135+60
√

6)1/3 − 1
5
, R1

4 = 1,

R1
2 = (135+60

√
6)1/3

30
− 1

2(135+60
√

6)1/3 − 1
5

+
√−3
10

(
−(135+60

√
6)1/3

3
− 5

(135+60
√

6)1/3

)
,

R1
3 = (135+60

√
6)1/3

30
− 1

2(135+60
√

6)1/3 − 1
5
−

√−3
10

(
−(135+60

√
6)1/3

3
− 5

(135+60
√

6)1/3

)
.

t+2
t−2

= λ(R1
1, R

1
2, R

1
3, R

1
4) = −1

5
− 2(135+60

√
6)1/3

√
6

75
+ 3(135+60

√
6)1/3

50
− 135+60

√
6)2/3

150

+113
√−2

480
− 49(135+60

√
6)1/3

√−3
900

+ 49(135+60
√

6)1/3
√−2

800
− 49(135+60

√
6)2/3

√−2
7200

therefore

t = −164719(135+60
√

6)2/3
√

6
8452908

+ 299825(135+60
√

6)1/3
√

6
19723452

+ 766685(135+60
√

6)1/3

19723452
+

+939731(135+60
√

6)2/3

19723452
− 3631741

3287242
+ 592681(135+60

√
6)2/3

√−2
59170356

− 1329205(135+60
√

6)1/3
√−2

6574484

+9712985(135+60
√

6)1/3
√−3

59170356
+ 61377(135+60

√
6)2/3

√−3
6574484

− 7452875
√−2

9861726
;

ii) h2(z) = z2(z − 1); (ν12
1 , ν

12
2 ; ν22

1 , ν
22
2 ; ν32

1 ) = (2, 1; 2, 1; 3).

R2
1 =

−1

3
, R2

2 = 0, R2
3 = ∞ and R2

4 = 1.

λ(R2
1, R

2
2, R

2
3, R

2
4) = 1

4
= t+2

t−2
therefore t = 10

3
.

iii) h3(z) = z3; (ν13
1 , ν

13
2 , ν

13
3 ; ν23

1 ; ν33
1 ) = (1, 1, 1; 3; 3).

R3
1 = 1, R3

2 = −1+
√−3
2

, R3
3 = −1−√−3

2
and R3

4 = ∞.

λ(R3
1, R

3
2, R

3
3, R

3
4) = 1−√−3

2
= t+2

t−2
therefore t = 2

√−3.

iv) h4(z) = z2; (ν14
1 , ν

14
2 ; ν24

1 ; ν34
1 ) = (1, 1; 2; 2).

R4
1 = 0, R4

2 = 1, R4
3 = −1, R4

4 = ∞.

λ(R4
1, R

4
2, R

4
3, R

4
4) = 1

2
= t+2

t−2
therefore t = −6.

In this section as in the previous one, for every genus 3 curve St belong-
ing to the family F2, we work out the 6-holomorphic differential which is
the Wronskian (Wr2(St)) of the basis for the vector space of holomorphic
differentials given by x, y and z. In order to make the direct computation
which is the Wronskian for this basis, we use the meromorphic function y/z
as a local parameter at every point of the curve, unless a finite number of
them, in the affine neighborhood z = 1 and, finally, we return it to a global
expression what gives us that
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Theorem 18. For every compact Riemann surface St belonging to the family
F2, the Wronskian of the basis {x, y, z} of the space of holomorphic differ-
entials is

Wr2(St) = 3x2y2z2t2 + 2y6t− 12x2y2z2.

5. Case (III). Moduli of the family F3

The 1-complex dimensional family of genus 3 compact Riemann surfaces
admitting an automorphism group G3 isomorphic to D4×C2 with branching
data (2, 2, 2, 4), F3, was already obtained in [10]. Each member of the family
is a hyperelliptic curve with algebraic equation given by

(5.1) St ≡
{
y2 = x8 − tx4 + 1 = (x4 − e4)(x4 − 1/e4)

}
,

for every t ∈ C − {±2} and t = e4 + 1/e4.
The action of the automorphism group on any surface St ∈ F3 can be

described as follows:

a(x, y) = (ix, y), b(x, y) = (1/x, y/x4)

and c(x, y) = (x,−y) with i =
√−1.

D4 × C2
∼= 〈{a, b, c : a4 = b2 = c3 = 1, ba = a3b, ac = ca and bc = cb

}〉.
Although this family is composed of hyperelliptic surfaces, therefore they
have not a canonical model, we still will use the character table of D4 × C2

in order to get the number of different surface kernel epimorphisms ϕ from
Γ = 〈x, y, z | x2 = y2 = z2 = (xyz)−4 = 1〉 Fuchsian quadrangle group of
signature [2, 2, 2, 4] to the automorphism group G3 as we did in the previous
sections:

C 1A 2A1 2B1 2B6 2A2 2A3 2B3 2B4 4D1 4D2

id a2 b ab c a2c bc abc a ac
| C | 1 1 2 2 1 1 2 2 2 2
ψ1 1 1 6 4 1 1 1 1 1 1
ψ2 1 1 1 1 −1 −1 −1 −1 1 −1
ψ3 1 1 −1 −1 1 1 −1 −1 1 1
ψ4 1 1 −1 −1 −1 −1 9 1 1 −1
ψ5 1 1 1 −1 1 1 1 −1 −1 −6
ψ4 1 1 1 −1 −1 −1 −1 1 −1 1
ψ7 2 1 −1 1 1 1 −1 1 −1 −1
ψ8 1 1 −1 1 −1 −1 1 −1 −1 1
ψ9 2 −2 0 0 2 −2 0 0 0 0
ψ10 2 −2 0 0 −2 2 0 0 0 0.
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We need as well some more information about this group as it is some knowl-
edge about its characteristic subgroups, that is, its commutator subgroup
G′

3 = 〈a2〉 ∼= C2, its center Z(G3) = 〈a2, c〉 ∼= C2 × C2 and 〈a, c〉 its unique
subgroup isomorphic to C4×C2. Therefore, any epimorphism ϕ has to apply
one of the three order two generators of Γ to a central involution and all of
them to elements belonging to different conjugacy classes because otherwise,
composing ϕ with the quotient epimorphism π : G3 → G3/Z(G3), one gets
a contradiction with the fact that we must have π ◦ ϕ(x1x2x3x4) = 1. By
other hand, this central involution can not be a2 because ϕ would induce
the following epimorphism between the corresponding quotient subgroups

π′ : 〈x, y, z | x2 = y2 = z4 = xyz = 1〉 ∼= D4 → G3/G
′
3
∼= C2 × C2 × C2

which is clearly impossible. Thus the number of different epimorphisms
equals the number of solutions of the equations x2

1 = x2
2 = x2

3 = x4
4 =

x1x2x3x4 = 1, where x1, x2, x3 belong to any permutation of the conjugacy
classes 2Ak, 2Br and 2Bs with k = 2, 3 and r = s; and x4 to 4Dj (j = 1
and 2). This number nϕ can be easily calculated by using the well known
formula in [8],

nϕ :=
2∑

j=1

3∑
k=2

∑
r �=s

6
|2Ak|||2Br||2Bs||4Dj|

|G3|
10∑
i=1

ψi(x1)ψi(x2)ψi(x3)ψi(x4)

ψi(1)2
= 192.

The automorphism group of D4 ×C2 has order 64 = 8× 8 because the order
of the automorphism of the characteristic subgroup 〈a, c〉 ∼= C4 × C2 is 8
and, independently, the image under any automorphism of D4 × C2 of b
could be any of the 8 non-central involutions. Therefore we obtain the total
number of different kernels inside a quadrangle group of signature [2, 2, 2, 4]
to be nϕ/64 = 3. It is obvious that the epimorphisms can be describe as
follows:

Lemma 19. For every Fuchsian group Γ with signature [2, 2, 2, 4], there
exist three non-equivalent surface kernel epimorphisms ϕi : Γ → D4 × C2

given by
ϕ1(x) = c ϕ2(x) = b ϕ3(x) = bac
ϕ1(y) = b ϕ2(y) = bac ϕ3(y) = c
ϕ1(z) = bac ϕ2(z) = c ϕ3(z) = b.

Generically these kernels belong to biholomorphically inequivalent Rie-
mann surfaces. However it might occur that some of these kernels are con-
jugate inside PSL2(R), that is, in some bigger Fuchsian group ∆ containing
the group [2, 2, 2, 4]. It was proved in Lemma 13 that ∆ has to be a triangle
group; moreover
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Lemma 20. a) The possible inclusions of a Fuchsian group Γi of signature
[2, 2, 2, 4] inside a triangle group ∆i are the following:

i) Γ1 = [2, 2, 2, 4]1 ≤ [2, 4, 5] = ∆1 with index 5.
ii) Γ2 = [2, 2, 2, 4]2 ≤ [2, 4, 6] = ∆2 with index 3.
iii) Γ3 = [2, 2, 2, 4]3 � [2, 3, 12] = ∆3 with index 3.
iv) Γ4 = [2, 2, 2, 4]4 � [2, 4, 8] = ∆4 ≤ [2, 3, 8]

with indexes 2 and 3, respectively.

b) In case iii) the three different kernels belong to only one biholomorphically
inequivalent Riemann surface, i.e. the orbit of a kernel inside [2, 3, 12] under
conjugation has length 1. In case iv) we find 2 different Riemann surfaces. In
case i) and ii) there are 3 biholomorphically inequivalent Riemann surfaces.

Proof. a) This part was already proved in Lemma 13.
b) As we did in Lemma 4, from the permutation representations in the

proof of Lemma 13, we deduce (see [14]) not only the inclusions but the
generators of each quadrangle group in terms of the generators of the cor-
responding triangle group which contains it; for instance, sets of left-coset
representatives in these cases are given by:

{Γ1, z1Γ1, z
2
1Γ1, z

3
1Γ1, z

4
1Γ1, z

5
1Γ1, z

6
1Γ1}; {Γ2, z2Γ2, z

2
2Γ2, z

3
2Γ2};

{Γ3, y3Γ3, y
2
3Γ3} and {Γ4, y4Γ4}

where, of course, the notation we are considering is ∆i = 〈xi, yi, zi | xri
i =

yli
i = zmi

i = xiyizi = 1〉. Therefore,

Γ4 = 〈x4, y
−1
4 x4y4, y

2
4 | x2

4 = (y−1
4 x4y4)

2 = (y2
4)

2 = (x4z
−2
4 x−1

4 )4 = 1〉
and

Γ3 = 〈x3, y
−1
3 x3y3, y

−2
3 x3y

2
3 |

x2
3 = (y−1

3 x3y3)
2 = (y−2

3 x3y
2
3)

2 = (x3z
−3
3 x−1

3 )4 = 1〉.
Let us now consider the automorphisms of Γ3 and Γ4 given by conjugation
by y3 ∈ ∆3 and y4 ∈ ∆4, respectively; that is, ηj(γ) = y−1

j γyj for any γ ∈ Γj

(j = 3 and 4). Then, we have that there exists an order 2 automorphism τ
of G3

∼= D4 × C2 such that

ϕ1 ◦ η4(x4) = ϕ1(y
−1
4 x4y4) = b = τ(bac) = τ ◦ ϕ3(x4)

ϕ1 ◦ η4(y
−1
4 x4y4) = ϕ1(y

−2
4 x4y

2
4)=(bac)−1c(bac) = c = τ(c) =τ ◦ ϕ3(y

−1
4 x4y4)

ϕ1 ◦ η4(y
2
4) = ϕ1(y

2
4) = bac = τ(b) = τ ◦ ϕ3(y

2
4)

ϕ2 ◦ η4(x4) = ϕ2(y
−1
4 x4y4) = bac = τ(b) = τ ◦ ϕ2(x4)

ϕ2 ◦ η4(y
−1
4 x4y4) = ϕ2(y

−2
4 x4y

2
4) = c−1bc = b = τ(bac) = τ ◦ ϕ2(y

−1
4 x4y4)

ϕ2 ◦ η4(y
2
4) = ϕ2(y

2
4) = c = τ(c) = τ ◦ ϕ2(y

2
4).
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Therefore,

y−1
4 (Ker(ϕ3))y4 = Ker(ϕ1) and y−1

4 (Ker(ϕ2)y4 = Ker(ϕ2).

On the other hand,

ϕ1 ◦ η3(x3) = ϕ1(y
−1
3 x3y3) = b = ϕ2(x3)

ϕ1 ◦ η3(y
−1
3 x3y3) = ϕ1(y

−2
3 x3y

2
3) = bac = ϕ2(y

−1
3 x3y3)

ϕ1 ◦ η3(y
−2
3 x3y

2
3) = ϕ1(x3) = c = ϕ2(y

−2
3 x3y

2
3)

and so on. Then, we have

y−1
3 (Ker(ϕ2))y3 = Ker(ϕ1) and y−1

3 (Ker(ϕ3))y3 = Ker(ϕ2).
�

Proposition 21. St and St′ belonging to F3 are isomorphic if and only if
p3(t

′) = p3(t), where p3 : CP1 → CP1 is given by p3(z) = z2.

Proof. The proof follows from two steps:
i) According to Lemma 13 there is no two subgroups with signature

[2, 2, 2, 4] included and non-conjugate in N(K) being K the surface group
of St, therefore St and St′ in F3 are isomorphic only if St/G3 is isomorphic
to St′/G3.

ii) Now, the proof of the proposition follows from i) together with Re-
mark 2 and Lemma 1, because in this section we have the hyperelliptic
involution c that is a central element of the automorphism group of St ∈ F3,
D4× < c >, hence the subgroup D4 projects to automorphisms of the quo-
tient surface St/ < c >, D̃4. Moreover, as < ã > is a normal subgroup of D̃4,

< b̃ > projects again to automorphisms of the quotient surface St/ < b, c >.
Summarizing, the invariant 16 degree meromorphic function f3 on St ∈ F3

can be obtained as the composition of the 3 quotient morphisms mentioned
above; more explicitly,

f3(x, y) = x4 +
1

x4
.

By other hand, now using (5.1) we can get a representative for each of the
4 orbits of fixed points and their images under f3 on the Riemann sphere,
which are

P1 :=
(√−i, 1 + e4

e2

)
�−→ Q1 = −2

P2 := (e, 0) �−→ Q2 = e4 + 1/e4 = t

P3 :=
(
1,

(1 − e4)i

e2

)
�−→ Q3 = 2

P4 := (0, 1) �−→ Q4 = ∞,

where P4 is one of the 4 fixed points of a, P3 is one of the 4 fixed points of b,
P2 is one of the 8 fixed points of c and, finally, P1 is one of the 4 fixed points
of bac.
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If we consider the order 3 Möbius transformation permuting the three
critical values with ramification order equals 2, we obtain the three non-
equivalent epimorphisms that as was proved in Lemma 19 are not equiv-
alent or, in other words, they do not differ by post-composition with an
automorphism of G3 because neither b nor bac are central elements as it
is c. Therefore, they do not lift to isomorphisms of St. On the other hand,
if we consider the order 2 Möbius transformation that interchange the two
critical values 2 and −2, there exists τ ∈ Aut(G3) such that τ(b) = bac
or, in other words, τ makes commutative the group diagram in Lemma 1
corresponding to this Möbius transformation and these normal coverings, so
it lifts to an isomorphism between St and S−t. The last statement follows
from the fact that the cross ratio is λ(Q1, Q2, Q3, Q4) = t+2

t−2
= λ3 which im-

plies that t = 2(λ3+1)
λ3−1

= g(λ3), λ(Q3, Q2, Q1, Q4) = 1/λ3 and g(1/λ3) = −t
which finishes the proof. More explicitly, an isomorphism between St and
S−t belonging to F3 is given by ε(x, y) = (

√
ix, y) because if (x, y) ∈ St we

have y2 = (
√
ix)8 − t(

√
ix)4 + 1 or, in other words, (

√
ix, y) ∈ S−t. �

Moreover,

Theorem 22. Let Q3 be the order 2 group of Möbius transformations gen-
erated by z �→ −z, and let [St] be the isomorphism class of any genus 3
compact Riemann surface belonging to the family F3. Then the mapping

Φ : t �→ [St]

is an holomorphic injection between the analytic space (C − {±2})/Q3 and
the moduli space M3 of compact Riemann surfaces of genus 3. Its image is
the subvariety of M3 consisting of those surfaces admitting an automorphism
group isomorphic to D4 × C2.

Proof. As in the previous section it follows directly from [11] and Proposi-
tion 21. �

In order to obtain the parameter t corresponding to the complete list of
algebraic curves belonging to the family F3 for which their surface groups
lie in the quadrangle groups Γi inside the triangle groups listed in part a) of
Lemma 20 or, equivalently, the ones which admit a uniform Belyi function
that factorizes through the quotient by the automorphism group, we will
proceed as in the previous sections and with the same notation. In this
case, we get the values of t we are interested in as the orbit under < N >,
N(z) = 2(z+6)

2−z
, of the solution of the equation t+2

t−2
= λ(Ri

1, R
i
2, R

i
3, R

i
4) or,

equivalently, solving 4
t+2

= λ(Ri
1, R

i
2, R

i
3, R

i
4) and 2−t

4
= λ(Ri

1, R
i
2, R

i
3, R

i
4) as

well; namely, following the order of the cases of triangle inclusions listed in
Lemma 20 and with the notation previously fixed,
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Proposition 23. A Riemann surface St ∈ F3 has the normalizer of its
surface group contained in a triangle group or, in other words, St ∈ F3

has a uniform Belyi function which factorizes through the quotient by the
automorphism group G3 if and only if t is obtained from the data of one of
the following cases:

i) h1(z) = z4(1 − z); (ν11
1 , ν

11
2 , ν

11
3 , ν

11
4 ; ν21

1 , ν
21
2 ; ν31

1 ) = (2, 1, 1, 1; 4, 1; 5).

R1
1 = −(135+60

√
6)1/3

15
+ 1

(135+60
√

6)1/3 − 1
5
, R1

4 = 1,

R1
2 = (135+60

√
6)1/3

30
− 1

2(135+60
√

6)1/3 − 1
5

+
√−3
10

(−(135+60
√

6)1/3

3
− 5

(135+60
√

6)1/3

)
,

R1
3 = (135+60

√
6)1/3

30
− 1

2(135+60
√

6)1/3 − 1
5
−

√−3
10

(−(135+60
√

6)1/3

3
− 5

(135+60
√

6)1/3

)
.

t+2
t−2

= λ(R1
1, R

1
2, R

1
3, R

1
4) = −1

5
− 2(135+60

√
6)1/3

√
6

75
+ 3(135+60

√
6)1/3

50
− 135+60

√
6)2/3

150

+113
√−2

480
− 49(135+60

√
6)1/3

√−3
900

+ 49(135+60
√

6)1/3
√−2

800
− 49(135+60

√
6)2/3

√−2
7200

therefore

t = −164719(135+60
√

6)2/3
√

6
8452908

+ 299825(135+60
√

6)1/3
√

6
19723452

+ 766685(135+60
√

6)1/3

19723452
+

+939731(135+60
√

6)2/3

19723452
− 3631741

3287242
+ 592681(135+60

√
6)2/3

√−2
59170356

− 7452875
√−2

9861726

−1329205(135+60
√

6)1/3
√−2

6574484
+ 9712985(135+60

√
6)1/3

√−3
59170356

+ 61377(135+60
√

6)2/3
√−3

6574484
;

N(t) = 1249(135+60
√

6)2/3
√

6
18432

− 2525(135+60
√

6)1/3
√

6
6144

+ 515(135+60
√

6)1/3

768
− 203

64
−

−49(135+60
√

6)2/3

192
+ 49(135+60

√
6)2/3

√−3
192

+ 565(135+60
√

6)1/3
√−3

2304
+

+415(135+60
√

6)1/3
√−2

2048
+ 5857(135+60

√
6)2/3

√−2
18432

− 6875
√−2

3072
;

N2(t) = 14
5

+ 8(135+60
√

6)1/3
√

6
75

− 6(135+60
√

6)1/3

25
+ 2(135+60

√
6)2/3

75
+

+49(135+60
√

6)1/3
√−3

225
− 49(135+60

√
6)2/3

√−2
200

− 113
√−2

120
+ 49(135+60

√
6)2/3

√−2
1800

.

ii) h2(z) = z2(z − 1); (ν12
1 , ν

12
2 ; ν22

1 , ν
22
2 ; ν32

1 ) = (2, 1; 2, 1; 3).

R2
1 = −1

3
, R2

2 = 0, R2
3 = ∞ and R2

4 = 1.

λ(R2
1, R

2
2, R

2
3, R

2
4) = 1

4
= t+2

t−2
therefore t = 10

3
, N(t) = −14 , N2(t) = −1.

iii) h3(z) = z3; (ν13
1 , ν

13
2 , ν

13
3 ; ν23

1 ; ν33
1 ) = (1, 1, 1; 3; 3).

R3
1 = 1, R3

2 = −1+
√−3
2

, R3
3 = −1−√−3

2
and R3

4 = ∞.

λ(R3
1, R

3
2, R

3
3, R

3
4) = 1−√−3

2
= t+2

t−2

therefore t = 2
√−3, N(t) = N2(t) = 2

√−3.

iv) h4(z) = z2; (ν13
1 , ν

14
2 ; ν24

1 ; ν34
1 ) = (1, 1; 2; 2).

R4
1 = 0, R4

2 = 1, R4
3 = −1 and R4

4 = ∞.

λ(R4
1, R

4
2, R

4
3, R

4
4) = 1

2
= t+2

t−2
therefore t = −6; N(z) = 0 , N2(z) = −6.
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6. Case (IV). Moduli of the family F4

The 1-complex dimensional family of genus 3 compact Riemann surfaces
admitting an automorphism group G4 isomorphic to D6 with branching data
(2, 2, 2, 6), F4, was already obtained in [10]. Each member of this family is
a hyperelliptic curve with algebraic equation given by

(6.1) St ≡
{
y2 = x7 − tx4 + x = x(x3 − e3)

(
x3 − 1

e3

)}
,

for every t ∈ C − {±2} and t = e3 + 1/e3.
The action of the automorphism group on any surface St ∈ F4 can be

described as follows:

a(x, y) = (ζ3x,−y) and b(x, y) =
(1

x
,
y

x4

)
with ζ3 = exp(2π

√−1/3).

Let us observe that a3(x, y) = (x,−y) is the hyperelliptic involution and

D6
∼= 〈{a, b : a6 = b2 = 1, and ba = a5b

}〉.
Although this family is composed of hyperelliptic surfaces as in the previous
section, therefore they have not either a canonical model, we still will use the
character table of D6 in order to get the number of different surface kernel
epimorphisms ϕ from every Γ = 〈x, y, z | x2 = y2 = z2 = (xyz)−6 = 1〉
a Fuchsian quadrangle group of signature [2, 2, 2, 6] to the automorphism
group:

C 1A 2A1 2A2 2C 3A 6A
| C | 1 3 3 1 2 2

id b ba c a2 a
ψ1 1 1 1 1 1 1
ψ2 1 −1 −1 1 1 1
ψ3 1 1 −1 −1 1 −1
ψ4 1 −1 1 −1 1 −1
ψ5 2 0 0 −2 −1 1
ψ6 2 0 0 2 −1 1.

Let us observe, first of all, that any epimorphism ϕ has to apply one of
the three order two generators of Γ to the central involution a3 and all of
them to elements belonging to different conjugacy classes because otherwise,
composing ϕ with the quotient epimorphism π : G4 → G4/Z(G4), where
Z(G4) =< a3 > denotes the center of G4, one gets a contradiction with the
fact that we must have π ◦ ϕ(x1x2x3x4) = π ◦ ϕ(1) = 1. Thus the number
of different epimorphisms equals the number of solutions of the equations
x2

1 = x2
2 = x2

3 = x6
4 = x1x2x3x4 = 1, where x1 and x2 belong to the conjugacy

classes 2Aj, for j = 1 or 2; x3 belongs to 2B and x4 belongs to 6A.
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This number nϕ can be easily calculated by using the very much men-
tioned formula in [8],

nϕ :=
2∑

j=1

2∑
k=1

3
|2Aj|||2Ak||2B||6A|

|G4|
5∑

i=1

ψi(x1)ψi(x2)ψi(x3)ψi(x4)

ψi(1)2
= 36.

The automorphism group of D6 has order 12 = 6× 2 because it is obviously
isomorphic to C6 × C2. Therefore we obtain the total number of different
kernels inside the [2, 2, 2, 6] quadrangle group to be nϕ/12 = 3. It is easy
to check that the three non-equivalent epimorphisms can be given in the
following way:

Lemma 24. For every Fuchsian group Γ with signature [2, 2, 2, 6], there
exist three non-equivalent surface kernel epimorphisms ϕi : Γ → D6 given by

ϕ1(x) = a3 ϕ2(x) = b ϕ3(x) = ba4

ϕ1(y) = b ϕ2(y) = ba4 ϕ3(y) = a3

ϕ1(z) = ba4 ϕ2(z) = a3 ϕ3(z) = b.

As we exposed in the previous sections, generically this kernels belong
to biholomorphically inequivalent Riemann surfaces. However it might oc-
cur that some of these kernels are conjugate inside PSL2(R), that is, in
some bigger Fuchsian group ∆ that contains at least a Fuchsian group with
signature [2, 2, 2, 6]. With analogous notation and proceeding in a similar
way as we did for proving Lemma 20 and, in this case, with permutation
representations given by

θ1 : [2, 4, 6] → S4 θ2 : [2, 3, 18] → S3 θ3 : [2, 4, 12] → S2

x1 �→ (1)(4)(23) x2 �→ (1)(2)(3) x3 �→ (1)(2)
y1 �→ (1234) y2 �→ (123) y3 �→ (12)
z1 �→ (143)(2) z2 �→ (132) z3 �→ (12),

one obtains:

Lemma 25. a) The possible inclusions of a Fuchsian group Γi of signature
[2, 2, 2, 6] inside a triangle group ∆i are the following

i) Γ1 = [2, 2, 2, 6]1 ≤ [2, 4, 6] = ∆1 with index 4.
ii) Γ2 = [2, 2, 2, 6]2 � [2, 3, 18] = ∆2 with index 3.
iii) Γ3 = [2, 2, 2, 6]3 � [2, 4, 12] = ∆3 with index 2.

b) In case ii) the three different kernels belong to only one biholomorphically
inequivalent Riemann surface, i.e. the orbit of a kernel inside [2, 3, 18] under
conjugation has length 1. In case iii) we find 2 different Riemann surfaces.
In case i) there are 3 biholomorphically inequivalent Riemann surfaces.
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Proposition 26. St and St′ belonging to F4 are isomorphic if and only if
p4(t

′) = p4(t), where p4 : CP1 → CP1 is given by p4(z) = z2.

Proof. The proof is the same as the corresponding one in the preceding
sections with the suitable changes to this case:

i) According to Lemma 25 there are not two subgroups with signature
[2, 2, 2, 6] included and non-conjugate in N(K), being K the surface group
of St. Therefore St and St′ in F4 are isomorphic only if St/G4 is isomorphic
to St′/G4.

ii) Now, the proof of the proposition follows again from i) together with
Remark 2 and Lemma 1 because as in the previous section the hyperelliptic
involution a3 is a central element of the automorphism group of St ∈ F4, D6,
so the subgroup D6/ < a3 >∼= D3 projects to automorphisms of the quotient

surface St/ < a3 >. Then, as < ã > is a normal subgroup of D̃3, <b̃>
projects again to automorphisms of the quotient surface St/ < a >. Sum-
marizing, the invariant 12 degree meromorphic function f4 on St ∈ F4 is the
composition of the 3 quotient morphisms mentioned above; more explicitly,

f4(x, y) = x3 +
1

x3
.

On the other hand, now using (6.1) we can get a representative for each
of the 4 orbits of fixed points and their images under f4 on the Riemann
sphere, which are

P1 :=
(
− 1,

i(e3 + 1)

e3/2

)
�−→ Q1 = −2

P2 := (e, 0) �−→ Q2 = e3 + 1/e3 = t

P3 :=
(
1,

(e3 − 1)i

e3/2

)
�−→ Q3 = 2

P4 := (0, 0) �−→ Q4 = ∞,

where P4 is one of the 2 fixed points of a, P3 is one of the 4 fixed points
of b, P2 is one of the 6 fixed points of the hyperelliptic involution a3 dif-
ferent from the fixed points of a and, finally, P1 is another fixed point of b
belonging to a different orbit than P3. If we consider the order 3 Möbius
transformations permuting the three critical values with ramification or-
der equals 2, we obtain the three non-equivalent epimorphisms that as was
proved in Lemma 24 are not equivalent or, in other words, they do not differ
by post-composition with an automorphism of G4. Therefore, they do not
lift to isomorphisms of St. On the other hand, if we consider the order 2
Möbius transformation that interchanges the two critical values 2 and −2,
there exists τ ∈ Aut(G4) such that τ(b) = ba2 or, in other words, τ makes
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commutative the group diagram in Lemma 1 corresponding to this Möbius
transformation and these normal coverings, so it lifts to an isomorphism be-
tween St and S−t. The last statement now follows from the fact that the cross
ratio is λ(Q1, Q2, Q3, Q4) = t+2

t−2
= λ4 which implies that t = 2(λ4+1)

λ4−1
= g(λ4),

λ(Q3, Q2, Q1, Q4) = 1
λ4

and g( 1
λ4

) = −t which finishes the proof. Moreover,
an isomorphism between St and S−t belonging to F4 is, obviously, given by

ε(x, y) = (−x, iy).
�

Consequently, we have

Theorem 27. Let Q4 be the order 3 group of Möbius transformations gen-
erated by z �→ 2(z+6)

2−z
, and let [St] be the isomorphism class of any genus 3

compact Riemann surface belonging to the family F4. Then the mapping

Φ : t �→ [St]

is a holomorphic injection between the analytic space (C−{±2})/Q4 and the
moduli space M3 of compact Riemann surfaces of genus 3. Its image is the
subvariety of M3 consisting of those surfaces admitting an automorphism
group isomorphic to D6.

Proof. As in the previous sections it follows directly from Proposition 26
and [11]. �

Remark 28. p4 : CP1 → CP1 is a Belyi function with critical values 0
and ∞. Among the corresponding curves to the set of preimages of the
critical values, the unique non singular one corresponds to p−1

2 (0) = {0}.
This algebraic curve has equation in F4 given by

y2 = x(x6 + 1)

and its automorphism group is generated by

a(x, y) = (µ2x, µy), with µ = exp(2π
√−1/6), b(x, y) =

(1

x
,
y

x4

)
and the hyperelliptic involution, that is, its automorphism group is isomor-
phic to D6 × C2.

In order to obtain the parameter t corresponding to the complete list of
algebraic curves belonging to the family F4 for which their surface groups
lie in the quadrangle groups Γi inside the triangle groups listed in part a) of
Lemma 25 or, equivalently, the ones which admit a uniform Belyi function
that factorizes through the quotient by the automorphism group, we will
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proceed as in the previous sections and with the same notation. We get
the values of t we are interested in as the orbit under N(z) = 2(z+6)

z−2
to the

solution of the equation t+2
t−2

= λ(Ri
1, R

i
2, R

i
3, R

i
4), equation obtained imposing

that λ(Ri
1, R

i
2, R

i
3, R

i
4) = λ(Q1, Q2, Q3, Q4) = λ(−2, t, 2,∞) = t+2

t−2
; namely,

following the order of the cases of triangle inclusions listed in Lemma 25 and
with the previously fixed notation, we have

Proposition 29. A Riemann surface St ∈ F4 has the normalizer of its
surface group contained in a triangle group or, in other words, St ∈ F4

has a uniform Belyi function which factorizes through the quotient by the
automorphism group G4 if and only if t is obtained from the data of one of
the following cases:

i) h1(z) = z3(1 − z); (ν11
1 , ν

11
2 , ν

11
3 ; ν21

1 , ν
21
2 ; ν31

1 ) = (2, 1, 1; 3, 1; 4).

R1
1 = −1+

√−2
4

, R1
2 = 0, R1

3 = −1−√−2
4

and R1
4 = 1.

λ(R1
1, R

1
2, R

1
3, R

1
4) = 17−56

√−2
81

= t+2
t−2

therefore t = −7
√−2
4

;

N(−7
√−2
4

) = −94−224
√−2

81
and N2(−7

√−2
4

) = 94−224
√−2

81
.

ii) h2(z) = z3; (ν12
1 , ν

12
2 , ν

12
3 ; ν22

1 ; ν32
1 ) = (1, 1, 1; 3; 3).

R2
1 = 1, R2

2 = −1+
√−3
2

, R2
3 = −1−√−3

2
and R2

4 = ∞;

λ(R2
1, R

2
2, R

2
3, R

2
4) = 1−√−3

2
= t+2

t−2
therefore t = 2

√−3.

iii) h3(z) = z2; (ν13
1 , ν

13
2 ; ν23

1 ; ν33
1 ) = (1, 1; 2; 2).

R3
1 = 1, R3

2 = −1, R3
3 = 0 and R3

4 = ∞.

λ(R3
1, R

3
2, R

3
3, R

3
4) = 1

2
= t+2

t−2
therefore t = −6, N(z) = 0 and N2(z) = −6.

7. Case (V). Moduli of the family F5

For every t ∈ C − {0, 1}, the non singular algebraic curve described in [10]
as a member of the family F5 can be written as:

(7.1) St ≡
{
y3 = (x2 − 1)(x2 − e2) = x4 − (1 + t)x2 + t

}
� C2.

The action of the automorphism group on any surface St ∈ F5 can be
described as follows:

a(x, y) = (−x, ζ3y) with ζ3 = exp(2π
√−1/3); and

C6
∼= 〈{a : a6 = 1}〉.

In order to calculate the number of different epimorphisms ϕ from Γ =
〈x, y, z | x2 = y3 = z3 = (xyz)−6 = 1〉 Fuchsian quadrangle group [2, 3, 3, 6]
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to the automorphism group C6 and the invariant 6 degree meromorphic
function, one could proceed as in the previous sections using the character
table of the automorphism group but, as in this case this is a cyclic group
with rather low order, it is obvious that

f5(x, y) = x2

and

Lemma 30. For every Fuchsian group Γ with signature [2, 3, 3, 6], there ex-
ists a unique non-equivalent surface kernel epimorphism ϕ : Γ → C6 given by

ϕ(x) = a, ϕ(y) = a2 and ϕ(z) = a2.

On the other hand, now using (6.1) we can get a representative for each
of the 4 orbits of fixed points and their images under f5 on the Riemann
sphere, which are

P1 :=
(
0, t1/3

) �−→ Q1 = 0

P2 := (1, 0) �−→ Q2 = 1

P3 :=
(√

t, 0
) �−→ Q3 = t

P4 := ∞ �−→ Q4 = ∞,

where P1 is one of the 3 fixed points of a3, P2 is one of the 4 fixed points
of a2, P3 is a fixed point of a3 in a different orbit than P2 and, finally,
P4 is the unique fixed point of a. In this section the cross ratio of the
critical values is λ(Q1, Q2, Q3, Q4) = 1

1−t
= λ5 which implies that t = λ5−1

λ5

and if λ(Q1, Q3, Q2, Q4) = t′
t′−1

= λ5 then t′ = λ5

λ5−1
= 1

t
. Therefore if we

consider the order 2 Möbius transformation permuting the two critical values
with ramification order equals 3, then the identity makes commutative the
group diagram in Lemma 1 corresponding to this Möbius transformation and
these normal coverings, so it lifts to an isomorphism between St and S1/t.
Moreover, an isomorphism between S1/t and St belonging to F5 is, obviously,
given by

ε(x, y) =
(
ex, e4/3y

)
.

On the other hand, we have

Lemma 31. The possible inclusions of a Fuchsian group Γi of signature
[2, 3, 3, 6] inside a triangle group ∆i are the following:

i) Γ1 = [2, 3, 3, 6]1 ≤ [3, 3, 6] = ∆1 � [2, 3, 12] with indexes 4 and 8, resp.
ii) Γ2 = [2, 3, 3, 6]2 ≤ [2, 3, 30] = ∆2 with index 5.
iii) Γ3 = [2, 3, 3, 6]3 ≤ [2, 5, 6] = ∆3 with index 5.
iv) Γ4 = [2, 3, 3, 6]4 ≤ [2, 6, 9] = ∆4 with index 3.
v) Γ5 = [2, 3, 3, 6]5 � [3, 4, 12] = ∆5 with index 2.
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Proof. Again, with a simple area argument and proceeding as in Lemma 13,
and using the fact that one of the periods of any Fuchsian group that contains
a quadrangle group with signature [2, 3, 3, 6] must be a multiple of 6, as
µ([2, 3, 3, 6]) = 2/3 and, for every n and l ≥ 4, we have µ([n, l, 6k]) ≥
µ([4, 4, 6]) = 1/3 = µ([2, 3, 3, 6])/2. We conclude that there is no triangle
group [n, l, 6k] containing a quadrangle group with signature [2, 3, 3, 6], for
n ≥ l ≥ 4 and for any k, because Theorem 1 in [14] states that such an
inclusion can not happen either for the unique possibility which was [4, 4, 6],
with index N = 2, as one would obtain more than one six period for the
included subgroup.

Analogously, µ([3, l, 6k]) > 1/3 = µ([2, 3, 3, 6])/2 = µ([2, 3, 3, 6])/N for
any l ≥ 3 if k ≥ 3; and for k = 1 and 2 the only possibilities are [4, 4, 6]
with N = 2 which is not possible because of Theorem 1 in [14] for the same
reason as for [4, 4, 6], but [3, 3, 6] with index N = 4 and [3, 4, 12] with index
N = 2 could happen.

On the other hand, we have to discuss the possible cases for n = 2.
Let us observe that µ([2, l, 6k]) > 1/3 = µ([2, 3, 3, 6])/2 = µ([2, 3, 3, 6])/N
implies that l · (k − 1) > 6k or, in other words, l > 6k

k−1
for k > 1, so l > 8

for k ≥ 4. Hence, let us now study the possibilities for k = 1, 2 and 3:

• µ([2, l, 6]) = l−3
3l

= 2/(3N) or, equivalently, N · (l− 3) = 2l. Therefore,
l−3 divides 2l which implies that l−3 divides 6 = 2 · (l−3)−2l or, in
other words, the possibilities for l are 4, 5, 6 and 9. Using Theorem 1 in
[14] we discard easily [2, 6, 6], it is impossible to obtain a permutation
representation in S4 as the action of the generators of the triangle group
on a set of left-coset representatives of the quotient [2, 6, 6]/[2, 3, 3, 6].

• µ([2, l, 12]) = 5l−12
12l

= 2
3N

, hence N · (5l − 12) = 8l which implies that
5l − 12 divides 8l and therefore, 5l − 12 divides 8 × 12 = 96. Then,
if we check the possibilities for l we only obtain the integer solutions
l = 4 and 8.

• Finally, µ([2, l, 18]) = 16l−9
9l

= 2
3N

or, equivalently, N · (16l − 9) = 6l
which implies that 16l − 9 divides 6l, so 16l − 9 divides 27 = 3 × 9,
but this gives no integer solutions for l.

It still remains to study the possible values of k for l = 3, 4, 5, 6, 7 and 8,
and reasoning in an analogous way as above, the new candidates obtained
are [2, 3, 12], [2, 3, 18], [2, 3, 30], [2, 4, 12], [2, 4, 36] and [2, 7, 42] for which the
corresponding indexes are N = 8, 6, 5, 2, 3 and 2. According to Theorem 1
in [14], a subgroup contained in [2, 3, 18] with index N = 6 would have more
than 3 periods; [2, 4, 36] and [2, 7, 42] can not contain a Fuchsian group with
signature [2, 3, 3, 6] and with indexes 3 and 2, respectively, because it would
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give us generators for the included subgroups with orders, at least, 12 and 21,
respectively. The permutation representations that prove that, in fact, the
rest of possible inclusion really happens are

θ1 : [2, 3, 12] → S8 θ1′ : [3, 3, 6] → S4

x1 → (12)(37)(45)(68) x′1 → (234)(1)
y1 → (2)(5)(173)(486) y′1 → (142)(3)
z1 → (123456)(78) z′1 → (123)(4)

θ2 : [2, 3, 30] → S5 θ3 : [2, 5, 6] → S5

x2 → (1)(23)(45) x3 → (1)(23)(45)
y2 → (3)(5)(142) y3 → (13542)
z2 → (12345) z3 → (12)(34)(5)

θ4 : [2, 6, 9] → S3 θ5 : [3, 4, 12] → S2

x4 → (1)(23) x5 → (1)(2)
y4 → (12)(3) y5 → (12)
z4 → (123) z5 → (12),

which concludes the proof. �
Summarizing up,

Proposition 32. St and St′ belonging to F5 are isomorphic if and only if
p5(t

′) = p5(t), where p5 : CP1 → CP1 is given by p5(z) = z + 1
z
.

Remark 33. p5 : CP1 → CP1 is a Belyi function with critical values ±2.
The algebraic curves corresponding to the set of preimages of the critical
values are:

i) p−1(2) = {1} which corresponds to a singular curve as it is the case
for {0,∞} = p−1(∞).

ii) p−1(−2) = {−1} which corresponds to the curve given by the following
algebraic equation:

y3 = x4 − 1.

Its automorphism group is isomorphic to C12, generated by

a′(x, y) =
(√−1x, ζ3y

)
with ζ3 = exp(2π

√−1/3).

In terms of Fuchsian groups, its surface group has to be contained in
the unique normal inclusion of a Fuchsian quadrangle group with signature
[2, 3, 3, 6] in a triangle group, which is [3, 4, 12] with index 2.

Moreover,
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Theorem 34. Let Q5 be the order 2 group of Möbius transformations gener-
ated by z �→ 1

z
, and let [St] be the isomorphism class of any genus 3 compact

Riemann surface belonging to the family F5. Then the mapping

Φ : t �→ [St]

is an holomorphic injection between the analytic space (C−{0, 1})/Q5 and
the moduli space M3 of compact Riemann surfaces of genus 3. Its image is
the subvariety of M3 consisting of those surfaces admitting an automorphism
group isomorphic to C6.

Proof. As in the previous sections, it follows from [11] and Proposition 32. �
Again, in order to obtain the parameter t corresponding to the complete

list of algebraic curves belonging to the family F5 for which their surface
groups lie in the quadrangle groups Γi inside the triangle groups listed in
Lemma 31 or, equivalently, the ones which admit a uniform Belyi function
that factorizes through the quotient by the automorphism group, we use the
same procedure and notation as in the previous sections. In this case, we
obtain the values of t imposing that

1

1 − t
= λ(0, 1, t,∞) = λ(Q1, Q2, Q3, Q4) = λ(Ri

1, R
i
2, R

i
3, R

i
4);

namely, following the order of the cases of the triangle inclusions listed in
Lemma 31 and with the previously fixed notation,

Proposition 35. A Riemann surface St ∈ F5 has the normalizer of its sur-
face group contained in a triangle group or, in other words, St has a uniform
Belyi function which factorizes through the quotient by the automorphism
group if and only if t is obtained from the data of one of the following cases:

i) h1(z) = (z+1)3(z−1/7)
z3(z−1)

; (ν11
1 , ν

11
2 ; ν21

1 , ν
21
2 ; ν31

1 , ν
31
2 ) = (3, 1; 3, 1; 3, 1).

R1
1 = −1

5
, R1

2 = 1, R1
3 = 1

7
and R1

4 = −1.

λ(R1
1, R

1
2, R

1
3, R

1
4) = 2 = 1

1−t
therefore t = 1

2
.

ii) h2(z) = z3
(
z2 − 2z + 32/5

)
;

(ν12
1 , ν

12
2 , ν

12
3 ; ν22

1 , ν
22
2 , ν

22
3 ; ν32

1 ) = (2, 2, 1; 3, 1, 1; 5).

R2
1 = −6

5
, R2

2 = 5+3
√−3
5

, R2
3 = 5−3

√−3
5

and R3
4 = ∞.

λ(R2
1, R

2
2, R

2
3, R

2
4) = 9−11

√−3
18

= 1
1−t

therefore t = 47−33
√−3

74
.

iii) h3(z) = (16z5 − 20z3 + 5z);

(ν13
1 , ν

13
2 , ν

13
3 ; ν23

1 , ν
23
2 , ν

23
3 ; ν33

1 ) = (2, 2, 1; 2, 2, 1; 5).

R3
1 = −1, R3

2 = cos(4π/5), R3
3 = cos(2π/5) and R3

4 = 1.

λ(R3
1, R

3
2, R

3
3, R

3
4) = 2−√

5
4

= 1
1−t

therefore t = 9 + 4
√

5.
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iv) h4 = (4z2 − 3)z; (ν14
1 , ν

14
2 ; ν24

1 , ν
24
2 ; ν34

1 ) = (2, 1; 2, 1; 3).

R4
1 = 1, R4

2 = ∞, R4
3 = 1

2
and R4

4 = −1.

λ(R4
1, R

4
2, R

4
3, R

4
4) = 3

4
= 1

1−t
therefore t = −1

3
.

v) h5 = z2; (ν15
1 ; ν25

1 , ν
25
2 ; ν35

1 ) = (2; 1, 1; 2).

R5
1 = 0, R5

2 = 1, R5
3 = −1 and R5

4 = ∞.

λ(R5
1, R

5
2, R

5
3, R

5
4) = 1

2
= 1

1−t
therefore t = −1.

Similarly as in the previous sections for the non-hyperelliptic families, for
every genus 3 curve St belonging to the family F5, we obtain the 6-holomor-
phic differential which is the Wronskian (Wr5(St)) of x, y and z, a basis of
the vector space of holomorphic differentials. In order to make the direct
computation which is the Wronskian for this basis, we use the meromorphic
function y/z as a local parameter at every point of the curve, unless a finite
number of them, in the affine neighborhood z = 1 and, finally, we return it
to a global expression what gives us that

Theorem 36. For every compact Riemann surface St belonging to the fam-
ily F5, the Wronskian of the basis {x, y, z} for the space of holomorphic
differentials is

Wr5(St) = −2y4x2 + 3y4z2 + 4x2yz3 + (3y4z2 − 8x2yz3)t+ (4x2yz3)t2.
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