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Asymptotic windings
over the trefoil knot

Jacques Franchi

Abstract
Consider the group G :=PSL2(R) and its subgroups Γ:=PSL2(Z)

and Γ′ := DSL2(Z). G/Γ is a canonical realization (up to an homeo-
morphism) of the complement S

3\T of the trefoil knot T , and G/Γ′

is a canonical realization of the 6-fold branched cyclic cover of S
3\T ,

which has 3-dimensional cohomology of 1-forms.
Putting natural left-invariant Riemannian metrics on G, it makes

sense to ask which is the asymptotic homology performed by the
Brownian motion in G/Γ′ , describing thereby in an intrinsic way part
of the asymptotic Brownian behavior in the fundamental group of the
complement of the trefoil knot. A good basis of the cohomology of
G/Γ′, made of harmonic 1-forms, is calculated, and then the asymp-
totic Brownian behavior is obtained, by means of the joint asymptotic
law of the integrals of the above basis along the Brownian paths.

Finally the geodesics of G are determined, a natural class of
ergodic measures for the geodesic flow is exhibited, and the asymp-
totic geodesic behavior in G/Γ′ is calculated, by reduction to its
Brownian analogue, though it is not precisely the same (counter to
the hyperbolic case).

1. Introduction

Most knots obey the celebrated uniformization theorem of Thurston ([19]):
their complement in S

3 are homeomorphic to a unique complete hyperbolic
manifold of finite volume, which assigns then a canonical geometrical struc-
ture to these manifolds. In this homeomorphism the knot is sent to infinity,
namely to the unique cusp of the hyperbolic manifold.
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In this canonical hyperbolic context, it makes sense and it is possible to
compute the asymptotic Brownian and geodesic behaviors. This has been
done in [6]. See also [4, 2, 3].

The trefoil knot T is the simplest of non-trivial torical and then non-
uniformizable knots. There is a classical algebraic realization of T as a
simple curve in C

2, but this does not correspond to a precise canonical
geometric structure, and the asymptotic Brownian windings about T one
can compute in such model (the quantity computed so is the length of the
knot (trefoil or other) divided by the global volume, see [5]) is not intrinsic,
and does not resemble anyway the uniformization.

Now, there exists however for the complement of this particular knot
some intrinsic geometrical structure, replacing the non-existing hyperbolic
structure. Indeed it is known ([13, 9]) that the complement of T in S

3 is
homeomorphic to the quotient G/Γ of the group G := PSL2(R) by its mod-
ular subgroup Γ := PSL2(Z). Moreover it happens that any left-invariant
Riemannian structure on this homogeneous space G/Γ is quasi-hyperbolic
(and hyperbolic in the sense of Gromov), with a unique cusp corresponding
to the trefoil knot T . The 1-cohomology of this space is a real line, generated
by the harmonic 1-form computing the linking number about T .

Moreover this canonical structure for the complement of T admits a
less known interesting feature. Among the cyclic branched covers of the
complement of T , which exhibit a 6-fold periodicity, one unique presents
an increase of the first Betti number : the 6-fold cyclic branched cover Σ′

6

of the complement of T in S
3 has a 3-dimensional cohomology of 1-forms.

(For these questions, see [14]. For example, Σ5 is the Poincaré sphere.)
Σ6 = Σ′

6 ∪ T is a smooth compact manifold, and H1(Σ6) ≡ R2 corresponds
to two “angles” accounting for more information on the fundamental group
of S

3\T than the linking number 1-form alone. Of course taking also this
linking number into account, we have H1(Σ′

6) ≡ R3 . Note that the two
“angles” just mentionned are computed by bounded 1-forms, counter to the
linking number 1-form.

Now it happens that this cover Σ′
6 is in turn homeomorphic to G/Γ′ ,

Γ′ := DSL2(Z) being the subgroup of the modular group Γ generated by its
commutators (see Proposition 1 below). So we have a canonical structure for
this interesting cyclic cover of the complement of T , at least once some nat-
ural left-invariant Riemannian metric is chosen on the Lie group G. We fix
such metrics (depending on a real parameter a) by taking orthonormal some
basis of the Lie algebra s�2(R) which diagonalizes the Killing form and is
made of symmetrical and skew-symmetrical elements, and which is simply
expressed in the Iwasawa coordinates. They happen to be canonical in a
natural geometrical sense, viewing G as T 1H2, and pertain to the 6th of the
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eight 3-dimensional geometries described by Thurston ([19]), viewing G/Γ′

as T 1(H2/Γ′) .

It becomes now fairly natural to compute in this canonical model the
asymptotic behavior of the Brownian motion. This canonical Riemannian
manifold G/Γ′ is quasi-hyperbolic, hyperbolic in the sense of Gromov, has
finite volume, one unique cusp, and projects (by annihiling the maximal
compact subgroup ofG, a circle) onto H

2/Γ′ , a hyperbolic surface of genus 1,
which carries the two “angles” mentionned above. These “angles” give raise
to regular windings and then to a central limit theorem, while the linking
number will be given roughly by windings around the cusp and then will
generate singular windings.

To perform the computations, of the harmonic forms (see Theorem 1 be-
low) and of their stochastic line-integrals along the Brownian paths, and then
of the asymptotic behaviors of those integrals (see Theorem 2 below), we
use the Iwasawa coordinates on G, taking advantage of this parametrization
without singularity, which moreover shows up the hyperbolic part of G.

To be more precise, let us mention that our harmonic forms are very
conveniently expressed (in Theorem 1 below) in terms of η4 , the 4th power
of the classical Dedekind η function: indeed the two handle (bounded) har-
monic forms are given by η4(z)dz , and the linking number (unbounded)
harmonic form is given by dθ + d(arg η4(z)) , θ denoting in T 1(H2/Γ′) the
parameter of the circle above z ∈ H2/Γ′ .

The asymptotic Brownian homology on G/Γ′ is now given by the as-
ymptotic behavior of the 3-dimensional martingale obtained by integrating
along the Brownian paths (up to time t) the 3 basic harmonic forms found in
Theorem 1. Theorem 2 describes this asymptotic behavior by the following
convergence in law, after normalization of the fast martingale by t and of
the slow ones by

√
t: the fast winding component goes to a Cauchy variable

(with parameter 1
2
), while the two slow winding components go to normal

variables (centred with variance expressed by an integral of |η|8); the main
feature being the independence of these 3 limiting variables.

From a probabilistic and technical point of view, the arguments used here
were already partly scattered in [2], [4], [5], and [6], but the major difficulty in
the proof of Theorem 2 below is to establish the asymptotic independence of
regular and singular windings, that is to say the independence of the limiting
laws of the slow and rapid windings. Such a question, relative to this type of
independence, seems not to have been yet precisely addressed. See however
on one hand [7], for an analogous question concerning the geodesic flow on a
surface, handled totally differently, by means of a coding method, and on the
other hand [20], which states an analogous result for the Brownian motion
on a Riemann surface, but without proving the asymptotic independence.
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Then the geodesics of G are determined, in Proposition 2 below. They
happen to project on H2 according to a generic Euclidian circle or line (in-
tersected with H

2), these projections having constant energy. Note that the
geodesic flow is non-ergodic on the tangent bundle T 1(G/Γ′).

However the description of geodesics (see Proposition 2) allows to exhibit
a natural class of ergodic measures for the geodesic flow on G/Γ′, each one
carried by a leaf of T 1(G/Γ′). Fixing any such ergodic invariant probability
measure, the asymptotic geodesic behavior in G/Γ′ is calculated, by means
of the joint asymptotic law of the integrals of the harmonic basis along
geodesics. Indeed Theorem 3 below describes this asymptotic law: it is
similar to the asymptotic law calculated in Theorem 2, but differs though
by a constant depending on the parameters of the metric and of the leaf,
and mainly by an additional contribution in the fast component, for which
the circle form dθ is responsible.

The method for getting the geodesic result is based on a reduction to
the Brownian behavior (calculated in Theorem 2), as in the series of arti-
cles [2, 3, 4, 6, 12]. There are however some noteworthy simplifications in
comparison with the proofs in these articles, mainly due to the harmonicity
of the integrated 1-forms, as in [11]. In particular, there is no more need of a
spectral gap, nor to use a foliated diffusion. Another change (and hopefully
clarification) with respect to these previous proofs is the use of a simultane-
ous disintegration of the Liouville and the Wiener measures: we avowedly
condition the Brownian motion (starting from a given point z ∈ H2) to
exit the hyperbolic plane at the same point as a given geodesic (starting
also from z). This point of view was more or less implicit in the preceding
proofs, but did not really appear.

Finally it is worth noticing again that, counter to the hyperbolic case
of [2, 3, 4, 6, 7, 11, 12], the geodesic and Brownian asymptotic behaviors
are here no longer the same, though comparable. The spiral windings of
the geodesics about their projections on H2 is mainly responsible for this
feature. The main aim of these previous works, and in particular of [7], [4]
and [2], which deal with surfaces, was already to compute the asymptotic
windings law of geodesics, by means of integrals of winding forms, and, for [4]
and [2], of comparison with the Brownian analogue. An important difference
however with the present study is the non-hyperbolicity (in the strict sense)
and non-ergodicity of the present underlying manifold G/Γ′ , which allows
a different asymptotic behavior between diffusions and geodesics. Another
sensible difference is that these previous works did not consider jointly fast
and slow Brownian windings. Indeed, while [4] and [2] deal only with fast
windings, [7] treats both sorts, but only for geodesics.
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It is a pleasure to thank J.P. Wintenberger for having drawn my attention
on congruence groups, Hurwitz formula, and Shimura’s book, and T. Delzant
for a useful remark.

2. The commutator subgroup of the modular group

Consider the groupG := PSL2(R), its modular subgroup Γ := PSL2(Z) and

Γ′ := DSL2(Z) the subgroup of Γ generated by its commutators.

As usual, let us identify G with the unitary tangent bundle T 1
H

2 ≡ H
2×S

1

of the hyperbolic plane H2 ≡ R × R∗
+ , and also with the group of Möbius

isometries (homographies) of H2.
Let us distinguish the following elements u, v, β, γ of G, defined by:

u(z) := −1/z , v(z) := (z − 1)/z ,

β(z) := (2z + 1)/(z + 1) , γ(z) := (z + 1)/(z + 2) .

Consider also the subgroup Γ6 of elements of Γ which are congruent to
the unity modulo 6, that is to say equivalently: Γ6 is the kernel of the natural
projection p of Γ onto PSL2(Z/6Z) . Let [α1, α2] := α1α2α

−1
1 α−1

2 denote as
usual the commutator of α1, α2 ∈ G .

Lemma 1 The group Γ is generated by {u, v} and admits the presen-
tation {u, v |u2 = v3 = 1}; The group Γ′ is the free group generated by
{β, γ} ; The quotient group Γ/Γ′ is isomorphic to Z/6Z . Moreover we have:
β = [v, u] , γ = [v−1, u] , vu(z) = z+1 , [β, γ−1] = (vu)6 = (z �→ z+6) ∈ Γ6 .

Denote by D0 the most usual fundamental domain for the action of the
modular group Γ on the hyperbolic Poincaré plane H2: D0 is the ideal trian-
gle of H2 delimited by the vertical half-lines [e

√−1 2π/3,∞] and [e
√−1 π/3,∞]

and the segment of the trigonometric circle delimited by e
√−1 π/3, e

√−1 2π/3 .
Recall that {1, u} is the stabilisator of the elliptic point

√−1 , and {1, v, v2}
is the stabilisator of the elliptic point e

√−1 π/3 ≡ e
√−1 2π/3 .

Then we have the following fundamental domains for the action of Γ′ :

D0 ∪ vD0 ∪ v2D0 ∪ uD0 ∪ vuD0 ∪ v2uD0 ,

and

D := D0 ∪ β−1vβ−1D0 ∪ βv2βD0 ∪ βuγD0 ∪ vuD0 ∪ v2uβ−1D0 .

As β−1vβ−1(z) = z−2, βv2β(z) = z+2, βuγ(z) = z+3, v2uβ−1(z) = z−1,
we see that D is merely the union of the translates of D0 successively by
−2,−1, 0, 1, 2, 3 .
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We have the following identifications on the boundary of D:

γ
(
e
√−1 2π/3 − 2,

√−1 − 2, e
√−1 2π/3 − 1

)
=
(
e
√−1 2π/3 + 2,

√−1 + 1, e
√−1 2π/3 + 1

)
,

β
(
e
√−1 2π/3 − 1 ,

√−1 − 1 , e
√−1 2π/3

)
=
(
e
√−1 2π/3 + 3 ,

√−1 + 2 , e
√−1 2π/3 + 2

)
,

βγ−1
(
e
√−1 2π/3 ,

√−1 , e
√−1 2π/3 + 1

)
=
(
e
√−1 2π/3 + 4 ,

√−1 + 3 , e
√−1 2π/3 + 3

)
,

[β, γ−1]
(
e
√−1 2π/3 − 2 +

√−1 R+

)
= e

√−1 2π/3 + 4 +
√−1 R+ .

Lemma 2 Γ′ is a congruence group. More precisely, we have Γ6 ⊂ Γ′,
and in Γ′ a word in {β, γ} belongs to Γ6 if and only if its total weights with
respect to β and γ are even and equal modulo 6. Moreover [Γ′ : Γ6] = 12 =
Card(p(Γ′)), the quotient group p(Γ)/p(Γ′) is isomorphic to Z/6Z , and the
quotient group Γ′/Γ6 is isomorphic to Z/6Z × Z/2Z .

Proof. We saw with the fundamental domain D above that Γ/Γ′ is made of
the cosets (z �→ z+k)Γ′ , for k ∈ {0, . . . , 5} . Then we have [p(β), p(γ)−1] =
p([β, γ−1]) = 1 , showing that p(β) and p(γ) commute. Thus for any inte-
gers m,n the element p(βmγn) is (as a matrix) symmetrical in p(Γ), that is
to say symmetrical or skew-symmetrical as a matrix in SL2(Z/6Z) , since β
and γ are.

Moreover, p(β)6 = p(γ)6 = 1, and

p(Γ) =
{
p
(
(z �→ z + k)βmγn

)∣∣∣0 ≤ k ≤ 5 , 0 ≤ m,n ≤ 5
}
.

And p
(
(z �→ z+k)βmγn

)
=1⇐⇒

(
a+ kεb b+ kd

bε d

)
=

(
ε′ 0
0 ε′

)
modulo 6,

where ε, ε′ = ±1 and p(βmγn) =

(
a b
bε d

)
, showing that

p
(
(z �→ z + k)βmγn

)
= 1 ⇐⇒ k = 0 and p(β)mp(γ)n = 1 .

Hence we have shown that Γ6⊂Γ′, and also the second statement of the
lemma, since it is easily seen that

p(β)mp(γ)n = 1 ⇐⇒ m ∈ 2Z and m− n ∈ 6Z .

The above also implies the isomorphism between p(Γ)/p(Γ′) and Z/6Z , and
that the kernel of

(
Z/6Z � (m,n) �−→ p(β)mp(γ)n ∈ p(Γ′)

)
is isomorphic

to Z/3Z . Whence Card(p(Γ′)) = 12 , [Γ : Γ6] = Card(p(Γ)) = 72 , and
[Γ′ : Γ6] = 72/6 = 12 . The last claim is now clear from the above, which
shows that Γ′/Γ6 is generated by the cosets of β and βγ , which commute
and are of order respectively 6 and 2. �
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3. Modular forms on H
2/Γ′

The Hurwitz formula (see for example [17, Section 1.5]) asserts in the present
case that

2 × genus (H2/Γ′) − 2 = 6 × (2 × genus (H2/Γ) − 2) +
∑

z∈H2/Γ′
(r(z) − 1) ,

where r(z) denotes the ramification index of the covering (H2/Γ′ → H2/Γ)
at z, which satisfies ∑

z above z′
r(z) = 6 for any z′ ∈ H

2/Γ.

Here the ramifications occur only above ∞ ,
√−1 , and e

√−1 2π/3 . There
are one point above ∞, with index 6, three points above

√−1 , with index 2,
and two points above e

√−1 2π/3, with index 3. Since H2/Γ is homeomorphic
to H2, and then has genus 0, we get the genus 1 for H2/Γ′.

Now, theorems 2.23 and 2.24 of ([17], Section 2.6, case k = 2 and
genus =1) assert that the modular forms f(z)dz, for H2/Γ′ as for H2/Γ6 ,
are all proportional.

We need next the η function of Dedekind, defined on H2 (seen as the
Poincaré half-plane) by:

η(z) := e
√−1 π z/12 ×

∏
n∈N∗

(1 − e
√−1 2π n z) .

We shall also need its logarithmic derivative:

η̃(z) := η′(z)/η(z) =
√−1

π

12
− 2π

√−1
∑
n∈N∗

n

e−
√−1 2π n z − 1

,

which converges absolutely uniformly in D. η and η̃ are holomorphic, and
bounded in D.

η clearly satisfies η(z + 1) = e
√−1 π/12 η(z) , and is known (see for exam-

ple [1, Theorem 3.1 of Section III.3]) to satisfy also (with as the square root
the usual principal branch):

η(−1/z) = e−
√−1 π/4

√
z η(z) .

As a consequence, η(g(z)) = η(z) × g′(z)−1/4 up to some 24-fold root of 1
(depending on g) for any g ∈ Γ , and in particular η(g(z)) = η(z)×g′(z)−1/4

for any g ∈ Γ′ .
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Hence we have the first sentence of the following lemma (owing to the
canonical injection of H1(H2/Γ′) into H1(G/Γ′), induced by the canonical
projection g �→ g(

√−1 ) from G onto H
2). The second sentence is obtained

merely by differentiating the above relation for η . The third is straightfor-
ward from the above expressions of η and η̃ .

Lemma 3

(i) η4(z)dz is a closed modular form on H2/Γ′, and thus on G/Γ′.

(ii) We have η̃(−1/z) = z2×η̃(z)+z/2 and η̃(z+1) = η̃(z) for any z ∈ H
2.

(iii) We have in D: η(z) = O(e−π y/12) and η̃(z) =
√−1 π/12 + O(e−2πy).

Remark 1 Set
Θ(z) :=

∑
n∈Z

e
√−1 πn2z,

which is holomorphic in H2 . Poisson formula applied to the function n �→
e−πyn

2
shows that (for z =

√−1 y and then for any z ∈ H2)

Θ(−1/z) = e−
√−1 π/4

√
z Θ(z)

as for η above. But this theta function Θ is only 2-periodic, and has no
1-periodic power, so that (since vu = βuγ(vu)−2) it cannot be used to get a
Γ′-automorphic form.

4. Link with the trefoil knot

Denote by T the trefoil knot, realized in the sphere S
3. Denote by Σk the

k-fold cyclic branched cover of its complement S
3\T , for k ∈ N∗. See [14],

in particular ([14, X,C,D], [14, VI,B] and [14, VII,D]). Σk is a compact 3-
dimensional smooth manifold, H1(Σk) = H1(Σk+6) , and H1(Σk) is trivial
for k /∈ 6N. (A pleasant feature, irrelevant here, is that Σ5 is the Poincaré
3-sphere.)

It is not very hard to see that H1(Σ6) ≡ Z2. Indeed Π1(Σ6\T ) is made of
those lifts of elements in Π1(S

3\T ) which are still loops, that is those which
have linking number (with respect to T ) belonging to 6Z. This implies that
Π1(Σ6\T ) (up to an isomorphism) is generated by the center (isomorphic
to Z) and the commutator subgroup (free on two generators) of Π1(S

3\T ).
Whence the abelianised H1(Σ6\T ) ≡ Z3, the H1(Σ6) ≡ Z2 component cor-
responding to the commutator subgroup contribution.

The real cohomology of 1-forms of S
3\T , H1(S3\T ) , identified with the

space of harmonic 1-forms on S
3\T , is generated by the harmonic 1-form
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computing the linking number about T . Considering Σ′
6 := Σ6\T , we have

a 6-fold cover of S
3\T which has a three-dimensional real cohomology of 1-

forms: H1(Σ′
6) ≡ R

3, generated by the lifts of the harmonic forms belonging
to H1(S3\T ) ≡ R and the restrictions of the harmonic forms belonging to
H1(Σ6) ≡ R2.

It is convenient to think of those two more directions brought by H1(Σ6)
into H1(Σ′

6) as two “angles” accounting for more of the complicated fun-
damental group of S

3\T , than the mere linking number 1-form generating
H1(S3\T ) does alone.

The following proposition links this interesting cover with the preceding
section, confering thereby to Σ′

6 a somehow canonical structure of homoge-
neous space.

Proposition 1 S
3\T is homeomorphic to G/Γ, and moreover Σ′

6 is home-
omorphic to G/Γ′.

Proof. The first assertion seems to be due to Milnor. See [13], and [9]. The
second one does not seem to be widely known, but M. Boileau, F. Bonahon
and T. Delzant knew it.

G/Γ′ is clearly a cover of G/Γ , with as a fibre the cyclic group Γ/Γ′ ≡
Z/6Z , as it must be. So it remains to be sure that this cover is indeed a
cyclic branched cover, and namely that near the trefoil knot the canonical
projection is diffeomorphic to ((s, z) �→ (s, z6)). Now, [9] shows that in G/Γ,
T has been sent to infinity (it corresponds to the subgroups of R2 isomorphic
to R, while its complement correspond to the lattices with unit area). And
near infinity, G/Γ′ is locally homeomorphic to the unit tangent bundle of a
neighborhood of ∞ in the fundamental domain D (with identification of its
two vertical edges by means of (z �→ z+6)). It should now be clear that the
cover G/Γ′ → G/Γ has the required structure near infinity, being given by

(
(θ, x+

√−1 y) �→ (θ, 6 x+
√−1 y)

)
,

θ denoting the parameter of the circle above the point x+
√−1 y ∈ D . �

Observe that the harmonic 1-forms of G/Γ′ ≡ Σ′
6 are sums of forms of

two different types: the forms arising from G/Γ ≡ S
3\T and then from

the linking number (with respect to T ), which are unbounded, and the
forms coming from Σ6 or equivalently from the modular surface H2/Γ′ (onto
which G/Γ′ ≡ T 1(H2/Γ′) canonically projects, and which has 1 handle, see
section 3), which are bounded.
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5. Iwasawa coordinates and metrics on G

G = PSL2(R) is classically parametrized by the Iwasawa coordinates

(z = x+
√−1 y , θ) ∈ H

2 × (R/2πZ) ,

in the following way: each g ∈ G writes uniquely g = g(z, θ) := n(x)a(y)k(θ),
where n(x) , a(y) , k(θ) are the one-parameter subgroups defined by:

n(x) :=

(
1 x
0 1

)
, a(y) :=

( √
y 0

0 1/
√
y

)
, k(θ) :=

(
cos θ

2
sin θ

2

− sin θ
2

cos θ
2

)
,

and generated respectively by the following elements of the Lie algebra s�2(R):

ν :=

(
0 1
0 0

)
, α :=

(
1/2 0
0 −1/2

)
, κ :=

(
0 1/2

−1/2 0

)
.

Note that g = g(z, θ) ⇐⇒ [
g(
√−1 ) = z and g′(

√−1 ) = y e
√−1 θ

]
.

Set also λ := ν − κ =

(
0 1/2

1/2 0

)
, which is natural, since α, λ are

symmetrical while κ is skew-symmetrical, and since in the basis (α, λ, κ)

of s�2(R) the Killing form is diagonal: it has matrix

⎛
⎝ −2 0 0

0 −2 0
0 0 2

⎞
⎠ .

For this reason, we take on s�2(R) the inner product such that the
basis (α, λ, aκ) is orthonormal, for some arbitrary parameter a ∈ R

∗. And
since we want to work on the homogeneous space G/Γ′ , the Riemannian
metric to be considered on G must be a least Γ′-left-invariant, and then a
natural choice for the Riemannian metric on G is the left-invariant metric,
say ((gaij)) , generated by the above inner product on s�2(R) .

The simple lemma below shows that this choice of metric(s) is geomet-
rically canonical (up to a trivial multiplicative constant), G being seen
as T 1H2. This equips G/Γ′ ≡ T 1(H2/Γ′) with the 6th of the eight 3-
dimensional geometries described by Thurston ([19]).

Let us denote by Lν , Lα , Lκ , Lλ the left-invariant vector fields on G
generated respectively by ν , α , κ , λ . A standard computation shows that

Lλ = y sin θ
∂

∂y
+ y cos θ

∂

∂x
− cos θ

∂

∂θ
,

Lα = y cos θ
∂

∂y
− y sin θ

∂

∂x
+ sin θ

∂

∂θ
,

Lκ =
∂

∂θ
.
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Lemma 4 The Riemannian metrics ((gaij)) defined above are, up to a mul-
tiplicative constant, the only ones on G which are left-invariant and also
invariant with respect to the action of the (Cartan compact subgroup) cir-
cle {k(θ)} . They are given in Iwasawa coordinates (y, x, θ) by

((gaij)) :=

⎛
⎝ y−2 0 0

0 (1 + a−2)y−2 a−2y−1

0 a−2y−1 a−2

⎞
⎠ .

Proof. The left-invariant metrics on G are those which are given by a con-
stant matrix ((aij)) in the basis L := (Lα,Lλ,Lκ) . Set I :=

(
∂
∂y
, ∂
∂x
, ∂
∂θ

)
.

We have I = LA , with

A :=

⎛
⎝ y−1 cos θ −y−1 sin θ 0

y−1 sin θ y−1 cos θ 0
0 y−1 1

⎞
⎠ ,

so that the left-invariant metrics are given in the basis I by tA((aij))A .
Among them, the ones we want have to satisfy ∂

∂θ
tA((aij))A = 0 .

A direct computation shows that this is equivalent to

((aij)) = c2

⎛
⎝ 1 0 0

0 1 0
0 0 a−2

⎞
⎠ ,

and then to ((gaij)) being as in the lemma. �
Note that with these metrics the holomorphic form η4(z)dz of Lemma 3,i)

is coclosed and then harmonic.

The left Laplacian on G corresponding to the basis (α, λ, aκ) is the
Beltrami Laplacian associated with the metric ((gaij)), and is given by

∆a := L2
λ + L2

α + a2L2
κ = y2

( ∂2

∂y2
+

∂2

∂x2

)
− 2y

∂2

∂θ∂x
+ (1 + a2)

∂2

∂θ2
.

Note that Lλ and Lα generate the canonical horizontal left-invariant
vector fields lifted from H

2 to G, H
2 being endowed with its Levi-Civita

connexion, so that ∆0 is the Bochner horizontal left Laplacian, and ∆a =
∆0 + a2 ∂2

∂θ2
.

The measure

µ(dg) :=
dx dy dθ

4π2 y2

is bi-invariant, and its projection onto G/Γ′ is a probability measure (as
is easily seen by integrating over D × [0, 2π] ), proportional to the volume
measure of G/Γ′ . Thus the volume of G/Γ′ is 4π2/|a| .
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Let ỹ denote the height in the cusp of the projection H2/Γ′ of G/Γ′ ,
that is to say ỹ = y when we identify H2/Γ′ with its fundamental domain D
(see section 2). Let us consider ỹ as a function on G/Γ′ or on H

2/Γ′ as well,
and then also as a Γ′-invariant function on G or on H2 .

6. Winding form on G/Γ

Let us look here for the harmonic 1-form on G/Γ, which calculates the
linking number about the trefoil knot sent to infinity. Let us denote it by

ω0 = A(z, θ)dx+B(z, θ)dy+C(z, θ)dθ = U(z, θ)dz+ Ū(z, θ)dz̄+C(z, θ)dθ ,

with A,B,C real and 2U = A − √−1 B . C must be non-null, since
H1(H2/Γ) ≡ 0 .

ω0 must be left-invariant under Γ, which amounts to say such that
γ∗ω0 = ω0 for γ(z) = z + 1 and for γ(z) = −1/z .

Clearly the invariance with respect to z �→ z + 1 is equivalent to the
1-periodicity of A,B,C (with respect to the variable z). We have then to
write down the invariance with respect to u = (z �→ −1/z) .

Now u g(z, θ) = g(−1/z , θ − 2 arg z) , using the notation of section 5,
so that

u∗ω0 = U ◦ u dz
z2

+ Ū ◦ u dz̄
z̄2

+ C ◦ u×
(
dθ +

√−1 |z|−2(z̄dz − zdz̄)
)

equals ω0 if and only if C is Γ-invariant and

U(−1/z , θ − 2 arg z) = z2 U(z, θ) −√−1 z C(z, θ) for all z, θ .

Observe that with the metric ((gaij)) given in section 5, the divergence of ω0 is

δω0 = y2
(∂B
∂y

+
∂(A− C/y)

∂x
+
∂(1+a2

y2 C − A/y)

∂θ

)
= y2

(∂A
∂x

+
∂B

∂y

)
− y

∂C

∂x
+
∂((1+a2)C − yA)

∂θ
.

Hence ω0 is harmonic if and only if

∂U

∂z̄
is real ,

∂U

∂θ
=
∂C

∂z
,

and
∂A

∂x
+
∂B

∂y
− y−1∂C

∂x
+ y−2∂((1 + a2)C − yA)

∂θ
= 0 ,

which is equivalent to

∂U

∂θ
=
∂C

∂z
and

∂U

∂z̄
= 4y−1∂C

∂x
− 4y−2∂((1 + a2)C − yA)

∂θ
.
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Now Lemma (3, ii) shows that C ≡ 1 and U(z, θ) ≡ −2
√−1 η̃(z) is a

solution.
So our 1-form ω0 must be

ω0 = dθ + 4 Im(η̃(z)) dx+ 4Re(η̃(z)) dy ,

up to a multiplicative constant (which we take equal to 1, to have the linking
number calculated by ω0/2π , see the comment below).

Gathering this, Lemma (3,i), and section 4, we get the following:

Theorem 1 A basis of H1(G/Γ′) is made of the 3 following harmonic
1-forms, expressed in the Iwasawa coordinates:

ω0 := dθ + 4 Im(η̃(z)) dx+ 4Re(η̃(z)) dy = d
(
θ + 4 arg(η(z))

)
,

ω1 := Re(η4(z)) dx− Im(η4(z)) dy ,

ω2 := Im(η4(z)) dx+ Re(η4(z)) dy .

ω1 and ω2 are bounded, and ω0 = π
3
dx+ dθ + O(ye−2π y) near y = ∞ .

As usual, we identify the forms on G/Γ′ with the Γ′-(left-)invariant forms
on G .

Note that the norms of the forms dx and dy are of magnitude ỹ (de-
fined in section 5), though the norm of dθ is of magnitude 1. Then ω0 is
unbounded, having a singularity at the cusp of G/Γ′, and does not belong
to L1(G/Γ′, µ) .

This agrees with the different natures of the windings involved: whereas ω0

calculates the singular windings about the trefoil knot (even if located at
infinity), ω1 and ω2 calculate regular windings around a handle, and belong
to L2(G/Γ′, µ) .

Observe that ω0 also calculates a sort of angle, about the trefoil knot
at infinity, and that the corresponding linking number is then calculated by
ω0/2π . This is coherent with the approximation in Theorem 1 above:

ω0

2π
=
dx

6
+ O(1) near y = ∞ ,

showing that our linking number is mainly made of the number of windings
around the cusp performed by the projection on H2/Γ′; note that it is clear
on the fundamental domain D that a loop around the cusp corresponds to
an increase of x by ± 6 .

The norms mentioned above are relative to any left-invariant Rieman-
nian structure on the Lie group G (and on G/Γ′). But more precisely, with
respect to the precise canonical Riemannian structure ((gaij)) (see section 5),
we have the following.
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Corollary 1 Expressed in the dual basis (L∗
α,L∗

κ,L∗
λ) of (Lα,Lκ,Lλ) , we

have

ω0 = L∗
κ +

(
sin θ + 4y[Re(η̃(z)) cos θ − Im(η̃(z)) sin θ]

)
L∗
α

+
(
− cos θ + 4y[Re(η̃(z)) sin θ + Im(η̃(z)) cos θ]

)
L∗
λ ,

ω1 = [Re(η4(z)) cos θ − Im(η4(z)) sin θ]yL∗
λ

− [Re(η4(z)) sin θ + Im(η4(z)) cos θ]yL∗
α ,

ω2 = [Re(η4(z)) sin θ + Im(η4(z)) cos θ]yL∗
λ

+ [Re(η4(z)) cos θ − Im(η4(z)) sin θ]yL∗
α .

As a consequence, we have

|ω0|2 = 1 + a2 + 16y2|η̃(z)|2 − 8y Im(η̃(z)) ,

|ω1|2 = |ω2|2 = y2|η(z)|8 , 〈ω1, ω2〉 = 0 ,

〈ω0, ω1〉 = 4y2 [Re(η4(z))Im(η̃(z)) − Im(η4(z))Re(η̃(z))] − yRe(η4(z)) ,

〈ω0, ω2〉 = 4y2 [Re(η4(z))Re(η̃(z)) + Im(η4(z))Im(η̃(z))] − y Im(η4(z)) .

7. Left Brownian motion on G

The Brownian motion gs = g(zs, θs) = g(ys, xs, θs) on G has infinitesimal
generator 1

2
∆a and is the left Brownian motion solving the Stratonovitch

stochastic differential equation

d gs = gs ◦ (λ dYs + α dXs + κ a dWs) ,

where (Ys, Xs,Ws) denotes a 3-dimensional standard Brownian motion.

Since a direct calculation shows that

g(z, θ)−1dg(z, θ)=(sin θ dy+cos θ dx)
λ

y
+(cos θ dy−sin θ dx)

α

y
+(y dθ+dx)

κ

y
,

we get the differential system

dys = ys sin θs ◦ dYs + ys cos θs ◦ dXs = ys sin θs dYs + ys cos θs dXs ,

dxs = ys cos θs ◦ dYs − ys sin θs ◦ dXs = ys cos θs dYs − ys sin θs dXs ,

dθs = a dWs − cos θs ◦ dYs + sin θs ◦ dXs = a dWs − cos θsdYs + sin θs dXs .

Setting dUs := sin θs dYs+cos θs dXs and dVs := cos θs dYs−sin θs dXs ,
we get a standard 3-dimensional Brownian motion (Us, Vs,Ws) such that

dys = ys dUs , dxs = ys dVs , dθs = a dWs − dVs .
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Hence we see that the projection of our Brownian motion gs = (ys, xs, θs)
on the hyperbolic plane H2, that is to say on the Iwasawa coordinates
(y, x), is simply the standard hyperbolic Brownian motion of H

2, and that the
angular component (θs) is just a real Brownian motion with variance (1+a2).

Remark 2 The degenerate limit-case a = 0 is quite possible for the
left Brownian motion (gs) . It corresponds to the Carnot degenerate metric
on G, and to the horizontal left Brownian motion on G, associated with the
Levi-Civita connexion on H

2.

8. Three martingales

Let us denote by

M j
t :=

∫
g[0,t]

ωj , j ∈ {0, 1, 2},

the 3 martingales obtained by integrating the 3 harmonic forms ωj along the
paths of the left Brownian motion (gs). Let us introduce also

Mt := M 1
t +

√−1 M 2
t =

∫
g[0,t]

η4(z) dz ,

which by Corollary 1 is a conformal martingale. Note that we may as well
consider the Brownian motion (gs) as living on G or on G/Γ′ .

Section 7 and Theorem 1 show that

M 0
t = aWt +

∫ t

0

(
4Re η̃(zs) ys dUs + (4 Im η̃(zs) ys − 1) dVs

)
,

M 1
t =

∫ t

0

(
Re η4(zs) ysdVs − Im η4(zs) ysdUs

)
,

M 2
t =

∫ t

0

(
Im η4(zs) ysdVs + Re η4(zs) ysdUs

)
,

and then

Mt =

∫ t

0

η4(zs) ys d(Vs +
√−1 Us) .

Lemma 5 The law of (M 1
t , M

2
t )/

√
t converges towards the centered

Gaussian law with covariance matrix equal to the unit matrix multiplied by
the variance 3

π

∫
D0

|η(z)|8dxdy .
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Proof. By the above, we have some complex Brownian motion (Z̃s) such that

Mt = Z̃
(
〈M〉t

)
= Z̃

(∫ t

0

y2
s |η(zs)|8 ds

)
,

and then by scaling, we have the following identity in law (for each t > 0):

t−
1
2 Mt ≡ Z̃

(
〈M〉t/t

)
= Z̃

(
t−1

∫ t

0

y2
s |η(zs)|8 ds

)
,

which by ergodicity converges to

Z̃
(∫

G/Γ′
y2|η(z)|8 dµ

)
= Z̃

(∫
D

|η(z)|8 dx dy
2π

)
= Z̃

( 3

π

∫
D0

|η(z)|8 dx dy
)
.

�
Then let us consider, for any r > 0 , the martingale

N r
t :=

π

3

∫ t

0

1{ỹs>r} ys dVs =
π

3

∫ t

0

1{ỹs>r} dxs ,

where ỹ is the height in the cusp (defined in section 5).
Now using that ω0 is bounded in the compact {ỹs ≤ r} and using

Lemma 3, iii), observe that M 0
t −N r

t is a martingale with bounded quad-
ratic variation, so that as t → ∞ ,

(
M 0

t −N r
t

)
/
√
t converges in law and(

M 0
t −N r

t

)
/t goes to 0 in L2-norm.

Hence M 0
t /t behaves as N r

t /t , which depends only on the hyperbolic
Brownian motion (zs) , as Mt .

9. Asymptotic Brownian windings in G/Γ′

The following theorem describes the asymptotic Brownian windings in G/Γ′.

Theorem 2 As t→ ∞,(M 0
t

t
,
M 1

t√
t
,
M 2

t√
t

)
converges in law towards (C,N 1,N 2) ,

where the variables C,N 1,N 2 are independent, C is Cauchy with parame-
ter 1

2
, and N 1,N 2 are centred Gaussian with variance 3

π

∫
D0

|η(z)|8dxdy .
Observe the irrelevance of the parameter a in this theorem, which is valid

as well in the degenerate case a = 0 . The reason is that a was initially
the inverse norm of Lκ = ∂

∂θ
, which does not concern ω1 and ω2 , and which

in ω0 contributes only to a second order term. Technically, in the proof of
Theorem 2 below M 0

t /t is firstly replaced by N r
t /t (defined at the end of

Section 8) which, as Mt , does not depend on the real parameter a .
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Remark 3 Theorem 2 is true as well for all finite dimensional marginals:
as t→ ∞,

(
M 0

cjt
/t , M1

cjt
/
√
t , M 2

cjt
/
√
t
)

, 1 ≤ j ≤ N , for any given N ∈ N∗

and 0 < c1 < · · · < cN , converge jointly towards (Ccj ,N 1
cj
,N 2

cj
) , where

the processes C,N 1,N 2 are independent, started from 0, C is Cauchy with
parameter 1

2
, and N 1,N 2 are real Brownian with variance 3

π

∫
D0

|η(z)|8dz .

Proof of this remark 3 is somewhat more tedious than the proof of Theo-
rem 2, but without notable additional difficulty (but notational). So it will
be omitted.

10. Proof of Theorem 2

Let us split this involved proof in several items.
Note that a large part of the arguments and techniques employed below

already appeared more or less in the union of [2], [4], [5], and [6], but none
of these articles contain them almost all, and the major difficulty here is to
establish the asymptotic independence of regular and singular windings, that
is to say the independence of C and (N 1,N 2) in the theorem. Moreover
such a question of independence seems not to have been yet dealed with,
except in [7] by means of a coding method concerning the geodesic flow on a
surface. From a probabilistic and technical point of view, this could be the
main interest of the present proof.

10.1. Excursions near the cusp

Fix r, q > 0, and set τ := min{s > 0 |ỹs > r + q} , σ := min{s > 0 |ỹs <r},
τ0 := 0, and for n ∈ N: σn := τn + σ ◦ Θτn , τn+1 := σn + τ ◦ Θσn .

Note that [τn, σn] is the n-th discretized excursion interval near the
cusp (cut at level r).

Let us also set ζn := max{s ≤ σn | ỹs ≥ r + q} .
Denote by Cr

t := max{n ∈ N | ζn ≤ t} the number of complete discrete
excursions near the cusp performed till time t . This is an additive func-
tional, and then Cr

t /t converges almost surely as t → ∞, by the ergodic
theorem, towards some constant � .

Note that we shall finally let r and q go to ∞ , in such a way that
q/r → 0 (taking for example q =

√
r ).

Observe then that we have limN→∞
∑N

n=1(σn−τn)/N = E(σ1−τ1) almost
surely, since the irrelevance of the entrance points of our excursions (coming
from the fact that (ys) is an autonomous diffusion) and the Markov property
imply the independence of the different variables (σn − τn) .
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Observe also that

∫ t

0

1{ỹs>r+q} ds ≤
1+Cr

t∑
n=0

(σn − τn) and

∫ t

0

1{ỹs>r} ds ≥
Cr

t∑
n=1

(σn − τn) .

Thus the ergodic theorem yields:

3

π (r + q)
= µ[{ỹ > r + q}] ≤ �× E(σ1 − τ1) ≤ µ[{ỹ > r}] =

3

π r
.

10.2. Laws of an excursion

We need the duration and winding law of the typical excursion. We proceed
more or less as in [4].

Fix c ∈ R+ and observe by direct application of Itô’s formula that

e−c s × (ys)
(1−√

1+8c )/2 is a bounded martingale. Hence the optional sam-
pling theorem gives

Er+q

[
e−c σ

]
=
(
1 +

q

r

)(1−√
1+8c )/2

.

This implies that E[σn − τn] = 2 log
(
1 +

q

r

)
for any n ∈ N

∗.

Note that this and Section 10.1 imply that

h(r, q) :=
3

2π (r + q) log
(
1 + q

r

) ≤ � ≤ h′(r, q) :=
3

2π r log
(
1 + q

r

) ,

and therefore that lim
q/r→0

� q = 3/(2π) .

Fix then b ∈ R , and observe by direct application of Itô’s formula that
exp

(− |b|ys − b2

2

∫ s
0
y2
t dt

)
is a bounded martingale, and then we have by

the optional sampling theorem

Er+q

[
exp

(
− b2

2

∫ σ

0

y2
t dt

)]
= e−|b| q .

Note that this shows that the variables
{ ∫ σn

τn
y2
sds

∣∣n ≥ 1
}

are independent

and stable with parameter 1
2
. Moreover using the existence of a standard

real Brownian motion (ws) independent of (ys) such that during each ex-
cursion in {ỹ > r} we have xs = x0 + w

( ∫ s
0
ỹ2
t dt

)
, we deduce that the

variables
{
ϕn :=

∫ σn

τn
dxs

∣∣n ≥ 1
}

are independent and Cauchy with para-
meter q .
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10.3. Approximation of regular windings

For j = 1, 2 , consider

M j
t (r) :=

∫ t

0

1{ỹs≤r} dM
j
s .

It is clear (see Lemma 5) that (M j
t −M j

t (r))/
√
t converges in law, with

quadratic variation going almost surely to O(
µ({ỹ > r})) = O(1/r); so

that (M j
t −M j

t (r))/t converges uniformly to 0 in probability as r → ∞ .

For � ∈ R2 and n ∈ N∗ , set

J 
n :=

∫ τn+1

σn

(�1dM
1
s (r) + �2dM

2
s (r)) ,

so that we have

�1M
1
t (r) + �2M

2
t (r) = �1M

1
τ1

(r) + �2M
2
τ1

(r)

+

Cr
t∑

n=1

J 
n −
∫ τCr

t +1

t

1{ỹs≤r}(�1dM
1
s + �2dM

2
s ) .

Now (�1M
1
τ1

(r) + �2M
2
τ1

(r))/
√
t goes to 0 almost surely as t→ ∞, and

Rt :=
〈 1√

t

∫ τCr
t +1

t

1{ỹs≤r}(�1dM
1
s+�2dM

2
s )
〉

=
1

t
O
(
sup{(τn+1−σn) |n ≤ Cr

t }
)
,

so that for any ε′ > 0

P(Rt > ε′) ≤ P(Cr
t > 2� t) + P

(
sup{(τn+1 − τn) |n ≤ 2� t} ≥ ε′t

)
≤ o(1) + 2� tP(τ2 − σ1 ≥ ε′t) = o(1) + O(1/t) ,

since (τ2−σ1) is square integrable, as exit time of the compact {ỹ ≤ r+ q} .
This shows that ∫ τCr

t +1

t

1{ỹs≤r}(�1dM
1
s + �2dM

2
s )
/√

t

goes to 0 in probability as t→ ∞ .
Then similarly

P

[ 〈( Cr
t∑

n=1

J 
n −
[� t]∑
n=1

J 
n

)
/
√
t
〉
> ε′

]
≤

≤ P

[
|Cr

t /t− �| > ε′
]

+ P

[
O
( [(�+ε′)t]∑
n=[(�−ε′)t]

(τn+1 − σn)
)
> ε′t

]
= o(1) + O(1/t) ,
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provided we can establish that the correlations between the variables
(τn+1 − σn) decay exponentially. To this end, observe that by Markov prop-
erty and Schwarz inequality∣∣∣Cov{(τn+m+1 − σn+m), (τn+1 − σn)}

∣∣∣2 ≤ E

[
(τn+1 − σn)

2
]

× E

[∣∣∣Ezσn+m
(τ) − Ezσn

(τ)
∣∣∣2],

showing that we shall be done if we prove that Ezσn
(τ) converges expo-

nentially fast in L2-norm as n → ∞ . Now viewing the ergodic station-
ary historical process (zs | − ∞ < s ≤ t) as a suspended flow under the
function τ , we may apply Ambrose’s Theorem to deduce that the induced
Markov chain (zσn, zτn+1) is stationary and ergodic under the so-called Palm
invariant probability measure χ induced by µ . See [16, Exposés I and II].
χ being clearly compactly supported, the transition operator of this Markov
chain has a spectral gap in L2(χ) , from which our exponential decay directly
follows.

Hence we have shown that

1√
t

( Cr
t∑

n=1

J 
n −
[� t]∑
n=1

J 
n

)

goes to 0 in probability as t→ ∞ .

Therefore we have proved that, as t → ∞ ,
(
�1M

1
t (r) + �2M

2
t (r)

)
/
√
t

behaves in probability as

[� t]∑
n=1

J 
n

/√
t .

10.4. Approximation of singular windings

Recall from Section 8 that (M 0
t −N r

t )/t goes to 0 in L2-norm, and write

N r
t = π

3

∫ σ0

0

1{ỹs>r}dxs + π
3

Cr
t∑

n=1

∫ σn

τn

dxs + π
3

∫ t

τt∧Cr
t +1

dxs +

∫ t

0

O(1)dVs .

It is obvious that ∫ σ0

0

1{ỹs>r}dxs
/
t

goes to 0 almost surely, and that∫ t

0

O(1)dVs

/
t

goes to 0 in L2-norm, as t→ ∞ .
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Then

P

[ ∫ t

τt∧Cr
t +1

dxs �= 0
]

= P[ỹt > r + q] = O(µ[{ỹ > r + q}]) = O(1/r) .

Moreover, using that the ϕn =
∫ σn

τn
dxs, n ∈ N

∗, are independent and Cauchy
with parameter q, as shown in Section 10.2 above, and denoting by C a right
continuous Cauchy process with parameter q, we have for any ε′, ε′′ > 0:

P

[∣∣∣ Cr
t∑

n=1

ϕn −
[� t]∑
n=1

ϕn

∣∣∣/t > ε′
]
− P

[
|Cr

t /t− �| > ε′′
]
≤

≤ 2P

[
max

0≤k≤ε′′t

∣∣∣ [�t]+k∑
n=[�t]

ϕn

∣∣∣ > ε′t
]
≤ P

[
sup

0≤s≤ε′′t
|Cs| > ε′t

]
= P

[
sup

0≤s≤ε′′
|Cs| > ε′

]
,

showing that

lim sup
t→∞

P

[∣∣∣ Cr
t∑

n=1

ϕn −
[� t]∑
n=1

ϕn

∣∣∣/t > ε′
]
≤ P

[
sup

0≤s≤ε′′
|Cs| > ε′

]
,

whence the convergence to 0 in probability of
∣∣∣ Cr

t∑
n=1

ϕn −
[� t]∑
n=1

ϕn

∣∣∣/t by

letting ε′′ decrease to 0. This method was already in [5].
So we have proved that, as t → ∞ , M 0

t /t behaves in probability as

π
3

[� t]∑
n=1

ϕn

/
t , and this with probability 1 −O(1/r) .

10.5. Conditional independence

So far, we have established that for any (�, �′) ∈ R2 × R

A
 : = lim
t→∞

E

[
exp

(√−1 [(�1M
1
t + �2M

2
t )/

√
t + �′M 0

t /t]
)]

= lim
r→∞

lim
t→∞

E

[
exp

(√−1 [(�1M
1
t (r) + �2M

2
t (r))/

√
t + �′N r

t /t]
)]

= lim
r→∞

⎛
⎝ lim
t→∞

E

[
exp

(√−1
[ [� t]∑
n=1

J 
n

/√
t + 
′π

3

[� t]∑
n=1

ϕn

/
t
])]

+ O(1/r)

⎞
⎠

= lim
r→∞

lim
t→∞

E

{
E

F
[
exp

(√−1
[ [� t]∑
n=1

J 
n

/√
t + 
′π

3 t

[� t]∑
n=1

ϕn

])]}
,

denoting by F the σ-algebra generated by the variables {(zσn, zτn+1) |n ∈ N}.
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Now the strong Markov property insures the conditional independence
of the variables {J 
n , ϕn |n ∈ N} . Therefore

A
 = lim
r→∞

lim
t→∞

E

{
E

F
[
exp

(√−1

[� t]∑
n=1

J 
/
√
t

n

)]
E

F
[
exp

(√−1 (�′π/3t)
[� t]∑
n=1

ϕn

)]}

= lim
r→∞

lim
t→∞

E

{ [� t]∏
n=1

E
F
[
e
√−1 J

�/
√

t
n

]
×

[� t]∏
n=1

E
F
[
e
√−1 (
′π/3 t)ϕn

]}

= lim
r→∞

lim
t→∞

E

{ [� t]∏
n=1

E
zτn+1
zσn

[
e
√−1 J

�/
√

t
n

]
×

[� t]∏
n=1

E
zσn
zτn

[
e
√−1 (
′π/3 t)ϕn

]}
.

10.6. Getting rid of the conditioning

We need to get rid of the above conditioning by F . We first follow the
argument of ([2], Lemma 12). Setting Y :=

∫ σ1

τ1
y2
sds and using again that

xs = x0 + w
( ∫ s

0
y2
t dt

)
during each excursion, we have for any real b:

E
zσn
zτn

[
e
√−1 b ϕn

]
= E

[
e
√−1 bw(Y )

∣∣∣w(Y ) modulo 1
]
,

and for any real c and positive ε′:

E

[
e
√−1 bw(Y )

∣∣∣w(Y ) ∈]c, c+ ε′[+Z

]
− 1

=

E

[(
e
√−1 bw(Y ) − 1

)
×
∑
k∈Z

1{c<w(Y )−k<c+ε′}
]

E

[∑
k∈Z

1{c<w(Y )−k<c+ε′}
]

=

E

[
(2πY )−1/2

∫
R

∑
k∈Z

(
e
√−1 b x − 1

)
e−x

2/(2Y ) 1{c<x−k<c+ε′} dx
]

E

[
(2πY )−1/2

∫
R

∑
k∈Z

e−x2/(2Y ) 1{c<x−k<c+ε′} dx
]

=

E

[
(2πY )−1/2

∫ c+ε′

c

∑
k∈Z

(
e
√−1 r (x+k) − 1

)
e−(x+k)2/(2Y ) dx

]

E

[
(2πY )−1/2

∫ c+ε′

c

∑
k∈Z

e−(x+k)2/(2Y ) dx
] .
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Then

sup
{
|e

√−1 bk − 1| × e−k
2/(2Y )

∣∣∣ k ∈ R

}
≤ sup

{
min{2, |bk|} × e−k

2/(2Y )
∣∣∣ k ∈ R

}
= max

{
max{e−k2/(2Y ) | k ≥ 2/|b|}; max {|bk| × e−k

2/(2Y ) | 0 ≤ k ≤ 2/|b|}
}

= max
{
e− 2(b2Y )−1

; min{2, |b|
√
Y } × exp [− min{1, 4b−2/Y }/2 ]

}
= 2 e−2(b2Y )−1

1{Y >4b−2} + |b|
√
Y × e−1/2 1{Y≤4b−2}

≤ |b|
√
Y .

Hence we can replace the Riemannian sum above by a Riemannian integral
+ an error term:

∑
k∈Z

(
e
√−1 b (x+k) − 1

)
e−(x+k)2/(2Y )

=

∫
R

(
e
√−1 b (x+k) − 1

)
e−(x+k)2/(2Y ) dk + O(|b|

√
Y )

=
(
e− b2Y/2 − 1

)√
2πY + O(|b|

√
Y ) .

Therefore we obtain for all c and ε′ > 0 (with a uniform O ):

E

(
e
√−1 bW (Y )

∣∣∣w(Y )∈]c, c+ ε′[+Z

)
−1 =

ε′ × E

[(
e− b2Y/2 − 1

)
+ O(|b|)

]
ε′ ×

(
1 + O(E(Y −1/2))

)
=

[
e−|b|q − 1 + O(|b|)

]/(
1 + O(1/q)

)
,

since E
[
e−b

2Y/2
]
=e−|b|q, which in turn implies

E(Y −1/2)=
1√
2π

∫
R

e−|b|qdb=
1

q
.

This proves that

E
zσn
zτn

[
e
√−1 b ϕn

]
= 1 − (

1 + On(1/q)
)× (

1 − e−|b|q + On(|b|)
)

= 1 − (
1 + On(1)/q

) |b| q ,
with On(1) denoting a uniformly bounded function of zσn .
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10.7. End of the proof of Theorem 2

Let us apply the result of the preceding section 10.6 for large q and r/q ,
and for b = �′π/3t , with t → ∞ . We get from the above and from
Birkhoff’s ergodic Theorem applied to the Markov chain (zσn) (via the
sequence On(1)):

[� t]∏
n=1

E
zσn
zτn

[
e
√−1 (
′π/3 t)ϕn

]
=

[� t]∏
n=1

[
1 −

(
1 + On(1)/q

)
|�′|q π/3t

]

= exp
(
− |�′|q π

3t

[� t]∑
n=1

(1 + On(1)/q) + o(1)
)

t→∞−→ exp
(
− |�′|�q π

3
(1 + O(1/q))

)
.

Coming back to Section 10.5 and taking for example q :=
√
r, this yields:

A
 = lim
r→∞

lim
t→∞

E

{ [� t]∏
n=1

E
zτn+1
zσn

[
e
√−1 J

�/
√

t
n

]}
×

× exp
(
− |�′|�q π

3
(1 + O(1/q))

)
= lim

r→∞
lim
t→∞

E

[
exp

(√−1√
t

(�1M
1
t (r) + �2M

2
t (r))

)]
×

× exp
(
− |�′|�q π

3
(1 + O(1/q))

)
= lim

t→∞
E

[
exp

(√−1√
t

(�1M
1
t + �2M

2
t )
)]

× e−|
′|/2

= exp
(
− 3|�|2

π

∫
D0

|η(z)|8dz − |�′|
2

)
,

by Section 10.2 and Lemma 5. This achieves the proof of Theorem 2, since
A
 was defined in Section 10.5 as

lim
t→∞

E

[
exp

(√−1
[�1M 1

t + �2M
2
t√

t
+
�′M 0

t

t

])]
.
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11. Geodesics of G

11.1. Description of these geodesics

The Levi-Civita connexion of G = PSL2(R) equipped with its Riemannian
structure ((gaij)) of Section 5 has Christoffel coefficients classically given by

Γijk = 1
2

(
∂jg

a

k + ∂kg

a

j − ∂
g

a
jk

)
× g
ia for 1 ≤ i, j, k ≤ 3 ,

and the geodesics (γt) are the solutions of the following system:

d2γit
dt2

+ Γijk(γt) ×
dγjt
dt

× dγkt
dt

= 0 for 1 ≤ i ≤ 3 .

Using the expression of Lemma 4 for ((gaij)) , a somewhat tedious but
direct computation gives the equation of geodesics (γt = (yt, xt, θt)) of G in
the Iwasawa coordinates by means of the following system:

y′′t − y
′2
t /yt + (1 + a−2)x

′2
t /yt + a−2x′tθ

′
t = 0 ;

x′′t − (2 + a−2)y′tx
′
t/yt − a−2y′tθ

′
t = 0 ;

θ′′t + (1 + a−2)y′tx
′
t/y

2
t + a−2y′tθ

′
t/yt = 0 .

Linearly combining the last two equations gives θ′′t =(−x′t/yt)′. Consequently
our geodesic system is equivalent to the following, for some real constant c .

θ′t = c− x′t/yt ;
x′′t − 2y′tx

′
t/yt − ca−2y′t = 0 ;

y′′t − y
′2
t /yt + x

′2
t /yt + ca−2x′t = 0 .

Eliminating ca−2 between the last two equations gives some real constant C
such that

x
′2
t + y

′2
t = C2 y2

t .

Considering then the [−1, 1]-valued function f(t) := y′t/(Cyt) and elimi-
nating x′t , we get the equation

f ′ + C (1 − f2) ± ca−2
√

1 − f2 = 0 .

Now consider

k := ±a−2c/C and h(z) :=
−1

C

∫ z

0

ds

(1 − s2) + k
√

1 − s2
.

Letting apart the simple case when f is constant, and then when (yt, xt) runs
a straight line or is constant, we must have h ◦ f(t) = t− t0 . Changing the

variable by u := 1−√
1−s2
s

∈ [−1, 1] in the formula for h , we get successively
the following computations.
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- If |k| = 1: h(z) = −1±√
1−z2

Cz
and then

f(t) =
−2C(t− t0)

1 + C2(t− t0)2
=

−1

C

d

dt
log

(
1 + C2(t− t0)

2
)
,

whence

y(t) =
C ′

1 + C2(t− t0)2
, x(t) = x0 +

CC ′(t− t0)

1 + C2(t− t0)2
.

- If |k| < 1: h(z) = −2
C
√

1−k2 argth
(√

1−k
1+k

[
1−√

1−z2
z

])
and then

f(t) =
−1

C
× d

dt
log

(
ch

[
C
√

1 − k2(t− t0)
]
− k

)
,

whence

y(t) =
C ′

ch [C
√

1 − k2(t− t0)] − k
,

x(t) = x0 +
C ′

√
1 − k2

× sh [C
√

1 − k2(t− t0)]

ch [C
√

1 − k2(t− t0)] − k
.

- If |k| > 1: h(z) = −2
C
√
k2−1

arctg
(√

k−1
k+1

[
1−√

1−z2
z

])
and then

f(t) =
−1

C
× d

dt
log

(∣∣∣k − cos
[
C
√
k2 − 1(t− t0)

]∣∣∣) ,
whence

y(t) =
C ′

k − cos[C
√
k2 − 1(t− t0)]

,

x(t) = x0 +
C ′

√
k2 − 1

× sin[C
√
k2 − 1(t− t0)]

k − cos[C
√
k2 − 1(t− t0)]

.

As a consequence, we see that our geodesics project on the hyperbolic
plane H

2 in the following way.

- If |k| = 1: (x(t) − x0)
2 + (y(t) − C ′/2)2 = (C ′/2)2 , and we get an

horocycle;

- If |k| < 1: (x(t) − x0)
2 + (y(t) + C′k

1−k2 )
2 = ( C′

1−k2 )
2 , and we get an

Euclidian circle intersecting R, which is a geodesic if and only if k = 0 ;

- If |k| > 1: (x(t) − x0)
2 + (y(t) − C′k

k2−1
)2 = ( C′

k2−1
)2 , and we get an

Euclidian circle totally included in H2 (necessarily C ′k > 0). This is
thus also an hyperbolic circle.
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Finally we recover θ(t) from the initial equations.
For constant function f , we see at once that θ′(t) must be constant.

For |k| = 1, we find that

θ(t) = θ0 + (1 + a2)Ct− 2 arctg(C(t− t0)) .

For |k| < 1, we find that

θ(t) = θ0 + Cka2t− 2 arctg
(
th[C

√
1 − k2(t− t0)/2]

)
.

For |k| > 1, we find that

θ(t) = θ0 + C|k|a2t−
√
k2 − 1

∫ C
√
k2−1(t−t0)

0

dϕ

|k| − cosϕ
.

In this last case, we observe that we may choose k > 1, and that using the
2π periodicity we have∫ v

0

dϕ

|k| − cosϕ
=

2π√
k2 − 1

×
[ v
2π

]
+ O(1) .

Observe still that the constant energy of these geodesics equals

gaij(γt)
dγit
dt

dγjt
dt

= (1 + k2a2)C2 .

Hence prescribing speed 1 gives |C| as a function of |k| .
We have finally shown the following.

Proposition 2 For any geodesic γ(t) = (y(t), x(t), θ(t)) of speed 1 of G,
there exist constants C ∈ [−1, 1] , C ′ > 0 , and t0, x0, θ0 ∈ R such that one of
the four following cases occurs. We let k ∈ [−1, 1] satisfy (1+k2a2)C2 = 1 .

Case 1 The projection on H
2 is a straight line (quasi-geodesic or horocycle),

or a point.

Case 2 |k| = 1 . The projection on H2 is the horocycle having equation
(x− x0)

2 + (y − C ′/2)2 = (C ′/2)2 . Precisely, we have

y(t) =
C ′

1 + C2(t− t0)2
,

x(t) = x0 +
CC ′(t− t0)

1 + C2(t− t0)2
,

θ(t) = θ0 +
t

C
− 2 arctg(C(t− t0)) .
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Case 3 |k| < 1 . The projection on H2 is the quasi-geodesic having equation
(x− x0)

2 + (y + C′k
1−k2 )

2 = ( C′
1−k2 )

2 . Precisely, we have

y(t) =
C ′

ch [C
√

1 − k2(t− t0)] − k
,

x(t) = x0 +
C ′

√
1 − k2

× sh [C
√

1 − k2(t− t0)]

ch [C
√

1 − k2(t− t0)] − k
,

θ(t) = θ0 + Cka2t− 2 arctg
(
th[C

√
1 − k2(t− t0)/2]

)
.

Case 4 k > 1 . The projection on H2 is the circle (totally included in H2)
having equation (x− x0)

2 + (y − C′k
k2−1

)2 = ( C′
k2−1

)2 . Precisely, we have

y(t) =
C ′

k − cos[C
√
k2 − 1(t− t0)]

,

x(t) = x0 +
C ′

√
k2 − 1

× sin[C
√
k2 − 1(t− t0)]

k − cos[C
√
k2 − 1(t− t0)]

,

θ(t) = θ0+ Cka2t−
√
k2−1

∫ C
√
k2−1 t

0

dϕ

k − cosϕ
=(ka2−

√
k2 − 1 )C t+O(1) .

In this case the geodesic has periodic projection, and even is periodic (with
Riemannian length 2πq

|C|√k2−1
) if ka2

C
√
k2−1

is rational (equal to p/q with p, q

relatively prime integers).
In all cases, we have x′(t)2 + y′(t)2 = C2y(t)2 for any real t, so the

projection on H2 has constant energy (speed), and it is the intersection of
H

2 with an Euclidian circle or line.

Corollary 2 Let (γt) denote the geodesic of G generated by (y, x, θ, u, v, w)
∈ T 1G , where γ0 = (y, x, θ) is the base point in Iwasawa coordinates, and
(u, v, w) are the coordinates of γ′0 in the basis

(
y ∂
∂y
, y ∂

∂x
, ∂
∂θ

)
of T 1

(y,x,θ)G .

So that (using Lemma 4) we have w = −v ± a
√

1 − C2 =: w±(u, v) , with
C2 := u2 + v2 .

Then the geodesic (γt) lives on the leaf of T 1G , say L(C2,+) , having
equations {u2 + v2 = C2 , w = w+(u, v)} , or on the leaf L(C2,−) , hav-
ing equations {u2 + v2 = C2 , w = w−(u, v)} , and has closed (periodic)
projection on H2 if and only if C2 < 1

1+a2 .

Remark 4 1) The geodesics of G which project on a geodesic of H
2

correspond to k = 0 , or equivalently to C2 = 1 , and then are exactly the
horizontal geodesics of G ≡ T 1H2, H2 being endowed with its Levi-Civita
connexion.
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2) The quasi-geodesic γ̃t = (y(t), x(t)) of case 3 in Proposition 2 above
is at bounded distance of the geodesic g of H2 having the same ends:

gt =
( C ′
√

1 − k2 ch (Ct)
, x0 +

C ′ sh (Ct)√
1 − k2 ch (Ct)

)
.

More precisely, we see by an easy computation that for any real t

ch [dist(γ̃t, g√1−k2 t)] = 1/
√

1 − k2 = ch [dist(γ̃t, g)] .

This is the same (as it must be by changing the point at ∞) for the quasi-
geodesics (non-horizontal half-lines) of case 1 in Proposition 2.

Consequently, all quasi-geodesics we get as projections on H2 of the geo-
desics of G are made of equidistant points with respect to some geodesic
of H2.

3) The case 1 in Proposition 2 above appears as exceptional only due
to the choice of a particular point of ∂H2 sent to ∞ in the Poincaré half-
plane model. This choice is directly dependent of the choice of the Iwasawa
coordinates on G.

11.2. Exponential geodesics

Making a stronger use of the Lie group structure of G = PSL2(R), we find
among the geodesics which ones are given by exponentials.

Denote by ∇ the Levi-Civita connexion of G (of course still equipped
with its Riemannian structure ((gaij)) of Section 5). Again a somewhat
tedious but direct computation (note however that by left-invariance it is
enough to make this computation at the unit element of G; or alternatively
to use the formula

∇Li
Lj = 1

2

∑
k

(
cki,j +

‖Lj‖2

‖Lk‖2
cjk,i −

‖Li‖2

‖Lk‖2
cij,k

)
Lk ,

where the cki,j are the structure constants of G) gives the following covariant
derivatives for our basic left-invariant vector fields:

∇Lλ
Lλ = ∇LαLα = ∇LκLκ = 0 ; ∇LαLλ = 1

2
Lκ = −∇Lλ

Lα ;

∇Lλ
Lκ =

1

2a2
Lα ; ∇LκLλ =

(
1 +

1

2a2

)Lα ;

∇LαLκ =
−1

2a2
Lλ ; ∇LκLα = −(1 +

1

2a2

)Lλ .
As a consequence we see that
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∇(uLλ+vLα+wLκ)(uLλ + vLα + wLκ) = (1 + a−2)w (uLα − vLλ) .
Hence we get the geodesics of G which are given by exponentials as the one-
parameter left cosets generated by the vector fields aLκ and (cosϕ)Lλ +
(sinϕ)Lα , ϕ ∈ R/2πZ .

Equivalently, these are the following exponentials:

t �→ g0 exp[atκ] = g(z0, θ0 + at/2) ,

and

t �→ g0 exp
[
(t cosϕ)λ+ (t sinϕ)α

]
= g0

(
ch (t/2) + sinϕ sh (t/2) cosϕ sh (t/2)

cosϕ sh (t/2) ch (t/2) − sinϕ sh (t/2)

)
,

which are respectively the vertical and horizontal geodesics.

12. Ergodic measures for the geodesic flow on G/Γ′

Corollary 2 above shows that the leaves u2 + v2 = C2 of T 1G/Γ′ are stable
under the geodesic flow, disjoint, and that they are made of closed geodesics
for C2 < 1

1+a2 . Hence we have the following necessary condition for an
ergodic measure to exist.

Corollary 3 Any ergodic invariant measure for the geodesic flow on G/Γ′

must be carried by a leaf L(C2, ε) of equation {u2+v2 = C2 , w = wε(u, v)}
(in the basis chosen in Corollary 2 above, with C2 ∈ [0, 1] and ε = ± ).
Moreover if C2 < 1

1+a2 and if ka2

C
√
k2−1

is rational, then it must be carried

by some closed (periodic) geodesic.

Notice that the ergodic invariant measures for the geodesic flow on G/Γ′

which are carried by a leaf L(C2, ε) such that C2 < 1
1+a2 would lead to a

more or less trivial asymptotic result for the integrals of harmonic 1-forms
along the geodesic flow on G/Γ′. So we drop them henceforth.

Lemma 6 For (C2, ε) fixed such that 1 ≥ C2 > 1
1+a2 , there is a natural

one-to-one map ψ = ψCε from the leaf L(C2, ε) (seen as made of geodesics
of G/Γ′ having initial values θ0 = 0 for their angular part θt) onto the set
of geodesics of H2/Γ′ . This map goes as follows: with any geodesic γ of the
leaf L(C2, ε), associate successively the projection γ̃ on H

2 of its lift to G,
and the projection ψ(γ) on H2/Γ′ of the geodesic of H2 at bounded distance
of γ̃.

This map makes sense as well between the set of line-elements of L(C2, ε)
and T 1(H2/Γ′) .
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Proof. Proposition 2 (case 3), Corollary 2 and Remark (4, 2) insure that
our map ψ = ψCε is well defined. Note indeed the necessary Γ′-invariance:
if two line-elements in T 1G can be identified modulo some g′ ∈ Γ′, then the
same g′ identifies their projections in H2/Γ′. In the reverse sense, to any
geodesic ψ(γ) of H2/Γ′ corresponds a unique geodesic lifted to H2, then two
quasi-geodesics in H2 at constant distance

1√
1 − k2

=
a√

a2 + 1 − C−2

of this lift, according to the sign of k. Then since the formulas of Case 3 in
Proposition 2 give

θ′(t) +
x′(t)
y(t)

= Ca2k = ±a
√

1 − C2 ,

we see that the choice of ε prescribes the sign of k (the sign of C determining
the sense of the geodesic ψ(g)), and then a unique quasi-geodesic, whence
by the equations for the geodesics of G a unique γ (for any prescribed
initial value θ0 of the angular part). By using furthermore the orthogonal
projection in H2 between our quasi-geodesics and their associated geodesic,
we get at once the analogous map at the level of line-elements. �

Remark 5 Note that in fact each leaf L(C2, ε) splits into a continuum of
sub-leaves:

L(C2, ε) =
⋃

θ0∈R/2πZ

L(C2, ε, θ0),

taking into account the initial value θ0 of the angular part (either at time 0,
or above the orthogonal projection of the fixed point

√−1 on the quasi-
geodesic γ̃) of the geodesic γ. Thus this is indeed the set of its line-elements
of each sub-leaf L(C2, ε, θ0), which is set in one-to-one correspondence with
T 1(H2/Γ′) ≡ G/Γ′ by the map ψ = ψCε,θ0 . Note that L(C2, ε, θ0) has in-
deed 3 dimensions, as G. However, this initial value θ0 will not matter
anyway in the following, so that we drop it henceforth, going on with the
shorter notation L(C2, ε), ψCε .

Now it is known (see [8]) that the Liouville measure on T 1(H2/Γ′) is
invariant and ergodic under the geodesic flow. This fact and Lemma 6
above allow therefore the following.

Definition 1 For (C2, ε) fixed such that 1 ≥ C2 > 1
1+a2 , denote by

µCε the image of the normalized Liouville measure µ on T 1(H2/Γ′) ≡ G/Γ′

under the map ψCε of Lemma 6. So µCε is a probability measure on the set
of line-elements of the leaf L(C2, ε) , which is invariant and ergodic under
the geodesic flow on G/Γ′.
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13. Asymptotic geodesic windings

We fix here a leaf L(C2, ε) , and endow it with the ergodic invariant prob-
ability measure µCε of Definition 1. We want to obtain the asymptotic law
under µCε of(

t−1

∫
γ[0,t]

ω0 , t
−1/2

∫
γ[0,t]

ω1 , t
−1/2

∫
γ[0,t]

ω2

)
as t→ ∞ ,

where the geodesic γ of G/Γ′ is chosen (at time 0) according to µCε and
γ[0, t] denotes this geodesic γ run during the time-interval [0, t] .

Note that by the Γ′-invariance of the forms ωj it makes no difference to
think of the geodesics γ as started in the fundamental domain D and living
on G, the forms being harmonic on G as well.

The following lemma reduces essentially our study of the geodesics of G
to a study of the geodesics of H

2.

Lemma 7 As t→ ∞, the asymptotic law of(
t−1

∫
γ[0,t]

ω0 , t
−1/2

∫
γ[0,t]

ω1 , t
−1/2

∫
γ[0,t]

ω2

)
under µCε = µCε (dγ) is the same as the asymptotic law under the Liouville
measure µ = µ(dg) on T 1(H2/Γ′) of the following (ω′

0 denoting (ω0−dθ)):(
ε a

√
1 − C2 +

( a t√
1 − C2

)−1
∫
g[0,t]

ω′
0 ,( a t√

1 − C2

)−1/2
∫
g[0,t]

ω1 ,
( a t√

1 − C2

)−1/2
∫
g[0,t]

ω2

)
.

Proof. Let us deal first with ω1, ω2 . By Definition 1 and Lemma 6 and
the fact that ωj = π∗ωj for 1 ≤ j ≤ 2, π denoting here the canonical
projection from G ≡ T 1H2 onto H2, we just have to compare

t−1/2

∫
γ[0,t]

ωj = t−1/2

∫
�γ[0,t]

ωj with t−1/2

∫
ψ(γ)[0,t]

ωj .

Now use that on H
2 ωj = dFj is exact, and recall from Remark (4,2) that

the geodesic ψ(γ) must be run at speed |C|√1 − k2 =
√

1 − C2/a , to get:∣∣∣ ∫
�γ[0,t]

ωj −
∫
ψ(γ)[0,

√
1−C2 t

a
]

ωj

∣∣∣ =
∣∣∣Fj(γ̃(t)) − Fj

(
ψ(γ)

(√
1 − C2

t

a

))
− Fj(γ̃(0)) + Fj(ψ(γ)(0))

∣∣∣
≤ 2 ‖ωj‖∞

/√
1 − k2 .
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This shows that

t−1/2
(∫

�γ[0,t]
ωj −

∫
ψ(γ)[0,

√
1−C2 t

a
]

ωj

)

goes uniformly to 0, whence the result relating to ω1, ω2 .

Now we have to deal with ω0 , which from Theorem 1 writes ω0 = dθ+ω′
0 ,

with ω′
0 = π∗ω′

0 . Thus we can handle ω′
0 as ω1, ω2 above, to get:∫

γ[0,t]

ω′
0 =

∫
�γ[0,t]

ω′
0 =

∫
ψ(γ)[0,

√
1−C2 t

a
]

ω′
0 +O(1)×

(
Ỹ (ψ ◦γ, 0)+ Ỹ (ψ ◦γ, t)

)
,

where

Ỹ (g, t) := sup
{
ỹ(z)

∣∣∣ dist(g(√1 − C2
t

a
), z) ≤ 1√

1 − k2

}
.

On the other hand we have by Proposition 2 (Case 3) and the proof of
Lemma 6: ∫

γ[0,t]

dθ = Cka2t+ O(1) = ε a
√

1 − C2 t+ O(1) .

Therefore the asymptotic law of t−1
∫
γ[0,t]

ω0 under µCε (dγ) is the same

as the asymptotic law of

ε a
√

1 − C2 + t−1

∫
g[0,

√
1−C2 t

a
]

ω′
0 + O

(
Ỹ (g, 0) + Ỹ (g, t)

)/
t

under µ(dg) .
Observe further that under µ(dg) the process Ỹ (g, t) is stationary, so

that the last term above asymptotically vanishes in probability. Hence we
have shown that the asymptotic law of t−1

∫
γ[0,t]

ω0 under µCε (dγ) is the

same as the asymptotic law of

ε a
√

1 − C2 + t−1

∫
g[0,

√
1−C2 t

a
]

ω′
0

under µ(dg) .

Finally the result is valid jointly for the term with ω0 and the two others,
since for each the neglected contributions vanish in probability. It remains
only to replace t by a t√

1−C2 . �

The following theorem describes the asymptotic geodesic windings in
G/Γ′ , under the ergodic measures of Section 12.
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Theorem 3 Let us consider a fixed leaf L(C2, ε) (defined in Corollary 3)
of G/Γ′, with 1 ≥ C2 > 1

1+a2 , endowed with the ergodic invariant probability

measure µCε of Definition 1.

Then the law under µCε = µCε (dγ) of(
t−1

∫
γ[0,t]

ω0 , t
−1/2

∫
γ[0,t]

ω1 , t
−1/2

∫
γ[0,t]

ω2

)
converges as t→ ∞ to the law of(
ε a

√
1 − C2 +

(2
√

1 − C2

a

)
C ,

(2
√

1 − C2

a

)1/2

N 1,
(2

√
1 − C2

a

)1/2

N 2

)
,

where the variables C,N 1,N 2 are independent, C is Cauchy with parame-
ter 1

2
, and N 1,N 2 are centred Gaussian with variance 3

π

∫
D0

|η(z)|8dxdy.
Note a clear difference between the Brownian and geodesic behaviors:

mainly, here (counter to the Brownian case) the dθ-part of the form ω0

is responsible for a non-negligible asymptotic contribution. Moreover the
parameter a now appears in the limit law.
This makes a noteworthy contrast with the hyperbolic case (see [2], [3], [6]).

This difference appears in Lemma 7 above, whereas once the dθ-part has
been moved away, the remaining asymptotic law is essentially the same as
the Brownian one, given by Theorem 2. So that our remaining task will be
below mainly to compare on H2 the geodesic paths to the Brownian paths,
somewhat in the spirit of the methods already employed in [2, 4, 6, 12], but in
a more synthetic and simple way, taking advantage of the fact that we have
here, somewhat as in [11], to deal only with the closed forms ω0, ω

′
0, ω1, ω2 .

14. Proof of Theorem 3

The strategy for this proof is mainly to replace the geodesic paths by the
Brownian paths, as in [4], [6], [11], in order to reduce Theorem 3 to The-
orem 2. But we shall here take advantage of the closedness of our forms
ω0, ω

′
0, ω1, ω2 , somewhat as in [11], to simplify sensibly the proofs of these

articles. In particular, we do not any more have to use a spectral gap, nor
to rise to the stable foliation. Another change (and hopefully clarification)
with respect to these proofs is the use of a simultaneous disintegration of
the Liouville and the Wiener measures: we avowedly condition the Brownian
motion (starting from a given point z ∈ H2) to exit the hyperbolic plane
at the same point as a given geodesic (starting also from z). This point of
view was more or less implicit in the preceding proofs, but did not appear
transparently.
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The asymptotic law we are looking for is given by the asymptotic behav-
ior, as t→ ∞ and for � ∈ R3, of the following quantity:

J 
t :=

∫
G/Γ′

exp
[√−1

(�0
t

∫
g[0,t]

ω′
0 +

�1√
t

∫
g[0,t]

ω1 +
�2√
t

∫
g[0,t]

ω2

)]
µ(dg) .

14.1. Conditionning by the end-points

Using the notation g = g(z, θ) = g(y, x, θ) and the expression of µ =
µ(y, x, θ) in the Iwasawa coordinates (seen in Section 5), and setting ω′′

0 :=
�0ω

′
0 , ω := �1ω1 + �2ω2 , we have

J 
t =

∫
D

∫ 2π

0

exp
[√−1

(
t−1

∫
g(y,x,θ)[0,t]

ω′′
0 + t−1/2

∫
g(y,x,θ)[0,t]

ω
)]
dθ

dx dy

4π2 y2
.

Then for (z = x +
√−1 y , θ) ∈ H2 × (R/2πZ) , denote by (zθt ) the

geodesic defined by g(z, θ) , and by P
θ
z the law of the Brownian motion (Zθ

t )
of H2, started from z and conditioned to exit H2 at the positive end zθ∞ of
the geodesic of H2 defined by g(z, θ) .

Consider then the the hitting time by the coordinate process (Zt) of the
stable horocycle defined by (zθ∞, z

θ
t ) , say ht . It is defined precisely by

ht = hz,θt := inf{s > 0 |Bzθ∞(z, Zs) = et} ,

where
(z, z′) �→ Bu(z, z

′) = p(z′, u)/p(z, u)

denotes the Busemann function based at u ∈ ∂H
2 , p denoting the Poisson

kernel.

The following lemma insures that the disintegration of the Liouville and
Wiener measures is simultaneous, by conditioning with respect to the end-
point zθ∞ . A reason for that is that the harmonic measures at ∂H2 are the
same for both, namely p(z, u)du .

Lemma 8

Pz :=

∫ 2π

0

P
θ
z

dθ

2π

is the Wiener measure started from z, for any z ∈ H2/Γ′ , and

Pµ :=

∫
P
θ
z dµ(z, θ)

is the stationary Wiener measure on H2/Γ′ .
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Proof. (Zθ
t ) is by definition the h-process of the unconditioned Brownian

motion, with h(z) = p(z, zθ∞) , p(z, u) = y/|z−u|2 still denoting the Poisson
kernel.

Hence we have for any (z, θ) , any t and any Ft-measurable positive
functional Ft:

E
θ
z[Ft] = Ez[Bzθ∞(z, Zt) × Ft] .

The first identity of the lemma follows, since for any z, θ, Z we have∫ 2π

0

Bzθ∞(z, Z)dθ = 2

∫
R

Bu(z, Z)p(z, u)du = 2

∫
R

p(Z, u)du = 2π .

Integrating this first identity with respect to the normalized volume mea-
sure dx dy

2π y2 gives immediately the second identity of the lemma. �

14.2. From geodesics to Brownian paths

We perform here the substitution of the Brownian paths for the geodesics.
Our first aim is to establish the following.

Proposition 3 As t→ ∞ , J 
t (defined just before Section 14.1) behaves as

K

t :=

∫
D

∫ 2π

0

E
θ
z

(
exp

[√−1

t

∫ Zht

z

ω′′
0 +

√−1√
t

∫ Zht

z

ω
])

dθ
dx dy

4π2 y2
.

Our forms being closed, we have the following expression for J 
t :

J 
t =

∫
D

∫ 2π

0

E
θ
z

(
exp

[√−1

t

(∫ Zht

z

ω′′
0 +

∫ zθ
t

Zht

ω′′
0

)

+

√−1√
t

(∫ Zht

z

ω +

∫ zθ
t

Zht

ω
)])

dθ
dx dy

4π2 y2
.

Applying the isometry fz,θ of H2 which maps g(1, 0) to g(z, θ) , we see

that the law of
∫ zθ

t

Zht
ω under P

θ
z is the same as the law of

∫ et

Z0
ht

f∗
z,θ ω ,

where et :=
√−1 et and Z0

ht
is the point at which the Brownian motion

(Z0
t ) started from

√−1 and conditioned to exit at ∞ hits the horizontal
horocycle having equation y = et .
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Now (Z0
t ) is the h-process of the unconditioned Brownian motion, with

h(z) = p(z,∞) ≡ y , so that its infinitesimal generator is

1
2
y−1∆ ◦ y = 1

2
∆ + y∂y ,

∆ denoting the Laplacian of H2, and then we have

Z0
t =

√−1 ewt+t/2 +

∫ t

0

ews+s/2dWs ,

for two independent standard real Brownian motions (wt) and (Wt).
As a consequence, using the boundedness of ω , we have∫ et

Z0
ht

f∗
z,θω = O

(
e−t ×

∣∣∣ ∫ inf{s |ws+s/2=t}

0

ews+s/2dWs

∣∣∣) .
The technical Brownian behavior we need now and after is given by the

following.

Lemma 9 As t→ ∞ ,

e−t
∫ inf{s |ws+s/2=t}

0

ews+s/2dWs

converges in law, and inf{s |ws + s/2 = t} = 2t + o(tq) almost surely, for
any q ∈]1/2, 1] .

Proof. Fix c ∈ R , and look for a C2 function f on R+ such that

Rt := e−(c2/2)
� t
0 (y0

s)2dsf(y0
t )

be a martingale, with y0
t = ewt+t/2 .

(y0
t ) having generator 1

2
y2∂2

y + y∂y , we have by Itô’s formula

Rt = f(1) +mart+ 1
2

∫ t

0

e−(c2/2)
� s
0 (y0

v)2dv

× (y0
s)

2 ×
[
f ′′(y0

s) + 2(y0
s)

−1f ′(y0
s) − c2f(y0

s)
]
ds ,

whence the equation:

f ′′(y) + 2y−1f ′(y) − c2f(y) = 0 .

Setting f1(y) :=
√
yf(y) , this gives

f ′′
1 (y) + y−1f ′

1(y) − (c2 + (2y)−2)f1(y) = 0 .
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Since f1 must be bounded near 0, we have, up to some multiplicative con-
stant:

f(y)= (cy)−1/2I1/2(cy) =
∑
k≥0

(cy)2k

22k+
1
2k!Γ(2k + 3

2
)
,

where Ir denotes the usual modified Bessel function.
The optional sampling theorem then gives

E

[
exp

(√−1 c

∫ inf{s |ws+s/2=t}

0

ews+s/2dWs

)]

= E

[
exp

(
− c2

2

∫ inf{s | y0
s=et}

0

(y0
s)

2ds
)]

=
f(1)

f(et)
.

Changing c into ce−t , we get as t→ ∞:

E

[
exp(

√−1 c e−t
∫ inf{s |ws+s/2=t}

0

ews+s/2dWs

]
−→

(∑
k≥0

Γ(3/2) c2k

22kk!Γ(2k + 3
2
)

)−1

∈ L2(R, dc) ,

which proves the first sentence of the lemma.

Finally, the second sentence of the lemma is straightforward from the
following observation: setting again

ht = h
√−1 ,0
t = inf{s |ws + s/2 = t} = inf{s | y0

s = et} ,
we have t = log y0

ht
= 1

2
ht + wht = 1

2
ht + o((ht)

q) . �

As a consequence of this lemma and of the above, we see that

t−1/2

∫ zθ
t

Zht

ω

goes to 0 in Pθz -probability. This proves half of Proposition 3.

We have now to deal with the law of

t−1

∫ zθ
t

Zht

ω′′
0

under Pθz , or equivalently by the same reason as above for ω, with the law of

t−1

∫ et

Z0
ht

f∗
z,θ ω

′′
0 .
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This cannot be further handled as above, since the form ω′′
0 is not bounded,

whereas ω was. We only have now the following estimate, by integrating
along the horizontal horocycle y = et containing et, Z

θ
ht

:∣∣∣ ∫ et

Z0
ht

f∗
z,θ ω

′
0

∣∣∣ ≤ ∣∣∣e−t ∫ ht

0

ews+s/2dWs

∣∣∣
× sup

{
|f∗
z,θ ω

′
0|(√−1 +x)et

∣∣∣ |x| ≤ ∣∣∣e−t ∫ ht

0

ews+s/2dWs

∣∣∣},
where again ht = h

√−1 ,0
t = inf{s | y0

s = et} = inf{s |ws + s/2 = t} .
Fix any r > 0 . Lemma 9 shows that the laws of

e−t
∫ ht

0

ews+s/2dWs,

t large, are tight, and then provides some R > 0 such that

P

[∣∣∣e−t∫ ht

0

ews+s/2dWs

∣∣∣ > R
]
< r

for any large enough positive t .
We deduce from these last two estimates that

P
θ
z

[∣∣∣t−1

∫ zθ
t

Zht

ω′
0

∣∣∣ > r
]

= P

[∣∣∣t−1

∫ et

Z0
ht

f∗
z,θ ω

′
0

∣∣∣ > r
]

≤ r + 1{
t−1 sup

{
|f∗z,θ ω

′
0|(√−1 +x)et

∣∣∣|x|≤R}>r/R},
and then by integrating against µ and using Lemma 8 :

Pµ

[∣∣∣t−1

∫ zθ
t

Zht

ω′
0

∣∣∣ > r
]
≤ r + µ

[
t−1 sup

{
|ω′

0|Hx(zθ
t )

∣∣∣|x| ≤ R
}
> r/R

]
= r + µ

[
t−1 sup

{
|ω′

0|Hx(z)

∣∣∣|x| ≤ R
}
> r/R

]
,

where (Hx , x ∈ R) denotes the positive horocycle flow. For the last equality,
we used the invariance of the Liouville measure µ under the geodesic flow.

By continuity of |ω′
0| , sup

{|ω′
0|Hx(z)

∣∣∣|x| ≤ R
}

is finite for every z, and

thus we just proved:

Pµ

[∣∣∣t−1

∫ zθ
t

Zht

ω′
0

∣∣∣ > r
]
≤ 2r for large enough t .

Since in the last expression above for J 
t (immediately after Proposi-
tion 3), we were not only under the law Pθz , but indeed under the law
Pµ =

∫
Pθz dµ(z, θ) , we have so far proved Proposition 3.
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14.3. End of the proof of Theorem 3

Section 7 allows to denote also by Pµ the stationary Wiener measure on
G/Γ′, since the Brownian motion of G projects on the Brownian motion
of H2 (and similarly for the volume measures). Let us recall also that our
forms ω′

0, ω1, ω2 come from H
2/Γ′: they are defined on G/Γ′ and on H

2/Γ′

as well, in other words are invariant under pull back π∗ by the canonical
projection. Hence the joint laws of their integrals along the Brownian paths
are the same, no matter whether they are understood on G/Γ′ or on H2/Γ′.

Moreover we have seen in Section 7 also that the angular Brownian
component θs is a mere one-dimensional Brownian motion. As a conse-
quence, it is immediate that t−1

∫
g[0,t]

dθ = (θt − θ0)/t goes to 0 Pµ-almost

surely. Therefore we can replace in Theorem 2 the form ω0 by the form
ω′

0 = ω0 − dθ .
These remarks show that the following is simply a second version of

Theorem 2 (with the notations of Section 14.1 and of Theorem 2).

Corollary 4 We have for any � ∈ R3:

lim
t→∞

Eµ

(
exp

[√−1

t

∫
Z[0,t]

ω′′
0 +

√−1√
t

∫
Z[0,t]

ω
])

= E

(
exp

[√−1 (�0C + �1N 1 + �2N 2)
])
.

Now Lemma 9 asserts that the time-change ht = hz,θt appearing in K

t

of Proposition 3 satisfies ht = 2t+ o(t) Pθz-almost surely, uniformly with
respect to (z, θ) . Indeed, the law under Pθz of this ht equals the law of the

ht = h
√−1 ,0
t in Lemma 9. So that with arbitrary large probability we can

write ht = 2t+ o(t) with a uniform deterministic o(t) .
This allows to replace t by ht in the formula of Corollary 4 above, and

likewise to insure that

lim sup
t→∞

∣∣∣Eµ

(
exp

[√−1

t

∫
Z[0,t]

ω′′
0 +

√−1√
t

∫
Z[0,t]

ω
])

−K
′
t

∣∣∣ = 0 ,

with �′ := (�0/2, �1/
√

2, �2/
√

2) . Therefore using Corollary 4 and Proposi-
tion 3 we have proved that

lim
t→∞

J 
t = E

(
exp

[√−1 (2�0C +
√

2 �1N 1 +
√

2 �2N 2)
])
.

This concludes the proof, since by Lemma 7 and by the very definition
of J 
t (just before Section 14.1) this formula is equivalent to Theorem 3.
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Université Louis Pasteur et CNRS
7 rue René Descartes
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