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Isometries between C*-algebras

Cho-Ho Chu and Ngai-Ching Wong

Abstract

Let A and B be C*-algebras and let T be a linear isometry from
A into B. We show that there is a largest projection p in B∗∗ such
that T (·)p : A −→ B∗∗ is a Jordan triple homomorphism and

T (ab∗c + cb∗a)p = T (a)T (b)∗T (c)p + T (c)T (b)∗T (a)p

for all a, b, c in A. When A is abelian, we have ‖T (a)p‖ = ‖a‖ for all
a in A. It follows that a (possibly non-surjective) linear isometry be-
tween any C*-algebras reduces locally to a Jordan triple isomorphism,
by a projection.

1. Introduction

In his seminal paper [10], Kadison showed that a surjective linear isometry T
between unital C*-algebras A and B is of the form T (·) = uη(·) where u is a
unitary element in B and η is a Jordan *-isomorphism. This result remains
true in the non-unital case although the unitary element u generally comes
from B ⊕ C [13]. In both cases, T preserves the Jordan triple product:

T (ab∗c + cb∗a) = T (a)T (b)∗T (c) + T (c)T (b)∗T (a)

for all a, b, c ∈ A. In infinite-dimensional holomorphy, C*-algebras, and the
larger class of JB*-triples, arise as tangent spaces to bounded symmetric
domains and it has been shown in [11] that the geometry of these domains
is completely determined by the Jordan triple structures of these spaces.
Indeed, a bijective linear map T between two JB*-triples is an isometry if,
and only if, it preserves the Jordan triple product:

T{a, b, c} = {T (a), T (b), T (c)}
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as shown in [11, Proposition 5.5] (see also [3, 4, 6, 16]). By polarization, T
preserves the Jordan triple product if, and only if,

T{a, a, a} = {T (a), T (a), T (a)}.
The Jordan triple product in a C*-algebra is given by

{a, b, c} =
1

2
(ab∗c + cb∗a)

and in particular, the above characterization of surjective linear isometries
between JB*-triples extends Kadison’s result as well as giving it a geometric
perspective. It also highlights the importance of the Jordan triple product
in the study of isometries of C*-algebras.

It is natural to ask to what extent the above triple-preserving property
of a linear isometry persists if it is not surjective. We address this question
in this paper. Let T : A −→ B be a linear isometry, possibly non-surjective.
We study T locally. Without surjectivity, the C∗-algebra and affine geo-
metric techniques of [10, 4] can not be used directly to obtain conclusive
results. Nevertheless, we show there is a largest projection p ∈ B∗∗, called
the structure projection of T , such that T (A)p is a Jordan subtriple of B∗∗

and the map
T (·)p : A −→ T (A)p

is a triple homomorphism with T{a, a, a}p = {T (a), T (a), T (a)}p for all
a ∈ A. The structure projection p is closed but the map T (·)p need not be
injective. When A is abelian, we study the structure projection p in some
detail, motivated by the question of the local behaviour of T , and show that
the map T (·)p is isometric which also extends Holsztynski’s result in [8] for
non-surjective isometries between continuous function spaces (see also [9]).
It follows that, for any A and B, the isometry T is reduced locally to a triple
isomorphism by a projection in the sense that, for any a ∈ A, there is a
closed projection pa ∈ B∗∗ such that the map T (·)pa is a triple isomorphism
from the Jordan subtriple Za of A, generated by a, into B∗∗ and

T{x, y, z}pa = {T (x), T (y), T (z)}pa

for all x, y, z ∈ Za. Although T (A)p could be zero if A is nonabelian, we
give conditions for T (A)p to be non-zero in this case.

This work was carried out during the second author’s visit at University
of London. He would like to thank colleagues there for their warm hospital-
ity. We wish to thank Professor L.G. Brown for a useful discussion and for
drawing our attention to the norm identity in Remark 4.4. We also thank
the referee for many helpful suggestions.
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2. Isometries of C*-algebras and their ranges

Throughout the paper, an isometry between Banach spaces is not assumed
to be surjective. We first recall that a JB*-triple Z is a complex Banach
space equipped with a Jordan triple product {·, ·, ·} : Z3 −→ Z which is
symmetric and linear in the outer variables, and conjugate linear in the
middle variable such that for a, b, c, x, y ∈ Z, we have

(i) {a, b, {c, x, y}} = {{a, b, c}, x, y} − {c, {b, a, x}, y} + {c, x, {a, b, y}};
(ii) the map z ∈ Z �→ {a, a, z} ∈ Z is hermitian with nonnegative spec-

trum;

(iii) ‖{a, a, a}‖ = ‖a‖3.

A closed subspace of a JB*-triple is called a subtriple if it is closed with
respect to the triple product. A linear map T : Z −→ W between JB*-
triples is called a triple homomorphism if it preserves the triple product in
which case, the range T (Z) is a subtriple of W and the kernel J of T is a
triple ideal of Z, that is, {Z,Z, J}+{Z, J, Z} ⊂ J . We refer to [2, 17, 18, 20]
for expositions as well as recent surveys of JB*-triples and symmetric Banach
manifolds. In the sequel, we write a(3) = {a, a, a}. We note that a norm-
closed subspace Z of a C*-algebra is a JB*-triple if a ∈ Z implies aa∗a ∈ Z,
in which case Z is called a JC*-triple and the triple product is given by
triple polarization

2{a, b, c} = ab∗c + cb∗a

=
1

8

∑
α4=β2=1

αβ(a + αb + βc)(a + αb + βc)∗(a + αb + βc).

In C*-algebras, the closed triple ideals are the closed algebra two-sided ide-
als [7, p. 350].

We begin with a simple example of a linear isometry T : A −→ B
between abelian C*-algebras which is not a triple homomorphism.

Example 2.1. Let C(Ω) and C(Ω∪ {β}) be the C*-algebras of continuous
functions on the closed unit disc Ω ⊂ C and Ω ∪ {β} respectively, where
β −→ C(Ω ∪ {β}) by

(Tf)(x) =

{
f(x) if x ∈ Ω
1
2
(f(1) + f(0)) if x = β.

Then T is a linear isometry and T (C(Ω)) = {h ∈ C(Ω ∪ {β}) : 2h(β) =
h(1) + h(0)} which is not a subtriple of C(Ω ∪ {β}). So T is not a triple
isomorphism onto its range. Nevertheless, we have T (f (3)) = T (f)(3) if
f(1) = f(0) = 0.
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Let T : A −→ B be a linear isometry between C*-algebras. Although
the range T (A) need not be a subtriple of B, we show in Proposition 2.2
below that T (A), cut down by a projection, is always a subtriple of B∗∗.
This result will be used to study T locally later. In Example 2.1, such a
projection is given by the characteristic function of Ω in C(Ω ∪ {β}).

We need some notation first. We denote by T ∗∗ the second dual map
of T and for convenience, we often write Ta for T (a). The identity of a
unital C*-algebra will be denoted by 111. Given a C*-algebra A, we denote
its closed unit ball by A1, and by A∗

1 the closed unit ball of the dual A∗. Let
Q(A) = {ϕ ∈ A∗

1 : ϕ ≥ 0} be the quasi-state space which is weak* compact
and convex. Every weak* closed face of Q(A) containing zero is of the form
F (p) = {ϕ ∈ Q(A) : ϕ(111−p) = 0} for some closed projection p ∈ A∗∗, called
the support projection of the face (cf. [5, 15] or [14, 3.11.10]). The polar
decomposition of a functional ψ ∈ A∗ is denoted by ψ(·) = v∗|ψ|(·) = |ψ|(v∗·)
where v∗ is a partial isometry in A∗∗.

For each ϕ in Q(A), we let (πϕ, Hϕ, ωϕ) be the Gelfand-Naimark-Segal rep-
resentation of A induced by ϕ. As usual, we also denote by πϕ the extended
representation of A∗∗ on the Hilbert space Hϕ (see, for example, [14, p. 60]).
For simplicity, we write xωϕ for πϕ(x)ωϕ in Hϕ whenever x ∈ A∗∗. Thus we
have xωϕ = 0 if, and only if, ϕ(x∗x) = 0. Further, we have ϕ(x∗x) = 0 for all
ϕ ∈ F (p) if, and only if, xp = 0 (cf. [14, § 3.10] and [1, Corollary 3.5]). We
note that if ϕ is a pure state with support projection p, then F (p) = [0, 1]ϕ.

Proposition 2.2. Let A and B be C*-algebras and let T : A −→ B be a
linear isometry. Then there is a largest projection p in B∗∗ such that

(i) T (·)p : A −→ B∗∗ is a triple homomorphism;

(ii) T{a, b, c}p = {Ta, T b, T c}p for all a, b, c in A.

Further, p is a closed projection and (Ta)∗(Tb)p = p(Ta)∗(Tb) for all a, b
in A.

Proof. Let

F1 =
⋂

a∈A1

{ϕ ∈ Q(B) : (Ta(3))ωϕ = (Ta)(3)ωϕ}

=
⋂

a∈A1

{
ϕ ∈ Q(B) : ϕ

(
(Ta(3) − (Ta)(3))∗(Ta(3) − (Ta)(3))

)
= 0

}
.

Then F1 is a weak* closed face of Q(B) containing zero. For a in A1, we
define a weak* continuous affine map Φa : Q(B) −→ Q(B) by

Φa(ϕ)(·) = ϕ ((Ta)∗(Ta) · (Ta)∗(Ta)) .
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For n = 1, 2, . . ., the sets

Fn+1 = {ϕ ∈ Fn : Φa(ϕ) ∈ Fn,∀a ∈ A1} =
⋂

a∈A1

Fn ∩ Φ−1
a (Fn)

form a decreasing sequence of weak* closed faces of Q(B). The intersection
F =

⋂∞
n=1 Fn is a weak* closed face of Q(B) containing zero. Let p be the

closed projection in B∗∗ supporting F :

F = F (p) = {ϕ ∈ Q(B) : ϕ(111 − p) = 0}.
For each a in A1 and ϕ in F , we have

Φa(ϕ)(·) = ϕ ((Ta)∗(Ta) · (Ta)∗(Ta)) ∈ F,

and consequently,

〈p(Ta)∗(Ta)ωϕ, (Ta)∗(Ta)ωϕ〉 = Φa(ϕ)(p) = Φa(ϕ)(1) = ‖(Ta)∗(Ta)ωϕ‖2.

Hence
p(Ta)∗(Ta)ωϕ = (Ta)∗(Ta)ωϕ, ∀ϕ ∈ F = F (p)

and therefore
p(Ta)∗(Ta)p = (Ta)∗(Ta)p.

It follows that
p(Ta)∗(Ta) = (Ta)∗(Ta)p, ∀a ∈ A.

By polarization, we have

(2.1) p(Ta)∗(Tb) = (Ta)∗(Tb)p

for all a, b ∈ A. To verify (i), we note that

(Ta(3))ωϕ = (Ta)(3)ωϕ, ∀ϕ ∈ F.

This gives
(Ta(3))p = (Ta)(3)p.

By triple polarization and (3.1), we get

T{a, b, c}p = {Ta, T b, T c}p = {(Ta)p, (Tb)p, (Tc)p}.
Finally, if q is a projection in B∗∗ satisfying conditions (i) and (ii), then

F (q) = {ϕ ∈ Q(B) : ϕ(111 − q) = 0} ⊆ Fn, n = 1, 2, . . .

since Φa(F (q)) ⊆ F (q) for a ∈ A1 and it is evident that F (q) ⊆ F1. Therefore
F (q) ⊆ F (p) and q ≤ p. The last assertion has been shown in (2.1). �
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Remark 2.3. (a) Although the above result only requires T to be contrac-
tive, all subsequent applications of the result, including the next two
remarks, requires T to be isometric.

(b) In the above proof, if T is surjective or T (A) is a subtriple of B, then
F1 = Q(B) and p = 111.

(c) For an arbitrary projection p ∈ B∗∗, conditions (i) and (ii) above are
independent of each other in general and they need not imply (2.1).
Consider, for instance, the identity map T : A −→ A, for which (ii)
is satisfied by any projection, but only the central projections in A∗∗

satisfy (i) and (2.1). Nevertheless, if T ∗∗(111) is unitary, then (i) implies
(2.1) and hence (ii), for any projection p ∈ B∗∗. Indeed, if T ∗∗(111) =
111, then T commutes with involution and, by weak*-continuity of the
triple product and (i), we have T{111,111, a}p = {111p,111p, T (a)p} which
gives T (a)p = pT (a)p = pT (a) for a = a∗ and hence for all a ∈
A. For unitary T ∗∗(111), the map T ∗∗(111)∗T ∗∗ is unital and the pre-
ceding statement gives pT (a)∗T (b) = p(T ∗∗(111)∗T (a))∗(T ∗∗(111)∗T (b)) =
(T ∗∗(111)∗T (a))∗(T ∗∗(111)∗T (b))p = T (a)∗T (b)p. If B is abelian, then of
course (i) and (ii) are equivalent.

Definition 2.4. We denote by pT the projection for the isometry T in
Proposition 2.2 and call it the structure projection of T .

We give the following examples of structure projections pT . Let Mn be
the C*-algebra of n × n matrices.

Example 2.5. Let T : M2 −→ M3 be defined by

T

(
a b
c d

)
=


a b 0

c d 0
0 0 a


 .

Then T is a unital linear isometry and T (M2) is not a subtriple of M3. The
structure projection pT is given by

pT =


1 0 0

0 1 0
0 0 0


 .

We note that Morita [12] has shown that a linear isometry T : Mn −→ Mn

is of the form T (x) = uxv or T (x) = uxtv for some unitary u, v ∈ Mn where
xt denotes the transpose of x.
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Example 2.6. Let A = C[0, 1], B = C([0, 1]∪{2}) and define T : A → B by

(Tf)(x) =

{
f(x) for x ∈ [0, 1]∫ 1

0
f(y)dy for x = 2.

Then T is a unital linear isometry, T (A) = {h ∈ B : h(2) =
∫ 1

0
h(y)dy} has

co-dimension 1 in B and it is not a subtriple of B. We have pT = χ[0,1], the
characteristic function of [0, 1], which is in B.

Example 2.7. Let T : C −→ M2 be defined by

T (a) =

(
0 a

2

a 0

)
.

Then T is an isometry and T (C) is not a subtriple of M2. Also T (1) is
not unitary and T (C) contains no nontrivial positive element. Its structure
projection pT is given by

pT =

(
1 0
0 0

)
which does not commute with T (a) for a �= 0. Also T (a(3)) �= T (a)(3) for all
non-zero a ∈ C.

Example 2.8. Let K(H) be the C*-algebra of compact operators on a
Hilbert space H with an orthonormal basis {e1, e2, . . .}, and B(H) the alge-
bra of bounded operators on H. Define a linear isometry T : c0 −→ K(H) by

T (x) =
x1

2
e1 ⊗ e1 + x1e3 ⊗ e2 +

x2

2
e5 ⊗ e3 + x2e7 ⊗ e4 + · · ·

=
1

2

∞∑
n=1

xne4n−3 ⊗ e2n−1 +

∞∑
n=1

xne4n−1 ⊗ e2n

where x = (xn) ∈ c0 and (ei ⊗ ek)(·) = 〈·, ek〉ei. We have

x(3) = (x
(3)
1 , x

(3)
2 , . . .),

T (x(3)) =
1

2

∞∑
n=1

x(3)
n e4n−3 ⊗ e2n−1 +

∞∑
n=1

x(3)
n e4n−1 ⊗ e2n,

and

T (x)(3) =
1

8

∞∑
n=1

x(3)
n e4n−3 ⊗ e2n−1 +

∞∑
n=1

x(3)
n e4n−1 ⊗ e2n

by orthogonality. Hence, for any projection q in K(H)∗∗ = B(H),

T (x(3))q = T (x)(3)q
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if, and only if,

(
∞∑

n=1

x(3)
n e4n−3 ⊗ e2n−1)q = 0.

This happens for all x in c0 exactly when qe2n−1 = 0 for n = 1, 2, . . ..
Therefore the structure projection pT is the orthogonal projection onto
span{e2, e4, . . .} and we have

‖T (x)pT‖ = ‖x‖ and pT (Tx) = 0

for all x in c0.

Remark 2.9. Let T : A −→ B be a linear isometry between C*-algebras.
Let B be a C*-subalgebra of B̃, with common approximate identity, and
regard B∗∗ as a subalgebra of B̃∗∗. Then the structure projection p̃T of the
isometry T : A −→ B̃ is the same as pT . Evidently, we have pT ≤ p̃T .
Suppose pT �= p̃T . Choose a state ψ ∈ B̃∗ such that ψ(pT ) < ψ(p̃T ). Then
the state

ϕ(·) =
ψ(p̃T · p̃T )

ψ(p̃T )

is in the closed face F (p̃T ) of Q(B̃) supported by p̃T . This means, by the
proof of Proposition 2.2, that

Φn
b (ϕ)((Ta(3) − (Ta)(3))∗((Ta(3) − (Ta)(3))) = 0 (a, b ∈ A1, n = 0, 1, 2, . . .)

where Φ0
b(ϕ) = ϕ and Φn

b is the nth iterate of Φb. The restriction ϕ|B is a
state of B and clearly the above identity remains true when ϕ|B replaces ϕ,
that is, ϕ|B ∈ F (pT ) ⊆ Q(B) which gives the contradiction

1 = ϕ(pT ) =
ψ(p̃T pT p̃T )

ψ(p̃T )
=

ψ(pT )

ψ(p̃T )
.

So pT = p̃T .

We note that, for a linear isometry T : A −→ B between C*-algebras,
the triple homomorphism T (·)pT = 0 if, and only if, T ∗∗(111)pT = 0. This
follows from the weak* continuity of the triple product and the identity

T (a)pT = T ∗∗(a)pT = T ∗∗{111,111, a}pT = {T ∗∗(111)pT , T ∗∗(111)pT , T (a)pT}.

We study various necessary and sufficient conditions for T (·)pT �= 0 in the
next two sections. The above identity also shows that T ∗∗(111)pT is a partial
isometry in B∗∗.
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3. Isometries from abelian C*-algebras

In this section, we study the structure projection of a linear isometry on
an abelian C*-algebra. This is motivated by the intention to study a linear
isometry locally, that is, to study its restriction on a subtriple generated
by an element. We show in Theorem 3.10 below that when A is abelian,
the structure projection pT of an isometry T from A into any C*-algebra
B is large enough to make the triple homomorphism T (·)pT an isometry.
Consequently, a linear isometry T on any C*-algebra reduces locally to a
triple isomorphism via a projection, as shown in Corollary 3.12. We also give
an alternative construction of pT in Proposition 3.14 when the codomain B
is a dual C*-algebra. We prove some lemmas first.

Definition 3.1. Let T : A −→ B be a linear map between C*-algebras. For
each ϕ in A∗ with ‖ϕ‖ = 1, let

Aϕ = {a ∈ A : ϕ(a) = ‖a‖ = 1}.
Similarly, for each ψ in B∗ with ‖ψ‖ = 1, let

Bψ = {b ∈ B : ψ(b) = ‖b‖ = 1}.
If Aϕ �= ∅, we define

Qϕ = {ψ ∈ B∗ : ‖ψ‖ = 1 and T (Aϕ) ⊆ Bψ}.
Lemma 3.2. Let T : A −→ B be a linear isometry between C*-algebras.
For ϕ in A∗ with ‖ϕ‖ = 1 and Aϕ �= ∅, the set Qϕ is a non-empty weak*
closed face of B∗

1 .

Proof. We first note that Qϕ is an intersection of non-empty weak* closed
faces of B∗

1 :

Qϕ =
⋂

a∈Aϕ

{ψ ∈ B∗
1 : ψ(Ta) = 1}.

We show these faces have finite intersection property. To this end, let
a1, a2, . . . , an be in Aϕ and let a =

∑n
i=1 ai. Since ϕ(a) = n, we have

‖Ta‖ = ‖a‖ = n. Therefore, there is a norm one functional ψ in B∗ such
that ψ(Ta) = n. It follows that

∑n
i=1 ψ(Tai) = n and so ψ(Tai) = 1 for

i = 1, 2, . . . , n. Consequently, we have ψ ∈ ⋂n
i=1(Tai)

−1{1}. �
Lemma 3.3. Let T : A −→ B be a linear isometry between C*-algebras,
and let ϕ ∈ A∗ with ‖ϕ‖ = 1 and Aϕ �= ∅. Then for any a ∈ Aϕ and
ψ ∈ Qϕ ⊆ B∗

1 with polar decomposition ψ = v∗|ψ|, we have

(i) ‖(Ta)ω|ψ|‖ = 1;

(ii) (Ta)ω|ψ| = vω|ψ| and (Ta)∗vω|ψ| = ω|ψ| in H|ψ|.
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Proof. Given a ∈ Aϕ and ψ ∈ Qϕ, we have Ta ∈ Bψ and therefore,

1 = ψ(Ta) = |ψ|(v∗(Ta))

=
〈
v∗(Ta)ω|ψ|, ω|ψ|

〉
=

〈
(Ta)ω|ψ|, vω|ψ‖

〉
=

〈
ω|ψ|, (Ta)∗vω|ψ‖

〉
.

Since ‖vω|ψ|‖ = 1 and ‖(Ta)ω|ψ|‖ ≤ ‖Ta‖ = 1, we have ‖(Ta)ω|ψ|‖ = 1 and
(Ta)ω|ψ| = vω|ψ|. Similarly, we have (Ta)∗vω|ψ| = ω|ψ|. �

In the remaining lemmas of this section, we assume that A is an abelian
C*-algebra and is identified with the algebra C0(X) of continuous functions
on a locally compact Hausdorff space X, vanishing at infinity. Fix a linear
isometry T : C0(X) −→ B, where B is any C*-algebra. We write

Ax = Aδx = {f ∈ C0(X) : f(x) = ‖f‖ = 1};

Qx = Qδx = {ψ ∈ B∗ : ‖ψ‖ = 1 and T (Ax) ⊆ Bψ}
where δx is the point mass at x. Note that Ax �= ∅ for all x in X.

We let Q =
⋃

x∈X Qx and define |Qx| = {|ψ| : ψ ∈ Qx}, |Q| =
⋃

x∈X |Qx|.
Lemma 3.4. Given x �= x′ in X, we have |Qx| ∩ |Qx′| = ∅.
Proof. We first show that Qx ∩ Qx′ = ∅. Suppose, otherwise, that there
exists ψ ∈ Qx ∩ Qx′. Then TAx ⊆ Bψ and TAx′ ⊆ Bψ. Let f ∈ Ax and
f ′ ∈ Ax′ with ff ′ = 0. Since T is an isometry and ‖f + f ′‖ = 1, we have
‖Tf + Tf ′‖ = 1. But ψ(Tf) = ψ(Tf ′) = 1 implies ‖Tf + Tf ′‖ ≥ 1 + 1 = 2
which is a contradiction.

Now suppose there exists ψ ∈ |Qx|∩|Qx′| with ψ = |ϕ| = |ϕ′| and ϕ ∈ Qx,
ϕ′ ∈ Qx′ . Let ϕ = v∗|ϕ| and ϕ′ = v′∗|ϕ′| be the polar decompositions. By
Lemma 3.3, given f in C0(X), we have

f ∈ Ax =⇒ (Tf)ωψ = vωψ;

f ∈ Ax′ =⇒ (Tf)ωψ = v′ωψ.

We can choose an f in Ax∩Ax′ which then gives vωψ = v′ωψ. Consequently,
for every a in A we have

ϕ(a) = ψ(v∗a) = 〈aωψ, vωψ〉ψ = 〈aωψ, v′ωψ〉ψ = ψ(v′∗a) = ϕ′(a).

Hence ϕ = ϕ′ ∈ Qx ∩ Qx′ which is impossible. �

Definition 3.5. Define σ : |Q| −→ X by

σ(|ψ|) = x for ψ ∈ Qx.
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Let P (B) be the set of all pure states of B. The following lemma shows
that |Q| ∩ P (B) �= ∅.

Lemma 3.6. σ(|Q| ∩ P (B)) = X.

Proof. Consider the isometry T from A = C0(X) onto T (A). The adjoint
map T ∗ sends the set ∂T (A)∗1 of extreme points in the closed unit ball of
T (A)∗ onto the extreme points of the closed unit ball of C0(X)∗. In partic-

ular, for each x in X, there is a ψ in ∂T (A)∗1 with T ∗ψ = δx. Let ψ̃ be an

extreme point in B∗
1 extending ψ. Let ψ̃ = v∗|ψ̃| be the polar decomposition

of ψ̃. Then ψ̃(Tf) = T ∗ψ(f) = f(x) for all f in C0(X) which implies that

ψ̃ ∈ Qx and |ψ̃| ∈ |Qx| ∩ P (B). Hence σ(|ψ̃|) = x. �
Let q =

∨{pϕ : ϕ ∈ |Q| ∩ P (B)} be the atomic projection in B∗∗

supporting all pure states in |Q| where pϕ is the minimal projection in B∗∗

supporting the pure state ϕ. Note that q depends on T .

Lemma 3.7. For all f in C0(X), we have ‖(Tf)q‖ = ‖Tf‖.

Proof. Let ‖f‖ = |f(x)| > 0 for some x in X. Then f
f(x)

∈ Ax and
Tf
f(x)

∈ Bψ for some ψ ∈ Qx with |ψ| ∈ |Q| ∩ P (B) by Lemma 3.6. It follows

from Lemma 3.3 that ‖(Tf)ω|ψ|‖ = ‖f‖ = ‖Tf‖. So ‖Tf‖ ≥ ‖(Tf)q‖ ≥
‖(Tf)p|ψ|‖ ≥ ‖(Tf)ω|ψ|‖ = ‖Tf‖. �

Lemma 3.8. Let ϕ = |ρ| for some ρ in Q with polar decomposition ρ = v∗ϕ.
Let f ∈ C0(X). If f(σ(ϕ)) = 0, then (Tf)ωϕ = (Tf)∗vωϕ = 0.

Proof. Without loss of generality, we may assume that ‖f‖ = 1. By
Urysohn’s Lemma, it suffices to show that if f vanishes in a neighborhood
of σ(ϕ) in X, then (Tf)ωϕ = (Tf)∗vωϕ = 0. For this, we choose g in Aσ(ϕ)

such that fg = 0. Then

‖g‖ = 1 = g(σ(ϕ))

and

‖f + g‖ = 1 = (f + g)(σ(ϕ)).

By Lemma 3.3, we have

(Tg)ωϕ = vωϕ = T (f + g)ωϕ

and

(Tg)∗vωϕ = ωϕ = (T (f + g))∗vωϕ.

Consequently (Tf)ωϕ = (Tf)∗vωϕ = 0. �



98 C.-H. Chu and N.-C. Wong

Lemma 3.9. Let ψ ∈ Q have polar decomposition ψ = v∗ϕ where ϕ = |ψ|.
Then for all f in C0(X), we have (Tf)ωϕ = f(σ(ϕ))vωϕ and (Tf)∗vωϕ =

f(σ(ϕ))ωϕ.

Proof. Recall that σ(ϕ) = x if ψ ∈ Qx. Pick h ∈ C0(X) such that
h(σ(ϕ)) = 1 = ‖h‖, that is, h ∈ Aσ(ϕ). Since

(f − f(σ(ϕ))h)(σ(ϕ)) = 0,

Lemma 3.8 gives

T (f − f(σ(ϕ))h)ωϕ = (T (f − f(σ(ϕ))h))∗vωϕ = 0.

Therefore
(Tf)ωϕ = f(σ(ϕ))(Th)ωϕ = f(σ(ϕ))vωϕ

since (Th)ωϕ = vωϕ by Lemma 3.3. Similarly, we have, by Lemma 3.3 again,

(Tf)∗vωϕ = f(σ(ϕ))(Th)∗vωϕ = f(σ(ϕ))ωϕ.

�
We are now ready to prove that T (·)pT is an isometry if A is abelian.

Theorem 3.10. Let T : A −→ B be a linear isometry between C*-algebras
and let A be abelian. Let pT ∈ B∗∗ be the structure projection of T . Then
we have

‖(Ta)pT‖ = ‖a‖ (a ∈ A).

Proof. Let q ∈ B∗∗ be the atomic projection, determined by T , in Lemma
3.7. We show that T (·)q is a triple homomorphism from A = C0(X) onto
T (A)q. Let ϕ ∈ |Q| ∩ P (B) with ϕ = |ψ| for some ψ ∈ Q. Let ψ = v∗ϕ be
the polar decomposition. By Lemma 3.9, we have

(Tf (3))ωϕ = f (3)(σ(ϕ))vωϕ = f(σ(ϕ))f(σ(ϕ))f(σ(ϕ))vωϕ = (Tf)(3)ωϕ.

Hence, by the definition of q, we have

(Tf (3))q = (Tf)(3)q

for every f in C0(X), and hence the map T (·)q is a triple homomorphism.
On the other hand, using Lemma 3.9 again, we get

(Tg)∗(Tf)ωϕ = g(σ(ϕ))f(σ(ϕ))ωϕ

which gives q(Tg)∗(Tf)ωϕ = (Tg)∗(Tf)ωϕ since qωϕ = ωϕ. Therefore
q(Tg)∗(Tf)q = (Tg)∗(Tf)q and q commutes with (Tg)∗(Tf) for all f, g
in C0(X). It follows that q satisfies condition (ii) in Proposition 2.2 and so
q ≤ pT by maximality of pT . By Lemma 3.7, T (·)q is an isometry which
implies that T (·)pT is such also. �
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Remark 3.11. When B is abelian, Theorem 3.10 gives a result of Holsz-
tynski [8, 9] as a special case.

Given any element a in a C*-algebra or, more generally, a JB*-triple A,
the (closed) subtriple Za of A generated by a is linearly isometric (and hence
triple isomorphic) to an abelian C*-algebra [11, Corollary 1.15]. Applying
the above theorem to the restriction of a linear isometry to Za, we obtain
the following local result on linear isometries between C*-algebras.

Corollary 3.12. Let T : A −→ B be a linear isometry, where A is a JB*-
triple and B is a C*-algebra. Then for every a ∈ A, there is a largest
projection pa ∈ B∗∗, which is closed, such that T (·)pa : Za −→ B∗∗ is an
isometry and a triple homomorphism satisfying

T{x, y, z}pa = {Tx, Ty, Tz}pa

for all x, y, z ∈ Za.

Remark 3.13. (a) Clearly, pT ≤ pa, but it can happen that pT �= pa = 111.
In Example 2.1, we have pT �= 111 and if a ∈ C(Ω) satisfies a(0) = a(1) =
0, then every b ∈ Za also satisfies b(0) = b(1) = 0 since {f ∈ C(Ω) :
f(0) = f(1) = 0} is a (closed) subtriple of C(Ω) containing a. Therefore
T restricts to a triple isomorphism on Za, in other words, pa = 111.

(b) The condition T{a, a, a} = {Ta, Ta, Ta} alone need not imply that pa =
111. This amounts to saying that the condition T (a(3)) = T (a)(3) need not
imply T (a(2n+1)) = (Ta)(2n+1) for all n. Consider the unital isometry T
in Example 2.6 and the function

f(x) =
25

4
− 63

4
x2

in C[0, 1]. A simple calculation gives

(Tf)(2) =

∫ 1

0

f(x)dx = 1

and

T (f (3))(2) =

∫ 1

0

f (3)(x)dx =

∫ 1

0

(
25

4
− 63

4
x2

)3

dx = 1.

Therefore, we have T (f (3)) = (Tf)(3), but T (f (5)) �= (Tf)(5) since

T (f (5))(2) =

∫ 1

0

f (5)(x)dx = −20959168

11264
�= 1 = (Tf)(5)(2).
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In the proof of Theorem 3.10, the two maps T (·)q and T (·)pT are actually
equal if B is a dual C*-algebra. We show this in the next proposition as
well as giving an exact formula relating q and pT .

A C*-algebra B is called a dual C*-algebra if I⊥⊥ = I for all closed one-
sided ideals I of B, where for any closed left (resp. right) ideal I (resp. J)
of B, we define I⊥ = {b ∈ B : Ib = {0}} (resp. J⊥ = {b ∈ B : bJ = {0}}).
It is known that a C*-algebra B is dual if and only if every maximal abelian
subalgebra of B is generated by minimal projections, or equivalently, B is a
c0-sum of algebras of compact operators on Hilbert spaces (cf. [19, p.157]).
Therefore, a unital dual C*-algebra is finite-dimensional. Given a dual C*-
algebra B, the minimal projections in B are also minimal in B∗∗, and every
singular state of B∗∗ vanishes on B.

Given b in B∗∗, we denote by r(b) the right support projection of b which
is the smallest projection in B∗∗ satisfying br(b) = b. If T is a linear isometry
from a C*-algebra A into B, then for the partial isometry T ∗∗(111)pT , we have
r(T ∗∗(111)pT ) = pTT ∗∗(111)∗T ∗∗(111)pT .

Proposition 3.14. Let pT be the structure projection of T : A −→ B in
Theorem 3.10 and q the projection in its proof. Let B be a dual C*-algebra.
Then we have

(i) T (·)pT = T (·)q;
(ii) q is the right support projection of T ∗∗(111)pT ;

(iii) pT = q + 111 − r(TA) where r(TA) =
∨{r(T (a)) : a ∈ A}.

Proof. (i) We note that q ≤ pT from the proof of Theorem 3.10. Let
z = pT − q. We show that T (·)z = 0. Suppose otherwise. Then T (·)z :
A −→ T (A)z is a non-zero triple homomorphism as T (a(3))z = T (a(3))pT z =
(Ta)(3)pT z = (Ta)(3)z, and z commutes with T (a)∗T (a) because pT and
q do. Hence the quotient A/ ker T (·)z is isometrically triple isomorphic to
T (A)z. If we identify A with C0(X), then A/ kerT (·)z identifies with C0(Y ),
where Y is a nonempty closed subset of X and the quotient map is just
the restriction map. Pick y ∈ Y . Applying Lemma 3.2 to the isometry
C0(Y ) −→ T (A)z ⊆ B∗∗, we find an extreme point ψ in (B∗∗)∗1 such that
ψ((Tf)z) = 1 whenever f ∈ C0(X) satisfies f(y) = ‖f‖ = 1. Let ψ = v∗|ψ|
be the polar decomposition with v ∈ B∗∗∗∗. Then |ψ| is a pure state of B∗∗

and |ψ|(z) = 1 by Schwarz inequality. Hence

|ψ|(q) = |ψ|(qz) = 0.

We note that |ψ|((Tf)∗Tf) = 1 since

1 = |ψ|(v∗(Tf)z) = |ψ|(v∗Tf) ≤ |ψ|((Tf)∗Tf) ≤ 1 .
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It follows that |ψ| is a pure normal state of B∗∗ as it does not vanish on B
and a pure state is normal or singular. Therefore ψ is normal on B∗∗ since
B∗ = B∗∗∗z0 for some central projection z0 in B∗∗∗∗ (cf. [19, p. 126]) and we
have ψz0 = v∗|ψ|z0 = v∗|ψ| = ψ. Therefore |ψ| ∈ |Qy| ∩ P (B) because

ψ((Tf)(111 − z)) = |ψ|(v∗(Tf)(111 − z)) = 0

yields
ψ(Tf) = ψ((Tf)z) = 1

for f ∈ Ay. It follows that |ψ|(q) = 1, by the definition of q, which gives a
contradiction.

(ii) By weak* continuity and Lemma 3.9, we have

T ∗∗(111)∗T ∗∗(111)ωϕ = ωϕ, ∀ϕ ∈ |Q|.
Therefore

T ∗∗(111)∗T ∗∗(111)q = q

and

pTT ∗∗(111)∗T ∗∗(111)pT = (T ∗∗(111)pT )∗(T ∗∗(111)pT ) = (T ∗∗(111)q)∗(T ∗∗(111)q) = q.

(iii) Since T (A)z = 0, we have

pT − q = z ≤ 111 − r(TA).

On the other hand, since T (·)(111 − r(TA)) = 0, we have

111 − r(TA) ≤ pT and q(111 − r(TA)) = 0

which gives
pT = q + 111 − r(TA).

�
The use of dual C*-algebras in Proposition 3.14 hints at the atomic prop-

erty of B∗∗ and a general formulation of the result, without any assumption
on B, should relate the atomic part of pT to q, as the following example
shows.

Example 3.15. Let A = C0(0, 1] and T : A −→ C[−1, 1] be the natural
embedding, namely, Tf agrees with f on (0, 1] and is zero elsewhere. Then
we have pT = 111, r(TA) =

∨
f∈A T (f) = χ(0,1] ∈ C[−1, 1]∗∗ and q = zatχ(0,1] is

in the atomic part of C[−1, 1]∗∗, where zat is the maximal atomic projection
in C[−1, 1]∗∗. We see, in this case, T (·)pT zat = T (·)q and pT zat = q + (111 −
r(TA))zat.
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4. Isometries into abelian C*-algebras

Every C*-algebra can be embedded into an abelian C*-algebra by a linear
isometry. It is therefore natural to consider isometries into abelian C*-
algebras. We begin with a description of the structure projection.

Proposition 4.1. Let T : A −→ B be a linear isometry between C*-algebras
and let B be abelian. Then pT =

∧
a∈A pa where pa is the projection in

Corollary 3.12.

Proof. Let p =
∧

a∈A pa. We only need to prove pT ≥ p. For every a ∈ A,
we have

T{a, a, a}p = T{a, a, a}pap = {Ta, Ta, Ta}pap = {Ta, Ta, Ta}p.

Since B is abelian, T (·)p : A −→ B∗∗ is a triple homomorphism. Hence
pT ≥ p by the maximality of pT in Proposition 2.2. �

By a character ρ of a C*-algebra A, we mean an algebra homomorphism
ρ : A −→ C\{0}. It is clear that the algebra M2 does not have a character.
Also, a C*-algebra is abelian if, and only if, its pure states are all characters.

Lemma 4.2. Let N be a von Neumann algebra. Then N has a weak*
continuous character if, and only if, N contains an abelian summand.

Proof. The sufficiency is obvious. Suppose N has a weak* continuous char-
acter ρ. Then N must contain a type I summand NI for otherwise, the
‘Halving Lemma’ implies that N is of the form D⊗M2 (cf. [19, Proposition
V.1.22]) and the restriction of ρ to 111⊗M2 is a character which is impossible.
Since NI is of the form

∑
k Nk⊗B(Hnk

) where Nk is abelian and B(Hnk
) is a

type Ink
-factor, NI must contain an abelian summand because the contrary

would imply ρ|NI
= 0 and ρ = 0. �

The above lemma implies that a C*-algebra A has a character if, and
only if, A∗∗ contains an abelian summand. We show below that this con-
dition is equivalent to the non-triviality of the map T (·)pT if T is a linear
isometry from A into an abelian C*-algebra B.

Proposition 4.3. Let T : A −→ B be a linear isometry between C*-algebras
where B is abelian. Let pT ∈ B∗∗ be the structure projection of T . Then

(i) T (·)pT is an isometry if, and only if, A is abelian.

(ii) T (·)pT �= 0 if, and only if, A admits a character.
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Proof. (i) The necessity is obvious since T (A)pT is an abelian JB*-triple.
The sufficiency follows from Theorem 3.10.

For (ii), we first assume that T (·)pT �= 0. Then there exists a char-
acter ρ of B∗∗ which does not vanish on T (A)pT , and hence the compos-
ite ρ ◦ (T (·)pT ) : A −→ C is a non-zero triple homomorphism. Since
the closed triple ideals of C*-algebras are algebra ideals, it follows that
A�ker ρ ◦ (T (·)pT ) is a one-dimensional C*-algebra and the natural quotient

map ρ̃ : A −→ A�ker ρ ◦ (T (·)pT ) is a character of A.

Conversely, let η be a character of A and let B = C0(Y ) for some lo-
cally compact Hausdorff space Y . Then η is a pure state of A. Since the
extreme points in the closed unit ball of T (A)∗ can be extended to the ex-
treme points in the closed unit ball of C0(Y )∗, we have η = T ∗(λδy|T (A))
for some y in Y and |λ| = 1 where T ∗ : T (A)∗ −→ A∗ is an isometry. The
support projection pδy ∈ C0(Y )∗∗ of δy is a minimal projection and we have
λT (a(3))pδy = λT (a(3))(y)pδy = η(a(3))pδy = η(a)(3)pδy = λT (a)(3)pδy for all
a in A. Therefore pδy ≤ pT by maximality of pT , and thus T (·)pT �= 0. �
Remark 4.4. Let A, B and T be as in Proposition 4.3. If A has a character,
then we actually have

‖T (a)pT‖ = sup{|η(a)| : η is a character of A},
which gives an alternative proof of the sufficiency in (i). The identity follows
from

‖T (a)pT‖ = sup{|ρ(T (a)pT )| : ρ is a character of B∗∗}
= sup{|ρ̃(a)| : ρ is a character of B∗∗}
≤ sup{|η(a)| : η is a character of A},

where ρ̃ is the quotient map A −→ A�ker ρ ◦ (T (·)pT ) and the last term is

at most ‖T (a)pT‖ from the proof of (ii).

The result of Proposition 4.3 does not hold if B is nonabelian. In Exam-
ple 2.5, we have T (·)pT �= 0 for some linear isometry T : M2 −→ M3. We
conclude with the following example.

Example 4.5. There is a linear isometry T : M2 −→ B(H), where B(H)
is the algebra of bounded operators on an infinite dimensional separable
Hilbert space H, such that T (·)pT = 0.

To see this, let Y be the closed unit ball of M∗
2 and j be the canonical

linear embedding of M2 into C(Y ). Take a faithful nondegenerate represen-
tation π of C(Y ) on a separable Hilbert space H. Then T = π ◦ j is a linear
isometry from M2 into B(H). By Remark 2.9 and Proposition 4.3, we have
T (·)pT = T (·)pj = 0.
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