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Maximal real Schottky groups

Rubén A. Hidalgo

Abstract
Let S be a real closed Riemann surfaces together a reflection

τ : S → S, that is, an anticonformal involution with fixed points.
A well known fact due to C. L. May [19] asserts that the group
K(S, τ), consisting on all automorphisms (conformal and anticon-
formal) of S which commutes with τ , has order at most 24(g − 1).
The surface S is called maximally symmetric Riemann surface if
|K(S, τ)| = 24(g − 1) [8]. In this note we proceed to construct real
Schottky uniformizations of all maximally symmetric Riemann sur-
faces of genus g ≤ 5. A method due to Burnside [3] permits us the
computation of a basis of holomorphic one forms in terms of these
real Schottky groups and, in particular, to compute a Riemann pe-
riod matrix for them. We also use this in genus 2 and 3 to compute
an algebraic curve representing the uniformized surface S. The argu-
ments used in this note can be programed into a computer program
in order to obtain numerical approximation of Riemann period ma-
trices and algebraic curves for the uniformized surface S in terms of
the parameters defining the real Schottky groups.

1. Introduction

Classical uniformization theory asserts that each closed Riemann surface of
genus g ≥ 2 can be uniformized by (i) Fuchsian groups acting on the hyper-
bolic plane H; (ii) Schottky groups and (iii) described by projective alge-
braic curves. To give explicit relations between these objects is very difficult.
In case the Riemann surface S has a group H of conformal automorphisms
so that S/H is the sphere with three branch values (a rigid surface), it is not
hard to find an explicit Fuchsian group and an algebraic curve represent-
ing S. In [4] P. Buser and R. Silhol have considered the case of hyperelliptic
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Riemann surfaces with a reflection (an anticonformal involution with fixed
points). They are able to obtain an algebraic curve starting from the Fuch-
sian group computing the capacity of certain hyperbolic polygons. Another
results in this direction are given, for instance, in M. Seppälä [22] and Gianni-
Seppälä-Silhol-Trager [7]. In general, the explicit computation of Riemann
matrices is hard and it is related to the famous Schottky problem: To give a
characterization of the Riemann matrices of closed Riemann surfaces inside
the space of symmetric matrices with positive imaginary part. A method
due to Burnside [3] permits the computation of a basis of the holomorphic
one forms for certain real Schottky groups and, in particular, to compute
Riemann period matrices and algebraic curves of closed Riemann surfaces
admitting a reflection. This is the approach we consider in this note for max-
imally symmetric Riemann surfaces of genus g ≤ 5. In particular, we are
able to give a transcendental equation on a parameter p ∈ (2−√

3, 1) which
defines a Schottky uniformization of the closed Riemann surface defined by
the algebraic curve y2 = x6 − 1.

2. Real Schottky groups

Let g be some positive integer. Assume we have a collection of 2g pair-
wise disjoint simple loops, say α1, . . . , αg, α̃1, . . . , α̃g, bounding a common
region D of connectivity 2g. Let us also assume we have a collection of
Möbius transformations A1, . . . , Ag (necessarily loxodromic ones) so that
Aj(αj) = α̃j and Aj(D) ∩ D = ∅, for all j = 1, . . . , g. The group G gen-
erated by A1, . . . , Ag turns out to be a Kleinian group, purely loxodromic,
isomorphic to a free group of rank g and with connected region of discontinu-
ity [15], called a Schottky group of genus g (for another equivalent definitions
of Schottky groups one can see, for instance, [17] and [5]). The domain D is
called a standard fundamental domain and the loops α1, . . . , αg, α̃1, . . . , α̃g a
fundamental set of loops for G. If we denote by Ω the region of discontinuity
of G, then Ω/G is a closed Riemann surface of genus g. Retrosection theo-
rem [1] states that if S is a closed Riemann surface of genus g, then there is
a Schottky group G (necessarily of genus g) with region of discontinuity Ω
and P : Ω → S a normal covering map, with G as covering group. We say
that (G, Ω, P : Ω → X) is a Schottky uniformization of S. A simple proof
of this fact was also given by L. Bers in [1] using quasiconformal mappings.
In the case we can choose the above loops αj and α̃j (for all j) as Euclidean
circles, for some set of free generators of the Schottky group, we say that G
is a classical Schottky group. The existence of non-classical Schottky groups
is well known [14]. A Schottky group G, of genus g, is called hyperelliptic
if there is a Möbius transformation C of order two such that CGC−1 = G
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and the group generated by G and C uniformizes an sphere (necessarily
with 2(g + 1) branched points of order two). Equivalently, there is a set
of free generators A1, . . . , Ag for G so that CAjC = A−1

j for j = 1, . . . , g.
The hyperelliptic Schottky groups uniformize hyperelliptic Riemann surfaces
and, reciprocally, every hyperelliptic Riemann surface can be uniformized by
such a group [13]. In a similar manner, there are certain Schottky groups
which permit the uniformization of real surfaces (surfaces with a reflection).
A real Schottky group is by definition a Schottky group G which keeps in-
variant a circle L in the Riemann sphere; equivalently, there is reflection
σ : Ĉ → Ĉ (with L as its set of fixed points) which commutes with every
element of G. It is not hard to see that a real Schottky group is classical
for every set of generators. If G is a real Schottky group, with associated
reflection σ, then the uniformized Riemann surface S = Ω(G)/G admits a
reflection τ : S → S, which is induced by σ. Reciprocally, each Riemann
surface S admitting a reflection τ can be constructed in such a way.

Theorem 2.1 ([16]) Let S be a closed Riemann surface admitting a re-
flection τ : S → S. Then there is a real Schottky group, with associated
reflection σ, uniformizing S so that τ is induced by σ.

A simple argument of this fact is as follows. Let us consider the quotient
Klein surface (with non-empty border) S/τ . Assume that the surface S/τ
is orientable. In this case, S/τ is a closed Riemann surface of genus γ with
k > 0 components in its border (k is the number of components of fixed
points of τ). The genus of S is g = 2γ + k − 1. We may uniformize this
surface S/τ by a group K, generated by the reflection σ on the unit circle and
a Fuchsian group (acting in the unit disc) uniformizing a Riemann surface
of genus γ and k holes. This is consequence of quasiconformal deformation
theory and the fact that reflections has circles as set of fixed points. The
index two subgroup of orientation preserving transformations (the above
Fuchsian group) is then a real Schottky group, with associated reflection σ,
uniformizing S as desired. Now, assume the surface S/τ is non-orientable. In
this case, S/τ is the connected sum of γ > 0 projective real planes and k > 0
boundary components. The genus of S is g = γ +k−1. We may uniformize
this surface S/τ by a group K, generated by the reflection σ on the unit
circle and a Fuchsian group (acting in the unit disc and containing glide-
reflections) uniformizing a non-orientable Klein surface of genus γ and k
holes. This is again consequence of quasiconformal deformation theory and
the fact that reflections has circles as set of fixed points. The index two
subgroup of orientation preserving transformations is then a real Schottky
group, with associated reflection σ, uniformizing S as desired.
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Remark. The above result asserts then every closed Riemann surface
admitting a reflection can be uniformized by a classical Schottky group.
An open problem is to decide if every closed Riemann surface can be uni-
formized by a classical Schottky group.

Given a closed Riemann surface S and a group H of automorphisms
(conformal or anticonformal ones), we may wonder for the existence of a
Schottky uniformization of S for which the group H can be lifted. If it is
possible to find such a Schottky uniformization, then we say that H is of
Schottky type. Necessary and sufficient conditions for a group H to be of
Schottky type are given in [9], [10], [11] and [12] for the case that H only
contains conformal automorphisms. In the case there are anticonformal
automorphisms the above result asserts the following two facts.

Corollary 2.2. Let S be a closed Riemann surface admitting a reflection
τ : S → S. Let us denote by K(S, τ) the group of conformal and anticonfor-
mal automorphisms of S commuting with τ . Then the group K(S, τ) is of
Schottky type.

Proof. This is clear from the fact that a real Schottky group is either
Fuchsian group or has a Fuchsian group of index two. �

Corollary 2.3. Let G be a real Schottky group of genus g ≥ 2 with reflec-
tion τ . Let Ĝ be any group of conformal/anticonformal automorphisms of Ĉ

containing G as finite index normal subgroup. Then [Ĝ : G] ≤ 24(g − 1).

Proof. The limit sets of G and Ĝ are the same, say Λ. Let us denote by Ω
their region of discontinuity. We have that Λ ⊂ Cτ , where Cτ is the circle
of fixed points of τ . It follows that τ commutes with each element in Ĝ.
On the closed Riemann surface S = Ω/G, of genus g, we have the induced

reflection τ and the induced group of automorphisms Ĝ/G < K(S, τ). Since
|K(S, τ)| ≤ 24(g − 1) by May’s results [18] and [19], we are done. �

A real Schottky group G is called maximally symmetric if the uniformized
surface is maximally symmetric. By the above, this is equivalent to say that
there is a finite normal extension Ĝ (as group of conformal/anticonformal
automorphisms of the Riemann sphere) containing G of index 24(g−1). We

have that in this case S/K(S, τ) = Ω/Ĝ must be a closed disc with exactly
for branch values, of orders 2, 2, 2 and 3, on its border.

Remark. In the case we have a hyperelliptic Riemann surface S of genus
g ≥ 2, with hyperelliptic involution j : S → S, which also admits a reflection
τ : S → S, then the uniqueness of j asserts that j ∈ K(S, τ). Take any
real Schottky group G uniformizing the surface S. We have that j can be
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lifted for such an uniformization. The facts that j has fixed points and has
order two assert that we can find a lifting j̃ of j of order two. Since S/j
is the Riemann sphere with 2(g + 1) branch values of orders 2, we have
that G is also a hyperelliptic Schottky group. We will prove later that there
are no maximally symmetric Riemann surfaces of genus g ≥ 3 which are
hyperelliptic.

3. Riemann matrices and real Schottky groups

3.1. Riemann matrices

An object which also describe closed Riemann surfaces are the Riemann pe-
riod matrices. These matrices are computed as follows (see for instance [6]).
Let S be a closed Riemann surface of genus g ≥ 1. A basis for homology of S,
say α1, . . . , αg, β1, . . . , βg, is called symplectic if its intersection matrix is

M =

[
0 I

−I 0

]
where I denotes the g × g identity matrix. For each symplectic homology
basis α1, . . . , αg, β1, . . . , βg, there is a unique basis w1, . . . , wg, for the space
of holomorphic 1-forms on S so that∫

αj

wk =

{
1, j = k
0, j 	= k

The matrix

Z =


∫

β1
w1 · · · ∫

βg
w1∫

β1
w2 · · · ∫

βg
w2

... · · · ...∫
β1

wg · · · ∫
βg

wg


is a symmetric matrix with positive imaginary part called a Riemann matrix
for S. In particular, each Riemann matrix is a point in the Siegel space Hg,
consisting of those symmetric complex matrices of size g × g with positive

imaginary part. The group ˜Sp2g(Z), consisting of the integer matrices T
of size 2g × 2g such that tTMT = ±M , is called the extended symplectic

group. Its index two subgroup Sp2g(Z), consisting of those T ∈ ˜Sp2g(Z) so

that tTMT = M , is called the symplectic group. The group ˜Sp2g(Z) acts
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on the Siegel space Hg as follows: Let Z ∈ Hg and

T =

(
A B
C D

)
∈ ˜Sp2g(Z),

then

T (Z) =

{
(A + ZC)−1(B + ZD), if T ∈ Sp2g(Z)

(A + ZC)−1(B + ZD), if T /∈ Sp2g(Z)

Remark. The above action on the Siegel space is not the classical one which
is given as

T (Z) =

{
(AZ + B)(CZ + D)−1, if T ∈ Sp2g(Z)

(AZ + B)(CZ + D)−1, if T /∈ Sp2g(Z)

Our action is obtained by writing the homology as

(α β) = (α1 · · ·αg β1 · · ·βg),

and the 1-forms as w = t(w1 · · ·wg).

If we start with a different symplectic homology basis of S, say {α̂1, . . . , β̂g},
then we obtain a new Riemann matrix Ẑ. Now, there is a symplectic matrix

N =

(
A B
C D

)
,

so that
[α̂1 · · · α̂gβ̂1 · · · β̂g] = [α1 · · ·αgβ1 · · ·βg]N

From this we obtain the equality

Ẑ = (A + ZC)−1(B + ZD)

The reciprocal also holds:

Torelli’s Theorem. Two matrices Z, Ẑ ∈ Hg are Riemann matrices of
conformally equivalent Riemann surfaces if and only if there is a symplectic
matrix

N =

(
A B
C D

)
∈ Sp2g(Z),

so that
Ẑ = (A + ZC)−1(B + ZD) .
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Let us assume that τ : S → S is a reflection on S, that is, an an-
ticonformal involution of S with fixed points. The induced isomorphism
(as Z-module)

τ : H1(S, Z) → H1(S, Z)

has a Z-submodule

H1(S, Z)τ = {a ∈ H1(S, Z) : τ(a) = −a}
with dimension equal to g. An adapted symplectic homology basis for S is a
symplectic homology basis {α1, . . . , αg, β1, . . . , βg}, for which {α1, . . . , αg} is
a basis of H1(S, Z)τ . The Riemann matrix Z obtained from such an adapted
basis is called an adapted Riemann matrix of S. The (extended) symplectic
representation of τ in such a basis has the form

ρ(τ) =

( −I Bτ

0 I

)
where Bτ ∈ Symm(g, Z). If we consider another adapted symplectic homol-

ogy basis {α̂1, . . . , β̂g}, with adapted Riemann matrix Ẑ, then it is not hard
to see that a symplectic matrix N sending one basis on the other must have
the form

N =

(
A B
0 tA−1

)
,

with A−1B ∈ Symm(g, Z). From this we have that

Ẑ = A−1B + A−1ZtA−1

This, together Torelli’s theorem, gives us the real Torelli’s theorem which
can be readed as follows [23]:

Real Torelli’s Theorem. Two matrices Z, Ẑ ∈ Hg are adapted Riemann

matrices of conformally equivalent pairs (S, τ) and (Ŝ, τ̂) if and only if there
are matrices A ∈ GL(g, Z) and Q ∈ Symm(g, Z) so that

Ẑ = Q + A−1ZtA−1

In general, the explicit computation of Riemann matrices is hard and
it is related to the famous Schottky problem: To give a characterization
of the Riemann matrices of closed Riemann surfaces inside the space of
symmetric matrices with positive imaginary part. In the next section we
describe a method of computing “explicitly” Riemann matrices of closed
Riemann surfaces admitting a reflection with the help of real Schottky groups
and a remark due to Burnside [3].
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3.2. Computation of Riemann matrices by real Schottky groups

This section explains how to use real Schottky groups in order to explicitly
compute Riemann matrices of the respective uniformized real surface. Let G
be a real Schottky group, with associated reflection σ, uniformizing a closed
Riemann surface S, with induced reflection τ . Let us denote by Ω the re-
gion of discontinuity of G and denote by P : Ω → S the natural holomorphic
covering with G as covering group. Let us fix some fundamental set of loops
for G, say α1, . . . , αg, α̃1, . . . , α̃g, and let A1, . . . , Ag a set of free generators
of G respect to these loops. We give the counterclockwise orientation to the
loops α1, . . . , αg, and the induced orientations on α̃1, . . . , α̃g by the trans-
formations A1, . . . , Ag. Consider any set of pairwise disjoint oriented paths
β1, . . . , βg, so that:

(a) βk connects a point pend
k ∈ αk to the point pstart

k = Ak(p
end
k ) ∈ α̃k;

(b) the orientation of βk is so that pstart
k is the starting point and pend

k is
the ending point; and

(c) βk is disjoint from αt and α̃t, for all t 	= k.

Let us denote again by αk and βk the projections on S of the above
respective loops. We obtain in this way a symplectic homology basis for S.
Let us denote by w1, w2, . . . , wg, the dual basis of holomorphic 1-forms.
Let us denote by Z the Riemann matrix for S, correspondent to the above
symplectic homology basis. The (extended) symplectic representation of σ
in the above symplectic basis has the form

ρ(σ) =

( −I Bσ

0 I

)
Since σ(Z) = Z , we have that

Re(Z) =
−1

2
Bσ

Now, under the assumption that the real Schottky group G has ∞ ∈ Ω,
Burnside [3] has remarked that the series∑

γ∈G

γ′(z)

converges uniformly on compact subsets of Ω to a meromorphic map which
is holomorphic on Ω−G(∞) and with double poles at each point in G(∞).
A simple argument for this is as follows. In the case that G keeps invariant
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a line L (a circle containing ∞) is rather simple. In fact, let V ⊂ Ω be some
compact set and M = {γ1, . . . , γn} ⊂ G be so that γ−1

j (∞) ∈ V . Then there
is a positive constant A > 0 so that∑

γ∈G−M

|γ′(z)| ≤ A
∑
γ∈G

1

|c|2 ,

where γ(z) = az+b
cz+d

, ad − bc = 1. Let us choose a point q ∈ L and a positive
number R > 1 so that B = {z ∈ C : |z − q| > R} ∪ {∞} satisfies that
γ(B)∩B = ∅ for all γ ∈ G different from the identity. In this case, we have
that the sets γ(B) are orthogonal discs to L and, in particular,∑

γ∈G,γ �=I

diam(γ(B)) ≤ 2R,

where diam denotes the Euclidean diameter in the Euclidean plane. We may
use the inequality given in C.7 of [15] which in our case reads

diam(γ(B)) ≥ 1

|c|2
1

dist(γ−1(∞), B)
≥ 1

|c|2
1

R
,

for γ 	= I. Since for V ⊂ Ω − G(∞) we have M = ∅, the above says that∑
γ∈G

γ′(z)

converges uniformly on V to a holomorphic map. Now, around a point
γ−1

1 (∞), γ 	= I, we have that the series∑
γ∈G−{γ1}

γ′(z)

converges locally to a holomorphic map and, since γ′
1(z) has a double pole

in γ−1
1 (∞), we are done in this case. The case of circles can be carried in

the following way. Choose some point q ∈ L ∩ Ω (then q 	= ∞). Let

T (z) =
1

z − q
.

Set H = TGT−1 and L′ = T (L). Then H is a real Schottky group keeping
invariant the line L′ and for which ∞ ∈ Ω(H). In this case we have the
convergence property for

∑
h∈H h′(w) on compact subsets of Ω(H). Let V

be a compact subset of Ω so that q /∈ V . Then for z ∈ V we have∑
h∈H,h�=I

|h′(T (z))| =
∑

γ∈G,γ �=I

|γ′(z)| 1

|γ(z) − q|2|T (z)|2 .
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The fact that q /∈ V asserts that

Inf
{ 1

|T (z)|2 ; z ∈ V
}

= M > 0.

Also, except for a finite number of elements of G, say γ1, . . . , γn, we
have that

Inf{ 1

|γ(z) − q|2 ; z ∈ V, γ ∈ G − {γ1, . . . , γn}} = N > 0.

Now it follows that∑
γ∈G,γ �=I

|γ′(z)| 1

|γ(z) − q|2|T (z)|2 ≥ NM
∑

γ∈G,γ �=I

|γ′(z)|,

obtaining the desired converge.

The above asserts, in particular, that we can lift each 1-form wj to Ω as

ŵj(z) =
1

2πi

∑
γ∈G

γ′(z)

γ(z) − A−1
j (∞)

dz,

for j = 1, . . . , g. These liftings have the property that∫
αk

ŵj =

{
0, j = r
1, j 	= r

We must observe at this point that the different possible choices for the
oriented paths β1, . . . , βg are not uniquely determined by the points pstart

j

and pend
j . But the different possible choices have the property that the

imaginary part of the integrals
∫

βj
ŵk are in fact uniquely determined by

these points. It follows that the imaginary part of the Riemann matrix Z is
given uniquely by Im(Z) = Y = (ykj), where

ykj =
1

2π
Re

(
Log

(∏
γ∈G

γ(pstart
k ) − A−1

j (∞)

γ(pend
k ) − A−1

j (∞)

))

=
1

2π
Log

(∏
γ∈G

|γ(pstart
k ) − A−1

j (∞)|
|γ(pend

k ) − A−1
j (∞)|

)

The above method then gives us an explicit way for computation of
Riemann matrices of real Riemann surfaces. In fact, the above can be done
with a computer program. How fast is the above algorithm and how it can
be improved will be discussed elsewhere.
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4. Maximally symmetric Riemann surfaces

Let us consider a closed Riemann surface S admitting a reflection τ : S → S.
We may think of S as the quotient surface of a real Schottky group G for
which τ is the induced reflection asociated to G. Let us assume the order
of K(S, τ) is exactly 24(g − 1), that is, S is maximally symmetric Riemann
surface (we also say that τ is a maximal reflection) [8]. In this case, we have
that S/K(S, τ) is a closed disc with exactly four branch values, of orders
2, 2, 2 and 3, on the border. A list of the maximally symmetric Riemann
surface of genus at most 40 is given in [20]. Part of the list is the following
(all families depends on one real parameter):

(1) In genus two there are two families of maximally symmetric Riemann
surfaces. In the first family the reflection τ has three components of
fixed points. In the second family the reflection τ has exactly one
component of fixed points, which divides S into two one-holes tori. In
both cases, the quotient S/τ are orientable. In the first case is a three-
holed sphere and in the second a one-holed torus. In subsection 4.1.
we describe them in a more explicit way.

(2) In genus three there are two families. In the first one τ has four
components of fixed points (the quotient S/τ is a 4-holed sphere).
In the second family τ has exactly three components of fixed points
and S/τ is a three-holed projective plane. These are described in
subsection 4.2.

(3) In genus four there is exactly one family, The reflection τ has three
components of fixed points and S/τ is a three-holed torus.

(4) In genus five there are two families. In the first family the reflection τ
has four components of fixed points and S/τ is four-holed torus. In the
second family, τ has six components of fixed points and S/τ is six-holed
sphere.

An important class of Riemann surfaces are the hyperelliptic ones. The
following asserts that there are no maximally symmetric Riemann surface
inside the hyperelliptic locus, for genus at least 3. A different proof of this
fact can be find in [2].

Proposition 4.1. A maximally symmetric Riemann surface of genus greater
or equal to three cannot be hyperelliptic.

Proof. Let S be a maximally symmetric Riemann surface S of genus g ≥ 3
together a maximal reflection τ : S → S. The quotient S/K(S, τ) is a closed
disc with four branched values of orders 2, 2, 2 and 3 on its border. Let us
also assume S to be hyperelliptic with j : S → S the hyperelliptic involution.
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The uniqueness of j implies that j ∈ K+(S, τ), the index two subgroup of
conformal automorphisms of K(S, τ). Let us consider the two-fold-branched

covering Q : S → Ĉ induced by the hyperelliptic involution. The maximal
reflection τ : S → S descends to a reflection η : Ĉ → Ĉ commuting with
each automorphism in N = K+(S, τ)/j, a group of Möbius transformations
of order 6(g − 1). Let us denote by C the circle of fixed points of η. Then
the group N preserves C and, in particular, it is either a Fuchsian group
or has an index two subgroup that is Fuchsian. In either case, we have
inside N a Fuchsian group N0 of order 3(g − 1) ≥ 6. But a finite Fuchsian
group is necessarily a cyclic group and, in particular, N0 is a cyclic group of
order 3(g − 1). It follows that N0 must have a fixed point of order 3(g − 1).
But S/K(S, τ) only has branch values of orders 2 and 3. It follows that
3(g − 1) ≤ 3, a contradiction. �

4.1. Genus two maximally symmetric Riemann surfaces

The proof of proposition 4.1., also permits us to determine the maximally
symmetric Riemann surfaces of genus two. In fact, as observed in the above
proof, since S/K(S, τ) has no branched values of order 6 and N has order 6,
N cannot be Fuchsian. We have then that N has an index two subgroup
N0 which is Fuchsian. N0 is a cyclic group of order 3 which permutes the 6
branched values of order 2 of Q. We have two possibilities: (i) all branched
values of order 2 are contained in C or (ii) none is contained in there (in which
case, three of them are contained in the interior of one of the discs bounded
by C and the other three are their images by η). In case (i) we have that
τ : S → S is a reflection with exactly 3 components of fixed points, dividing
S into two sub-surfaces, each one a three-holed sphere. The group K+(S, τ)
is generated by the symmetric group in 3 letters S3 (the stabilizer in K+(S, τ)
of one of these sub-surfaces) and the hyperelliptic involution j. The group
K(S, τ) is then the group generated by τ and K+(S, τ). In case (ii) we have
that τ is a reflection on S with exactly one circle of fixed points, dividing S
into two sub-surfaces, each one a genus one surface with a boundary. In this
case, K+(S, τ) is generated by a a cyclic group of order 6 (the stabilizer in
K+(S, τ) of one of these sub-surfaces), and a conformal involution permuting
both sub-surfaces (the fixed points are contained in the fixed points of τ).
The group K(S, τ) is then the group generated by τ and K+(S, τ). The
algebraic curves corresponding to these surfaces are given by:

y2 = (x3 − λ3)(x3 − 1/λ3)

where either λ > 1, if we are in the case (ii) or λ = eiη, η ∈ (0, π/3), if we
are in case (i).
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In this case, K(S, τ) = 〈τ, j, α, β〉, where

τ =

(
x �→ 1/x
y �→ y/x3

)
; j =

(
x �→ x
y �→ −y

)
;

α =

(
x �→ e2πi/3x
y �→ y

)
; β =

(
x �→ 1/x
y �→ y/x3

)
Remarks.

(1) Let us note that in the case η = π/6 the curve is given by

y2 = x6 + 1,

isomorphic to w2 = z6 − 1 (by the change of variables w = iy and
z = eiπ/6x ), has the extra automorphism

α1/2 =

(
x �→ eπi/3x
y �→ y

)
and, in particular, the extra automorphisms

τ3 =

(
x �→ x
y �→ y

)
; j1/2 =

(
x �→ 1/x
y �→ iy/x3

)
(2) Let us observe that each maximally symmetric Riemann surface (S, τ)

of genus 2, for which S/τ is a three-holed sphere, has a reflection
τ ′ ∈ K(S, τ) so that S/τ ′ is a one-holed torus. Such a reflection
corresponds to the conjugation x �→ x in the above corresponding
algebraic curve. By direct inspection, one can see that K(S, τ ′) is not
maximal.

(3) Since the Weierstrass points of one of the families belong to the unit
circle and the ones for the other are not contained in any circle or line,
we see that the projection into the moduli space of genus 2 of these
two families define disjoint sets.

4.2. Genus three maximally symmetric Riemann surfaces

If we consider a maximally symmetric Riemann surface S of genus 3, then
K(S, τ) has order 48 and K+(S, τ) has order 24. Since S cannot be hyperel-
liptic, the only possibility for K+(S, τ) is to be isomorphic to the symmetric
group on four letters S4. In this case, these surfaces are described by the
following algebraic curves [21]:

x4 + y4 + z4 + λ(x2y2 + y2z2 + z2x2) = 0,

where λ ∈ (−∞,−2) for case (v) and λ ∈ (−2,−1) for case (ii).
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The reflection τ is given by τ [x : y : z] = [x, y, z], and K+(S, τ) is the sym-
metric group in four letters S4 generated by the projective transformations

a =

 0 −1 0
1 0 0
0 0 1

 ; b =

 1 0 0
0 0 1
0 1 0


5. Real Schottky uniformizations of maximal symmetric

Riemann surfaces

5.1. Uniformization of the closed disc with branch values of orders
2, 2, 2, 3 on its border

Let us consider a maximally symmetric Riemann surface S with a maximal
reflection τ : S → S. As observed before, S/K(S, τ) is a closed disc with four
branched values of orders 2, 2, 2 and 3 on its border. For each p ∈ (2−√

3, 1),

let us consider the group K̂p generated by the following reflections (see fig. 1):

σ1(z) = z, σ2(z) = e
2πi
3 z, σp(z) =

(1 + p2)z − 2p

2pz − (1 + p2)
and σ(z) =

1

z
.

α

α

1

2

C

Figure 1

If we set W (z) = σ2σ1(z) = e
2πi
3 z, T (z) = σσ1(z) = 1

z
and

J(z) = σpσ1(z) =
(p + 1

p
)z − 2

2z − (p + 1
p
)
,

then the group K̂p is also generated by the transformations T , W , J and σ.
As consequence of Klein-Maskit’s combination theorems [15], we have

K̂p = 〈T,W, J, σ : T 2 = W 3 = (WT )2 = J2 = (TJ)2 = σ2 = (σT )2 =

σWσW−1 = (σJ)2 = 1〉.
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The Kleinian group K̂p has a connected region of discontinuity Ω and a
fundamental domain for it is determined the the bounded region determined
by the unit circle, the two rays of arguments πi/3 and −πi/3, respectively,
and the circle C orthogonal to the unit circle and containing the points p
and 1/p (see figure 1). The Klein surface uniformized by K̂ is the closed unit
disc with exactly four branch values of orders 2, 2, 2 and 3 on its border.

Theorem 5.1. Every Klein surface which is the unit closed disc with exactly
four branch values of orders 2, 2, 2 and 3 on the border can be uniformized
by a group K̂p for some p ∈ (2 −√

3, 1).

Proof. This is just consequence of quasiconformal deformation theory and
the fact that every reflection on the Riemann sphere has an Euclidean circle
as fixed points. �

The index two subgroup Kp of K̂p of the orientation preserving transfor-
mations is generated by the transformations T , W and J and the presenta-
tion of Kp is

Kp = 〈T,W, J : T 2 = W 3 = (WT )2 = J2 = (TJ)2 = 1〉,

that is, isomorphic to the free amalgamated product of the dihedral group
D3 = 〈T,W 〉 with the Klein group Z2 + Z2 = 〈T, J〉 over the cyclic group
of order two generated by T . The Riemann surface Ω/Kp is the Riemann
sphere with four branched values of order 2, 2, 2 and 3, all of them fixed
by the reflection induced by σ on it. A fundamental domain of Kp can be

considered as the union of the above fundamental domain of K̂p with its

image under σ together the points of the unit circle located between e
πi
3 and

e
−πi
3 , respectively.

Remarks.

(1) The boundary case p = 2 − √
3 corresponds to the case that K̂p uni-

formizes a hyperbolic closed triangle with one vertex at infinity, one
vertex with angle π/3 and the other with angle π/2. The corresponding
group Kp uniformizes an sphere with three branched values of orders
2, 3 and ∞, respectively.

(2) The boundary case p = 1 corresponds to the case that K̂p is only
generated by the reflections σ1, σ2 and σ, but acting on the three-
punctured Riemann sphere. In this case, the group K̂p uniformizes
the closed unit disc with three branched values at the border with
orders 2, 3 and ∞, respectively.
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5.2. Maximally symmetric real Schottky groups

For each p ∈ (2 −√
3, 1), we consider the Kleinian group K̂ = K̂p. We pro-

ceed to construct certain maximally symmetric real Schottky groups of genus
g ∈ {2, 3, 4, 5}. Then we show that every maximally symmetric Riemann
surface of genus g ∈ {2, 3, 4, 5} can be uniformized by one of these.

5.2.1 Schottky uniformizations of genus 2

Consider the Möbius transformations A1 = JWJW−1, A2 = JW−1JW ,
B1 = (σpσ2)

2 and B2 = σ1B1σ1. The groups G2 = 〈A1, A2〉 and F2 =
〈B1, B2〉 are real Schottky groups of genus two and a standard fundamental
domain for both G2 and F2 is given by the circles W (C), J(W (C)), W−1(C)
and J(W−1(C)). Since WA1W

−1 = A−1
1 A2, WA2W

−1 = A−1
1 , JA1J =

A−1
1 , JA2J = A−1

2 , TA1T
−1 = A2, TA2T = A1, σA1σ = A1, σA2σ =

A2, WB1W
−1 = B−1

1 B2, WB2W
−1 = B−1

1 , JB1J = B−1
2 , JB2J = B−1

1 ,
TB1T = B2, TB2T = B1, σB1σ = B1 and σB2σ = B2, we have that both
G2 and F2 are normal subgroups of K̂.

Moreover, for Q ∈ {G2, F2}, K̂/Q ∼= D3+Z2+Z2 and K/Q ∼= D3+Z2. In
particular, the Riemann surfaces of genus two S2 = Ω/G2 (respectively, R2 =

Ω/F2) admit the group K̂/G2 (respectively, K̂/F2) as group of symmetries,
with K/G2 (respectively, K/F2) as its index two subgroup of orientation

preserving symmetries. The quotient S2/(K̂/G2) (respectively, R2/(K̂/F2))
is the unit closed disc with four branch values in its boundary of orders 2,
2, 2 and 3.

5.2.2 Schottky uniformizations of genus 3

Let us consider the group G3 generated by the transformations D1 =
(σpσ2)

3, D2 = WD1W
−1 and D3 = W−1D1W , and the group F3 generated

by the transformations E1 = σσpσ2σ1σ2σpσ2σ1σpσ2, E2 = WB1W
−1 and

E3 = W−1B1W . It is easy to see that G3 and F3 are Schottky groups
of genus three with standard fundamental domain bounded by the circles
C1 = σp(σ2(C)), C6 = σ1(C1), C2 = W (C6), C3 = W (C1), C5 = W−1(C1)
and C4 = W−1(C6), where C = Fix(σp).

The relations σ1D1σ1 = D−1
3 , σ1D2σ1 = D−1

2 , σ2D1σ2 = D−1
1 , σ2D2σ2 =

D−1
3 , σpD1σp = D−1

1 , σpD2σp = D1D2D3, σpD3σp = D−1
3 , σD1σ = D1,

σD2σ = D2, σD3σ = D3, σ1E1σ1 = E−1
3 , σ1E2σ1 = E−1

2 , σ2E1σ2 = E−1
1 ,

σ2E2σ2 = E−1
3 , σpE1σp = E3, σpE2σp = E−1

3 E2−1E−1
1 , σE1σ = E1, σE2σ =

E2, σE3σ = E3, show the normality of these two groups.
A direct computation implies that K̂/G3 and K̂/F3 are groups of order

48 and non-isomorphic.
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5.2.3 Schottky uniformizations of genus 4

Let G4 be the subgroup of G2 generated by the transformations U1 = A3
1,

U2 = A1A2, U3 = A2A
−2
1 and U4 = A2

1A2A
−1
1 . This group is exactly the

smallest normal subgroup of G2 having the elements U1 and U2 and has index
3. The group G4 is a free group of index three in the real Schottky group
G2 and then it is a real Schottky group of genus 4. Since G2 is subgroup of
index 24 in K̂ and G4 has index 3 in G2, we have that G4 is a subgroup of
index 72 of K̂. The relations WU1W

−1 = U−1
1 U4U3U2, WU2W

−1 = U−1
1 U4,

WU3W
−1 = U−1

1 U−1
3 U−1

4 U1, WU4W
−1 = U−1

1 U4U3U
−1
4 U1, JU1J

−1 = U−1
1 ,

JU2J
−1 = U−1

1 U−1
3 , JU3J

−1 = U−1
2 U1, JU4J

−1 = U−1
1 U−1

4 U1, TU1T
−1 =

U3U4U2, TU2T
−1 = U3U1, TU3T

−1 = U−1
4 U−1

3 , TU4T
−1 = U3U4U

−1
3 and the

fact that σ commutes with every transformation in G4, assert that G4 is a
normal subgroup of K̂.

5.2.3 Schottky uniformizations of genus 5

Let G5 (respectively, F5) be the subgroup of G2 (respectively, F2) gener-
ated by the square of all the elements in G2 (respectively, F2), that is:

G5 = 〈x2 : x ∈ G2〉 , F5 = 〈x2 : x ∈ F2〉.
Since G2 (respectively, F2) is normal subgroup of index 24 in K̂ and G5

(respectively, F5) is normal of index 4 in G2 (respectively, F2), we have

that G5 (respectively, F5) is a normal subgroup of K̂ of index 96. The
group G5 (respectively, F5) is a free group of index four in the real Schottky
group G2 (respectively, F2) and then it is a real Schottky group of genus 5.
Free generators for G5 (respectively, F5) are given by T1 = A2

1, T2 = A2
2, T3 =

A−1
1 A2

2A1, T4 = A−1
1 A−1

2 A1A2 and T5 = A−1
2 A1A2A1 (respectively, R1 = B2

1 ,
R2 = B2

2 , R3 = B−1
1 B2

2B1, R4 = B−1
1 B−1

2 B1B2 and R5 = B−1
2 B1B2B1).

Theorem 5.2. For each maximally symmetric Riemann surface S with a
maximal reflection τ : S → S there is a suitable value of p ∈ (2 −√

3, 1) so
that S is uniformized by

(a) G2 or F2, if g = 2;

(b) G3, if S/τ is orientable and g = 3;

(c) F3, if S/τ is non-orientable and g = 3;

(d) G4, if g = 4; and

(e) G5 or F5, if S/τ is orientable and g = 5.

Proof. We proceed to prove only (a) since the other situations are simmilar.
Fix a value of p ∈ (2−√

3, 1) and let us consider the Kleinian group K = Kp.
Let S be a maximally symmetric Riemann surface of genus two together a
maximal reflection τ : S → S. The topological action of K(S, τ) is either
reflected by G2 or F2, since there are exactly two possible actions.
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Without lost of generality, we may assume that this is reflected by G2.
Set S2 = Ω/G2 and let f : S2 → S be an orientation preserving homeo-

morphisms so that fK̂/G2f
−1 = K(S, τ). We may assume that f is quasi-

conformal homeomorphisms with complex Beltrami differential µ. We lift µ
to Ω and extend it as zero to the limit set of K̂. Let W : Ĉ → Ĉ be a
µ-quasiconformal homeomorphisms. Then WK̂W−1 is again a group gen-
erated by reflections. We may assume that W fixes 0, 1 and ∞. Since a
reflection has as fixed points only Euclidean circles on the Riemann sphere,
we have that the group WK̂W−1 is again one of our groups K̂ for a suitable
value of p. If we denote by π : Ω → Ω/G2 the holomorphic covering induced

by G2, then we have that fπW−1 : Ω(WK̂W−1) → S an uniformization
of S by the corresponding Schottky group G2, so that the lifting of K(S, τ)

is exactly WK̂W−1. �
Remarks.

(1) In the case p = 2 − √
3, the group G2 is a noded Schottky group of

genus two uniformizing an stable Riemann surface of genus two with
exactly one dividing node. In the case p = 1, we can think of the
group G2 as the trivial group acting on the three-punctured sphere,
that is, uniformizing the three-punctured sphere.

(2) In the case p = 2 − √
3, the group F2 is a noded Schottky group of

genus two uniformizing an stable Riemann surface of genus two with
exactly three non-dividing nodes. In the case p = 1, we can think of
the group F2 as the trivial group acting on the three-punctured sphere,
that is, uniformizing the three-punctured sphere.

(3) In the case p = 2 − √
3, the group G3 is a noded Schottky group

of genus three uniformizing a stable Riemann surface of genus three
with exactly four non-dividing nodes and two components, each one
a four punctured sphere. In the case p = 1, we can think of the
group G3 as the trivial group acting on the three-punctured sphere,
that is, uniformizing the three-punctured sphere. For p ∈ (2 −√

3, 1),
the respective groups G3 uniformize the algebraic curves correspond-
ing to λ∈ (−2,−1); for p= 2 − √

3 it uniformizes the algebraic curve
corresponding to λ = −1; and for p = 1 it uniformizes the algebraic
curve for λ=−2.

(4) In the case p = 2−√
3, the group F3 is a noded Schottky group of genus

three uniformizing a stable Riemann surface of genus three with ex-
actly three non-dividing nodes and one component, an sphere with six
punctures. In the case p = 1, we can think of the group F3 as the trivial
group acting on the three-punctured sphere, that is, uniformizing the
three-punctured sphere. For p ∈ (2 − √

3, 1), the respective groups
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F3 uniformize the algebraic curves corresponding to λ ∈ (−∞,−2);
for p = 2 − √

3 it uniformizes the algebraic curve corresponding to
λ = −∞; and for p = 1 it uniformizes the algebraic curve for λ = −2.

(5) In the case p = 2 − √
3, the group G4 is a noded Schottky group

uniformizing a stable Riemann surface of genus four with exactly three
non-dividing nodes and two components, each one of genus one.

(6) In the case p = 2 − √
3, the group G5 is a noded Schottky group

uniformizing a stable Riemann surface of genus five with exactly four
non-dividing nodes and two components, each one of genus one. Sim-
ilarly, the group F5 is a noded Schottky group uniformizing a stable
Riemann surface of genus five with exactly six non-dividing nodes.

6. Riemann matrices and algebraic curve of maximal

symmetric Riemann surfaces

In this section we proceed to compute adapted Riemann matrices of maximal
symmetric Riemann surfaces of genus 2, 3, 4 and 5, with the help of the real
Schottky uniformizations of last section and Burnside’s remark. We also
construct algebraic curves for such kind of surfaces in genus 2, 3 and 4.

6.1. Genus 2 maximal symmetric Riemann surfaces

We start with the following classical result in genus two.

Theorem 6.1. Let S be a maximal symmetric Riemann surface of genus 2
with a maximal reflection τ : S → S. Let p ∈ (2 −√

3, 1) be so that

(i) S = Ω/G2, if S/τ is a genus one surface with one hole;

(ii) S = Ω/F2, if S/τ is a genus zero surface with three holes.

A Riemann matrix of S is given by Z = P + iQ, with

P =


0 in case (ii),
1

2

[
0 1
1 0

]
in case (i),

Q =
w

2

[
2 1
1 2

]
,

where

w =


1

2π
Log

( ∏
γ∈G2

|γ(q2) − A−1
1 (∞)|

|γ(q1) − A−1
1 (∞)|

)
in case (i),

1

2π
Log

( ∏
γ∈F2

|γ(p2) − B−1
1 (∞)|

|γ(q1) − B−1
1 (∞)|

)
in case (ii),

q1 = e( 2π
3
−θ)i, q2 = J(q1), p2 = σp(q1) and θ ∈ (0, π

2
) is such that cos θ = 2p

1+p2 .
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Proof. Case (i): Set α1 = W (C), α′
1 = J(α1), α2 = W−1(C) and α′

2 =
J(α2). If we orient the circles α1, α2, α

′
1 and α′

2 and consider the oriented
paths β1 and β2 as shown in figure 2, then the projection of these loops
and paths determines an adapted symplectic homology basis on the closed
Riemann surface S2.

α

β

β
α

α

1

2

1α

2

’

’

C

π

S
2

α α

β β

1 2

21

1

2

Figure 2

In this way, we obtain a faithful symplectic representation ρ : K̂/G2 →
˜Sp(4; Z) defined by

ρ(σ) =


−1 0 0 −1

0 −1 −1 0
0 0 1 0
0 0 0 1

, ρ(T ) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



ρ(J) =


−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1

, ρ(W ) =


0 −1 a b
1 −1 c d
0 0 −1 −1
0 0 1 0


The Riemann matrix Z = X + iY ∈ H2 of S2 defined by the above

symplectic basis is a fixed point of the symplectic group ρ(K̂/G2). It follows
that: a = −1, b = 0, c = 0, d = 1, and

Z =
1

2

[
0 1
1 0

]
+ i

[
w w

2
w
2

w

]
, where w > 0.
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The results due to Burnside [3] described at the end of section 3 can be
used in this case to the group G2 to compute the value of w in function of p
to obtain the desired result in this case.

Case (ii): We proceed in analogous way as done for the previous case. Set
α1 = W (C), α′

1 = σp(α1), α2 = W−1(C) and α′
2 = σp(α2). If we orient

the circles α1, α2, α′
1 and α′

2 and consider the oriented paths β1 and β2 as
shown in figure 3, then the projection of these loops and paths determines
an adapted symplectic homology basis on the closed Riemann surface R2.

α

β

α

α

1

2

α’

’

C

π

2

α α

β β

1 2

21

1

β
2 2

1

R

Figure 3

In this way, we obtain a faithful symplectic representation

ρ : K̂/F2 → ˜Sp(4; Z)

defined by

ρ(σ) =


−1 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 1

, ρ(T ) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



ρ(J) =


0 −1 0 0

−1 0 0 0
0 0 0 −1
0 0 −1 0

, ρ(W ) =


0 −1 a b
1 −1 c d
0 0 −1 −1
0 0 1 0
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The Riemann matrix Z = X + iY ∈ H2 of R2 defined by the above
symplectic basis is a fixed point of the symplectic group ρ(K̂/F2). It follows
that: a = b = c = d = 0, and

Z = i

[
w w

2
w
2

w

]
,

where w > 0. Again the results due to Burnside [3] described at the end of
section 3 can be used in this case to the group F2 to compute the value of w
in function of p to obtain the result. �

6.2. Algebraic curves of maximally symmetric surfaces of genus 2

Let us note at this point that the results in [6] permit us to describe the
algebraic curve (using theta functions) of the surfaces S2 and R2 in function
of w and, in particular, of p. This can be done without the use of Theta
functions as follows. For each p ∈ (2 −√

3, 1) we have explicitly w1 and w2

in the region Ω for G2 and for F2 (see at the end of section 3.2.). We have

then the explicit holomorphic map F : Ω → Ĉ, defined by

F (z) =
w1(z)

w2(z)
,

which is a branched covering for the group generated by the elliptic trans-
formations

(a) J , WJW−1 and W−1JW , for the group F2;

(b) T , WTW−1 and W−1TW , for the group G2.

This is a lift of the two-fold-cover (induced by the hyperelliptic involution)
over the Riemann sphere. We have that the algebraic curve for the surface
in question is given by

y2 = (x − a)(x − b)(x − c)(x − d)(x − e)(x − f)

where

a = F (k) , b = F (W (k)) , c = F (W 2(k)) ,

d = F
(1

k

)
, e = F

(
W
(1

k

))
, f = F

(
W 2

(1

k

))
where

k =

{
p for G2

eiθ for F2
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6.3. Example

In the particular case λ = eπi/6 in section 4.1, which corresponds to the
algebraic curve

y2 = x6 + 1,

we may use the Riemann period matrix as computed in theorem 6.1., in order
to obtain the value of p corresponding to it. In fact, using the symplectic
homology basis as considered above for F2, we can describe the symplectic
representation of the automorphism j1/2, which is in this case:

ρ(j1/2) =


0 0 −1 −1
0 0 −1 0
0 1 0 0
1 −1 0 0


In this way, since the matrix Z (the one of theorem 6.1. (ii)) is fixed by

ρ(j1/2), we obtain the equality

4π√
3

= Log

( ∏
γ∈F2

|γ(p2) − B−1
1 (∞)|

|γ(B−1
1 (q1)) − B−1

1 (∞)|
)

Using words of lenght at most 8 in the free group, we obtain the approx-
imation value p ∼= 0.75659027099609375. This has been done thanks to a
program in Mathematica written by J. Figueroa. In fact, with such a pro-
gram we are able to numerically compute the respective adapted Riemann
matrix in function of p in genus 2. The program can be adapted easily for
greater genus. We have not tested the stability of such a program.

6.4. Genus 3 maximal symmetric Riemann surfaces

For the group G3 we choose α1 = C2 counterclockwise oriented, α′
1 = C1 with

the orientation of α1 induced by D1. We set α2 = W (α1), α3 = W−1(α1),
α′

2 = W (α′
1), α′

3 = W−1(α′
1). We also consider pairwise disjoint oriented

simple paths β1, β2 and β3 as shown in figure 4.

C

α

α

α

α

α

α

1

1

2

2

3

3

β

β

β
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2

3

´

´

´

Figure 4
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For the group F3 we choose α1 = C3 counterclockwise oriented, α′
1 = C6

with the orientation of α1 induced by E1. We set α2 = W (α1), α3 =
W−1(α1), α′

2 = W (α′
1), α′

3 = W−1(α′
1). We also consider pairwise disjoint

oriented simple paths β1, β2 and β3 as shown in figure 5.

C

α

α

α

α

α

α

β 2
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1
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2
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´

´

β 3

β
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On each of the above two cases, the oriented loops α1, α2, α3, and the
oriented paths β1, β2 and β3 induce an adapted symplectic homology basis
on the uniformized Riemann surface S. Symplectic representations

θ1 : K̂/G3 → S̃p6(Z) , θ2 : K̂/F3 → S̃p6(Z)

are then easy to read as follows:

θ1(σ)=


−1 0 0 0 0 0

0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, θ1(T )=


0 0 −1 0 0 0
0 −1 0 0 0 0

−1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 −1 0 0



θ1(J)=


0 0 1 0 0 0

−1 −1 −1 0 0 0
1 0 0 0 0 0
0 0 0 0 −1 1
0 0 0 0 −1 0
0 0 0 1 −1 0

, θ1(W )=


0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0



θ2(σ)=


−1 0 0 −1 −1 1

0 −1 0 −1 1 −1
0 0 −1 1 −1 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, θ2(T )=


0 0 −1 0 0 0
0 −1 0 0 0 0

−1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 −1 0 0
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θ2(J)=


−1 0 0 0 −1 0

1 1 1 1 0 1
0 0 −1 0 −1 0
0 0 0 −1 1 0
0 0 0 0 1 0
0 0 0 0 1 −1

, θ2(W )=


0 0 1 −1 1 2
1 0 0 1 2 −1
0 1 0 2 −1 1
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0


Now following the same arguments and computations as done for the

case of genus two maximal symmetric Riemann surfaces one obtains:

Theorem 6.2. Let S be a maximal symmetric Riemann surface of genus 3
with a maximal reflection τ : S → S. Let p ∈ (2 −√

3, 1) be so that

(i) S = Ω/G3, if S/τ is orientable

(ii) S = Ω/F3, if /τ is non-orientable.

A Riemann matrix of S is given by Z = P + iQ, where

P =


0 in case (i),

1

2

 1 1 −1
1 −1 1

−1 1 1

 in case (ii)
and Q = t

 3 −1 −1
−1 3 −1
−1 −1 3

,

where

t = tp =



1

6π
Log

(∏
γ∈G3

|γ(rp) − A−1
1 (∞)|

|γ(sp) − A−1
1 (∞)|

)
in case (i)

1

6π
Log

(∏
γ∈G3

|γ(σ1(rp)) − B−1
1 (∞)|

|γ(lp) − B−1
1 (∞)|

)
in case (ii)

rp = σp(e
( 2π

3
−θ)i), sp = σ2(rp), lp = σ2(σ1(σp(σ2(e

(−θ)i)))), and θ ∈ (0, π
2
)

is such that cos θ = 2p
1+p2 .

6.5. Algebraic curves for maximally symmetric surfaces of genus 3

Given a value of p ∈ (2 − √
3, 1), we have explictly defined on Ω a basis

of holomorphic one forms w1, w2, w3 (see section 3.7.) for either G3 or F3.
Since the surfaces uniformized by these groups are non-hyperelliptic ones (see
proposition 4.1.), the explicit holomorphic map F : Ω → CP 2 defined as

F (z) = [w1(z) : w2(z) : w3(z)]

permits to obtain a non-singular projective quartic Q representing the uni-
formized surface. To be more precise, we proceed to work the case of G3
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(the case F3 can be done in a similar fashion). In this case, we have the
projective realizations

σ[u : v : w] = [u : v : w]
σ1[u : v : w] = [w : v : u]
σ2[u : v : w] = [u : w : v]
σp[u : v : w] = [u − v : −w : w − v]

where [u : v : w] are the coordinates of CP 2. The form of σ asserts that the
coefficients of the Q are all reals. Using the other realizations we obtain that

Q =Au4 − 4

3
Au3v + Bu2v2 − 4

3
Auv3 + Av4 − 4

3
Au3w+

+ (2A − B)u2vw + (2A − B)uv2w − 4

3
Av3w + Bu2w2+

+ (2A − B)uvw2 + Bv2w2 − 4

3
Auw3 − 4

3
Avw3 + Aw4

To obtain A and B, we proceed to evaluate F at some point on Ω; for
instance let us consider z = eπi/3. Let us assume that F (eπi/3) = [a : b : c],
where a, b, c ∈ R. Using words of lenght less than L, for some choice of a
positive integer L, we may get numerical approximations of these values.
When we plug them into Q we obtain that

B = AP (a, b, c)/Q(a, b, c)

where P (a, b, c) = (3a4 − 4a3(b + c) + 6a2bc + a(−4b3 + 6b2c + 6bc2) − 4c3 +
3b4−4b3c−4bc3 +3c4) and Q(a, b, c) = 3(a2(b2 + c2− bc)−abc(b+ c)+ b2c2).
We may assume A = 1 to get Q.

6.6. Genus 4 maximal symmetric Riemann surfaces

Let us consider α1, α2, α′
1 and α′

2 as done for G2. A standard fundamental
domain for G4 is the region bounded by the circles γ1 = α1, γ2 = α2, γ3 =
A2

1(α2), γ4 = A1(α2), γ′
1 = A3

1(α1), γ′
2 = A1(α

′
2), γ′

3 = α′
2 and γ′

4 = A2
1(α

′
2).

We give the orientations induced from the ones given to the loops α1 and
α2. We can easily check that, by choose of a suitable set of pairwise disjoint
oriented simple arcs, we get the extended symplectic representation

θ : K̂/G4 → S̃p8(Z)

given by

θ(σ) =

( −I S
0 I

)
; θ(W ) =

(
W1 QW

0 tW−1
1

)
;

θ(J) =

(
J1 QJ

0 tJ1

)
; θ(T ) =

(
T1 QT

0 tT1

)
,
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where

S =


0 −1 1 −1

−1 0 −1 0
−1 1 0 1
−1 0 −1 0

 ; W1 =


0 −1 −1 −1
1 −1 0 −1
0 0 0 1
0 0 −1 −1

 ;

J1 =


−1 0 0 0
−1 0 −1 0

1 −1 0 0
0 0 0 −1

 ; T1


0 1 1 1
1 0 1 0
0 0 −1 −1
0 0 0 1

 ,

and

QW =
1

2
(StW−1

1 − W1S) , QJ =
1

2
(StJ1 − J1S) , QT =

1

2
(StT1 − T1S) .

Direct computations permit us to obtain:

Theorem 6.3. Let S be a maximal symmetric Riemann surface of genus 4
with a maximal reflection τ : S → S. Let p ∈ (2 − √

3, 1) be so that
S = Ω/G4. Then a Riemann matrix of S is given by

Z =
−1

2


0 −1 1 −1

−1 0 −1 0
−1 1 0 1
−1 0 −1 0

 + i


2(v − u) v − u u − v v − u

v − u −2u −u v
u − v u −2u u
v − u v u −2u


The values of u and v can be written explicitly in function of p as is done
in the other cases.

6.7. Genus 5 maximal symmetric Riemann surfaces

A standard fundamental domain for G5 (respectively, F5) respect to the
above free generators is determined by the circles θ1 = A−1

1 (α1), θ′1 = α′
1,

θ2 = A−1
2 (α2), θ′2 = α′

2, θ3 = A−1
1 A−1

2 (α2), θ′3 = A−1
1 (α′

2), θ4 = A−1
2 (α1),

θ′4 = A−1
1 A−1

2 (α′
1), θ5 = A−1

1 A−1
2 (α1) and θ′5 = A−1

2 (α′
1) (respectively, θ1 =

B−1
1 (α1), θ′1 = α′

1, θ2 = B−1
2 (α2), θ′2 = α′

2, θ3 = B−1
1 B−1

2 (α2), θ′3 = B−1
1 (α′

2),
θ4 = B−1

2 (α1), θ′4 = B−1
1 B−1

2 (α′
1), θ5 = B−1

1 B−1
2 (α1) and θ′5 = B−1

2 (α′
1)). We

can give to these θ-loops the orientations determined by the orientations we
have given to α1, α2, α′

1 and α′
2. Let us choose the following paths: δ1 =

β1∪A−1
1 (β1), δ2 = β2∪A−1

2 (β2), δ3 = A−1
1 (δ2) (respectively, δ1 = β1∪B−1

1 (β1),
δ2 = β2 ∪ B−1

2 (β2), δ3 = B−1
1 (δ2)), with the orientations determined by the

orientations given to β1 and β2. For j = 4, 5, we choose oriented paths δj

contained inside the unit disc starting at θj and ending at θ′j and disjoint
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from δ1 and δ9−j . The projections of the above loops and paths determine
on the Riemann surface S5 = Ω(G5)/G5 (respectively, R5 = Ω(F5)/F5) an
adapted symplectic homology basis. Since we have the following relations:

(a) JT1J = T−1
1 , JT2J = T−1

2 , JT3J = T1T
−1
3 T−1

1 , JT4J = T1T3T
−1
5 T−1

2 ,
JT5J = T2T

−1
4 T−1

3 T−1
1 , JR1J = R−1

2 , JR2J = R−1
1 , JR3J = R2R

−1
4

R−1
5 R−1

2 , JR4J = R2R5R
−1
3 R−1

1 , JR5J = R1R
−1
5 R−1

2 ;

(b) WT1W
−1 = T3T

−1
5 , WT2W

−1 = T−1
1 , WT3W

−1 = T−1
4 T−1

5 , WT4W
−1 =

T5T
−1
1 , WT5W

−1 = T2T
−1
4 T−1

5 , WR1W
−1 = R3R

−1
5 , WR2W

−1 = R−1
1 ,

WR3W
−1 = R−1

4 R−1
5 , WR4W

−1 = R5R
−1
1 , WR5W

−1 = R2R
−1
4 R−1

5 ;

(c) TT1T = T2, TT2T = T1, TT3T = T5T4, TT4T = T−1
4 , TT5T = T3T4,

TR1T = R2, TR2T = R1, TR3T = R5R4, TR4T = R−1
4 , TR5T =

R3R4;

(d) σTjσ = Tj, σRjσ = Rj, j = 1, . . . , 5,

we obtain faithful symplectic representations

ρ : K̂/G5 → ˜Sp(10; Z) and η : K̂/F5 → ˜Sp(10; Z)

defined by

ρ(σ) =



−1 0 0 0 0 0 −1 −1 0 0
0 −1 0 0 0 −1 0 0 0 −1
0 0 −1 0 0 −1 0 0 0 −1
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 −1 0 −1 −1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



η(σ) =



−1 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
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ρ(T ) = η(T ) =



0 1 0 0 0 t11 t12 t13 t14 t15
1 0 0 0 0 t21 t22 t23 t24 t25
0 0 0 1 1 t31 t32 t33 t34 t35
0 0 0 −1 0 t41 t42 t43 t44 t45
0 0 1 1 0 t51 t52 t53 t54 t55
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 1 0 0



ρ(J) =



−1 0 0 0 0 j11 j12 j13 j14 j15
0 −1 0 0 0 j21 j22 j23 j24 j25
0 0 −1 0 0 j31 j32 j33 j34 j35
1 −1 1 0 −1 j41 j42 j43 j44 j45

−1 1 −1 −1 0 j51 j52 j53 j54 j55
0 0 0 0 0 −1 0 0 1 −1
0 0 0 0 0 0 −1 0 −1 1
0 0 0 0 0 0 0 −1 1 −1
0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 −1 0



η(J) =



0 −1 0 0 0 j11 j12 j13 j14 j15
−1 0 0 0 0 j21 j22 j23 j24 j25

0 0 0 −1 −1 j31 j32 j33 j34 j35
−1 1 −1 0 1 j41 j42 j43 j44 j45

1 −1 0 0 −1 j51 j52 j53 j54 j55
0 0 0 0 0 0 −1 0 −1 1
0 0 0 0 0 −1 0 0 1 −1
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 1 −1



ρ(W ) = η(W ) =



0 −1 0 0 0 w11 w12 w13 w14 w15

0 0 −1 0 1 w21 w22 w23 w24 w25

1 −1 0 1 0 w31 w32 w33 w34 w35

0 1 −1 −1 0 w41 w42 w43 w44 w45

0 −1 0 1 0 w51 w52 w53 w54 w55

0 0 0 0 0 0 −1 0 −1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1 0 −1
0 0 0 0 0 −1 0 −1 1 −1


Theorem 6.4. Let S be a maximal symmetric Riemann surface of genus 5
admitting a maximal reflection τ : S → S. Let p ∈ (2 −√

3, 1) be so that

(i) S = Ω/G5, if S/τ is genus one Riemann surface with 5 holes; or

(ii) S = Ω/F5, if S/τ is a genus zero surface with 6 holes.
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A Riemann matrix of S is given by Z = P + iQ, where P = 0 in case (ii),

P =
1

2


0 1 1 0 0
1 0 0 0 1
1 0 0 0 1
0 0 0 0 0
0 1 1 0 0

 in case (i)

Q =


2u + v u + v u + v v 2(u + v)
u + v 2u + v 2u + 3v −v u + 2v
u + v 2u + 3v 2u + v v u

v −v v −3v 2v
2(u + v) u + 2v u 2v 2u

,

where v =
w

2
− u,

w =


1

2π
Log

(∏
γ∈G2

|γ(q2) − A−1
1 (∞)|

|γ(q1) − A−1
1 (∞)|

)
in case (i)

1

2π
Log

(∏
γ∈F2

|γ(p2) − B−1
1 (∞)|

|γ(q1) − B−1
1 (∞)|

)
in case (ii)

u =



−1
2π

Log



√√√√ ∏
γ∈G2

|γ(q2) − A−1
1 (∞)|

|γ(q1) − A−2
1 (∞)|∏

γ∈G5

|γ(q2) − A−2
1 (∞)|

|γ(A−1
1 (q1)) − A−2

1 (∞)|

 in case(i)

−1
2π

Log



√√√√∏
γ∈F2

|γ(p2) − B−1
1 (∞)|

|γ(q1) − B−2
1 (∞)|∏

γ∈F5

|γ(p2) − B−2
1 (∞)|

|γ(B−1
1 (q1)) − B−2

1 (∞)|

 in case (ii)

q1 = exp(2π/3 − θ)i), q2 = J(q1), p2 = σp(q1) and θ ∈ (0, π
2
) is such that

cos θ = 2p/(1 + p2).

Proof. Let us start recalling that the group G5 (respectively, F5) is a normal
subgroup of the group G2 (respectively, F2), for each value of p. The sur-
face uniformized by G5 (respectively, F5) is denoted by S5 (respectively, R5)
and the surface uniformized by G2 (respectively, F2) is denoted by S2 (re-
spectively, R2). We also have regular (unbranched) covering P : S5 → S2

(respectively, P : R5 → R2), whose covering group is the Klein group
Z2 + Z2 generated by the automorphisms of S5 (respectively, R5) defined
by A1 and A2 (respectively, B1 and B2).
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The case G5: The Riemann matrix Z = X + iY ∈ H5 of S5 defined by the
above adapted symplectic homology basis is a fixed point of the symplectic
group ρ(K̂/G5). It follows that: tnm = jnm = 0, w11 = w15 = −w21 =
−w22 = −w31 = −w32 = w41 = w45 = −1, w22 = w23 = w24 = w31 = w24 =
w25 = w31 = w34 = w35 = w41 = w42 = w43 = w44 = w45 = w52 = w53 =
w54 = 0, and

Z =
1

2


0 1 1 0 0
1 0 0 0 1
1 0 0 0 1
0 0 0 0 0
0 1 1 0 0

 + i


2u + v u + v u + v v 2(u + v)
u + v 2u + v 2u + 3v −v u + 2v
u + v 2u + 3v 2u + v v u

v −v v −3v 2v
2(u + v) u + 2v u 2v 2u

,

where 0 < −v < u.

The case F5: The Riemann matrix Z = X + iY ∈ H5 of R5 defined by the
above symplectic basis is a fixed point of the symplectic group η(K̂/F5). It
follows that: tnm = jnm = wnm = 0, and

Z = i


2u + v u + v u + v v 2(u + v)
u + v 2u + v 2u + 3v −v u + 2v
u + v 2u + 3v 2u + v v u

v −v v −3v 2v
2(u + v) u + 2v u 2v 2u

,

where 0 < −v < u.

The relations between w,u and v

Let us now consider the regular coverings P : S5 → S2 (respectively,
P : R5 → R2). We have that H1(P ) : H1(S5, Z) → H1(S2, Z) (respectively,
H1(P ) : H1(R5, Z) → H1(R2, Z)) is given by H1(P )(θ1) = H1(P )(θ4) =
H1(P )(θ5) = α1, H1(P )(θ2) = H1(P )(θ3) = α2, H1(P )(δ1) = H1(P )(δ5) =
2β1, H1(P )(δ2) = H1(P )(δ3) = 2β2 and H1(P )(δ4) = 0. Let us denote by w1

and w2 the dual holomorphic one-forms of α1 and α2, respectively, for the
surface S2 (respectively, R2). Similarly, let us denote by η1, η2, η3, η4 and η5

the dual holomorphic one-forms of θ1, θ2, θ3, θ3 and θ5, respectively, for the
surface S5 (respectively, R5). It follows then the pull-back of holomorphic
forms P ∗ : H1,0(S2) → H1,0(S5) (respectively, P ∗ : H1,0(R2) → H1,0(R5)) is
defined by P ∗(w1) = η1 + η4 + η5 and P ∗(w2) = η2 + η3. Using the equality

4(u + v)i =

∫
δ1

η1 + η4 + η5 =

∫
δ1

P ∗w1 = 2

∫
β1

w1 = 2iw,

we obtain that w = 2(u + v).
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Again using the results due to Burnside [3] described at the end of sec-
tion 3 to the groups G5 and F5 we obtain

2u + v = −i

∫
δ1

η1 =
1

2π
Log

(∏
γ∈G5

|γ(q2) − A−2
1 (∞)|

|γ(A−1
1 (q1)) − A−2

1 (∞)|

)
, for G5

2u + v = −i

∫
δ1

η1 =
1

2π
Log

(∏
γ∈F5

|γ(q2) − B−2
1 (∞)|

|γ(B−1
1 (q1)) − B−2

1 (∞)|

)
, for F5.

From the above two equalities we obtain the forms for u and v as desired. �

7. Aknowledgments

The author is very thankful to the referee for his/her valuable suggestions
and questions. One of the referee’s questions was the following: Given
p ∈ (2 − √

3, 1) we have the Schottky groups of genus two G2 and F2.
To them we have a value of λ = λp > 1 and a value of η = ηp ∈ (0, π/3)
for the corresponding algebraic curves of 4.1. Is it possible to find a relation
between λ and η? For instance, for the value of p obtained in 6.3. we have
that η = eπi/6. What is the value of λ?

A partial answer to this question is given in 6.2. In there, for each value
of p we have the respective holomorphic map

F =
w1

w2

for either case G2 and F2.

In the case of F2 we have that F (0) is the center of a circle containing
the points F (e−iθ), F (p) and F (eiθ) in counterclockwise order. In this case
we have that

eiηp =
F (eiθ) − F (0)

F (p) − F (0)

In the case of G2 we have that F (0) is the center of three concentric circles,
one of them, say the internal one, containing F (p), the external one con-
taining F (1/p) and the center one containing the point F (eiθ). In this case
we have that

λp =
F (1/p) − F (0)

F (eiθ) − F (0)

Of course the above does not give an answer to the above question, but it
permits numerically to give the values of λp and ηp for the same value of p.
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