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On the product theory
of singular integrals

Alexander Nagel and Elias M. Stein

Abstract

We establish Lp-boundedness for a class of product singular inte-
gral operators on spaces M̃ = M1×M2×· · ·×Mn. Each factor space
Mi is a smooth manifold on which the basic geometry is given by a
control, or Carnot-Carathéodory, metric induced by a collection of
vector fields of finite type. The standard singular integrals on Mi are
non-isotropic smoothing operators of order zero. The boundedness of
the product operators is then a consequence of a natural Littlewood-
Paley theory on M̃ . This in turn is a consequence of a corresponding
theory on each factor space. The square function for this theory is
constructed from the heat kernel for the sub-Laplacian on each factor.

1. Introduction

The purpose of this paper is to develop an Lp theory of product singular
integrals in sufficient generality so that it can be used in a number of different
situations, and in particular for estimates of fundamental solutions of �b on
certain model domains in several complex variables. These applications will
be described in [NS03]. Beyond these applications, this theory would seem
to have an interest in its own right, as it differs in its setting from the product
theory studied in earlier papers. We now describe this background.

Any analysis of product singular integrals on a product space

M̃ = M1 × M2 × · · · × Mn

must be based, to start with, on a formulation of standard singular integrals
on each factor Mi. Such a class of operators on Mi can in turn be defined in
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relation to the underlying geometric structure of each Mi. As a first example,
take the factors Mi to be Euclidean spaces, and the class of operators on Mi

to be the convolution operators of (loosely speaking) Calderón-Zygmund
type. Then a corresponding product theory is developed in [FS82], but its
roots go back, at least implicitly, to [JMZ35]. A generalization to the case
where the Mi are appropriate nilpotent groups and the operators are of
convolution type is carried out in [MRS95] and [NRS01].

For the applications we have in mind, we need to generalize this situation
and replace each Mi by a space of more general type: one with a geometry
determined by a control distance defined in terms of a collection of distin-
guished vector fields {X1, X2, . . . , Xk} having the property that they and
their commutators span the tangent space at each point.

There are now at least two paths open to us. One is to generalize the class
of operators on each factor Mi to the extended class of the T (1) theorem
of David and Journé [DJ84], and then pass from this to a corresponding
product theory. This idea was carried out in [Jou85] in the setting where
each factor is a Euclidean space.

One might be able to carry out this approach for more general Mi. How-
ever, because of the inherent complications, we choose a second, simpler ap-
proach. We develop a theory which is more tractable and directly applicable
on the product M̃ even though the theory on each factor is somewhat less
general in scope. Specifically, we consider on each factor an intermediate de-
gree of generality– the class of singular integrals of NIS type (non-isotropic
smoothing operators of order 0). These operators occur naturally on the
boundary of various domains in C

n (see [NRSW89], [CNS92], and [Koe02]).
They may be viewed as Calderón-Zygmund operators whose kernels are C∞

away from the diagonal, and whose cancellation conditions are given quite
simply in terms of their action on smooth bump functions. It is a combi-
nation of these two properties that make the operators on each Mi easy to
handle, and this carries over to the product-type operators on M̃ .

The precise definition of the class of operators on each Mi is given below
in section 2. Any product theory tends to be burdened with notational com-
plexities. It seems easiest to first present full details of the product kernels
when there are only two factors, and then consider the general situation.
Thus the definition of the corresponding class of product operators for two
factors is given in section 3, and the definition of the class of operators on
an arbitrary finite Cartesian product is given in section 4.

The key to the proof of the L2 and Lp boundedness of these operators
is the existence of a natural Littlewood-Paley theory on M̃ , which is it-
self a consequence of the corresponding theory on each factor. The square
function that we use is constructed in terms of the heat equation, and the
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details of this are carried out in section 2. The basic interplay between the
singular integrals and the square function is provided by Proposition 3.3.1
in the single-factor case, and Proposition 4.2.4 in the general product case.
Our main theorems, (Theorems 4.1.2 and 5.1.1), on the Lp boundedness of
product operators then follows easily from these considerations.

2. The Littlewood-Paley Theory

We are interested in demonstrating the Lp boundedness of product singular
integrals on a product space M̃ = M1 × M2 × · · · × Mn. To carry this out
we shall first need to describe a Littlewood-Paley theory for each factor Mi,
1 ≤ i ≤ n, and then pass to the corresponding product theory. We begin by
concentrating on a fixed Mi, which we denote by M , dropping the subscript i.
We describe the corresponding underlying geometric structure, and then the
resulting square functions defined in terms of the heat equation.

For the sake of simplicity, and because of the applications we have in
mind (see [NS03]), we shall focus our attention on two specific settings:

(A) Here M is a compact connected C∞-manifold. We suppose that we are
given k smooth real vector fields on {X1, . . . , Xk} on M which are of
finite-type m in the sense that these vector fields together with their
commutators of order ≤ m span the tangent space to M at each point.

(B) Here M arises as the boundary of an unbounded model polynomial
domain in C

2. Thus let Ω =
{
(z, w) ∈ C

2
∣∣�m[w] > P (z)

}
, where P is

a real, subharmonic, non-harmonic polynomial of degree m. Then M =
∂Ω can be identified with C × R = {(z, t), z ∈ C, t ∈ R}. The basic
(0, 1) Levi vector field is then Z̄ = ∂

∂z̄
− i ∂P

∂z̄
∂
∂t

, and we write Z̄ = X1 +
iX2. The real vector fields {X1, X2} and their commutators of orders
≤ m span the tangent space at each point. Thus this M is a special
non-compact variant, with k = 2, of the manifolds considered in (A).

2.1. Geometry on M

The most important geometric object we need is one of a class of equivalent
control distances constructed on M via the vector fields {X1, · · ·Xk}. One
variant of the control distance can be defined as follows. For x, y ∈ M ,
let AC(x, y, δ) denote the collection of absolutely continuous mappings ϕ :
[0, 1] → M with ϕ(0) = x, ϕ(1) = y, and for almost every t ∈ [0, 1],
ϕ′(t) =

∑k
j=1 ak Xk

(
ϕ(t)

)
with |ak| ≤ δ. Then the control distance ρ(x, y)

from x to y is the infimum of the set of δ > 0 such that AC(x, y, δ) �= ∅. For
details, see [NSW85], and [NS01b].
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The result we need here is that there is a pseudo-metric d ≈ ρ on M
equivalent to this control metric1 which has the optimal smoothness; i.e.
d(x, y) is C∞ on {M × M − diagonal}, and for x �= y

(2.1)
∣∣∂K

X ∂L
Y d(x, y)

∣∣ � d(x, y)1−K−L .

(Here ∂K
X is a product of K of the vector fields {X1, . . . , Xk} acting as

derivatives on the x-variable, and ∂L
Y are a corresponding L vector fields

acting on the y-variable). For the existence of such a pseudo-metric, see
Theorems 3.3.1 and 4.4.6 in [NS01b] where d is denoted by ρ̃. We shall also
assume that in the case (A), upon using an equivalent pseudo-metric, we
have d(x, y) ≤ 1 for all x, y ∈ M .

We consider a volume measure on M as follows. When we are in the
compact situation (A), then we take any fixed smooth measure on M with
strictly positive density. In the situation (B) we take Lebesgue measure
on C × R. In either case, when integrating we write the measure as dx.
We denote the measure of a set E by |E|.

We define balls B(x, δ) = {y ∈ M , d(x, y) < δ}, with 0 < δ ≤ 1 in
case (A), and 0 < δ < ∞ in case (B). We have the following formulae for
the volume |B(x, δ)|:

|B(x, δ)| ≈
∑
|I|≤r

|λI(x)|δ|I| in case (A);(2.2)

|B(x, δ)| ≈
( m∑

k=2

Λk(x) δk
)

δ2 in case (B).(2.3)

Here |λI | and Λk are the appropriate Levi-invariants, and are continuous,
non-negative functions on M (see theorem 2.2.4 and section 4.1 in [NS01b]).
The balls have the required doubling property

(2.4) |B(x, 2δ) | ≤ C |B(x, δ)| , for all δ > 0.

We also introduce the volume functions

Vδ(x) = |B(x, δ)|,
V (x, y) = |B(x, d(x, y))|.(2.5)

It is important to observe that

(2.6) V (x, y) ≈ V (y, x).

1Here, and throughout the paper, A ≈ B means that the ratio A/B is bounded and
bounded away from zero by constants that do not depend on the relevant variables in A
and B. A � B means that the ratio A/B is bounded by a constant independent of the
relevant variables. We shall also assume that the pseudo-metric satisfies d(x, y) = d(y, x).
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In fact if d(x, y) ≤ δ, then B(y, δ) ⊂ B(x,Cδ), so |B(y, δ)| ≤ |B(x,Cδ) | ≤
C ′ |B(x, δ)| by the doubling property. If we take δ = d(x, y), this gives
V (y, x) ≤ C ′ V (x, y), and by symmetry (2.6) is established. Also note that
in case (B), it follows from (2.3) that we have∣∣B(x, s δ)

∣∣ ≥ s4
∣∣B(x, δ)

∣∣ for s ≥ 1.(2.7)

Remark 2.1.1 Whenever a > 0, there is a constant Ca so that

(2.8)

∫
d(x,y)≤1

d(x, y)+a

V (x, y)
dy ≤ Ca, and

∫
d(x,y)≥1

d(x, y)−a

V (x, y)
dy ≤ Ca.

In fact we can write the first integral as

∞∑
k=0

∫
2−k−1 < d(x,y)≤ 2−k

d(x, y)a

V (x, y)
dy.

On the other hand,∫
2−k−1<d(x,y)≤2−k

d(x, y)a

V (x, y)
dy ≤ 2−ka

∣∣B(
x, 2−k−1

)∣∣−1
∫

d(x,y)≤2−k

dy

= 2−ka |B(x, 2−k)|
|B(x, 2−k−1)| ≤ C 2−ka .

Summing in k gives the estimate for the first integral. The second integral
in (2.8) is non-zero only in case (B) and is dealt with in the same way.

2.2. The maximal function

The analogue of the standard maximal function is defined as follows:

M[f ](x) = sup
δ>0

1

|B(x, δ)|
∫

B(x,δ)

|f(y)| dy .

Note that for a > 0,

(2.9) sup
δ>0

δa

∫
d(x,y)>δ

(d(x, y))−a

V (x, y)
|f(y)| dy ≤ C M[f ](x) .

In fact,

δa

∫
2k+1δ ≥ d(x,y)>2kδ

d(x, y)−a

V (x, y)
|f(y)| dy

≤ 2−ka 1

|B(x, 2kδ)|
∫
|B(x,2k+1δ)|

|f(y)| dy ≤ C 2−ka M[f ](x)

and summing in k establishes (2.9).
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Standard arguments (see [Ste93, Chapter I]) using the properties of the
balls, and in particular the doubling property (2.4), prove that

(2.10) ‖ M[f ] ‖Lp(M) ≤ Ap ‖ f ‖Lp(M) , 1 < p ≤ ∞ .

We shall also need a vector-valued form of this inequality, which we
formulate in its continuous version. Suppose f(s, x) = fs(x) is a measurable
function on R+ × M so that fs ∈ Lp(M) for almost every s. Then for
1 < p < ∞ there is a constant Ap so that

(2.11)

∥∥∥∥(∫ ∞

0

M(fs)
2 ds

)1/2 ∥∥∥∥
Lp(M)

≤ Ap

∥∥∥∥ (∫ ∞

0

|fs|2 ds

)1/2 ∥∥∥∥
Lp(M)

.

The proof of (2.11) follows as in [Ste93, Chapter II, Section 1].

2.3. The Heat Equation

We consider the sub-Laplacian L on M in self-adjoint form, given by

L =
k∑

j=1

X∗
j Xj .

Here (X∗
j ϕ, ψ) = (ϕ,Xjψ), where

(ϕ, ψ) =

∫
M

ϕ(x)ψ(x) dx,

and ϕ, ψ ∈ C∞
0 (M), the space of C∞ functions on M of compact support.

In general, X∗
j = −Xj + aj where aj ∈ C∞(M).

We are interested in the initial value problem for the heat equation:

∂u

∂s
(x, s) + Lxu(x, s) = 0 , with u(x, 0) = f(x) .

The solution we have in mind is given by

u(x, s) = Hs[f ](x),

where Hs is the operator given via the spectral theorem by Hs = e−sL, and
an appropriate self-adjoint extension of the non-negative operator L initially
defined on C∞

0 (M). (See [NS01a], and in particular the remarks preceding
Theorem 2.3.5). One can then assert:
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Proposition 2.3.1 Whenever f ∈ L2(M), we have

Hs[f ](x) =

∫
M

H(s, x, y) f(y) dy.

Moreover

1. H(s, x, y) ∈ C∞(
[0,∞) × M × M \ {s = 0 and x = y}). For s > 0,

∂H

∂s
(s, x, y) = −Lx H(s, x, y) = −Ly H(s, x, y).

2. H(s, x, y) satisfies the following differential inequalities for every inte-
ger N ≥ 0:

(a) When d2(x, y) ≥ s,∣∣∂j
s ∂L

X ∂K
Y H(s, x, y)

∣∣ � d(x, y)−2j−K−L

V (x, y)

(
s

d2(x, y)

)N

.

(b) When d2(x, y) ≤ s,∣∣∂j
s ∂L

X ∂K
Y H(s, x, y)

∣∣ � s−j−K/2−L/2

V√
s(x)

.

In particular, for every L and K, there is a constant CL,K so that for all
s ∈ (0,∞) and all x, y ∈ M∣∣∂L

X ∂K
Y H(s, x, y)

∣∣ ≤ CK,L
d(x, y)−K−L

V (x, y)
.

3. For each integer L ≥ 0 there exists an integer NL and a constant CL so
that if ϕ ∈ C∞

0

(
B(x0, δ)

)
, then for all s ∈ (0,∞)∣∣∂L

XHs[ϕ](x0)
∣∣ ≤ CL δ−L sup

x

∑
|J |≤NL

δ|J |
∣∣∂J

Xϕ(x)
∣∣.

4. For all (s, x, y) ∈ (0,∞) × M × M ,

H(s, x, y) = H(s, y, x);

H(s, x, y) ≥ 0.

5. For all (s, x) ∈ (0,∞) × M ,

∫
M

H(s, x, y) dy = 1.

6. For 1 ≤ p ≤ ∞, ‖ Hs(f) ‖Lp(M) ≤‖ f ‖Lp(M) .

7. For every ϕ ∈ C∞
0 (M) and every t ≥ 0,

lim
s→0

||Hs[ϕ] − ϕ||t = 0

where || · ||t denotes the Sobolev norm.
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Proof. The assertions (1), (2), and (3) of Proposition 2.3.1 are proved
in [NS01a]. In establishing (4), the fact that H(s, x, y) is real follows easily
from the fact that the operator L is real, and the symmetry H(s, x, y) =
H(s, y, x) is then a consequence of the fact that e−sL is self-adjoint.

The proof of the non-negativity of H(s, x, y) requires several steps. First,
since L is non-negative, for each λ > 0 the resolvent

R(λ,L) = (λI + L)−1

is a bounded operator on L2(M) with norm ≤ 1/λ by the spectral theorem.
Notice also that

(λI + L)−1[f ] = lim
ε→0

∫ 1/ε

ε

(
e−λs e−sL)

[f ] ds = lim
ε→0

∫ 1/ε

ε

e−λs Hs[f ] ds

with the limit taken in the L2(M) norm. We shall need the following prop-
erties of R(λ,L).

Lemma 2.3.2

(a) For λ > 0 there is a constant Cλ so that for all f ∈ L2 ∩ L∞,

‖ R(λ,L)[f ] ‖L∞(M) ≤ Cλ ‖ f ‖L∞(M) .

(b) If f ∈ C∞
0 (M), then R(λ,L)[f ] ∈ C∞(M).

(c) Let C denote the space of continuous functions on M vanishing at in-
finity. Then if f ∈ L2 ∩ C, it follows that R(λ,L)[f ] ∈ L2 ∩ C.

(d) If f ∈ L2 and f ≥ 0, then R(λ,L)[f ] ≥ 0.

Proof of Lemma 2.3.2 Let us write

R(λ, L)[f ](x) =

∫
M

f(y) rλ(x, y) dy.

Then

rλ(x, y) =

∫ ∞

0

e−λs H(s, x, y) ds.

We make two estimates on rλ(x, y). First, we claim that there is a
constant C so that for all λ > 0 we have

(2.12) |rλ(x, y)| ≤ C
d2(x, y)

V (x, y)
.

Second, for each λ > 0 we claim that there is a constant Cλ so that

(2.13) |rλ(x, y)| ≤ Cλ
d−2(x, y)

V (x, y)
.

In the compact case (A), only the estimate (2.12) is relevant.
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To establish (2.12), we make no use of the decay given by the term e−λs.
In fact using

|H(s, x, y)| �
{

V (x, y)−1 when s ≤ d(x, y)2,

V√
s(x)−1 when s ≥ d(x, y)2,

we see that

|rλ(x, y)| ≤
(∫ d(x,y)2

0

ds

)
V (x, y)−1 +

∫ ∞

d(x,y)2
V√

s(x)−1 ds .

The second integral arises only in the noncompact case (B). To handle it,
substitute

√
s = d(x, y) t. Then∫ ∞

d(x,y)2
V√

s(x)−1 ds = 2 d(x, y)2

∫ ∞

1

Vd(x,y) t(x)−1 t dt.

But for t ≥ 1, since we are dealing with case (B) it follows from (2.7)
and (2.5) that

Vd(x,y) t(x) ≥ t4 Vd(x,y)(x) = t4 V (x, y).

Thus ∫ ∞

d2(x,y)

V√
s(x)−1 ds � d(x, y)2 V (x, y)−1

∫ ∞

1

u−3 du � d2(x, y)

V (x, y)
.

This gives the estimate (2.12).

To establish (2.13) we use the decay of e−λs, and the estimate

|H(s, x, y)| � V (x, y)−1 s

d(x, y)2

when s ≤ d(x, y)2. We get

|rλ(x, y)| �
(∫ ∞

0

s e−λs ds

)
V (x, y)−1 d(x, y)−2 +

∫ ∞

d(x,y)2
e−λs V√

s(x)−1 ds .

The second term is dominated by(∫ ∞

d(x,y)2
s e−λs ds

)
V (x, y)−1 d(x, y)−2

and so we obtain

|rλ(x, y)| � d−2(x, y)

V (x, y)
.

Thus (2.12) and (2.13) are established.
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Now using (2.12) when d(x, y) ≤ 1, and (2.13) when d(x, y) ≥ 1, we see that
because of (2.8) we have ∫

M

|rλ(x, y)| dy ≤ Cλ,

which leads to conclusion (a) of Lemma 2.3.2.
Next, if f ∈ C∞

0 (M), then f belongs to the domain of LN for ev-
ery positive integer N , and hence by the spectral theorem LNR(λ,L)f =
R(λ, f)LNf . Since L is sub-elliptic it follows that R(λ,L)f ∈ C∞, which
establishes conclusion (b) of Lemma 2.3.2.

Notice that in the case (B) when M is not compact, if f ∈ C∞
0 (M) the

estimates (2.12) and (2.13) show that R(λ,L)f vanishes at infinity. Asser-
tion (c) of Lemma 2.3.2 is then a consequence of an approximation argument
in the sup norm, using conclusion (a).

Finally, we turn to the crucial conclusion (d) regarding the positivity
of R(λ,L). It suffices to prove that R(λ,L)[f ] ≥ 0, whenever f ∈ C∞

0 (M)
and f ≥ 0. Let F = R(λ,L)[f ]. We have seen that F is C∞, and vanishes at
infinity. Suppose that for some x0 ∈ M , F (x0) < 0; we shall show this leads
to a contradiction. We may take x0 to be a local minimum of F . Now
(λI+L)F = f and hence L(F )(x0) = f(x0)−λF (x0). Since λ>0 this implies

k∑
j=1

(
X∗

j Xj

)
(F )(x0) > 0,

and hence for at least one j, X∗
j Xj(F ) (x0) > 0. However, X∗

j (f) =
−Xj(f) + ajf , and Xj(F )(x0) = 0, so it follows that X2

j (F )(x0) < 0. Let
γ(t) = F ((exp t Xj)(x0)). Then γ′(0) = 0, while γ′′(0) < 0, contradicting
the fact that γ(t) has a local minimum at t = 0. This completes the proof
of Lemma 2.3.2. �

We can now prove assertion (4) of Proposition 2.3.1. Since R(λ,L) pre-
serves L2 and positivity, we see that the same holds for (R(λ,L))N , for every
positive integer N . However if s > 0, then(N

s
R (N/s , L)

)N

f = (I + (s/N)L)−N f

and by the spectral theorem this converges in the L2(M) norm to e−sL(f) =
Hs(f); thus we see that Hs is positivity preserving.

To prove assertion (5) of Proposition 2.3.1, let

u(s, x) =

∫
M

H(s, x, y) dy.

Note that this integral converges by the estimates (2) in Proposition 2.3.1,
and those in (2.13).
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We show first that ∂u
∂s

(s, x) ≡ 0. Let

uσ(s, x) =

∫
M

H(s, x, y) η

(
d(x, y)

σ

)
dy

where η is a C∞ function with η(u) = 1, if u ≤ 1/2, and η(u) = 0, if u ≥ 1.
Then by the estimates alluded to, the relevant integrals converge and this
shows that uσ(s, x) → u(s, x) and ∂uσ

∂s
(s, x) → ∂u

∂s
(s, x) as σ → ∞.

However, since η
(

d(x,y)
σ

)
is in C∞

0 (as a function of y), we have that

∂uσ

∂s
(s, x) = −

∫
M

H(s, x, y)Ly η

(
d(x, y)

σ

)
dy

and this tends to zero as σ → ∞. The result is that u(x) =
∫

M
H(s, x, y) dy

is independent of s. We have

u(x) − uσ(s, x) =

∫
M

H(s, x, y) (1 − η)

(
d(x, y)

σ

)
dy.

For σ > 0 fixed, the integrand is supported where 2d(x, y) ≥ σ. Since

H(s, x, y) � s V (x, y)−1 d(x, y)−2 for s ≤ d(x, y)2

it follows from Remark 2.1.1 and the dominated convergence theorem that
uσ(s, x) → u(x) as s → 0. The same estimate

H(s, x, y) � s V (x, y)−1 d(x, y)−2

shows that for any ε > 0 and any x ∈ M there is a constant A > 1 so that∫
d(x,y)≥As1/2

H(s, x, y) dy ≤ ε

∫
M

H(s, x, y) dy = ε u(x).

A standard argument then shows that if f is bounded on M and continuous
at x ∈ M then

lim
s→0

∫
M

H(s, x, y) f(y) dy = u(x) f(x).

If we apply this to f(y) = η
(
σ−1 d(x, y)

)
, we see that u(x) = η(0) = 1. Thus

u(s, x) ≡ 1, proving conclusion (4) of Proposition 2.3.1.

As is well-known, conclusion (6) of Proposition 2.3.1 follows from the
facts that ∫

M

|H(s, x, y)|dy =

∫
M

|H(s, x, y) |dx = 1

which are themselves immediate consequences of (4) and (5).
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To establish conclusion (7), first note that the spectral theorem shows
that lims→0 ||Hs[ϕ]−ϕ||L2(M) = 0. Next, since Lx H(s, x, y) = Ly H(s, x, y),
it follows that if ϕ ∈ C∞

0 (M), then for any integer N , LN Hs[ϕ] = Hs[Lnϕ].
Thus for any N , lims→0 ||Ln Hs[ϕ]−Lnϕ||L2(M) = ||Hs[Ln ϕ]−Lnϕ||L2(M) =
0. Since L satisfies a subelliptic estimate, we obtain convergence of Hs[ϕ]
to ϕ in any Sobolev space. Proposition 2.3.1 is therefore proved. �

We shall next look at the behavior of Hs[f ] as s → ∞. To do this we
consider the spectral resolution of the operators Hs = e−sL given by

Hs =

∫ ∞

0

e−µs dE(µ).

Here E(µ) is an increasing family of orthogonal projections, for 0 ≤ µ < ∞,
with E(µ) → I, as µ → ∞; we set E0 = E(0). E0 is just the orthogonal
projection of L2(M) onto the null space of the (closed) operator L.

Proposition 2.3.3 Let f ∈ L2(M). In case (A) when M is compact,
we have

E0(f) =
1

|M |
∫

M

f dx.

There exists a µ1 > 0, so that

(2.14) ‖ Hs(f) − E0(f) ‖L2 ≤ e−µ1s ‖ f ‖L2 .

In case (B) when M is non-compact, we have E0[f ] ≡ 0, and

(2.15) ‖ Hs(f) ‖L2→ 0 , as s → ∞ .

Proof.Consider the compact case first. If E0(f0) = f0, then Hs(f0)=f0, for
all s > 0; however u(s, x) = Hs(f0)(x) satisfies the heat equation

∂u

∂s
+ Lx(u(s, x)) = 0,

therefore f0 ∈ C∞, and L(f0) = 0. The compactness of M allows us to
integrate by parts, and so

0 = (Lf0, f0) =
k∑

j=1

(Xj f0, Xjf0),

which implies Xjf0 = 0, 1 ≤ j ≤ k. As a result, f0 is constant. Thus the
subspace corresponding to E0 consists of the constant functions, and

E0(f) =
1

|M |
∫

M

f dx.
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Next, consider the resolvent R = R(1,L) = (I + L)−1. In view of kernel
estimate 2.12 and the compactness of M , it is clear that R is a compact
operator on L2(M). Hence the eigenvalues of R are discrete and accumulate
only at 0; as a result the spectrum of L is discrete and its eigenvalues accu-
mulate only at infinity. Thus L has a smallest strictly positive eigenvalue µ1.
The fact that

Hs =

∫ ∞

0

e−sµ dE(µ)

then establishes (2.14).

Turning to the non-compact case (B), we observe that

|Hs(f)(x)| ≤
(∫

M

|H(s, x, y)|2 dy

)1/2

‖ f ‖L2 .

However∫
M

|H(s, x, y)|2 dy � V√
s(x)−2

∫
d(x,y)≤√

s

dy +

∫
d(x,y)≥√

s

dy

V (x, y) d(x, y)3

by the estimates in Proposition 2.3.1, since V (x, y) ≥ c d(x, y)3. Therefore
by (2.8) we have that∫

|H(s, x, y)|2 dy → 0, as s → ∞.

So if Hs(f0) = f0, it follows that f0 = 0, and hence E0 ≡ 0. It follows
therefore that in this case,

‖ Hs(f) ‖2 =

∫ ∞

0+

e−2µs d(E(µ)f, f) → 0 , as s → ∞

and Proposition 2.3.3 follows by the dominated convergence theorem. This
completes the proof of Proposition 2.3.3. �

We record here related conclusions that are valid in both cases (A)
and (B). If f ∈ L2(M) then

(2.16) lim
s→0

∥∥∥∥s
∂Hs

∂s
[f ]

∥∥∥∥
L2

= lim
s→∞

∥∥∥∥s
∂Hs

∂s
[f ]

∥∥∥∥
L2

= 0.

In fact, ∥∥∥∥s
∂Hs

∂s
[f ]

∥∥∥∥2

L2

=

∫ ∞

0+

(sµ)2 e−2sµ d (E(µ)[f ], f)

and this tends to zero if either s → 0 or s → ∞, by the dominated conver-
gence theorem.
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2.4. A reproducing identity

Define a bounded operator Qs = 2s ∂Hs

∂s
, s>0 on L2(M) and let Q2

s = Qs ·Qs.

Proposition 2.4.1 For f ∈ L2(M),

(2.17)

∫ ∞

0

Q2
s[f ]

ds

s
= f − E0[f ] , f ∈ L2(M) ,

where the integral on the left is defined as lim
ε→0

∫ 1/ε

ε

Q2
s[f ]

ds

s
, with the limit

taken in the L2 norm.

Proof. Since Hs = e−sL, it follows that Q2
s = 4s2L2 e−2sL = s2 ∂2

∂s2 (H2s).
Therefore∫ 1/ε

ε

Q2
s[f ]

ds

s
=

∫ 1/ε

ε

s
∂2

∂s2
(H2s[f ]) ds

=

∫ 1/ε

ε

∂

∂s
(s

∂

∂s
H2s(f)) ds −

∫ 1/ε

ε

∂

∂s
H2s ds .

On the last line, one term goes to zero as ε → 0, in view of (2.16); the
other terms goes to f − E0(f) in view of Proposition 2.3.3. Thus (2.17) is
established. �

2.5. The square function

For f ∈ L2(M) we define the square function S(f) by

(S[f ](x))2 =

∫ ∞

0

|Qs[f ](x)|2 ds

s

Proposition 2.5.1

1. For f ∈ L2(M),

‖S[f ]‖2
L2(M) + ‖E0(f)‖2

L2(M) = ‖f‖2
L2(M) .

2. For 1 < p < ∞, if f ∈ Lp(M) then

‖S[f ]‖Lp(M) + ‖E0(f)‖Lp(M) ≈ ‖f‖Lp(M) .

The L2 equality (1) follows from the identity of Proposition 2.4.1 by
taking the inner product with f . The heart of the matter is the Lp esti-
mates (2). To see these, one applies the abstract Littlewood-Paley theory
in [Ste70]. In fact, Proposition 2.3.1 shows that Hs, 0 < s < ∞, is a sym-
metric diffusion semi-group in the sense of that reference, and the results in
Chapter 4 of [Ste70] then establish the proposition.
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2.6. The product case

We now assume that M̃ = M1 × M2 where each Mi is as above. For each i,
we have a heat operator H i

si
, and a corresponding Qi

si
, together with the

projection Ei
0. If f is a function on M̃ we define Q1

s1
· Q2

s2
= Q1

s1
⊗ Q2

s2
,

with Q1 acting on the M1 variable, and Q2 acting on the M2 variable. The
product square function is then S̃ given by

(2.18)
(
S̃(f)(x)

)2

=

∫ ∞

0

∫ ∞

0

∣∣Q1
s1
· Q2

s2
(f)(x)

∣∣2 ds1 ds2

s1 s2

Proposition 2.6.1 For 1 < p < ∞,

(2.19) ‖ S̃(f) ‖Lp(M̃) + ‖ E1
0(f) ‖Lp(M̃) + ‖ E2

0(f) ‖Lp(M̃) ≈‖ f ‖Lp(M̃) ,

This can be derived from Proposition 2.5.1 if we observe that this holds as
well for functions which take their values in a Hilbert space.

To begin with, suppose E1
0(f) = E2

0(f) = 0. For each fixed x2 ∈ M2,
set Fx2(x1) = Q2

s2
(f)(x1, x2), and consider it as a function on M1, with

values in the Hilbert space L2
(

ds2

s2

)
. Note that E1

0(Fx2) = 0. Therefore, by
Proposition 2.5.1,∥∥∥S̃[f ](·, x2)

∥∥∥
Lp(M1)

=

∥∥∥∥(∫ ∫ ∣∣Q1
s1

· Q2
s2

[f ]( · , x2)
∣∣2 ds1 ds2

s1 · s2

)1/2 ∥∥∥∥
Lp(M1)

≈ ‖Fx2( · )‖Lp(M1)

=

∥∥∥∥(∫ ∣∣Q2
s2

[f ] ( · , x2)
∣∣2 ds2

s2

)1/2 ∥∥∥∥
Lp(M1)

≈ ‖f( · , x2)‖Lp(M1) .

Now raise both sides to the pth power and integrate in x2 ∈ M2 to ob-
tain (2.19) in this case.

For the general case write f = f0 + f1 + f2 + f3 where

f0 = (1 − E1
0) (1 − E2

0) [f ], f1 = E1
0 [f ], f2 = E2

0 [f ], and f3 = −E1
0 E2

0 [f ].

Note that
Q1

s1
· Q2

s2
[f0] = Q1

s1
· Q2

s2
[f ]

while
‖ E1

0 E2
0 [f ] ‖Lp(M̃) ≤‖ E2

0 [f ] ‖Lp(M̃)

by Hölder’s inequality.
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3. Lp estimates; the single factor case

In this section we again consider the special case where M = Mi for some i,
and we suppose that {X1, . . . , Xk} are smooth vector fields on M , which
together with their commutators span the tangent space at every point.
We study Lp-boundedness of a class of singular integral operators on M
determined by the geometry studied in section 2.1.

Our operators will be characterized in part in terms of their action on
bump functions. Loosely speaking, these are defined as follows: we say ϕ is
a bump function associated to a ball B(x0, δ), if it is supported in that ball,
and satisfies the differential inequalities |∂a

Xϕ| � δ−a, for all monomials ∂X in
X1, . . . , Xk of degree a, and all a ≥ 0. A useful way to construct such ϕ is by
setting ϕ(x) = η

(
d(x,y)

δ

)
with η a fixed C∞ function on (0,∞), η(u) = 0,

when u ≥ 1. Here d(x, y) is the regularized distance used in Section 2.
We give precise definitions in the next subsection.

3.1. A class of singular integral operators on M

We consider a class of singular integral operators T which we assume initially
are given as mappings from C∞

0 (M) to C∞(M). We suppose the operator T
has a distribution kernel K(x, y) which is C∞ away from the diagonal of
M × M , and we suppose the following four properties hold:

(I-1) If ϕ, ψ ∈ C∞
0 (M) have disjoint supports, then

〈Tϕ, ψ〉 =

∫
M×M

K(x, y)ϕ(y)ψ(x) dx dy.

(I-2) If ϕ is a normalized bump function associated to a ball of radius r,
then |∂a

X Tϕ| � r−a. More precisely, for each integer a ≥ 0, there is
another integer b ≥ 0 and a constant Ma,b so that whenever ϕ is a C∞

function supported in a ball B(x0, r), then

sup
x∈M

ra |(∂a
X Tϕ) (x)| ≤ Ma,b sup

c≤b
sup

x∈B(x0,r)

rc |∂c
X(ϕ)| .

(I-3) If x �= y, then for every a ≥ 0∣∣∂a
X,Y K(x, y)

∣∣ � d(x, y)−a V (x, y)−1 .

(I-4) Properties (I-1) through (I-3) also hold with x and y interchanged.
That is, these properties also hold for the adjoint operator T t defined by

〈T tϕ, ψ〉 = 〈Tψ, ϕ〉.
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Our main result in this section is as follows:

Theorem 3.1.1 Each singular integral operator T satisfying the conditions
(I–1) through (I–4) extends to a bounded operator on Lp(M) when-
ever 1 < p < ∞.

3.2. The relationship with NIS operators

We want to explain the relationship between the class of operators defined
in subsection 3.1 by properties (I-1) through (I-4), and the notion of NIS
operators smoothing of order zero. A class of NIS operators smoothing of
order m was introduced in [NRSW89] and [CNS92]. When m = 0, this
class is closely connected to but more restrictive than the operators con-
sidered in subsection 3.1. For an operator T , in addition to the proper-
ties (I-1) through (I-4), it is assumed that there is a family of operators
Tε[f ](x) =

∫
M

Kε(x, y) f(y) dy where Kε ∈ C∞(M × M) which satisfies
properties (I-2) through (I-4) uniformly in ε such that Tε[f ] → T [f ] in C∞.
This condition was imposed in order to prove that the operators in question
formed an algebra under composition. However, as pointed out in [Koe02],
it was implicitly assumed that the identity operator is an NIS operator
smoothing of order zero. In order to overcome this difficulty, a modifica-
tion of the definition of NIS operators is given in [Koe02] where an a priori
Sobolev inequality is imposed for the operator T instead of the existence of
an approximating family Tε. This definition was used in [NS01a].

In our present context, we do not need to establish that operators satis-
fying properties (I-1) through (I-4) form an algebra. Thus both previously
defined classes of NIS operators smoothing of order zero are covered by
Theorem 3.1.1.

Remark 3.2.1 Conclusions (1), (2), (3), (4) and (7) of Proposition 1.3.1
now show that the identity operator on L2(M) is an NIS operator smoothing
of order zero in the sense of [NRSW89] and [CNS92].

3.3. Singular integrals and square functions

In addition to the use of the Littlewood-Paley theory in Section 2, the key
tool in proving Theorem 3.1.1 is the following estimate:

Proposition 3.3.1 For each operator T satisfying the conditions (I-1)
through (I-4), ∣∣∣Qt TQsf(x)

∣∣∣ � (t/s)1/2 M(f)(x), if t ≤ s

where M is the standard maximal function. A similar result holds if s ≤ t.
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We shall prove this proposition by writing

Qs =

∞∑
k=0

Qk
s , Qt =

∞∑
j=0

(Qj
t)

∗

and showing:∣∣∣(Qj
t)

∗ TQk
s f(x)

∣∣∣ � 2−2k · 2−2j min

{
2jt1/2

2ks1/2
,

2ks1/2

2jt1/2

}
Mf(x).

Here Qk
s will be like Qs, except that its support is restricted to d(x, y) �

2k
√

s. Details of this decomposition will be given in section 3.5 below. Note
that the second decomposition for Qt follows from the first, because Q∗

t = Qt.

3.4. Two observations

The proof of Proposition 3.3.1 is based on the following observations.

Observation 3.4.1 Suppose that ϕρ(x, x0) is a bump-function (in x), as-
sociated to B(x0, ρ) and that ψr(y, y0) is a bump-function (in y) associated
to B(y0, r). Assume further that∫

ϕρ(x, x0)dx =

∫
ψr(y, y0) dy = 0.

Let K(x, y) be the distribution kernel of an operator T satisfying (I-1) to (I-4),
and set

I =

∫∫
K(x, y)ϕρ(x, x0)ψr(y, y0) dx dy

If r ≤ ρ then

(a) |I| � r

ρ
· Vr(y0);

(b) |I| � r

d(x0, y0)
· Vρ(x0) · Vr(y0)

V (x0, y0)
if d(x0, y0) ≥ 10ρ.

To see this, first consider (a). Note that since ϕρ is a bump-function associ-
ated to a ball of radius ρ, conditions (I-2) and (I-4) show that

Φ(y) =

∫
K(x, y)ϕρ(x, x0) dx

satisfies
∣∣∂a

Y Φ(y)
∣∣ � ρ−a. But

I =

∫
Φ(y)ψr(y, y0) dy =

∫
[Φ(y) − Φ(y0)] ψr(y, y0) dy



Product Theory of Singular Integrals 549

Let y ∈ B(y0, r), and let γ(t) be an appropriate path joining y0 to y
whose tangent is in the span of {X1, . . . , Xk}. Then

∣∣Φ(y) −Φ(y0)
∣∣ � ρ−1r

since

Φ(y) − Φ(y0) =

∫ r

0

∂

∂t
(Φ(γ(t))) dt ,

and hence

(3.1) |Φ(y) − Φ(y0)| � r

k∑
j=1

sup |Xj(Φ)| � r

ρ
.

Since ∫ ∣∣ψr(y, y0)
∣∣ dy � Vr(y0),

this establishes assertion (a).
To prove assertion (b) write

I =

∫∫
[K(x, y) − K(x, y0)] ϕρ(x, x0)ψr(y, y0) dx dy.

If x ∈ B(x0, ρ), y ∈ B(y0, r), d(x0, y0) ≥ 10 ρ and ρ ≥ r then∣∣∣K(x, y) − K(x, y0)
∣∣∣ � r

V (x0, y0) · d(x0, y0)
.

This fact is a consequence of (I-3) and the argument leading to (3.1). Since∫∫ ∣∣ϕρ(x, x0)ψr(y, y0)
∣∣ dx dy � Vρ(x0)Vr(y0),

this establishes assertion (b). (Clearly an analogous result holds if r ≥ ρ.)
This completes the discussion of Observation 3.4.1.

We next replace ϕρ and ψr by adjusted bump-functions. That is, define

ϕ∗
ρ(x, x0) =

1

Vρ(x0)
ϕρ(x, x0)

ψ∗
r (y, y0) =

1

Vr(y0)
ψr(y, y0)

and set

I∗ =

∫
K(x, y)ϕ∗

ρ(x, x0)ψ∗
r (y, y0) dxdy.

The following is now an immediate consequence of Observation 3.4.1.

Observation 3.4.2 For the adjusted integral I∗ we have

(a)
∣∣I∗∣∣ � r

ρ

1

Vρ(x0)
;

(b)
∣∣I∗∣∣ � r

d(x0, y0)V (x0, y0)
, if d(x0, y0) ≥ 10 ρ.
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3.5. Decomposition of Qs

Let qs(x, y) be the kernel of Qs = 2 s
∂Hs

∂s
. Note that∫

qs(x, y) dx = 0,

since Qs(1) = 0, in view of conclusion (5) of Proposition 2.3.1.

Lemma 3.5.1 We can write

qs(x, y) =

∞∑
k=0

2−2k ϕ∗
2k

√
s (x, y)

where ϕ∗
2k

√
s
(x, y) is an adjusted bump function (in x) for the ball of ra-

dius
√

s 2k centered at y. Moreover for each k∫
ϕ∗

2k
√

s (x, y) dx = 0.

Similarly we can write

qt(x, y) =

∞∑
j=0

2−2j ψ∗
2j

√
t
(x, y)

where ψ∗√
t 2j (x, y) is a normalized bump function (in y) for the ball of ra-

dius
√

t 2j centered at x. Moreover for each j∫
ψ∗

2j
√

t
(x, y) dy = 0

Remark 3.5.2 The factor 2−2k can be replaced by 2−kN , for any N > 0.
Similarly the factor 2−2j can be replaced by 2−jN .

Proof of Lemma 3.5.1 Fix a function α ∈ C∞(R) so that α(t) = 1 if
t ≤ 1/2 and α(t) = 0 if t ≥ 1. Let

A0(x, y) = α

(
d(x, y)√

s

)
qs(x, y),

Ak(x, y) =

[
α

(
d(x, y)

2k
√

s

)
− α

(
d(x, y)

2k−1
√

s

)]
qs(x, y), k ≥ 1.

Then

qs(x, y) =
∞∑

k=0

Ak(x, y).
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Since Qt = 2t ∂H
∂t

, it follows from the estimates of the heat kernel and its
derivatives in Proposition 2.3.1 that for all N ≥ 0

|qs(x, y)| � 1

V√
s(y)

(
s

s + d2(x, y)

)N

.

As a result it is easy to see that for all N ′ ≥ 0

|Ak(x, y)| � 2−kN ′ 1

V2k
√

s(y)
.

Note that if we define ak by

ak(y) =

∫
Ak(x, y) dx ,

then ak(y) = O
(
2−kN ′)

. Moreover,

∞∑
k=0

ak(y) =

∫
qs(x, y) dx = 0

since Qs[1] = 0. Put sk =
∑

j≤k aj , and note that sk = −∑
j>k aj since∑∞

j=0 aj = 0. It follows that sk = O(2−kN ′
).

Next, let

η̃k(x) = η̃k(x, y) = α

(
d(x, y)

2k
√

s

)
.

Then η̃k is a bump function for the ball B(y, 2k
√

s). Set

ηk(x) = η̃k(x)

[∫
η̃k(x) dx

]−1

so that ηk is an “adjusted” bump function for that ball. Set

Ãk(x, y) = Ak(x, y) − ak(y) ηk(x) + sk(y)(ηk − ηk+1)(x).

Then
∞∑

k=0

Ãk(x, y) =
∞∑

k=0

Ak(x, y) −
∞∑

k=0

ak(y) ηk(x) +
∞∑

k=0

sk(y) (ηk − ηk+1) (x).

However,
∑

k Ak = qs and
∑

k ak ηk =
∑

k sk(ηk −ηk+1). Also, observe that∫
Ãk(x, y) dx = 0, all k. Thus, if we take

ϕ∗
2k

√
s(x, y) = 22k Ãk(x, y),

Lemma 3.5.1 is proved. �
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We turn now to the proof of Proposition 3.3.1. Let Qk
s be the operator

whose kernel is 2−2kϕ∗
2k

√
s
(x, y) and let

(
Qj

t

)∗
be the operator with the adjoint

kernel 2−2j ψ∗
2j

√
t
(y, x) . Apply Observation 2 to

(
Qj

t

)∗
TQk

s . The result is
easily seen to imply that∣∣∣(Qj

t

)∗
TQk

s f(x)
∣∣∣ � 2−2k · 2−2j min

{
2jt1/2

2ks1/2
,

2ks1/2

2jt1/2

}
M(f)(x)

This follows directly from the two inequalities in Observation 2, together
with the estimate (2.9) for the maximal function, with a = 1.

However,

|QtTQs f(x)| ≤
∑
k,j≥0

∣∣∣(Qj
t

)∗
TQk

s f(x)
∣∣∣ .

Since ∑
k≥0

∑
j≥0

2−2k 2−2j min

{
2jt1/2

2ks1/2
,

2ks1/2

2jt1/2

}
� min

(
t1/2

s1/2
,
s1/2

t1/2

)
,

the statement of Proposition 3.3.1 is established.

3.6. Proof of Theorem 3.1.1

Consider first the case (B) of the “model domain”, when M is non-compact
and E = 0 in Proposition 2.5.1 We have by (2.17),

Qt T = Qt T

∫ ∞

0

Qs · Qs
ds

s
=

∫ ∞

0

Qt T Qs · Qs
ds

s
.

Hence

|Qt T (f)| �
∫ ∞

0

min

(
t1/2

s1/2
,

s1/2

t1/2

)
M (Qsf)

ds

s

Now by Hardy’s inequality if

F (t) =

∫ ∞

0

min

(
t1/2

s1/2
,

s1/2

t1/2

)
G(s)

ds

s
,

then ∫ ∞

0

|F (t)|2 dt

t
≤ C

∫ ∞

0

|G(s)|2 ds

s
.

Hence ∫ ∞

0

|Qt(Tf)|2 dt

t
≤ C

∫ ∞

0

M(Qsf)2 ds

s

and the result is obtained by appealing to Proposition 2.5.1 and the vector-
valued maximal inequality (2.11), with fs = s−

1
2 Qs[f ].
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In the compact case, (situation (A)), we have the additional term E0(Tf).
Its estimate is easy because E0(F ) = c(F, 1), with c = |M |−1, and therefore
E0(Tf) = c (Tf, 1) = c(f, T ∗(1)). However, according to our hypotheses
T ∗(1) is a C∞ function on M , and hence obviously ‖ E0T (f) ‖Lp≤ A ‖ f ‖Lp

for all p, 1 ≤ p ≤ ∞, and the proof of Theorem 3.1.1 is complete.

4. The product case: two factors

We now consider M̃ = M1 ×M2, where each Mi is as above, and now define
an appropriate notion of product singular integrals.

4.1. A class of singular integrals

We shall consider linear mappings T , initially defined from C∞
0 to C∞(M̃),

which have an associated distribution kernel K(x, y), which are C∞ away
from the “cross” = {(x, y) : x1 = y1, or x2 = y2; x = (x1, x2), y = (y1, y2)}
and which satisfy the following additional properties.

(II-1) 〈T (ϕ1 ⊗ ϕ2), ψ1 ⊗ ψ2〉 =

=

∫
K(x1, y1, x2, y2)ϕ1(y1)ϕ2(y2)ψ1(x1)ψ2(x2) dy dx

whenever

{
ϕ1, ψ1 ∈ C∞

0 (M1) and have disjoint support,

ϕ2, ψ2 ∈ C∞
0 (M2) and have disjoint support.

(II-2) For each bump function ϕ2 on M2, and each x2 ∈ M2, there exists a
singular integral Tϕ2,x2 (of the one-factor type) on M1, so that

〈T (ϕ1 ⊗ ϕ2), ψ1 ⊗ ψ2〉 =

∫
M2

〈Tϕ2,x2 ϕ1, ψ1〉ψ2(x2) dx2 .

Moreover, x2 �→ Tϕ2,x2 is smooth and uniform in the sense that Tϕ2,x2 ,
as well as ρL

2 ∂L
X2

(Tϕ2,x2) for each L ≥ 0, satisfy the conditions (I-1)
to (I-4) uniformly.

(II-3) If ϕj is a bump function on a ball Bj(rj) in Mj, then∣∣∂a1
X1

∂a2
X2

T (ϕ1 ⊗ ϕ2)
∣∣ � r−a

1 r−a2
2 .

In (II-2) and (II-3) both inequalities are taken in the sense of (I-2)
whenever ϕ2 is a bump function for B2

(r2) (in M2).
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(II-4)
∣∣∂a1

X1,Y1
∂a2

X2,Y2
K(x1, y1;x2, y2)

∣∣ � d1(x1, y1)
−a1 d2(x2, y2)

−a2

V1(x1, y1)V2(x2, y2)

(II-5) The same conditions hold when the index 1 and 2 are interchanged,
that is if the roles of M1 and M2 are interchanged.

(II-6) The same properties are assumed to hold for the 3 “transposes” of T ,
i.e. those operators which arise by interchanging x1 and y1, or inter-
changing x2 and y2, or doing both interchanges.

Remark 4.1.1 If Tj are singular integral operators on Mj (for the one-
factor case), j = 1, 2, then T = T1 ⊗ T2 satisfies the above assumptions.
Here Tϕ2,x2 = T1 multiplied by the factor T2(ϕ2)(x2).

The main result of this section is the following:

Theorem 4.1.2 For 1 < p < ∞, each product singular integral satisfying
conditions (II-1) to (II-6) extends to a bounded operator on Lp(M1 × M2)
to itself.

4.2. Two additional observations

To begin the proof of Theorem 4.1.2 we make two observation analogous to
Observations 3.4.1 and 3.4.2 in Subsection 3.4.

Observation 4.2.1 Suppose

(i) ϕρ(y1) is a bump function on B1
ρ1

(ȳ1) (the ball of radius ρ1, centered
at ȳ1)

(ii) ψr1(x1) is a bump function on B1
r1

(x̄1)

(iii) ϕρ2(y2) is a bump function on B2
ρ2

(ȳ2)

(iv) ψr2(x2) is a bump function on B2
r2

(x̄2) .

Assume also∫
ϕρ1(y1)dy1 =

∫
ϕρ2(y2)dy2 =

∫
ψr1(x1)dx1 =

∫
ψr2(x1)dx1 = 0.

Let

I = 〈T (ψr1 ⊗ ψr2), ϕρ1 ⊗ ϕρ2〉 = 〈T t(ϕρ1 ⊗ ϕρ2), ψr1 ⊗ ψr2〉.
Suppose that r1 ≤ ρ1, r2 ≤ ρ2. Then we have the following estimates for I:
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(a) For all values of the parameters,

|I| �
(

r1

ρ1

) (
r2

ρ2

)
V 1

r1
(ȳ1)V 2

r2
(ȳ2);

(b) If d1(x̄1, ȳ1) ≥ 10ρ1,

|I| �
(

r2

ρ2

)(
r1

d1(x̄1, ȳ1)

)
V 2

r2
(ȳ2)V 2

ρ1
(x̄1)V 1

r1
(ȳ1)

V 1(x̄1, ȳ1)
;

(c) If d1(x̄1, ȳ1) ≥ 10ρ1 and d2(x̄2, ȳ2) ≥ 10ρ2,

|I| �
(

r1

d1(x̄1, ȳ1)

) (
r2

d2(x̄2, ȳ2)

)
V 1

ρ1
(x̄1)V

1
ρ2

(x̄2)V 2
r1

(ȳ1)V
2
r2

(ȳ2)

V 1(x̄1, ȳ1)V 2(x̄2, ȳ2)
.

Similar results hold of the indices 1 and 2 are interchanged, as well as if the
inequalities r1 ≤ ρ1 or r2 ≤ ρ2 are reversed.

Proof of (a):

Let
Φ(y1, y2) = T t(ϕρ1 ⊗ ϕρ2) (y1, y2) .

Then

I =

∫
Φ(y1, y2)ψr1(y1)ψr2(y2) dy1 dy2 .

Since the integrals of the ψ’s vanish we have

I =

∫
[Φ(y1, y2) − Φ(y1, ȳ2) − Φ(ȳ1, y2) + Φ(ȳ1, ȳ2)] ψr1(y1)ψr2(y2)dy1 dy2.

We need the following lemma, akin to the argument leading to (3.1):

Lemma 4.2.2 Suppose supy1,y2
|D1D2Φ(y1, y2) | � A, where Dj is any dif-

ferentiation with respect to a distinguished vector field in Mj. Suppose
y1 ∈ B1

r1
(ȳ1) and y2 ∈ B2

r2
(ȳ2). Then

(4.1) |Φ(y1, y2) − Φ(y1, ȳ2) − Φ(ȳ1, y2) + Φ(ȳ1, ȳ2)| � Ar1r2.

Proof. Since yj ∈ Bj
rj

(ȳj), there exists curves tj → γj(tj) ∈ ∂Ωj , 0 ≤ tj ≤
t̄j, so that each γ̇j(tj) is a linear combination (with coefficients ≤ 1) of good
vector fields, and so that γj(0) = yj, γj(t̄j) = ȳj, while t̄j � rj. Then

Φ(y1, y2) − Φ(y1, ȳ2) − Φ(ȳ1, y2) + Φ(ȳ1, ȳ2)

=

∫∫
R

∂2

∂t1∂t2
[Φ(γ1(t1), γ2(t2))] dt, dt2

where R is the rectangle [0, t̄1]× [0, t̄2]. The estimate (4.1) then follows from
the hypothesis on Φ, proving Lemma 4.2.2. �



556 A. Nagel and E. M. Stein

Returning to I, we see that the hypothesis of Lemma 4.2.2 is satisfied
with A � (ρ1ρ2)

−1 by property (II-3) (applied to T ∗ instead of T , where
the ϕj’s are supported in balls Bj

ρj
). Thus

|I| � r

ρ1

r2

ρ2

∫
Br1 (ȳ1)

∫
Br2 (ȳ2)

dy1dy2 =
r1

ρ1

r2

ρ2

V 1
r1

(ȳ1)V 2
r2

(ȳ2)

and conclusion (a) is established.

Proof of (b):

By (II-2),

I =

∫
M2

〈Tϕ2,x2 ϕ1, ψ1〉ψ2(x2) dx2 .

Since

∫
ψ2(x2) dx2 = 0, we see that I equals

∫
M2

(〈Tϕ2,x2 ϕ1, ψ1〉 − 〈Tϕ2,x̄2 ϕ1, ψ1〉) ψ2(x2) dx2

where x̄2 is the center of the ball associated to ψ2, (which has radius r2).
The difference Tϕ2,x2 − Tϕ2,x̄2 leads to a factor O(r2 · ρ−1

2 ) multiplied by the
factor

r1

d(x̄1, ȳ1)

Vρ1(x̄1) · Vr1(ȳ1)

V (x̄1, ȳ1)

coming from the estimate (b) in Observation 1. Taking into account the
volume of integration of the ball B2 we finally get as an estimate for |I| that
it is bounded by a multiple of

r2

ρ2

V 2
r2

(ȳ2) · r1

d1(x̄1, ȳ1)

V 1
ρ1

(x̄1)V 1
r1

(ȳ1)

V (x̄1, ȳ2)

and (b) is proved.

Proof of (c):

Because the supports of ψr1 and ϕρ1 are disjoint, as well as the supports
of ψr2 and ϕρ2 , we have by (II-1)

I =

∫
K(x1, y1;x2, y2)ψr1(y1)ψr2(y2)ϕρ1(x1)ϕρ2(x2)dx1dx2dy1dy2 .

In I we replace K = K( · , y1; ·y2) by

K( · , y1; · , y2) − K( · , y1; · , ȳ2) − K( · , ȳ1; · , y2) − K( · , ȳ1; · , ȳ2).
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Applying the lemma above we see that this double-difference is

O(r1 · r2(d1V1)
−1 · (d2V2)

−1)

in this range, where djVj = dj(x̄j , ȳj)Vj(dj(x̄j , ȳj)), since

|Dy1Dy2K(·y1; ·y2)| � 1

(d1V1)
· 1

(d2V2)

in this range. An integration then gives the desired conclusion, and com-
pletes the proof of Observation 4.2.1.

The analogue of Observation 3.4.2 in Subsection 3.4 now follows imme-
diately from this. We replace the bump functions ϕρ1 , ϕρ2 , ψr1 , ψr2 by their
adjusted variants i.e.

ϕ∗
ρj

=
ϕρj

V j
x̄j

(ρj)
, ψ∗

rj
=

ψrj

V j
ȳj

(rj)

and setting
I∗ = 〈T (

ψ∗
r1
⊗ ψ∗

r2

)
, ϕ∗

ρ1
⊗ ϕ∗

ρ2
〉.

Observation 4.2.3 Assume ρ1 ≥ r1, ρ2 ≥ r2

(a) For all values of the parameters we have

|I∗| ≤ r1

ρ1

r2

ρ2

1

V 1
x̄1

(ρ1)V 2
x̄2

(ρ2)

(b) If d1(x̄1, ȳ1) ≥ 10ρ, then

|I∗| ≤ r2

ρ2

1

V 2
x̄2

(ρ2)
· r1

d1(x̄1, ȳ1)

1

Vx̄1(d1(x̄1, ȳ1))

(c) If d1(x̄1, ȳ) ≥ 10 ρ1 and d2(x̄2, ȳ2) ≥ 10 ρ2, then

|I∗| ≤ r1r2

d1(x̄1, ȳ1) d2(x̄2, ȳ2)
· 1

Vx̄1(d1, (x̄1, ȳ1))Vx̄2(d2(x̄2, ȳ2))
.

These observations lead directly as in Section 3 to the proof of the ana-
logue of Proposition 3.3.1.

Proposition 4.2.4 Suppose T is a product singular integral satisfying II-1
to II-6. Then

|Q1
t1

· Q2
t2

TQ1
s1

· Qs2 f | �
(

t1
s1

· t2
s2

)1/2

M1M2(f) ,

if t1 ≤ s1 and t2 ≤ s2. Here M1 and M2 are the usual maximal functions
on M1 and M2 respectively. There are similar inequalities if s1 ≤ t1 and/or
s2 ≤ t2.
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4.3. Proof of Theorem 4.1.2

We shall now abbreviate by writing

Q̃s = Q1
s1

· Q2
s2

.

Then we have that

Q̃tT =

∫ ∞

0

∫ ∞

0

Q̃t TQ̃2
s

ds1 ds2

s1 · s2

.

Hence, arguing as before

| Q̃t T (f) | �
∫ ∞

0

∫ ∞

0

m(s, t)M1 M2 Q̃s(f)
ds1 ds2

s1 · s2

,

where m(s, t) = min
(

t1
s1

, s1

t1

)1/2 · min
(

t2
s2

, s2

t2

)1/2
.

We then have the following two-dimensional version of Hardy’s inequal-
ity: if

F (t) =

∫ ∞

0

∫ ∞

0

m(t, s)G(s)
ds1 ds2

s1 · s2

,

then ∫ ∞

0

∫ ∞

0

|F (t)|2 dt1 dt2
t1t2

�
∫ ∞

0

∫ ∞

0

|G(s)|2 ds1 ds2

s1 · s2

.

Applying this we get that∫ ∞

0

∫ ∞

0

∣∣∣Q̃t (Tf)
∣∣∣2 dt1 dt2

t1t2
�

∫ ∞

0

∫ ∞

0

|M1 M2(f)|2 ds1 ds2

s1s2

,

and invoking Proposition 2.6.1 we will have completed the proof Theo-
rem 4.1.2 once we verify that

(4.2) ‖ Ei
0 (Tf) ‖Lp(M̃) � ‖ f ‖Lp(M̃) , i = 1, 2 ,

for 1 < p < ∞.

To prove (4.2) note that if f ∈ C∞
0 (M̃), then

E2
0(f)(y1, y2) = F1(y1) ⊗ 1 , where F1(y1) = c

∫
M2

f(y1, y2) dy2 .

and c = |M1|−1. We claim that

(4.3) T E2
0 (f) (x1, x2) = T 1,x2 (F1) (x1) .

In fact

〈T E2
0 (f)ψ1 ⊗ ψ2〉 = 〈T (F1 ⊗ 1), ψ1 ⊗ ψ2〉 =

∫
M2

〈T 1,x2 (f1), ψ1〉ψ2(x2) dx2 ,

by property II-2, if we take ϕ1 = F1, ϕ2 = 1.
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This means that both sides of (4.3) have the same value when tested
against ψ1 ⊗ ψ2. Since ψ1 and ψ2 are arbitrary bump functions, (4.3) is
established, and from this it follows by the one-factor theory that T E2

0

is bounded on Lp. Using duality, and the fact that the class of product
operators is self-dual then proves (4.2). Similarly, the analogue with E2

0

replaced by E1
0 also holds, and Theorem 4.1.2 is proved.

5. The case of n factors

We now consider the case when there are n factors, M̃ = M1 × · · · × Mn.
To define the class of singular integrals on M̃ we proceed inductively, as-
suming we have already done so in the case of n − 1 factor. The passage
from n − 1 to n will be completely analogous to the passage from 1 factor
to 2 factors carried out above.

We assume that T is a linear mapping from C∞
0 (M̃) to C∞(M̃), which has

an associated distribution kernel K(x, y), (x ∈ M̃, y ∈ M̃), which is C∞ away
from the cross = {(x, y);xj = yj, for some j, 1 ≤ j ≤ n}. We assume also

(III-1) 〈T (ϕ1 ⊗ · · · ⊗ ϕn) , ψ1 ⊗ ψ2 · · · ⊗ ψn〉 =

=

∫
K(x, y)

n∏
i=1

ϕi(xi)ψi(yi) dx dy

whenever ϕi and ψi are bump-functions on Mi, with disjoint sup-
ports, for 1 ≤ i ≤ n.

(III-2) For each bump function ϕn on Mn, and each xn ∈ Mn, there is a
singular integral Tϕn, xn (of the n−1 factor type) on M1 ×· · ·×Mn−1,
so that xn −→ Tϕn,xn is smooth in the sense below and so that

〈T (ϕ1 ⊗ · · · ⊗ ϕn) , ψ1 ⊗ · · · ⊗ ψn〉 =

=

∫
Mn

〈Tϕn,xn (ϕ1 ⊗ · · · ⊗ ϕn−1) , ψ1 ⊗ · · · ⊗ ψn−1〉ψn (xn) dxn .

Moreover, we require that Tϕn, xn satisfy the conditions for Mn−1

factors uniformly, as well as ρL
n ∂L

Xn
(Tϕn,xn), for each L, when ρn is

the radius associated to ϕn.

(III-3)

n∏
j=1

(
∂

aj

Xj
T (ϕ1 ⊗ · · · ⊗ ϕj

)
�

n∏
j=1

r
−aj

j

where rj are the radii of the balls associated to the ϕj . In (III-2)
and (III-3) the inequalities are taken in the sense of (I-2).
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(III-4)

∣∣∣∣ n∏
j=1

(
∂

aj

Xj ,Yj

)
K(x, y)

∣∣∣∣ �
n∏

j=1

dj(xj , yj)
−1

Vj(xj , yj)

(III-5) The same conditions hold for any permutation of the indices 1, . . . , n.

(III-6) The same properties are assumed for all 2n − 1 of the “transposes”
of T which arise whenever we interchange the xj with the yj, for
(some) of the j.

5.1. The main theorem

In complete analogy with Theorem 3.1, we then have:

Theorem 5.1.1 Each product singular integral on M̃ = M1×· · ·×Mn sat-
isfying conditions (III-1) to (III-6) extends to a bounded operator on Lp(M̃)
to itself, whenever 1 < p < ∞.
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