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SAK Principle for a class
of Grushin-type operators

Lidia Maniccia and Marco Mughetti

Abstract
We prove Fefferman’s SAK Principle for a class of hypoelliptic

operators on R
2 whose nonnegative symbol vanishes anisotropically

on the characteristic manifold.

1. Introduction

In his celebrated paper [5], Fefferman suggests a strategy to get a priori
estimates (SAK principle). Suppose that one wants to know whether a
given estimate of the form

(1.1) C‖qwu‖0 ≤ ‖Lwu‖0 + “small error terms”, ∀u ∈ S(Rn),

holds for given symbols L, q ∈ S2(Rn). Here Sm(Rn), m ∈ R, is the set
of “global symbols” a(x, ξ) satisfying |∂α

x ∂
β
ξ a(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β| for

all (x, ξ) ∈ R
2n and all α, β ∈ Z

n
+, and aw denotes the Weyl quantization

of a (see [10]). Fefferman’s idea is to obtain (1.1) by a comparison of the
symbols L and q. This is in analogy to the Fefferman-Phong inequality
proved in [4]:

S2(Rn) � a ≥ 0 =⇒ (awu, u)L2 ≥ −C‖u‖2
0, ∀ u ∈ S(Rn).

Hérau proved (1.1) for n = 1 assuming that L(x, ξ) ≥ 0 and |q(x, ξ)| ≤
L(x, ξ) for every (x, ξ) ∈ R

2 (see [8]). Actually, Fefferman conjectured
that (1.1) holds under a weaker assumption, namely

(1.2) max
Bµ

|q(x, ξ)| ≤ c max
Bµ

L(x, ξ),

where {Bµ}µ∈N is a suitable “partition” of the phase space R
n
x×R

n
ξ associated

with L(x, ξ).
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In this paper, we prove this result in the case n = 2 and Lw being the
Grushin operator with symbol

(1.3) L(x, ξ) = ξ2
1 + x2h

1 ξ
2
2 , (x, ξ) = (x1, x2, ξ1, ξ2) ∈ R

4, h ∈ Z+.

Similar arguments work in higher dimension for polynomial symbols having
the same kind of anisotropic vanishing. More precisely, if x = (x′, x′′) ∈
R

µ × R
n−µ (accordingly ξ = (ξ′, ξ′′)), one can consider operators having

real homogeneous polynomial symbols that near the characteristic mani-
fold, {(x, ξ) = (x′, x′′, ξ′, ξ′′) ∈ R

2n : x′ = ξ′ = 0}, behave like |ξ|2(|x′|2h +
|ξ′|2/|ξ|2). The required adjustments to treat these cases can be easily de-
duced and are here omitted. It is worthwhile to observe that the Grushin
operator in R

2 is “meaningful” in view of reduction theorems given in [5].

Before stating the precise result, let us observe that the weaker assump-
tion (1.2) on the symbols has, in general, non trivial consequences. For
example, considering real vector fields Xj with Weyl symbols pj, a pointwise
comparison of the symbols yields

‖X2
j u‖0 ≤ C

(‖
∑

j

X2
j u‖0 + ‖u‖ε

)
.

In fact, we have σw(X2
k) = p2

k + i{pk, pk}/2 + S0 = p2
k + S0, p2

k(x, ξ) ≤∑
j p

2
j(x, ξ). The full SAK Principle would even imply that

‖XjXku‖0 ≤ C(‖
∑

j

X2
j u‖0 + ‖u‖ε)

since the symbol of XjXk is pjpk + i{pj, pk}/2 + S0 and it satisfies (1.2) for
suitable rectangles Bµ. In fact, |pjpk| ≤ c

∑
j p

2
j but a pointwise comparison

of {pj, pk} by the symbol of
∑

j X
2
j is in general not possible as one easily

checks in our case p1 = ξ1 and p2 = xh
1ξ2.

Some preliminary facts are needed in order to state the main Theorem of
this paper. From (1.3), it is easily seen that L(x, ξ) ≥ 0 with characteristic
manifold given by

(1.4) Σ = {(x1, x2, ξ1, ξ2) ∈ R
4 : x1 = ξ1 = 0, ξ2 �= 0}.

Definition 1.1 Let R > 0 be a suitable large fixed constant and consider,
for (x, ξ) ∈ R

4,

DΣ(x, ξ) =
( x2h

1

(1 + x2
1)

h
+

ξ2
1

R2 + |ξ|2 +
R2h/(h+1)

(R2 + |ξ|2)h/(h+1)

)1/2

.

We then define, for every (x, ξ), (y, η) ∈ R
4, the Hörmander metric

G(x,ξ)(y, η) =
|y|2

DΣ(x, ξ)2/h
+

|η|2
(R2 + |ξ|2)DΣ(x, ξ)2

.
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We want to point out that the metric G here considered is obtained by
slightly modifying the metric used in [12] for the parametrix construction.
As a consequence, the Weyl calculus defined by G is strictly related with
Boutet de Monvel’s calculus (see [3]). It is worth to observe that, near the
characteristic manifold Σ, the metric G is equivalent to a metric defined only
through the symbol L, namely

GL
(x,ξ)(y, η) =

|y|2
〈ξ〉−2/h(L(x, ξ) + 〈ξ〉2/(h+1))1/h

+
|η|2

L(x, ξ) + 〈ξ〉2/(h+1)
,

for (x, ξ), (y, η) ∈ R
4. In the following Theorem, we denote by cSV the

positive constant related to the slowly varying property of the metric G in
Definition 1.1:

(1.5) GX(Y −X) ≤ cSV =⇒ cSVGY (Z) ≤ GX(Z) ≤ 1

cSV
GY (Z),

∀X,Y, Z ∈ R
2 × R

2.

Theorem 1.2 Let q ∈ S2(R2) and suppose that there exists a constant 0 <
r ≤ cSV and a covering {BG

(xj ,ξj)
(r)}j∈N of R

2
x × R

2
ξ such that

(1.6) max
BG

(xj,ξj)
(r)

|q| ≤ c max
BG

(xj,ξj)
(r)
L, ∀j ∈ N,

where
BG

(xj ,ξj)
(r) = {(y, η) ∈ R

4 : G(xj ,ξj)(y − xj, η − ξj) ≤ r2}
and c is a constant independent of j ∈ N.

Then, for every compact set K ⊂ R
2, there exists a positive constant

C = C(K) such that

(1.7) ‖L(x,D)u‖2
0 + ‖u‖2

0 ≥ C‖qwu‖2
0, ∀u ∈ C∞

0 (K).

Note that one cannot expect to have (1.7) uniformly for all u in S(R2),
since L is not globally bounded in R

4.

It is worth pointing out that the decomposition of the phase space T ∗
R

2

by means of the balls BG
(xj ,ξj)

(r) given above is different from the one pro-

posed by Fefferman in [6]. This shows that there is no a-priori uniqueness
in the choice of the “good” partition of T ∗

R
n. A very difficult problem is

to understand what a “natural” definition of ball associated with a second
order pseudodifferential operator is. This problem is studied in [13], where
a sharp definition of subunit ball for non-negative symbols of subelliptic
operators is discussed.
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The paper is organized as follows. In Section 2 we show that Theorem 1.2
can be “microlocalized” to Theorem 2.4 below and we develop some tools
needed in Section 3 for the proof of Theorem 2.4. In the Appendix some
technical results required throughout the paper are proved.

Acknowledgements. We thank A. Parmeggiani for introducing us to this
argument and for the constant support.

2. First and second level microlocalizations

Definition 2.1 Let K ⊂ R
2 be an arbitrary fixed compact set and let χ

be a function in C∞
0 (R2) such that χ = 1 on a neighborhood of K and

0 ≤ χ(x) ≤ 1. Define

p(x, ξ) = ξ2
1 +

[
χ(x)x2h

1 + (1 − χ(x))
x2h

1

(1 + x2
1)

h

]
ξ2
2 .

The symbol p is an extension of the Grushin operator outside the compact
set K, whose properties are stated in the lemma below.

Lemma 2.2 The following properties hold:

1) p ∈ S2(R2);

2) p(x, ξ) ≥ 0, ∀(x, ξ) ∈ R
2
x × (R2

ξ \ {0}), and p(x, ξ) = 0 iff (x, ξ) ∈ Σ;

3) for every constant C > 0 and for every (closed) rectangle Q ⊆ R
4 such

that Πx(Q) ⊆ {(x1, x2) ∈ R
2 : |x1| ≤ C} (here Πx is the projection

(x, ξ) ∈ R
4 → x ∈ R

2 ) one has

max
Q

p(x, ξ) ∼ max
Q

L(x, ξ) uniformly in Q,

with L defined by (1.3);

4) if q ∈ S2(R2) is such that

(2.1) ‖pwu‖2
0 + ‖u‖2

0 ≥ c‖qwu‖2
0, ∀u ∈ S(R2)

for some positive constant c, then estimate (1.7 ) holds.

The previous lemma reduces the proof of Theorem 1.2 to the proof, under
the same assumptions, of (2.1). We further want to give a microlocal version
of (2.1). In order to do this we need to introduce a partition of R

4 in suitable
rectangles having sides parallel to the coordinate axes.

For any d > 0 and for any ȳ = (ȳ1, ȳ2) ∈ R
2, denote by Id(ȳ) the

rectangle Id(ȳ) = {y ∈ R
2 : |yi − ȳi| ≤ d/(2

√
2), i = 1, 2} (d is referred

to as the diameter of Id(ȳ)), and consider a partition {Q1
µ}µ∈N of R

4 with
Q1

µ = I1(xµ) × IMµ(ξµ), such that
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• for every (x, ξ) ∈ Q1
µ one has

(2.2) 2−4(R+ |ξ|) ≤Mµ ≤ 2−3(R+ |ξ|);

•
◦
Q1

µ∩
◦
Q1

µ′ = ∅ for each µ �= µ′ (
◦
Q1

µ is the interior ofQ1
µ) and

⋃
µ∈N

Q1
µ = R

4.

Remark 2.3 For every (x, ξ) ∈ 2Q1
µ one has1

17−1(R+ |ξ|) ≤Mµ ≤ 7−1(R+ |ξ|).
Denoting by (xµ, ξµ) the center of Q1

µ one has in fact

(R+ |ξ|) ≤ (R+ |ξµ|) + |ξ − ξµ| ≤ (1 + 24)Mµ

and
Mµ ≤ 2−3(R+ |ξ|) + 2−3|ξ − ξµ| ≤ 2−3(R+ |ξ|) + 2−3Mµ.

As a consequence, one gets Mµ′ ∼Mµ whenever 2Q1
µ ∩ 2Q1

µ′ �= ∅.

Remark 2.3 allows us to apply Proposition A.2, so that the metric

(2.3) gI
(x,ξ)(y, η) = |y|2 +

|η|2
M 2

µ

, (x, ξ) ∈
◦
Qµ,

can be extended to a Hörmander metric gI . As a consequence of Theo-
rem A.5 and of Lemma 2.2 we can finally reduce the proof of Theorem 1.2
to the proof of the following theorem which can be considered as its microlo-
cal version.

Theorem 2.4 With the same hypotheses of Theorem 1.2, let {ψµ}µ∈N,
{ϕµ}µ∈N be the partition of unity associated with the covering {Q1

µ}µ∈N in
the sense of Proposition A.4. Then2

(2.4) ‖(pψµ)wϕw
µu‖2

0 � ‖(qψµ)wϕw
µu‖2

0−(rw
µ u, u)L2, ∀µ ∈ N, ∀u ∈ S(R2),

with p as in Definition 2.1 and
∑
µ∈N

rw
µ ∈ L(L2(R2), L2(R2)).

1In what follows, given a rectangle Q in R
4 and k ∈ R+, we denote by kQ the dilated

of Q by the factor k keeping its center fixed
2From now on, for two non negative functions f, g on R

n we write f � g (resp., f � g)
when there exists a constant c > 0 such that f(x, ξ) ≤ c g(x, ξ) (resp., f(x, ξ) ≥ c g(x, ξ)).
We simply write f ∼ g when f � g and f � g. For function families {fk}k, {gk}k and
{hk}k we write fk � gk (resp., fk � gk) whenever the constants in the inequalities don’t
depend on k; fk � gk − hk whenever fk + hk � gk.
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The proof of Theorem 2.4 requires a second microlocalization. Let {Q1
µ}µ∈N

be the partition of R
4 just described, we refer to the Q1

µ as “rectangles of first
generation”. Among them, we retain those that satisfy one of the following
conditions:

either there exists (x, ξ) ∈ Q1
µ such that 1 ≤ 2[R/(R+ |ξ|)]1/(h+1)

or p(x, ξ) > 0 for every (x, ξ) ∈ 4Q1
µ.

If both these conditions fail we divide Q1
µ into 22(h+1) subrectangles Q2

µ′

(rectangles of second generation) by partitioning I1(xµ) into four congru-
ent rectangles and IMµ(ξµ) into 4h congruent rectangles. We denote by
diamxQ

2
µ′, diamξQ

2
µ′ respectively their x-diameter and ξ-diameter, and re-

tain those satisfying one of the following conditions, for j = 2,

∃(x, ξ) ∈ Qj
µ′ such that diamxQ

j
µ′ ≤ 2R1/(h+1)

(R+ |ξ|)1/(h+1)
;(2.5)

p(x, ξ) > 0, ∀(x, ξ) ∈ 4Qj
µ′.(2.6)

We again divide the rectangles that were not retained into 22(h+1) subrect-
angles, Q3

µ′ , as described above and retain those satisfying one of condi-
tions (2.5), (2.6) for j = 3. We continue this process and after a finite
number of steps (because of the condition (2.5)) we obtain a partition of R

4.

Lemma 2.5 Let Qj
µ be a rectangle, either retained or not, of the j-th gen-

eration, we then have

(2.7) 2−4(R+ |ξ|)(diamxQ
j
µ

)h ≤ diamξQ
j
µ ≤ 2−3(R+ |ξ|)(diamxQ

j
µ

)h
,

∀(x, ξ) ∈ Qj
µ, and

(2.8) 2−1(R + |ξ|) ≤ R+ |η| ≤ 2(R+ |ξ|), (x, ξ), (y, η) ∈ 4Qj
µ.

Proof. When j = 1, (2.7) is trivial. When j ≥ 2, since

diamxQ
j
µ = (1/2)diamxQ

j−1
µ and diamξQ

j
µ = (1/2h)diamξQ

j−1
µ ,

(2.7) follows by induction.
Consider now (x, ξ) ∈ 4Qj

µ, j ≥ 1. From (2.7), taking into account
that diamxQ

j
µ ≤ 1, it follows, on denoting by (x̄, ξ̄) the center of Qj

µ, that
|ξ − ξ̄| ≤ 2 diamξQ

j
µ ≤ 2−2(R + |ξ̄|). Thus

R + |ξ| ≤ R+ |ξ̄| + |ξ − ξ̄| ≤ 5/4(R+ |ξ̄|) and R + |ξ| ≥ 3/4(R+ |ξ̄|).

This concludes the proof. �
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Definition 2.6 Let {Qµν} (µ ∈ N, ν = 1, . . . , N(µ)) be the partition of R
4

obtained by means of conditions (2.5) and (2.6). The first index, µ, indicates
the rectangle of the first generation Q1

µ whose decomposition gives Qµν. We
denote by (xµν , ξµν) the center of Qµν, by δµν and εµν respectively its x-
diameter and the ξ-diameter and, finally, we write hµν = (δµνεµν)

−1.

The following propositions describe the basic properties of the partition.

Proposition 2.7 If (x, ξ) ∈ Qµν, then

(2.9) 2−4(R + |ξ|)δh
µν ≤ εµν ≤ 2−3(R+ |ξ|)δh

µν ;

(2.10)
R1/(h+1)

(R+ |ξ|)1/(h+1)
≤ δµν ≤ 1;

(2.11) 23(R + |ξ|)−1δ−h−1
µν ≤ hµν ≤ 24(R+ |ξ|)−1δ−h−1

µν < 16/R.

Moreover, if Qµν is retained by virtue of (2.5) one has

22−hR−1 ≤ hµν ;(2.12)

δµν ≤ 2(h+2)/(h+1) R1/(h+1)

(R+ |ξ|)1/(h+1)
, ∀(x, ξ) ∈ 4Qµν.(2.13)

Proof. Inequality (2.9) is simply (2.7) written in this case. Inequality (2.10)
is trivial if δµν = 1. If Qµν is obtained by dividing some Qj

µ this means, in
particular, that Qj

µ does not satisfy (2.5). Hence, taking into account that
2δµν = diamxQ

j
µ one proves (2.10) also in this case. Inequality (2.11) is

obtained by multiplying (2.9) by δµν and by using (2.10).
Let us suppose now that Qµν is retained because of (2.5). From (2.11)

we get (2.12). Finally, (2.13) is deduced from (2.5) and (2.8). �
Same arguments used in Proposition 1.4 of [7] prove the following Propo-

sition.

Proposition 2.8 If 2Qµν ∩ 2Qµ′ν′ �= ∅ then

(2.14) 2−6δµ′ν′ ≤ δµν ≤ 26δµ′ν′ 2−(6h+3)εµ′ν′ ≤ εµν ≤ 26h+3εµ′ν′ .

In view of the results above we can apply Proposition A.2 and obtain
that the metric

(2.15) gII
(x,ξ)(y, η) = δ−2

µν |y|2 + ε−2
µν |η|2, (x, ξ) ∈

◦
Qµν

can be extended to a Hörmander metric gII with Planck function hII given by

hII(x, ξ) = hµν , (x, ξ) ∈
◦

Qµν.
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Remark 2.9

1) If Qµν is obtained by partitioning a cube Qj
µ of generation j ≥ 1, then

one has 4Qj
µ ∩ Σ �= ∅ and it easily follows

|ξ1| ≤ 22+hεµν , |x1| ≤ 23δµν , ∀(x1, x2, ξ1, ξ2) ∈ 2Qµν.

2) If Qµν is retained by means of (2.6) then

either |x1| > δµν√
2

or |ξ1| > εµν√
2
, ∀(x1, x2, ξ1, ξ2) ∈ 2Qµν.

In fact, if by contradiction we suppose that there exists (x̄1, x̄2, ξ̄1, ξ̄2) ∈ 2Qµν

such that |x̄1| ≤ δµν/
√

2 and |ξ̄1| ≤ εµν/
√

2, this implies (0, x̄2, 0, ξ̄2) ∈
4Qµν ∩ Σ. In particular, if Qµν is retained by means of (2.6) then p(x, ξ) +
R2 � ε2µν for every (x, ξ) ∈ 2Qµν.

It is also convenient to compare the metric gII with the metric G of Defini-
tion 1.1.

Lemma 2.10 For every µ ∈ N and ν = 1, . . . , N(µ) the following relations
hold

DΣ(x, ξ) ∼ δh
µν , (R2 + |ξ|2)1/2DΣ(x, ξ) ∼ εµν , ∀(x, ξ) ∈ Qµν .

Proof. By (2.9) it is enough to prove only one of the relations.

If Qµν is obtained by partition from a rectangle Qj
µ of generation j ≥ 1

then, by Remark 2.9, (2.9) and (2.10), DΣ(x, ξ) � δh
µν on that rectangle.

If it is a first generation rectangle the same holds because of δµν = 1 and
DΣ(x, ξ) � 1.

The inequality δh
µν � DΣ(x, ξ) follows from (2.13) when Qµν is retained

by means of (2.5) and by Remark 2.9 and (2.9) in the other case. �

As an immediate consequence of Lemma 2.10 and of Remark A.1 we
get that G is equivalent to gII . Moreover, since the radius r of the balls
BG

(xj ,ξj)
(r) = {(y, η) ∈ R

4 : G(xj ,ξj)(y−xj, η−ξj) ≤ r2} satisfies the condition

r ≤ cSV (see (1.5)), Lemma 2.10 allows us to compare these balls with the
rectangles Qµν .

Corollary 2.11

1) The metric G of Definition 1.1 is equivalent to the metric gII .

2) There exists a positive constant k, independent of µ, ν, such that

Qµν ⊆
⋃

j∈Jµν

BG
(xj ,ξj)

(r) ⊆ kQµν, ∀µ ∈ N, ν = 1, . . . , N(µ),

where Jµν = {j ∈ N : BG
(xj ,ξj)

(r) ∩Qµν �= ∅}.
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Definition 2.12 For every µ ∈ N we define

(2.16) ρµ =
( R

24Mµ

)1/(h+1)

.

Note that from (2.2) and (2.10) one has

(2.17) ρµ ≤ R1/(h+1)

(R+ |ξ|)1/(h+1)
≤ δµν , (x, ξ) ∈ Qµν , µ ∈ N, ν = 1, . . . , N(µ).

Proposition 2.13 Let p ∈ S2(R2) be the symbol defined in Definition 2.1
and {ψµ}µ, {ϕµ}µ be the partition of unity associated to the covering {Q1

µ}
in the sense of Proposition A.4 then ρ2

µpψµ ∈ S(h−2
II , g

II) uniformly in µ.

Proof. Let us recall that, by construction, suppψµ ⊆ 2Q1
µ and

|∂α
x∂

β
ξ ψµ(x, ξ)| � M−|β|

µ , ∀α, β ∈ Z
2
+.

We have to evaluate the seminorms of ρ2
µpψµ only on rectangles Qµ′ν′ such

that Qµ′ν′ ∩2Q1
µ �= ∅. Hence, by Remark 2.3, Mµ ∼Mµ′ and ρµ ∼ ρµ′ . Thus

|∂α
x∂

β
ξ ψµ(x, ξ)| � M

−|β|
µ′ � ε

−|β|
µ′ν′ δ

−|α|+(h|β|+|α|)
µ′ν′ � ε

−|β|
µ′ν′ δ

−|α|
µ′ν′ , (x, ξ) ∈ Qµ′,ν′ .

We now have to show that

(2.18) |∂α
x∂

β
ξ

(
ρ2

µp
)
(x, ξ)| � ε

2−|β|
µ′ν′ δ

2−|α|
µ′ν′ , (x, ξ) ∈ Qµ′ν′ .

Note that, for (x, ξ) ∈ Qµ′ν′ and |α| + |β| ≥ 2h,

|∂α
x∂

β
ξ (ρ2

µp)(x, ξ)| � ρ2
µ′M

2−|β|
µ′ � (εµ′ν′δ−h

µ′ν′)
2−|β|δ2

µ′ν′ � ε
2−|β|
µ′ν′ δ

2−|α|
µ′ν′ .

If Qµ′ν′ is a retained rectangle of first generation, it must be δµ′ν′ = 1
and εµ′ν′ = Mµ′, so that on Qµ′ν′ one gets

ρ2
µp(x, ξ) � ρ2

µM
2
µ′ � δ2

µ′ν′ε2µ′ν′ .

If Qµ′ν′ is obtained by partition from Qj
µ′, Remark 2.9 and (2.9) give, for

every (x, ξ) ∈ 2Qµ′ν′ ,

|p(x, ξ)| � ε2µ′ν′ + δ2h
µ′ν′(R + |ξ|)2 � ε2µ′ν′ ,(2.19)

and this means that estimate (2.18) holds with |α|+ |β| = 0. The remaining
cases in (2.18) are recovered by interpolation. Finally, by using the Leibniz
Formula we complete the proof. �
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Proposition 2.14 If q ∈ S2(R2) satisfies hypotheses of Theorem 2.4 then,
with the same notation of Proposition 2.13, ρ2

µqψµ ∈ S(h−2
II , g

II) uniformly
in µ.

Proof. Since q ∈ S2(R2), the same arguments used in the proof of Propo-
sition 2.13 show that, when |α| + |β| is large enough,

(2.20) |∂α
x∂

β
ξ

(
ρ2

µqψµ

)
(x, ξ)| � ε

2−|β|
µ′ν′ δ

2−|α|
µ′ν′ , (x, ξ) ∈ Qµ′ν′ .

Thus, it is enough to prove the estimate for |α| + |β| = 0 to complete the
proof as we did before. If Qµ′ν′ is a retained rectangle of first generation, we
have δµ′ν′ = 1 and εµ′ν′ = Mµ′ so that, on Qµ′ν′ ,

ρ2
µ|(qψµ)(x, ξ)| � ρ2

µ′M 2
µ′ � δ2

µ′ν′ε2µ′ν′ .

Assume now that Qµ′ν′ is obtained by partitioning some Qj
µ′ and denote

by Bj the ball

BG
(xj ,ξj)

(r) = {(y, η) ∈ R
4 : G(xj ,ξj)(y − xj, η − ξj) ≤ r2}

with j ∈ N. By Corollary 2.11 and by (1.6) we get

max
Qµ′ν′

|q| ≤ sup
j∈Jµ′ν′

(max
Bj

|q|) � sup
j∈Jµ′ν′

(max
Bj

L) � max
kQµ′ν′

L,

with Jµ′ν′ = {j ∈ N : Bj ∩Qµ′ν′ �= ∅}. Therefore the proof is complete if we
show that

max
kQµ′ν′

L � ε2µ′ν′ .

To this purpose, denote by (x̄1, x̄2, ξ̄1, ξ̄2) ∈ R
4 the center of kQµ′ν′ . From 1)

of Remark 2.9 it follows, for every (x1, x2, ξ1, ξ2) ∈ kQµ′ν′ ,

|x1| ≤ |x1|+|x1−x1| ≤ (23+k)δµ′ν′ and |ξ1| ≤ |ξ1|+|ξ1−ξ1| ≤ (22+h+k)εµ′ν′ .

Moreover, by virtue of (2.9),

|ξ2|2 ≤ (R2 + |ξ|2) ≤ 2|ξ − ξ|2 + 2(R2 + |ξ|2)
≤ 2k2ε2µ′ν′ + 29

ε2µ′ν′

δ2h
µ′ν′

≤ (2k2 + 29)
ε2µ′ν′

δ2h
µ′ν′

,

whence, for every (x, ξ) ∈ kQµ′ν′ , one gets

L(x, ξ) = ξ2
1 + x2h

1 ξ
2
2 � ε2µ′ν′ .

�
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3. Proof of Theorem 2.4

The proof of Theorem 2.4 requires some preliminary results whose aim is to
microlocalize estimate (2.4) on the rectangles Qµν we constructed. The first
step is a subelliptic estimate for pw that we exploit in the sequel.

Theorem 3.1 Let p ∈ S2(R2) be the symbol introduced in Definition 2.1
and let {ϕµ}µ∈N, {ψµ}µ∈N the partition of unity associated to the covering
{Q1

µ} in the sense of Proposition A.4. Let us consider a bounded family
{φµ}µ∈N in S(1, gI) with φµ = 1 on (9/8)Q1

µ and supp φµ ⊆ (5/4)Q1
µ. Then

the following estimates hold

‖(pψµ)wϕw
µu‖2

0 � M 4/(h+1)
µ ‖ϕw

µu‖2
0 − ‖(1 − ψµ)w(M 2

µϕ
w
µ )u‖2

0(3.1)

− ‖(1 − φµ)w(M 2
µϕ

w
µ )u‖2

0 − ‖ϕw
µu‖2

0, u ∈ S(R2).

Proof. Let us denote by U1 the set of µ ∈ N such that the center

(x1,µ, x2,µ, ξ1,µ, ξ2,µ) = (xµ, ξµ)

of Q1
µ satisfies the following condition: either |x1,µ| ≥ 2 or |ξ1,µ| ≥ 2|ξ2,µ|.

By U2 we denote the set N \ U1. The following relations hold for every
(x, ξ) ∈ 2Q1

µ

∃γ1 > 0 such that p(x, ξ) +R2 ≥ γ1M
2
µ, ∀µ ∈ U1;(3.2)

∃γ2 > 0 such that p(x, ξ) +R2 ≥ γ2(ξ
2
1 + x2h

1 M
2
µ), ∀µ ∈ U2.(3.3)

The ellipticity property (3.2) gives

(3.4) ‖(pψµ)wϕw
µu‖2

0 � M 4
µ‖ϕw

µu‖2
0 − ‖(1 − ψµ)wM 2

µϕ
w
µu‖2

0 − ‖ϕw
µu‖2

0,

u ∈ S(R2), ∀µ ∈ U1. We now prove

(3.5) ‖(pψµ)wϕw
µu‖2

0 � M 4/(h+1)
µ ‖ϕw

µu‖2
0 − ‖(1 − φµ)wM 2

µϕ
w
µu‖2

0 − ‖ϕw
µu‖2

0,

u ∈ S(R2), ∀µ ∈ U2. Note that in view of (3.3), for µ ∈ U2 one has

pψµ +R2 = (p+R2)ψµ + (1 − ψµ)R2 ≥ γ2(ξ
2
1 + x2h

1 M
2
µ)ψµ,

and that pψµ + R2 − γ2(ξ
2
1 + x2h

1 M
2
µ)ψµ ∈ S(h−2

gI , g
I). This allows an appli-

cation of the Fefferman-Phong inequality (see [10, Lemma 18.6.10]). Tak-
ing into account that the lowest eigenvalue of the anharmonic oscillator
D2

x1
+M 2

µx
2h
1 is λ ∼M

2/(h+1)
µ , we get for every u ∈ S(R2)

‖(pψµ)wφw
µu‖2

0 � M 4/(h+1)
µ ‖φw

µu‖2
0(3.6)

− ‖((ξ2
1 +M 2

µx
2h
1 )(1 − ψµ)

)w
φw

µu‖2
0 − ‖φw

µu‖2
0.
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In order to estimate the term ‖((ξ2
1 + M 2

µx
2h
1 )(1 − ψµ)

)w
φw

µu‖2
0, let us now

consider the Hörmander metric Gµ defined by

Gµ,(x,ξ)(y, η) =
|y|2

〈x− xµ〉2 +
|η|2

M 2
µ + |ξ − ξµ|2 , (x, ξ) ∈ R

4.

Note that Gµ ∼ gI on 2Q1
µ. Moreover ξ2

1 + x2h
1 M

2
µ ∈ S(m,Gµ), with (admis-

sible) weight m(x, ξ) = 〈x−xµ〉2h(M 2
µ + |ξ−ξµ|2), and 1−ψµ, φµ ∈ S(1, Gµ)

with seminorms independent of µ. Thus (ξ2
1 +M 2

µx
2h
1 )(1−ψµ)� φµ ∈ S(1, Gµ)

(if a ∈ S(m1, g) and b ∈ S(m2, g), a� b ∈ S(m1m2, g) denotes the sym-
bol of the composition awbw) with seminorms not depending on µ. Hence,
from (3.6), we get

‖(pψµ)wφw
µϕ

w
µu‖2

0 � ‖φw
µϕ

w
µM

2/(h+1)
µ u‖2

0 − ‖ϕw
µu‖2

0

� M 4/(h+1)
µ ‖ϕw

µu‖2
0 −M 4/(h+1)

µ ‖(1 − φµ)wϕw
µu‖2

0 − ‖ϕw
µu‖2

0,

for u ∈ S(R2). From this the conclusion follows once we observe that

‖(pψµ)wφw
µϕ

w
µu‖2

0 � ‖(pψµ)wϕw
µu‖2

0+
∥∥∥
(pψµ

M 2
µ

)w

(1−φµ)wM 2
µϕ

w
µu

∥∥∥
2

0
, u ∈ S(R2)

with pψµ/M
2
µ ∈ S(1, gII) uniformly in µ. The proof of the theorem readily

follows from (3.4) and (3.5). �
Theorem 3.1 is used to prove the following Proposition.

Proposition 3.2 Let p and q be as in Theorem 2.4. Then estimate (2.4)
holds provided one has

(3.7) ‖(ρ2
µpψµ)wu‖2

0 � ‖(ρ2
µqψµ)wu‖2

0 − ‖u‖2
0 − (rw

µ,1u, u)L2,

∀u ∈ S(R2), ∀µ ∈ N, where
∑
µ∈N

ρ−4
µ ϕw

µ r
w
µ,1ϕ

w
µ ∈ L(L2(R2), L2(R2)).

Proof. We divide all terms in (3.7) by ρ4
µ and write ϕw

µu instead of u.
From (2.16) we then have

‖(pψµ)wϕw
µu‖2

0 � ‖(qψµ)wϕw
µu‖2

0 −M 4/(h+1)
µ ‖ϕw

µu‖2
0 − (ρ−4

µ ϕw
µ r

w
µ,1ϕ

w
µu, u)L2 ,

∀u ∈ S(R2). The conclusion follows by applying estimate (3.1) to control the

term M
4/(h+1)
µ ‖ϕw

µu‖2
0 and by using (A.13) and Proposition A.9 to control

the remainder terms. �
Until now we reduced the proof of Theorem 2.4 to the proof of (3.7). We

now want to reduce the proof of (3.7) to the proof of suitable inequalities
on the rectangles of the partition {Qµν} constructed in Section 2.
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Definition 3.3 Let µ̄ be a fixed arbitrary index in N. If {Qµν}µ∈N,ν=1,...,N(µ)

is the partition constructed in Section 2, we define

1) Iµ̄ = {(µ, ν) :
13

8
Qµν ∩ 2Qµ̄ �= ∅};

2) Ie
µ̄ = {(µ, ν) ∈ Iµ̄ satisfying (2.6)};

3) Is
µ̄ = Iµ̄ \ Ie

µ̄ = {(µ, ν) ∈ Iµ̄ satisfying only(2.5)}.
Note that Ie

µ̄ ∩ Is
µ̄ = ∅ and that Ie

µ̄ ∪ Is
µ̄ = Iµ̄.

Remark 3.4 One has ρµ̄ ∼ ρµ � δµν for every µν such that (µ, ν) ∈ Iµ̄.
In fact, from (13/8)Qµν ∩ 2Qµ̄ �= ∅ it follows 2Qµ ∩ 2Qµ̄ �= ∅ which in turn,
by Remark 2.3, gives Mµ ∼ Mµ̄. The conclusion then follows by (2.16)
and (2.17).

The next proposition clarifies the meaning of Definition 3.3. We, in fact, see
that Iµ̄ describes the set of the indices that “count” when one microlocal-
izes (3.7) with µ = µ̄ on the rectangles of the partition {Qµν}.
Proposition 3.5 Let p and q be as in Theorem 2.4. Then, for µ̄ ∈ N, the
estimate

(3.8) ‖(ρ2
µ̄pψµ̄)wu‖2

0 � ‖(ρ2
µ̄qψµ̄)wu‖2

0 − ‖u‖2
0 − (rw

µ̄,2u, u)L2, ∀u ∈ S(R2)

with
∑

µ̄∈N
ρ−4

µ̄ ϕw
µ̄ r

w
µ̄,2ϕ

w
µ̄ ∈ L(L2(R2), L2(R2)) holds if both the following es-

timates hold:

• for any µν such that (µ, ν) ∈ Ie
µ̄ and for every u ∈ S(R2)

‖(ρ2
µ̄ pψµ̄ψµν)

wϕw
µνu‖2

0 � ‖(ρ2
µ̄qψµ̄ψµν)

wϕw
µνu‖2

0 − ‖ϕw
µνu‖2

0(3.9)

− ‖ρ2
µ̄ε

2
µν((1 − ψµ̄)ψµν)

wϕw
µνu‖2

0 − ‖ρ2
µ̄ε

2
µν(1 − ψµν)

wϕw
µνu‖2

0.

• for any µν such that (µ, ν) ∈ Is
µ̄ and for every u ∈ S(R2)

(3.10) ‖(ρ2
µ̄pψµ̄ψµν)

wϕw
µνu‖2

0 � ‖(ρ2
µ̄qψµ̄ψµν)

wϕw
µνu‖2

0 − ‖ϕw
µνu‖2

0.

Proof. By adding (3.9) to (3.10) and by using Theorem A.5, we see that it
suffices to prove the following relations:

∑
(µ,ν)∈Iµ̄

‖(ρ2
µ̄qψµ̄ψµν)

wϕw
µνu‖2

0 � ‖(ρ2
µ̄qψµ̄)wu‖2

0 − ‖u‖2
0, ∀u ∈ S(R2);(3.11)

∑
(µ,ν)∈Ie

µ̄

‖ρ2
µ̄ε

2
µν(1 − ψµν)

wϕw
µνu‖2

0 � ‖u‖2
0, ∀u ∈ S(R2);(3.12)
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and
∑

(µ,ν)∈Ie
µ̄

‖ρ2
µ̄ ε

2
µν(ψµν(1 − ψµ̄))wϕw

µνu‖2
0 � (RMh

µ̄ )4/(h+1)‖(1 − ψµ̄)wu‖2
0(3.13)

+
∥∥ρ2

µ̄

(
(p+R2)(1 − ψµ̄)

)w
u
∥∥2

0
+ ‖u‖2

0, ∀u ∈ S(R2).

Relations (3.11) and (3.12) are an immediate consequence of (A.14) and
Proposition A.9. We proceed to prove (3.13). We first observe that

∑
(µ,ν)∈Ie

µ̄

‖ρ2
µ̄ε

2
µν(ψµν(1−ψµ̄))wϕw

µνu‖2
0 �

∑
(µ,ν)∈Ie

µ̄

‖ρ2
µ̄ε

2
µνϕ

w
µν(ψµν(1−ψµ̄))wu‖2

0

(3.14)

+
∑

(µ,ν)∈Ie
µ̄

∥∥∥
[
ρ2

µ̄ε
2
µν(ψµν(1 − ψµ̄))w, ϕw

µν

]
u
∥∥∥

2

0
.

We now want to estimate the terms in the right hand side of (3.14). As
concerns the first one, we can apply Proposition A.9 (in view of Remark 3.4)
and get

∑
(µ,ν)∈Ie

µ̄

‖ρ2
µ̄ε

2
µνϕ

w
µν(ψµν(1−ψµ̄))wu‖2

0 �
∑

(µ,ν)∈Ie
µ̄

‖ρ2
µ̄ε

2
µνϕ

w
µν(1−ψµ̄)wu‖2

0 + ‖u‖2
0.

Moreover, ρ4
µ̄ε

4
µν �(R/Mµ̄)4/(h+1)M 4

µδ
4h
µν �(RMh

µ̄ )4/(h+1) then, applying (A.13),

∑
(µ,ν)∈Ie

µ̄

‖ρ2
µ̄ε

2
µνϕ

w
µν(1 − ψµ̄)wu‖2

0 � (RMh
µ̄ )4/(h+1)‖(1 − ψµ̄)wu‖2

0.

Thus

(3.15)
∑

(µ,ν)∈Ie
µ̄

‖ρ2
µ̄ε

2
µνϕ

w
µν(ψµν(1−ψµ̄))wu‖2

0 � (RMh
µ̄ )4/(h+1)‖(1−ψµ̄)wu‖2

0+‖u‖2
0.

As for the second term in the right hand side of (3.14), we show that

∑
(µ,ν)∈Ie

µ̄

∥∥∥[
ρ2

µ̄ε
2
µν(ψµν(1 − ψµ̄))w, ϕw

µν

]
u
∥∥∥

2

0
�(3.16)

�
(
ρ2

µ̄

(
(p+R2)(1 − ψµ̄)

)w
u, u

)
L2

+ ‖u‖2
0.

Note that the family {ϕµν} is bounded in S(1, gII) and that the family
of positive functions {ρ2

µ̄ε
2
µνψµν(1 − ψµ̄)} is bounded in S(h−2

II , g
II) with

supp ϕµν ⊆ (9/8)Qµν and supp ρ2
µ̄ε

2
µνψµν(1 − ψµ̄) ⊆ (13/8)Qµν ⊆ (7/4)Qµν.
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Thus (A.25) applies yielding
∑

(µ,ν)∈Ie
µ̄

∥∥∥
[
ϕw

µν , ρ
2
µ̄ε

2
µν(ψµν(1 − ψµ̄))w

]
u
∥∥∥

2

0
�(3.17)

�
∑

(µ,ν)∈Ie
µ̄

(
ψw

µν(ρ
2
µ̄ε

2
µνψµν(1 − ψµ̄))wψw

µνu, u
)

L2
+ ‖u‖2

0.

Moreover, from (A.24) it follows
∑

(µ,ν)∈Ie
µ̄

ψw
µν(ρ

2
µ̄ ε

2
µνψµν(1 − ψµ̄))wψw

µν =(3.18)

=
( ∑

(µ,ν)∈Ie
µ̄

ψ3
µνρ

2
µ̄ε

2
µν(1 − ψµ̄)

)w

+ rw
µ̄,3

with rw
µ̄,3 ∈ L(L2(R2), L2(R2)) having norm bounded uniformly in µ̄. Let us

now define Jµ̄ = {µ′ ∈ N : ∃(µ, ν) ∈ Iµ̄, (13/8)Qµν ∩ (9/8)Qµ′ �= ∅} and
observe that, since suppψ3

µν ⊆ (13/8)Qµν, we have

(3.19)
∑

(µ,ν)∈Ie
µ̄

ψ3
µνρ

2
µ̄ε

2
µν(1 − ψµ̄) =

∑
(µ,ν)∈Ie

µ̄

ψ3
µνρ

2
µ̄ε

2
µν(1 − ψµ̄)(

∑
µ′∈Jµ̄

ϕ2
µ′).

From Remark 2.9 one has, for (µ, ν) ∈ Ie
µ̄,

ψ3
µ,νρ

2
µ̄ε

2
µν(1 − ψµ̄) � ρ2

µ̄(p+R2)(1 − ψµ̄).

Hence by the finite overlapping properties and (3.19)
∑

(µ,ν)∈Ie
µ̄

ψ3
µνρ

2
µ̄ε

2
µν(1 − ψµ̄) �

∑
µ′∈Jµ̄

ρ2
µ̄(p+R2)(1 − ψµ̄)ϕ2

µ′.

We can now apply the Fefferman-Phong inequality in the class S(h−2
II , g

II)
and get (( ∑

(µ,ν)∈Ie
µ̄

ψ3
µνρ

2
µ̄ε

2
µν(1 − ψµ̄)

)w
u, u

)
L2

�(3.20)

�
(( ∑

µ′∈Jµ̄

ϕ2
µ′ρ2

µ̄(p+R2)(1 − ψµ̄)
)w
u, u

)
L2

+ ‖u‖2
0.

Finally, since (again by finite overlapping)
∑

µ′∈Jµ̄

ϕ2
µ′ρ2

µ̄(p+R2)(1 − ψµ̄) � ρ2
µ̄(p+R2)(1 − ψµ̄),

we can again apply the Fefferman-Phong inequality in the class S(h−2
I , gI)

and obtain the inequality (3.16) by (3.17), (3.18) and (3.20). An application
of (3.15) and (3.16) to (3.14) completes the proof. �
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Proof of Theorem 2.4. We use Propositions 3.2 and 3.5 and reduce the
proof of Theorem 2.4 to the proof of estimates (3.9) and (3.10).

In order to prove (3.9), let us first observe that, for every (µ, ν) ∈ Ie
µ̄, the

following inequality holds for u ∈ S(R2)

((
ρ2

µ̄ (p+R2)ψµ̄ψµν + (1 − ψµν)ρ
2
µ̄ε

2
µν

)w
u, u

)
L2

≥(3.21)

≥ −
(
ρ2

µ̄ε
2
µν

(
ψµν(1 − ψµ̄)

)w
u, u

)
L2

+ ε2µνρ
2
µ̄‖u‖2

0 − C‖u‖2
0.

If, in fact, we consider the family of constant metrics

gµν(y, η) =
|y|2
δ2
µν

+
|η|2
ε2µν

,

by (2.17), Proposition 2.13 and Remark 3.4 one has, for every (µ, ν) ∈ Ie
µ̄,

that

ρ2
µ̄(p+R2)ψµ̄ψµν+(1−ψµν)ρ

2
µ̄ε

2
µν , ρ

2
µ̄ε

2
µν and ρ2

µ̄ε
2
µνψµν(1−ψµ̄) ∈ S(h−2

gµν
, gµν)

with seminorms independent of µ, ν, µ̄.
Moreover, from Remark 2.9 it follows that

ρ2
µ̄(p+R2)ψµ̄ψµν + (1 − ψµν)ρ

2
µ̄ε

2
µν ≥ ρ2

µ̄ε
2
µν − ρ2

µ̄ε
2
µνψµν(1 − ψµ̄).

Thus (3.21) follows by the Fefferman-Phong inequality.
If we observe that R2ρ2

µ̄ψµ̄ψµν is in S(1, gµν) with seminorms independent
of µ̄, µ, ν, we then get

‖(ρ2
µ̄pψµψµν

)w
u‖2

0 ≥ ε4µνρ
4
µ̄‖u‖2

0 − C ′‖u‖2
0 − ‖ρ2

µ̄ε
2
µν((1 − ψµ̄)ψµν)

wu‖2
0(3.22)

− ‖ρ2
µ̄ε

2
µν(1 − ψµν)

wu‖2
0, ∀(µ, ν) ∈ Ie

µ̄, ∀u ∈ S(R2).

Proceeding as in the proof of Proposition 2.14 we also have

δ2
µνqψµ̄ψµν ∈ S(h−2

II , g
II)

uniformly in µ̄, µ, ν and this yields

(3.23) ‖ρ2
µ̄(qψµ̄ψµν)

wu‖2
0 � ε4µνρ

4
µ̄‖u‖2

0, ∀(µ, ν) ∈ Ie
µ̄, ∀u ∈ S(R2).

Finally, from (3.22) and (3.23), (3.9) readily follows.
For what concerns estimate (3.10), note that by (2.11) and (2.12) we

have δµνεµν ∼ 1 when (µ, ν) ∈ Is
µ̄. Hence (3.10) follows by L2-continuity and

this concludes the proof. �
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A. Appendix

Let us fix a sequence {(xk, ξk)}k∈N of points in the phase space T ∗
R

n �
R

n
x × R

n
ξ and two sequences {δk}k∈N, {εk}k∈N of real positive numbers. We

denote by Bk the rectangles defined by
(A.1)

Bk = {(x, ξ) ∈ T ∗
R

n | |xj − xk,j| ≤ δk
2
√
n
, |ξj − ξk,j| ≤ εk

2
√
n
, j = 1, . . . , n}

and assume that {Bk}k∈N is a partition of T ∗
R

n, i.e.

⋃
k∈N

Bk = T ∗
R

n and
◦
Bk ∩

◦
Bk′ = ∅ for every k, k′ ∈ N, k �= k′.

Consider the functions δ, ε : R
n
x × R

n
ξ −→ R+ defined by

δ(x, ξ) = δγ , ε(x, ξ) = εγ where γ = min {k ∈ N : (x, ξ) ∈ Bk}

and notice that δ(x, ξ) = δk, ε(x, ξ) = εk when (x, ξ) ∈
◦
Bk.

Remark A.1 If the partition is such that δk ∼ δk′ and εk ∼ εk′ whenever
2Bk ∩ 2Bk′ �= ∅ then

(x, ξ) ∈ Bk ⇒ δ(x, ξ) ∼ δk, ε(x, ξ) ∼ εk.

For any (x, ξ) ∈ R
n
x×R

n
ξ , we consider a positive definite quadratic form g(x,ξ)

of (t, τ) ∈ R
2n as follows

(A.2) g(x,ξ)(t, τ) =
|t|2

δ(x, ξ)2
+

|τ |2
ε(x, ξ)2

.

It is important to point out that the Riemannian metric g : (x, ξ) −→ g(x,ξ)

is not, in general, continuous on the boundary of each Bk, but that causes
no problem as shown in [14].

In this setting, for any (x, ξ) ∈ R
n
x × R

n
ξ the dual metric gσ of g (with

respect to the canonical symplectic form σ on T ∗
R

n) is given by

gσ
(x,ξ)(t, τ) = ε(x, ξ)2|t|2 + δ(x, ξ)2|τ |2, ∀(t, τ) ∈ R

2n,

while the Planck function hg : T ∗
R

n −→ R+ is given by

hg(x, ξ) = δ(x, ξ)−1ε(x, ξ)−1.

The following proposition establishes sufficient conditions under which g is
a Weyl-Hörmander metric.
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Proposition A.2 Fix a positive integer h and a real positive number R ≥ 1.
Suppose that, for the partition {Bk}k∈N defined in (A.1), the following con-
ditions hold:

εk ∼ (R+ |ξ|)δh
k , ∀(x, ξ) ∈ Bk;(A.3)

R1/(h+1)(R + |ξ|)−1/(h+1) ≤ δk ≤ 1, ∀(x, ξ) ∈ Bk;(A.4)

If 2Bk ∩ 2Bk′ �= ∅ =⇒ δk ∼ δk′ and εk ∼ εk′ .(A.5)

Then g defined by (A.2) is a Weyl-Hörmander metric provided R is chosen
large enough, i.e. g is slowly varying and σ-temperate (see [9]). More-
over, (A.5) determines an a priori bounded number K = K(n) of overlap-
pings among the rectangles 2Bk. Namely, one has |Jk| ≤ K for every k ∈ N,
where

Jk = {k′ ∈ N : 2Bk′ ∩ 2Bk �= ∅}
and |Jk| denotes its cardinality.

Proof. We start off by proving that g is a slowly varying metric. Suppose
that g(y,η)(x− y, ξ − η) ≤ 1/(4n) with (x, ξ) ∈ Bk. Then (x, ξ) ∈ 2Bγ with
γ = min{ω ∈ N : (y, η) ∈ Bω}. This gives, in view of Remark A.1 and (A.5),
the existence of positive constants c1, c2 such that

c1g(x,ξ)(t, τ) ≤ g(y,η)(t, τ) ≤ c2g(x,ξ)(t, τ), ∀(t, τ) ∈ R
2n,

for such (x, ξ). Hence, g is slowly varying.

From (A.3) and (A.4) it follows, if R is chosen large enough, hg(x, ξ) < 1
for any (x, ξ) ∈ R

2n, whence g(x,ξ)(t, τ) ≤ gσ
(x,ξ)(t, τ). It remains to show that

there exist a positive constant c and a positive integer Q for which

(A.6) g(x,ξ)(t, τ) ≤ c g(y,η)(t, τ)
(
1 + gσ

(x,ξ)(y − x, η − ξ)
)Q
,

whenever (x, ξ), (y, η) ∈ R
2n. Actually we prove the following equivalent

inequality

(A.7) gσ
(y,η)(t, τ) ≤ c gσ

(x,ξ)(t, τ)
(
1 + gσ

(x,ξ)(y − x, η − ξ)
)h+1

.

We first observe that, from Remark A.1 it follows

(A.8) sup
(t,τ)∈R2n

gσ
(y,η)(t, τ)

gσ
(x,ξ)(t, τ)

∼ max
{ε2k′

ε2k
,
δ2
k′

δ2
k

}
, ∀(x, ξ) ∈ Bk, ∀(y, η) ∈ Bk′ ;

therefore, if g(y,η)(x − y, ξ − η) ≤ 1/(4n), inequality (A.7) easily follows
from the slowly varying property just because the right hand side of (A.8)
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is bounded. When g(y,η)(x− y, ξ− η) > 1/(4n), again by using Remark A.1,
we have two cases:

either |ξ − η|2 � ε2k′ or |x− y|2 � δ2
k′ .

Assuming |ξ − η|2 � ε2k′ , we get

(A.9)
(
1 + gσ

(x,ξ)(y − x, η − ξ)
)
ε2k � ε2kδ

2
k|ξ − η|2 � ε2k′ .

If |ξ − η| ≥ |ξ|/2, from (A.4) it follows

(
1 + gσ

(x,ξ)(y − x, η − ξ)
)
δ2
k �

(
1 + δ2

k|ξ|2
)
δ2
k ≥ 1

R2
δ4
k

(
R+ |ξ|)2

≥ 1

R2

R4/(h+1)

(R + |ξ|)4/(h+1)

(
R + |ξ|)2 � 1 � δ2

k′ .

Suppose now that |ξ − η| ≤ |ξ|/2, in view of (A.3) and (A.9) we have

(
1 + gσ

(x,ξ)(y − x, η − ξ)
)
δ2h
k �

((
1 + gσ

(x,ξ)(y − x, η − ξ)
)
ε2k

)(
R + |ξ|)−2

� ε2k′
(
R+ |η|)−2 � δ2h

k′ .

Inequality (A.7) follows in this case from (A.8). The case |x − y|2 � δ2
k′ is

achieved similarly.

It remains to show the existence of an a priori bounded number of over-
lappings for the covering {Bk}k∈N. Suppose that 2Bk′∩2Bk �= ∅. Then there
exists (x, ξ) ∈ 2Bk′ ∩ 2Bk, and from (A.5) it follows, for a constant c > 0
independent of k, k′, δk/c ≤ δk′ ≤ cδk, εk/c ≤ εk′ ≤ cεk. Upon denoting by
(xk, ξk) the center of the rectangle Bk, one has, for every (y, η) ∈ 2Bk′ ,

|yi − xk,i| ≤ |yi − xi| + |xi − xk,i| ≤ 2δk′ + δk ≤ (1 + 2c)δk, i = 1, . . . , n,

and, in a similar way, |ηi − ξk,i| ≤ (1 + 2c)εk, i = 1, . . . , n. Therefore one
gets ⋃

k′∈Jk

Bk′ ⊆ (1 + 2c) 2
√
nBk,

whence

(A.10)
∑
k′∈Jk

m(Bk′) = m
( ⋃

k′∈Jk

Bk′
) ≤ m

(
(1 + 2c) 2

√
nBk

)
,

where m(A) denotes the Lebesgue measure of a set A, and from this the con-
clusion follows since m(Bk′) ∼ εnkδ

n
k for each k′ ∈ Jk and m(Bk) ∼ εnkδ

n
k . �
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In the sequel we assume that the hypotheses of Proposition A.2 hold for
the partition defined by (A.1). As a consequence, g is slowly varying and
σ−temperate, and an easy check shows that the Planck function hg is an
admissible weight for g.

We now define the class S(hs
g, g) (s ∈ R) as follows.

Definition A.3 Let j be a non negative integer and (x, ξ) be a point of
R

n
x × R

n
ξ ; define, for any smooth function b ∈ C∞(Rn

x × R
n
ξ ),

|b|gj (x, ξ) = max
|α+β|≤j

δ(x, ξ)|α|ε(x, ξ)|β||Dα
xD

β
ξ b(x, ξ)|.

We denote by S(hs
g, g) (s ∈ R) the class of the functions b ∈ C∞(Rn × R

n)
such that, for any integer l ≥ 0,

(A.11) ‖b‖(l,hs
g) = sup

(x, ξ) ∈ R
2n

hg(x, ξ)
−s|b|gl (x, ξ) < +∞.

It turns out that S(hs
g, g) is a Fréchet space with the topology induced by the

seminorms defined in (A.11).

As a consequence of Remark A.1, we have

‖b‖(l,hs
g) ∼ sup

k ∈ N

max
(x, ξ) ∈ Bk

|α + β| ≤ l

δ
s+|α|
k ε

s+|β|
k |Dα

xD
β
ξ b(x, ξ)|.

By proceeding as in [2] we get a partition of unity related to the cover-
ing {Bk}k∈N.

Proposition A.4 There exist two families of smooth functions {ϕk}k∈N,
{ψk}k∈N defined in R

n
x × R

n
ξ , uniformly bounded in the space S(1, g), with

the following properties:

1) for every j = 0, 1, . . . , there exists a positive constant Cj independent
of R, such that

(A.12) ‖ϕk‖(j,1) + ‖ψk‖(j,1) ≤ Cj, ∀k ∈ N;

2) for any k ∈ N,

0 ≤ ϕk(x, ξ) ≤ 1, 0 ≤ ψk(x, ξ) ≤ 1, ∀(x, ξ) ∈ R
n
x × R

n
ξ

supp ϕk ⊆ 9

8
Bk, supp ψk ⊆ 13

8
Bk, ψk ≡ 1 on

3

2
Bk;

3) for every (x, ξ) ∈ R
n
x × R

n
ξ , one has

∑
k∈N

ϕk(x, ξ)
2 ≡ 1.

In what follows, we refer to the pair {ϕk}k∈N, {ψk}k∈N as a partition of unity
associated with the covering {Bk}k∈N.
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The following theorem is the main result we use to reduce the proof of in-
equality (1.7) to microlocal estimates on suitable rectangles of the cotangent
space.

Theorem A.5 Let {ϕk}k∈N, {ψk}k∈N be a partition of unity associated with
{Bk}k∈N. Then

1) there exists a constant c1 > 0 independent of R such that

(A.13)
∑
k∈N

‖ϕw
k u‖2

0 ≤ c1‖u‖2
0, ∀u ∈ S(Rn);

2) for any p ∈ S(h−2
g , g), there exist positive constants c2, c

′
2 such that

(A.14) ‖pwu‖2
0 ≤ c2

∑
k∈N

‖(pψk)
wϕw

k u‖2
0 + c′2‖u‖2

0, ∀u ∈ S(Rn),

with c2 independent of R.

Furthermore, if p ∈ S(h−2
g , g) is a real non-negative symbol, then, for

suitable positive constants c3, c
′
3, we have

(A.15) c3‖pwu‖2
0 + c′3‖u‖2

0 ≥
∑
k∈N

‖(pψk)
wϕw

k u‖2
0, ∀u ∈ S(Rn).

Moreover, if δ
−2+|α|
k ε

−2+|β|
k |∂α

x∂
β
ξ p|Bk

| are uniformly bounded in R, for
any rectangle Bk having center, (xk, ξk), satisfying |ξk| ≥ 2R, then c3
can be chosen not depending on R.

The proof of this proposition requires some preliminary results we give below.

Lemma A.6 Let {ak}k∈N be a sequence of symbols in S(hs
g, g) for any s ∈ R

and assume that, for any j = 0, 1, . . . , there exists a constant Cj > 0 such
that

(A.16)
∑
k∈N

|ak|gj (x, ξ) ≤ Cjhg(x, ξ)
s, ∀(x, ξ) ∈ R

n
x × R

n
ξ .

Then one has
∑

k∈N
ak ∈ S(hs

g, g) and, for every u ∈ S(Rn),

∑
k∈N

aw
k u =

(∑
k∈N

ak

)w
u,

where
∑

k∈N
aw

k u denotes the S(Rn)−limit of {∑k≤N a
w
k u}N∈N as N tends

to +∞. Furthermore, if s = 0 then
( ∑

k∈N
ak

)w
gives rise to a linear

continuous operator from L2(Rn) to L2(Rn).
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Proof. As a consequence of (A.16), {∑k≤N ak}N∈N is a bounded sequence

in C∞(R2n). In fact, for any compact set K of R
2n, K ⊂ ⋃NK

µ=1Bµ and this
gives

δ(x, ξ) ∼ cK , ε(x, ξ) ∼ CK for any (x, ξ) ∈ K.

From standard arguments we then get that {∑k≤N ak}N∈N is a convergent
sequence in C∞ if it converges pointwise. To this purpose, note that, by
Theorem 14.4 of [17], it has a subsequence converging to a smooth function
a(x, ξ) . By (A.16), choosing j = 0, we then have that {∑k≤N ak}N∈N

converges pointwise to a.

As a consequence, a is in S(hs
g, g) and {∑k≤N a

w
k u} is a bounded sequence

in S(Rn). Again, if we prove that it converges to awu pointwise we get
convergence in S(Rn). Since the pointwise convergence is an immediate
consequence of the Lebesgue Theorem the proof is thus complete. �

The following lemma is proved in [9, Theorem 4.2, pages 390-391].

Lemma A.7 Suppose that qk ∈ C∞
0 (7

4
Bk) and qk′ ∈ C∞

0 (7
4
Bγ) with k, k′∈N.

For N = 0, 1, . . . , set

TN(qk, qk′)(x, ξ) =
∑
j<N

1

j!

( 1

2i
σ(Dx, Dξ;Dy, Dη)

)j

qk(x, ξ)qk′(y, η)
∣∣ y = x

η = ξ

where σ is the standard symplectic 2-form, i.e.

σ
(
(x, ξ); (y, η)

)
= 〈ξ, y〉 − 〈x, η〉 for every (x, ξ), (y, η) ∈ R

2n.

Then, for any j,N = 0, 1, . . . , for any s ≥ 0 and any r, t, there exist positive
constants cj and l independent of R such that

|qk� qk′ − TN(qk, qk′)|gj (x, ξ) ≤
≤ cjhg(x, ξ)

r+t+N
(
2 + dk(x, ξ) + dk′(x, ξ)

)−s‖qk‖(l,hr
g)‖qk′‖(l,ht

g),

where a� b is the Weyl symbol of the composition awbw (i.e. (a� b)w = awbw)
and dk is defined by

dk(x, ξ) = inf
(y,η)∈ 15

8
Bk

gσ
(x,ξ)(x− y, ξ − η).

The next lemma, due to Fujiwara (see [7, Proposition A2.4] or [9, Thm. 5.3]),
is used in the proof of Proposition A.9 which is the main tool we need to
prove Theorem A.5.
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Lemma A.8 Let s ∈ R be such that s > (Q+ 1)n (where Q is the constant
appearing in (A.6)) and let A be a positive number. Define

dνk = inf
(x,ξ)∈ 15

8
Bν

dk(x, ξ).

Then there exists a constant C > 0 independent of R such that, for any
(x, ξ) ∈ R

2n,

∑
k∈N

(
2 + A+ dk(x, ξ)

)−s ≤ C(2 + A)(Q+1)n−s,(A.17)

∑
k∈N

(
2 + A+ dνk

)−s ≤ C(2 + A)(Q+1)n−s.(A.18)

Proposition A.9 Let {fk}k∈N, {gk}k∈N be two bounded sequences in S(hr
g, g)

and in S(ht
g, g), respectively, for some r, t ∈ R. Assume that

1) supp fk ∩ supp gk = ∅ for every k ∈ N;

2) one of the following conditions holds: either supp fk ⊆ 7
4
Bk for every

k ∈ N or supp gk ⊆ 7
4
Bk for every k ∈ N.

Setting lk = fk� gk, one has

∑
k∈N

lk� lk ∈ S(1, g) and
∑
k∈N

lw∗
k lwk u =

(∑
k∈N

lk� lk
)w
u for all u ∈ S(Rn).

Furthermore,
∑

k∈N
lw∗
k lwk can be extended to a linear continuous operator

from L2(Rn) to L2(Rn).

Proof. We can assume that supp fk ⊆ (7/4)Bk for every k ∈ N because the
arguments below work analogously in the other case. In view of Lemma A.6,
it is enough to show that

(A.19)
∑
k∈N

|lk� lk|gj (x, ξ) ≤ Cj, ∀(x, ξ) ∈ R
2n.

We start by proving that, for any real constant s > (Q + 1)n and any
integer j one has

|lk|gj (x, ξ) ≤ c
(
2 + d�(x, ξ)

)(Q+1)n−s
, ∀(x, ξ) ∈ R

2n,

where Q is the constant appearing in (A.6). This estimate follows from
Lemma A.7, but it is not straightforward since the symbols fk(x, ξ) and
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gk(x, ξ) are not both supported in the rectangle (7/4)Bk. In view of that,
we use the partition of unity given in Proposition A.4. Set

gkν(x, ξ) = ϕν(x, ξ)
2gk(x, ξ) for any k, ν ∈ N.

From Leibniz formula, we have, for any j ∈ N,

(A.20) hg(x, ξ)
−t|gkν |gj (x, ξ) ≤ Cj, ∀ν, k ∈ N, ∀(x, ξ) ∈ R

2n.

Since fk and gkν have disjoint supports, one gets TN (fk, gkν) = 0 for every N .
Hence Lemma A.7 yields, on choosing N ∈ N, N + r + t ≥ 0,

|fk� gkν |gk(x, ξ) ≤ c1hg(x, ξ)
r+t+N

(
2 + dk(x, ξ)+ dν(x, ξ)

)−s‖fk‖(l,hr
g)‖gkν‖(l,ht

g)

≤ c2
(
2 + dk(x, ξ) + dν(x, ξ)

)−s
, ∀(x, ξ) ∈ R

2n.(A.21)

In view of the finite overlapping property of {Bν}ν∈N (see Proposition A.2)
and of (A.20), the sequence {∑ν≤N gkν}N∈N is bounded in S(ht

g, g) and
converges in C∞(Rn × R

n) to gk. Therefore, from the weak continuity of
the map �, it follows that the sequence {∑ν≤N fk� gkν}N∈N converges in
C∞(Rn × R

n) to fk� gk as N tends to +∞. Hence by (A.21) one has

|fk� gk|gk(x, ξ) ≤
∑
ν∈N

|fk� gkν |gk(x, ξ) ≤ c2
∑
ν∈N

(
2 + dk(x, ξ) + dν(x, ξ)

)−s
.

By (A.17) we finally get, for any s > (Q+ 1)n,

(A.22) |lk|gj (x, ξ) = |fk� gk|gj (x, ξ) ≤ c3
(
2 + dk(x, ξ)

)(Q+1)n−s
, ∀(x, ξ) ∈ R

2n.

In order to prove (A.19), we want to apply Lemma A.7 to the symbols lk, lk,
thus we have to localize them in the rectangles {7

4
Bν}ν∈N. From Leibniz

formula and from (A.22), it follows, for any j ∈ N and any s > (Q+ 1)n,

|ϕ2
ν lk|gj (x, ξ) ≤ c4

(
2 + dνk

)(Q+1)n−s
, |ϕ2

µlk|gj (x, ξ) ≤ c5
(
2 + dµk

)(Q+1)n−s
.

An application of Lemma A.7 yields, for any s > (Q+ 1)n,

|(ϕ2
νlk

)
�
(
ϕ2

µlk
)|gj (x, ξ) ≤(A.23)

≤ c6
(
2 + dν(x, ξ) + dµ(x, ξ)

)−s(
2 + dνk

)(Q+1)n−s(
2 + dµk

)(Q+1)n−s
.

Furthermore, an easy check shows that the sequences {∑ν≤N ϕ
2
νlk}N∈N,

{∑µ≤N ϕ
2
µlk}N∈N are bounded in S(1, g) and that

∑
ν≤N

ϕ2
ν lk

C∞(R2n)−−−−−−→
N → +∞ lk,

∑
µ≤N

ϕ2
µlk

C∞(R2n)−−−−−−→
N → +∞ lk,
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whence the weak continuity of � gives
∑

ν,µ≤N

(ϕ2
νlk)� (ϕ

2
µlk)

C∞(R2n)−−−−−−→
N → +∞ lk� lk.

This result and (A.23) finally yield

|lk � lk|gj (x, ξ) ≤
∑

ν,µ∈N

|(ϕ2
νlk

)
�
(
ϕ2

µlk
)|gj (x, ξ)

≤ c6
∑

ν,µ∈N

(
2 + dν(x, ξ) + dµ(x, ξ)

)−s(
2 + dνk

)(Q+1)n−s(
2 + dµk

)(Q+1)n−s
,

and a repeated application of Lemma A.8 gives then, choosing s > 2n(Q+1),
∑
k∈N

|lk� lk|gj (x, ξ) ≤

≤ c6
∑

ν,µ∈N

(
2 + dν(x, ξ) + dµ(x, ξ)

)−s
[ ∑

k∈N

(
2 + dνk

)(Q+1)n−s(
2 + dµk

)(Q+1)n−s
]

≤ c7
∑
ν∈N

∑
µ∈N

(
2 + dν(x, ξ) + dµ(x, ξ)

)−s ≤ C.

This proves (A.19). �
The following Lemma is essentially due to D.Fujiwara [7] and to F.Hérau

(see [8, Lemma 1.11]).

Lemma A.10 Let {fk}k∈N, {gk}k∈N be bounded sequences of real functions
in S(h−2

g , g) and in S(1, g), respectively. Let J be an arbitrary (finite or
infinite) subset of N. The following holds:

1) if supp fk ⊆ (7/4)Bk, supp gk ⊆ (7/4)Bk for every k ∈ N. Then∑
k∈J g

2
kfk ∈ S(h−2

g , g) and

(A.24)
∑
k∈J

gw
k f

w
k g

w
k u =

(∑
k∈J

g2
kfk

)w

u+RJu, ∀u ∈ S(Rn),

where RJ is a linear continuous operator from L2(Rn) to L2(Rn) with
norm independent of the subset J .

2) if fk ≥ 0 with supp fk ⊆ (7/4)Bk and supp gk ⊆ (9/8)Bk for every
k ∈ N, there exist positive constants C, C ′ independent of J such that

(A.25)
∑
k∈J

‖[gw
k , f

w
k ]u‖2

0 ≤ C
∑
k∈J

(
fw

k ψ
w
k u, ψ

w
k u

)
+C ′‖u‖2

0, ∀u ∈ S(Rn),

where {ψk}k∈N is the family of functions defined in Lemma A.4. More-
over, if the seminorms of the functions fk and gk don’t depend on R,
the constant C can be chosen not depending on R.
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We complete this appendix by proving Theorem A.5.

Proof of Theorem A.5. Inequality (A.13) is an immediate consequence
of Lemma A.6 and Lemma A.7.

As for (A.14), set pk(x, ξ) = (pψk)(x, ξ) for any k ∈ N. Thus by (A.24)
there exists an operator R ∈ L(L2(Rn), L2(Rn)) such that

∑
k∈N

ϕw
k p

w
k ϕ

w
k u =

( ∑
k∈N

ϕ2
kp

)w
u+Ru = pwu+Ru, ∀u ∈ S(Rn),

whence

‖pwu‖2
0 =

∑
k∈N

(
pw

k ϕ
w
k u, ϕ

w
k p

wu
)

L2 −
(
Ru, pwu

)
L2, ∀u ∈ S(Rn).

By the Cauchy-Schwarz inequality and (A.13) one gets, for an arbitrary
constant ε > 0,

‖pwu‖2
0 ≤

1

ε2

∑
k∈N

‖pw
k ϕ

w
k u‖2

0 +
(
1 + c1

)
ε2‖pwu‖2

0 +
c

ε2
‖u‖2

0, ∀u ∈ S(Rn).

By choosing ε2 < (1 + c1)
−1, (A.14) readily follows.

It remains to prove (A.15). We start by observing that

‖ϕw
k p

w
k u‖2

0 ≤ 2‖ϕw
k p

wu‖2
0 + 2‖ϕw

k

(
(1 − ψk)p

)w
u‖2

0.

An application of Proposition A.9 with fk = ϕk and gk = (1 − ψk)p yields

∑
k∈N

‖ϕw
k p

w
k u‖2

0 ≤ 2
∑
k∈N

‖ϕw
k p

wu‖2
0 + C1‖u‖2

0, ∀u ∈ S(Rn).

Hence, from (A.13) it follows

∑
k∈N

‖ϕw
k p

w
k u‖2

0 ≤ C2‖pwu‖2
0 + C ′

2‖u‖2
0, ∀u ∈ S(Rn),

with C2 independent of R.

Since pw
k ϕ

w
k = ϕw

k p
w
k + [pw

k , ϕ
w
k ] one has, for every u ∈ S(Rn),

∑
k∈N

‖ϕw
k p

w
k u‖2

0 ≥
1

2

∑
k∈N

‖pw
k ϕ

w
k u‖2

0 −
∑
k∈N

‖[pw
k , ϕ

w
k ]u‖2

0,

so that (A.15) is proved if we show that

(A.26)
∑
k∈N

‖[pw
k , ϕ

w
k ]u‖2

0 ≤ C3‖pwu‖2
0 + C ′

3‖u‖2
0, ∀u ∈ S(Rn).
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Let us now set N̄ := {k ∈ N : |ξk| ≥ R} and note that pk ∈ S(1, g),
uniformly in k, when k /∈ N̄ . Hence we can apply (A.25) with fk = pk and
gk = ϕk (here we also use (A.12)) and get

∑
k∈N

‖[pw
k , ϕ

w
k ]u‖2

0 ≤ C4

∑
k∈N̄

(
pw

k ψ
w
k u, ψ

w
k u

)
L2 + C ′

4‖u‖2
0, ∀u ∈ S(Rn).

Observe that C4 is independent of R when δ
−2+|α|
k ε

−2+|β|
k |∂α

x∂
β
ξ p|Bk

| are uni-
formly bounded in R. Therefore, by (A.24), one has

(A.27)
∑
k∈N

‖[pw
k , ϕ

w
k ]u‖2

0 ≤ C5

(( ∑
k∈N̄

ψ3
kp

)w

u, u
)

L2 +C ′
5‖u‖2

0, ∀u ∈ S(Rn).

An application of the Fefferman-Phong inequality gives

(( ∑
k∈N̄

ψ3
kp

)w

u, u
)

L2 ≤ C6

(
pwu, u

)
+ C ′

6‖u‖2
0, ∀u ∈ S(Rn).

This estimate together with (A.27) yields (A.26). The proof of (A.15) is
complete. �
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[8] Hérau, F.: Fefferman’s SAK principle in one dimension. Ann. Inst. Fourier
(Grenoble) 50 (2000), no. 4, 1229–1264.



286 L. Maniccia and M. Mughetti
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