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Proximity relations for real rank one
valuations dominating a local

regular ring

Ángel Granja and Cristina Rodŕıguez

Abstract

We study 0-dimensional real rank one valuations centered in a
regular local ring of dimension n ≥ 2 such that the associated val-
uation ring can be obtained from the regular ring by a sequence of
quadratic transforms. We define two classical invariants associated
to the valuation (the refined proximity matrix and the multiplicity
sequence) and we show that are equivalent data of the valuation.

1. Introduction

Let R be a local noetherian regular ring of Krull dimension n ≥ 2. Let v
be a real rank one valuation of the quotient field K(R) of R with V as
associated valuation ring. Let us assume that V dominates R and that v
is 0-dimensional (i.e. the field extension R/M(R) ⊂ V/M(V ) is algebraic,
where M(R) and M(V ) denotes the maximal ideals of R and V respectively).

In this situation, there exists one and only one sequence

(∗) R = R0 ⊂ R1 ⊂ · · · ⊂ Ri ⊂ · · · ⊂ V

such that Ri+1 is the only quadratic transform of Ri which is dominated
by V , i ≥ 0. (Note that Ri has dimension n for all i ≥ 0).

If n = 2 it is well-known (see [1]) that
⋃

i≥0 Ri = V . If n ≥ 3, then⋃
i≥0 Ri = V if and only if the sequence (∗) switches strongly infinitely

often. When v is a non-discrete valuation this is proved in [13]. In fact,
if the sequence (*) switches strongly infinitely often the proof given in [13]
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shows that
⋃

i≥0 Ri = V regardless if v is discrete or non-discrete. If now
V =

⋃
i≥0 Ri is a discrete valuation ring, then we obtain that the sequence (∗)

switches strongly infinitely often from domination and dimension of Ri. (See
Theorem 6 below).

On the other hand, given the sequence (∗) one can define as usual
when Rj is proximate to Ri for j > i. (See for example [8], [10], [11]. . . ).
This information is collected into the refined proximity matrix.

Also, other invariant associated to (∗) is the usual multiplicity sequence
(see [11]). The aim of the paper is to prove that the refined proximity
matrix and the multiplicity sequence are equivalent data associated to (∗),
when the sequence switches strongly infinitely often. This is a classical well-
known result for n = 2. In this case, there are many invariants associated
to (∗) which are equivalent. (See [8], [9], [11]). All of them are invariants
that characterize the equisingularity class of analytically irreducible plane
curves, when the sequence (∗) is the resolution sequence of the corresponding
singularity.

The paper is organized in six sections (including this introduction) as
follows.

• Section 2 is devoted to remember some concepts, notations and prop-
erties about quadratic transforms.

• The main properties of rank one valuations centered on a local regular
ring are given in section 3.

• In sections 4 and 5 we define and study the refined proximity ma-
trix and the multiplicity sequence for a valuation centered on a local
regular ring. Also we prove our main result (Theorem 18) that as-
serts that these invariants are equivalent data of valuation, when the
corresponding sequence (∗) switches strongly infinitely often.

• The last section is devoted to obtain technical results that are used in
the proof of main result.

2. Notations and preliminaries

The main part of the concepts and notations of this paper are equal or
similar to some of [2], [3], [6] and [13].

For a noetherian local ring R, we denote by M(R) the maximal ideal of
R, by dim(R) the Krull dimension of R and by

B(R) = {Rp; p is a prime ideal of R}.



Proximity relations for real rank one valuations 395

Also, for each non-zero principal ideal J of R we denote by OrdR(J) the
usual multiplicity, that is the non-negative integer d such that J ⊂ (M(R))d

and J �⊂ (M(R))d+1.
A quadratic transform of R is a ring R1 = (R[z−1M(R)])q, where z is a

non-zero element of M(R), z �∈ M(R)2 and q is a prime ideal of R[z−1M(R)]
such that M(R)R[z−1M(R)] ⊂ q.

By a hypersurface we mean a pair (R, J), where R is a regular noetherian
local ring and J is a non zero principal ideal of R. (Note that R/J might
not be a reduced ring).

Let (R, J) be a hypersurface and R1 a quadratic transform of R. The
strict transform of (R, J) in R1 is the hypersurface (R1, J1) where J1 is the
ideal such that J1z

mR1 = JR1 with M(R)R1 = zR1 and m = OrdR(J).
The hypersurface (R1, JR1) is called the total transform of (R, J) in R1.

Let
R = R0 ⊂ R1 ⊂ · · · ⊂ RN

be a sequence such that Ri is a quadratic transform of Ri−1, 1≤ i ≤N .
The strict transform of a hypersurface (R, J) in Ri is the hypersurface
(Ri, Ji) defined recursively as follows:

1. If i = 0, then (R0, J0) = (R, J).

2. If i > 0, and (Ri−1, Ji−1) is the strict transform of (R, J) in Ri−1, then
(Ri, Ji) is the strict transform of (Ri−1, Ji−1) in Ri.

Now we will prove two useful results.

Lemma 1 Let R be a regular noetherian local ring with dim(R) = n ≥ 2 and
let R′ be a quadratic transform of R. Then there exists a basis (y1, . . . , yn)
of M(R) such that R′ = (R [y2/y1, . . . , yn/y1])Q with Q a prime ideal of
R [y2/y1, . . . , yn/y1] and M(R)(R [y2/y1, . . . , yn/y1]) ⊂ Q.

Furthermore, R �∈B(R′) and B(R) ∩ B(R′) = {S′∈B(R′) ; y1 �∈M(S′)}.
More precisely, if q′ ∈ Spec(R′), y1 �∈ M(R′

q′), then R′
q′ = Rq where

q := q′ ∩ R.

Proof: The first statement is an easy consequence of the definition of
quadratic transformation. So we can assume M(R) = (y1, . . . , yn), and

R′ = (R [y2/y1, . . . , yn/y1])Q .

If R ∈ B(R′) then R = (R′)q′ and y1 ∈ M(R) ⊂ q′R′. As y2/y1 ∈ R′ ⊂
(R′)q′ = R and y2 = (y2/y1)y1 then (y1, y2, . . . , yn) is not a regular system
of parameters of R. Thus R �∈ B(R′).
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To finish the prove we will see

{S′ ∈ B(R′) ; y1 �∈ M(S′)} = B(R′) ∩ (B(R) − {R}) .

Let us consider S′ ∈ B(R′). We can write S′ = (R [y2/y1, . . . , yn/y1])q′ , with
q′ = M(S′) ∩ R [y2/y1, . . . , yn/y1] .

If y1 �∈ M(S′) and q = q′ ∩ R then S′ = (R [y2/y1, . . . , yn/y1])q′ = Rq.

Conversely, if S′ ∈ B(R′) ∩ (B(R) − {R}) we have

S′ = (R [y2/y1, . . . , yn/y1])q′ = Rq,

for some prime ideal q of R.
Therefore, y2/y1, . . . , yn/y1 ∈ Rq and y1 �∈ M(S′). In fact, if y1 ∈ M(S′)

then y1 ∈ q = M(S′) ∩ R. Thus we can write y2/y1 = f/g with f, g ∈ R
without common factors and g �∈ q. So y2g = y1f and as y2 �∈ y1R we have
g ∈ y1R ⊂ q, which is a contradiction. Henceforth y1 �∈ M(S′). �

Lemma 2 Let R be a regular noetherian local ring with dim(R) = n ≥ 2
and let R1 be a quadratic transform of R. Let us consider f ∈ M(R) and
let us write (R1, f1R1) the strict transform of (R, fR) in R1. Let us assume
that f1 ∈ M(R1) and M(R) = (z1, . . . , zn), with M(R)R1 = z1R1. Then we
have the following statements:

1. f1 �∈ z1R1.

2. If f �∈ zjR1 and zj/z1 ∈ M(R1) for some 2 ≤ j ≤ n, then f1 �∈
(zj/z1)R1.

3. If f is an irreducible element of R, then f1 is an irreducible element
in R1.

4. If f is an irreducible element of R and f �∈ z1R, then f1R1 ∩R = fR.

Proof: Let us consider the ring A := R[z−1
1 M(R)] and a prime ideal Q of

A with M(R)A ⊂ Q and R1 = RQ.

We point out that an element r/zβ
1 ∈ A, r ∈ M(R)β, is a unit in R1 if

and only if OrdR(rR) = β. Note that, OrdR(rR) ≥ β and if OrdR(rR) > β
then r/zβ

1 = (r/zβ+1
1 )z1 ∈ M(R1).

We can write f1R1 = (f/zd
1)R1, with OrdR(fR) = d.

1) If f1 ∈ z1R1, let us write

f

(z1)d
=

h

r
z1,

with h, r ∈ R1 and r �∈ M(R1).
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In fact, h = h/zα
1 and r = r/zβ

1 , with h, r ∈ R, h, r �∈ z1R, OrdR(hR) ≥ α
and OrdR(rR) = β.
Thus

fr = h(z1)
d+β−α+1.

If d + β − α + 1 ≥ 0, then OrdR(fR) ≥ d + 1 and if d + β − α + 1 < 0, then
h ∈ z1R. So in any case we get to a contradiction and necessarily f1 �∈ z1R1.

2) Let us assume f �∈ zjR1 and zj/z1 ∈ M(R1) for some 2 ≤ j ≤ n.
If f1 ∈ (zj/z1)R1, we can write

f

(z1)d
=

h

r

zj

z1

,

with h, r ∈ R1 and r �∈ M(R1). As above, h = h/zα
1 and r = r/zβ

1 , with
h, r ∈ R, h, r �∈ z1R, OrdR(hR) ≥ α and OrdR(rR) = β.

Thus

fr = hzj(z1)
d+β−α−1.

As f �∈ zjR, then r ∈ zjR. So r = r′zj and

r

(z1)β
=

r′

(z1)β−1

zj

z1

∈ M(R1)

which is a contradiction. So f1 �∈ (zj/z1)R1.

3) First we note that f �∈ z1R, because in other case fR = z1R and
f1 �∈ M(R1).

Let us assume, if it is possible, that

f

(z1)d
=

h1

r1

h2

r2

,

with h1, r1, h2, r2 ∈ R1 and r1, r2 �∈ M(R1).
As always, h1 = h1/z

α1
1 , h2 = h2/z

α2
1 , r1 = r1/z

β1

1 , r2 = r2/z
β2

1 , with
h1, h2, r1, r2 ∈ R and h1, h2, r1, r2 �∈ z1R. Also note OrdR(hiR) ≥ αi and
OrdR(riR) = βi, 1 ≤ i ≤ 2.

Thus

fr1r2 = h1h2(z1)
d−α1−α2+β1+β2 .

Moreover, as f, h1, h2, r1, r2 �∈ z1R we have d − α1 − α2 + β1 + β2 = 0.

Now, after removing out common factors, we can write

f = h′
1h

′
2.
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As f is an irreducible element of R then, either h′
1 �∈ M(R) or h′

2 �∈ M(R).
Thus, either h1/(r1r2) �∈ M(R1) or h2/(r1r2) �∈ M(R1) and f1 is an irre-
ducible element of R1.

4) Let us consider g ∈ f1R1 ∩ R. We have

g =
f

(z1)d

h

r

with h, r ∈ R1 and r �∈ M(R1). As above, h = h/zα
1 , r = r/zβ

1 , with h, r ∈ R
and h, r �∈ z1R. Also note OrdR(hR) ≥ α and OrdR(rR) = β.

So we have
fh = gr(z1)

d+α−β.

As fR �∈ z1R, then gr ∈ fR. If r ∈ fR, then r/zβ
1 ∈ f1R1 ⊂ M(R1) which

is a contradiction. So g ∈ fR. �

Remark 3 Let R = R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rn ⊂ · · · be a sequence
of regular noetherian local rings of the same dimension, such that Ri is a
quadratic transform of Ri−1, for i ≥ 1. If f is an irreducible element of R,
(Ri, fiRi) is the strict transform of (R, fR) in Ri and fi ∈ M(Ri), then fi

is an irreducible element in Ri for i ≥ 0.

3. Valuations of real rank one

In this section we shall consider a local noetherian regular ring R with
dim(R) = n ≥ 2 and let v be a valuation of the quotient field K(R) of
R with V as valuating ring. Let us assume that V dominates R (i.e. R ⊂ V
and M(R) = R∩M(V )) and that v is 0-dimensional (i.e. the field extension
R/M(R) ⊂ V/M(V ) is algebraic).

Also, we shall consider the sequence

(Ri) ≡ R = R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rn ⊂ · · ·

of regular noetherian local rings of the same dimension, such that Ri is the
quadratic transform of Ri−1, along V for i ≥ 1. Note that dim(Ri) =
dim(Ri+1) implies that Ri+1/M(Ri+1) is a finite extension of Ri/M(Ri) (be-
cause

dim(Ri+1) = dim(Ri) + tr. deg.((Ri+1/M(Ri+1) : Ri/M(Ri)))

(see [13], p. 296)).
Now, we point out the following definition. (See [13], p. 314).
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Definition 4 The quadratic sequence (Ri) switches strongly infinitely often
if there does not exist an integer j and a height one prime ideal p in Rj with
the property that ⋃

i≥0

Ri ⊂ (Rj)p .

Lemma 5 With the above notations, let us assume that (Ri) switches strong-
ly infinitely often. Let us consider f ∈ R = R0. Then there exists a non-
negative integer j0 ≥ 0 such that fjRj = Rj for all j ≥ j0, where (Rj , fjRj)
is the strict transform of (R, fR) in Rj for all j ≥ 0.

Proof: If fjRj �= Rj for all j ≥ 0, we can assume that f is an irreducible
element of R. Thus, by Remark 3, fj is an irreducible element of Rj for
all j ≥ 0.

On the other hand, let us write M(Rj)Rj+1 = zjRj+1 with zj ∈ M(Rj)
for j ≥ 0.

Also by Lemma 2, fj+1 �∈ zjRj+1, fj+1Rj+1∩Rj = fjRj , and by Lemma 1,

(R)fR = (Rj)fjRj
∈ B(Rj+1),

for all j ≥ 0. So Rj+1 ⊂ (Rj)fjRj
and

⋃∞
i=1 Ri ⊂ (R)fR which is a contradic-

tion. �

Theorem 6 With the above notations, let us assume that the valuation v
has real rank one. Then the following statements are equivalent:

1. V =
⋃

i≥0 Ri.

2. (Ri) switches strongly infinitely often.

Proof: When v is a non-discrete valuation this is proved in Proposition
(4.18) of [13]. In fact, if the sequence (Ri) switches strongly infinitely often,
the proof given in [13] shows that V =

⋃
i≥0 Ri regardless if V is discrete or

non-discrete, and if V is non-discrete and V =
⋃

i≥0 Ri then (Ri) switches
strongly infinitely often.

If now V =
⋃

i≥0 Ri is a discrete valuation ring, and if there would exist a
non-negative integer j and a height one prime ideal p of Rj with V ⊂ (Rj)p,
then V = (Rj)p. Hence M(V ) ∩ Rj = p, and V would not dominate Rj

(since dim(Rj) = n ≥ 2). �

Remark 7 In the conditions of the above theorem, note that if V =
⋃

i≥0 Ri

then
V

M(V )
=

⋃
i≥0

(
Ri

M(Ri)

)
.
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4. Proximity

In this section, let

(Ri) ≡ R = R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rn ⊂ · · ·

be a fixed sequence of regular noetherian local rings of the same dimension,
such that Ri is a quadratic transform of Ri−1, for i ≥ 1.

We will write

V =
⋃
i≥0

Ri.

Definition 8 With the above notations, for j > i we say that Rj is proxi-
mate to Ri if the valuation ring V (Ri) of OrdRi

contains Rj, where OrdRi

is the usual valuation order of Ri.

For i ≥ 0, we will denote the set of proximate points of Ri by

P(Ri) = {Rj ; Rj is proximate to Ri}.

Remark 9 Note that V (Ri) = (Ri+1)M(Ri)Ri+1
. Thus if Rj ⊂ V (Ri) (i < j)

also Rh ⊂ V (Ri) for i < h ≤ j. So as a consequence of Lemma 1 we have

V (Ri) = (Rh)ph
,

where ph is a height one prime ideal of Rh, i < h ≤ j.

In this section we will use the following notations. We will denote by

Ei+1
i = (Ri+1,M(Ri)Ri+1) = (Ri+1, D

i+1
i ),

that is, the exceptional divisor attached to Ri, i ≥ 0.
Also, we will write

Ej
i = (Rj, D

j
i ),

the strict transform of Ei+1
i in Rj, for i < j.

Lemma 10 With the above notations, the following statements are equiva-
lent for i < j:

1) Rj ∈ P(Ri).

2) Dj
i �= Rj.

Proof: It is an easy consequence of Remark 9 and Lemmas 1 and 2. �
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Lemma 11 With the above notations, we have the following statements:

1) Ri+1 ∈ P(Ri), i ≥ 0.

2) If Rj ∈ P(Ri), then Rh ∈ P(Ri), i < h ≤ j.

3) Assume that V is the valuation ring of a rank one valuation v of the
quotient field of R = R0. Then P(Ri) is a finite set, i ≥ 0.

Proof: 1) and 2) are an easy consequence of definition of proximity. 3) It is
a consequence of Lemma 5, Lemma 10, and Theorem 6. �

Now we will collect the proximity relations into the refined proximity
matrix in the same way as in [11].

Definition 12 With the notations as above, the refined proximity matrix
associated to (Ri) is the infinite matrix P (Ri) = (pij)i,j≥0 given by pii = 1,

pij = −[Rj/M(Rj) : Ri/M(Ri)]

if Rj ∈ P(Ri) and pij = 0 for the rest.

Note that P (Ri) is an upper triangular matrix. When V is the valuation ring
of a rank one valuation v of the quotient field of R = R0, we will also write

P (Ri) = P (V ) = Pv.

Remark 13 Note that we have the following dictionary.

1) pi i+1 �= 0, for i ≥ 0.

2) If pij �= 0, then pih �= 0 for i < h ≤ j.

3) If V is the valuation ring of a rank one valuation v of the quotient field
of R = R0, then for fixed i, pij = 0 for all but finitely many index j.

5. Multiplicity sequence

As in the last section, let

(Ri) ≡ R = R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rn ⊂ · · ·
be a fixed sequence of regular noetherian local rings of the same dimension,
such that Ri is a quadratic transform of Ri−1, for i ≥ 1.

We will assume that

V =
⋃
i≥0

Ri

is the ring of a rank one valuation v of the quotient field of R = R0.
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For i ≥ 0, we will denote the set of proximate points of Ri by

P(Ri) = {Rj ; Rj is proximate to Ri}.
Note that P(Ri) is a finite set by statement 3) of Lemma 11. We will
denote by

ni = min{v(z); z ∈ M(Ri)}, i ≥ 0.

(Note that as Ri is a noetherian ring then ni is well defined, i ≥ 0).

Definition 14 With the above notations, the multiplicity sequence is given by

{(n0/ni, ei)}i≥1,

where
ei = [Ri/M(Ri) : R0/M(R0)],

for i ≥ 1. Note that n0/ni is a real number with 1 ≤ n0/ni, i ≥ 1.

Remark 15 If zj ∈ M(Rj) with v(zj) = nj , then

Rj+1 =
(
Rj[z

−1
j M(Rj)]

)
qj

,

with qj a prime ideal of Rj[z
−1
j M(Rj)] such that M(Rj)Rj [z

−1
j M(Rj)] ⊂ qj.

In particular, zj ∈ M(Rj+1) − {0} and nj+1 ≤ nj , for all j ≥ 0.

Lemma 16 With the above notations, we have ni+1 = ni if and only if
Ri+2 �∈ P(Ri), i ≥ 0.

Proof: Let us write M(Ri)Ri+1 = ziRi+1, with v(zi) = ni > 0.

Let Ei+1
i = (Ri+1, D

i+1
i ) be the exceptional divisor attached to Ri and

Ej
i = (Rj , D

j
i ) its strict transform in Rj, i < j. We have Di+1

i = ziRi+1.
Now, if ni+1 = ni then Di+2

i = Ri+2 and Ri+2 �∈ P(Ri).

On the other hand, if ni+1 < ni, then there exists zi+1 ∈ M(Ri+1) with
v(zi+1) = ni+1. Thus,

Di+2
i =

zi

zi+1

Ri+2 �= Ri+2

and Ri+2 ∈ P(Ri). �

Lemma 17 With the above notations, we have

ni =
∑

Rj∈P(Ri)

nj , i ≥ 0 .
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Proof: Let us consider

h(i) = max{k; Ri+k ∈ P(Ri)}, i ≥ 0.

We have 1 ≤ h(i) and Ri+k ∈ P(Ri), 1 ≤ k ≤ h(i).

Let zi+l ∈ M(Ri+l) be such that v(zi+l) = ni+l, 0 ≤ l ≤ h(i). Also
let Ei+1

i = (Ri+1, D
i+1
i ) be the exceptional divisor attached to Ri and Ej

i =
(Rj , D

j
i ) its strict transform in Rj , i < j.

We have Di+1
i = ziRi+1 and

Di+k
i =

zi

zi+1 · · · zi+k−1

Ri+k, 1 < k ≤ h(i).

As Ri+h(i)+1 �∈ P(Ri), then

ni+h(i) = v

(
zi

zi+1 · · · zi+h(i)−1

)
.

Thus
ni =

∑
Rj∈P(Ri)

nj = ni+1 + ni+2 + . . . + ni+h(i).
�

Let

α = q0 +
1

q1 +
1

q2 + · · ·
be a finite or infinite continued fraction. Let [q0] := q0 and define recursively
[q0, . . . , qj ] = [q0, q1, . . . , qj−1 + 1/qj ] for j ≥ 1 (as long as qj �= 0). Then
we have

α = lim
n→∞

[q0, q1, . . . , qn].

As usually, we will write α = [q0, q1, q2 . . .]

Theorem 18 With the above notations, the refined proximity matrix deter-
mines the multiplicity sequence and vice-versa.

Proof: First we will see that the multiplicity sequence determines the re-
fined proximity matrix P (Ri).

Let us consider

h(i) = max{k; ni+1 + ni+2 + · · · + ni+k ≤ ni}, i ≥ 0.

Note that
h(i) = max{k; Ri+k ∈ P(Ri)}.
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We compute the row i of P (Ri) as follows: pij = 0 if j < i or i + h(i) < j,
pii = 1, and

pij = −ej/ei,

for i + 1 ≤ j ≤ i + h(i).

Conversely the refined proximity matrix determines the multiplicity se-
quence. Let us consider

h(i) = max{k; pi,i+k �= 0}, i ≥ 0.

Note that

h(i) = max{k; Ri+k ∈ P(Ri)} = max{k; ni+1 + ni+2 + · · · + ni+k ≤ ni}
and

ni = ni+1 + · · · + ni+h(i), i ≥ 0.

It is easily checked that

ei = (−1)ip01p12 . . . pi−1 i, i ≥ 1.

On the other hand, let us write

n0

ni

= [qi
0, q

i
1, q

i
2, . . .]

the continued fraction associated to n0/ni.
To finish the proof we point out that qi

0, qi
1, qi

2, . . . are determined by i
and the sequence (h(i))i≥0.

The above is a consequence of Corollary 23 given in the next section for
a more general situation. �

6. Technical results

In this section, we will study sequences of real numbers with properties as
the multiplicity sequence.

Let (ni)i≥0 be a fixed sequence of positive real numbers and (h(i))i≥0 be
a sequence of positive integers such that h(i) > 0 and

ni = ni+1 + · · · + ni+h(i), i ≥ 0.

Lemma 19 With the above notations, let us consider A =
∑k

j=0 ajnj and

B =
∑l

j=0 bjnj, such that aj ∈ {0, 1} for 0 ≤ j ≤ k, ak �= 0, bj ∈ {0, 1} for
0 ≤ j ≤ l, b0 = · · · = bk = 0 and bl �= 0. Then we can write A =

∑s
j=0 αjnj

and B =
∑s

j=0 βjnj such that αj, βj are non-negative integers and either
αj ≥ βj for 0 ≤ j ≤ s or βj ≥ αj for 0 ≤ j ≤ s. Moreover, s, α0, . . . , αs,
β0, . . . , βs can be constructed by using only a0, . . . , ak, b0, . . . , bl, and the
sequence (h(i))i≥0.
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Proof: Let j0 be the non-negative integer given by

j0 = min{j; 0 ≤ j ≤ l and bj �= 0}.

Note that k < j0 ≤ l.
Let us consider (ri)i≥0, the sequence of non-negative integers given by

r0 = k, and ri+1 = ri + h(ri), for i ≥ 0. We have

r0 < r1 < · · · < ri < · · · .

Let rm be such that rm−1 < j0 ≤ rm.
Let us write

A =
rm∑
j=0

a′
jnj ,

where a′
j = aj for 0 ≤ j < k = r0, a′

j = 1 if j �= ri, 0 ≤ i < m,
r0 = k ≤ j ≤ rm and a′

ri
= 0 for 0 ≤ i < m. (Note that a′

j ∈ {0, 1} for
0 ≤ j ≤ rm).

Let δ ≥ 1 be the positive integer given by

δ =
l∑

j=j0

bj.

If δ = 1, then j0 = l. Thus the result follows by taking s = rm, αj = a′
j ,

0 ≤ j ≤ s = rm, βj0 = 1 and βj = 0 for j �= j0, 0 ≤ j ≤ s = rm.

If δ > 1, we consider C =
∑rm

j=j0
bjnj, A′′ =

∑rm

j=0 a′′
j nj and B′′ =∑l

j=rm+1 bjnj, where a′′
j = a′

j for 0 ≤ j < j0, a′′
j = 0 if bj �= 0 for j0 ≤ j ≤ rm

and a′′
j = a′

j if bj = 0 for j0 ≤ j ≤ rm. (Note that if l < rm, then B′′ = 0,
B = C, A = A′′ + C and there is nothing to do).

In any case, we have A = A′′ + C and B = B′′ + C.

At this point, applying induction on δ we get A′′ =
∑s

j=0 α′′
j nj and B′′ =∑s

j=0 β ′′
j nj such that α′′

j , β
′′
j are non-negative integers and either α′′

j ≥ β ′′
j for

0 ≤ j ≤ s or β ′′
j ≥ α′′

j for 0 ≤ j ≤ s. (Note that we can assume rm ≤ s).

Now, the result follows by taking αj = α′′
j (resp. βj = β ′′

j ), for 0 ≤ j < j0

or rm < j ≤ s, αj = α′′
j + bj (resp. βj = β ′′

j + bj), for j0 ≤ j ≤ rm. �

Lemma 20 With the above notations, let us consider A = ni and B =∑l
j=0 bjnj , with bj ∈ {0, 1} for 0 ≤ j ≤ l and bl �= 0. Then we can write A =∑s
j=0 αjnj and B =

∑s
j=0 βjnj such that αj, βj are non-negative integers and

either αj ≥ βj for 0 ≤ j ≤ s or βj ≥ αj for 0 ≤ j ≤ s. Moreover, s, α0, . . .,
αs, β0, . . . ,βs are determined by i, b0, . . . ,bl, and the sequence (h(i))i≥0.
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Proof: Let us consider

j0 = min{j; 0 ≤ j ≤ l and bj �= 0}.
We have two possibilities:

(1) j0 ≤ i. In this case, let l1 be the non-negative integer given by

l1 = max{j; 0 ≤ j ≤ i and bj �= 0}.
We have j0 ≤ l1 ≤ i. If l1 = i then there is nothing to do (bi = 1).

Now, let us assume l1 < i and consider the sequence of non-negative
integers (rk)k≥0, given by r0 = l1, and rk+1 = rk +h(rk), for k ≥ 0. We have

r0 < r1 < · · · < rk < · · · .

Let rm be such that rm−1 < i ≤ rm.
We can write βj = bj, 0 ≤ j < l1 = r0, rm < j ≤ l, βrk

= 0, 0 ≤ k < m,
βj = bj + 1, i ≤ j ≤ rm and βj = 1, l1 ≤ j < i and j �∈ {r0, r1, . . . , rm−1}.
Note that βi = 1 and the result follows by taking αj = 0 if j �= i and αi = 1.

(2) j0 > i. In this case, we can apply Lemma 19 to obtain the result. �

Lemma 21 With the above notations, let us consider A =
∑k

j=0 ajnj and

B =
∑l

j=0 bjnj, with aj a non-negative integer for 0 ≤ j ≤ k, ak �= 0,
bj ∈ {0, 1} for 0 ≤ j ≤ l and bl �= 0. Then we can write A =

∑s
j=0 αjnj

and B =
∑s

j=0 βjnj such that αj, βj are non-negative integers and either
αj ≥ βj for 0 ≤ j ≤ s or βj ≥ αj for 0 ≤ j ≤ s. Moreover, s, α0, . . . , αs,
β0, . . . , βs can be constructed by using only a0, . . . , ak, b0, . . . , bl, and the
sequence (h(i))i≥0.

Proof: Let δ ≥ 1 be the positive integer given by

δ =
k∑

j=0

aj .

If δ = 1 the result follows from Lemma 20. Let us assume δ > 1. We have
three possibilities:

(1) l = k.

Let us consider A′ =
∑k

j=0 a′
jnj and B′ =

∑k
j=0 b′jnj where a′

j = aj ,
b′j = bj for 0 ≤ j < k = l, and a′

k = ak − 1, b′k = bk − 1 = 0.

Now, applying induction on δ we get A′ =
∑s

j=0 α′
jnj and B′ =

∑s
j=0 β ′

jnj

such that α′
j , β

′
j are non-negative integers and either α′

j ≥ β ′
j for 0 ≤ j ≤ s

or β ′
j ≥ α′

j for 0 ≤ j ≤ s. Note that we can assume l = k ≤ s.

To have the result, we must only write αj = α′
j (resp. βj = β ′

j), j �= k,
0 ≤ j ≤ s and αk = α′

k + 1 (resp. βk = β ′
k + 1).
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(2) l < k.

In this case, we consider the sequence of non-negative integers (ri)i≥0,
given by r0 = l, and ri+1 = ri + h(ri), for i ≥ 0. We have

r0 < r1 < . . . < ri < . . . .

Let rm be such that rm−1 < k ≤ rm.

We write B =
∑rm

j=0 b′jnj , where b′j = bj for 0 ≤ j < l = r0, b′j = 1 if
j �= ri, 0 ≤ i < m, r0 = l ≤ j ≤ rm and b′ri

= 0 for 0 ≤ i < m. Note that
b′j ∈ {0, 1}, 0 ≤ j ≤ rm and b′k = 1.

Now, consider C = nk, A′′ =
∑k

j=0 a′′
j nj and B′′ =

∑rm

j=0 b′′j nj , where
a′′

j = aj , 0 ≤ j < k, a′′
k = ak − 1, b′′j = b′j, j �= k, 0 ≤ j ≤ rm and

b′′k = b′k − 1 = 0.

We have A = A′′ + C and B = B′′ + C.
At this point, applying induction on δ we get A′′ =

∑s
j=0 α′′

j nj and B′′ =∑s
j=0 β ′′

j nj such that α′′
j , β

′′
j are non-negative integers and either α′′

j ≥ β ′′
j for

0 ≤ j ≤ s or β ′′
j ≥ α′′

j for 0 ≤ j ≤ s. Note that we can assume rm ≤ s.

To have the result, we must only write αj = α′′
j (resp. βj = β ′′

j ), j �= k,
0 ≤ j ≤ s and αk = α′′

k + 1 (resp. βk = β ′′
k + 1).

(3) l > k.
In this case, let j1 be the non-negative integer given by

j1 = min{j; bj �= 0 and j ≥ k}.
Note that k ≤ j1 ≤ l.

If k = j1 let us consider A′ =
∑k

j=0 a′
jnj and B′ =

∑l
j=0 b′jnj where

a′
j = aj , b′j = bj if j �= j1, a′

j1
= aj1 − 1 and b′j1 = bj1 − 1 = 0.

At this point, applying induction on δ we get A′ =
∑s

j=0 α′
jnj and B′ =∑s

j=0 β ′
jnj such that α′

j , β
′
j are non-negative integers and either α′

j ≥ β ′
j for

0 ≤ j ≤ s or β ′
j ≥ α′

j for 0 ≤ j ≤ s. Note that we can assume l ≤ s.
To have the result, we must only write αj = α′

j (resp. βj = β ′
j), j �= j1,

0 ≤ j ≤ s and αj1 = α′
j1

+ 1 (resp. βj1 = β ′
j1

+ 1).

Now, let us assume k < j1 ≤ l and consider the sequence of non-negative
integers (ri)i≥0, given by r0 = k, and ri+1 = ri + h(ri), for i ≥ 0. We have

r0 < r1 < · · · < ri < · · · .

Let rm be such that rm−1 < j1 ≤ rm.

We can write A =
∑rm

j=0 a′
jnj, where a′

j = aj , 0 ≤ j < k = r0, a′
k =

a′
r0

= ak − 1, a′
j = 1 if j �= ri, 0 < i < m, r0 = k < j ≤ rm and a′

ri
= 0 for

0 ≤ i ≤ m − 1. (Note that a′
j ∈ {0, 1} for k < j ≤ rm).
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Let us write C1 =
∑rm

j=j1
bjnj, A1 =

∑rm

j=0 a1
jnj and B1 =

∑l
j=0 b1

jnj,

where a1
j = a′

j , 0 ≤ j < j1, a1
j = 0 if bj �= 0, j1 ≤ j ≤ rm, a1

j = a′
j if

bj = 0, j1 ≤ j ≤ rm, b1
j = bj, 0 ≤ j < j1, b1

j = 0, j1 ≤ j ≤ rm and b1
j = bj,

rm < j ≤ l. (Here bj = 0 if l < j ≤ rm).

We have A = A1 +C1 and B = B1 +C1. If B1 = 0, then there is nothing
to do.

If a1
j = 0 for j > k, then

∑rm

j=0 a1
j = δ−1 and applying induction on δ we

get A1 =
∑s

j=0 α1
jnj and B1 =

∑s
j=0 β1

j nj such that α1
j , β

1
j are non-negative

integers and either α1
j ≥ β1

j for 0 ≤ j ≤ s or β1
j ≥ α1

j for 0 ≤ j ≤ s. We can
assume s ≥ rm.

To have the result, we must only write αj = α1
j (resp. βj = β1

j ) for
0 ≤ j < j1 or rm < j ≤ s and αj = α1

j + bj (resp. βj = β1
j + bj) for

j1 ≤ j ≤ rm.

Let us assume a1
j �= 0 for some j > k and B1 �= 0. We have two

possibilities:

a) l ≤ rm.

In this case, b1
j = 0 for j ≥ k. Let us write

j2 = min{j; a1
j �= 0 and j > k}

and
l2 = max{j; b1

j �= 0}.
We have l2 < k < j2.

Now, we consider the sequence of non-negative integers (r1
i )i≥0, given by

r1
0 = l2, and r1

i+1 = r1
i + h(r1

i ), for i ≥ 0. We have

r1
0 < r1

1 < · · · < r1
i < · · · .

Let r1
m1

be such that r1
m1−1 < j2 ≤ r1

m1
.

We can write B1 =
∑r1

m1
j=0 b′jnj , where b′j = b1

j , 0 ≤ j < l2 = r1
0, b′

r1
i

= 0,

0 ≤ i ≤ m1 − 1 and b′j = 1, l2 ≤ j ≤ r1
m1

, j �∈ {r1
0, . . . , r

1
m1−1}. Note that

b′j ∈ {0, 1} for 0 ≤ j ≤ r1
m1

.

Let us write C2 =
∑r1

m1
j=j2

a1
jnj, A2 =

∑rm

j=0 a2
jnj and B2 =

∑r1
m1

j=0 b2
jnj,

where b2
j = b′j, 0 ≤ j < j2, b2

j = 0 if a1
j �= 0, j2 ≤ j ≤ r1

m1
, b2

j = b′j if a1
j = 0,

j2 ≤ j ≤ r1
m1

, a2
j = a1

j , 0 ≤ j < j2, a2
j = 0, j2 ≤ j ≤ r1

m1
and a2

j = a1
j ,

r1
m1

< j ≤ rm. (Here a1
j = 0 if rm < j ≤ r1

m1
).
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We have A1 = A2 + C2 and B1 = B2 + C2. At this point, we have also
two possibilities:

a.i) rm ≤ r1
m1

. In this case, a2
j = 0 for j > k. Then

∑rm

j=0 a2
j = δ − 1 and

applying induction on δ as above we get the Lemma.

a.ii) rm > r1
m1

. In this case, we can repeat in a similar way the reasoning
of a). After a finite number, say d, of steps we get to one of the
following statements:

α) rm ≤ rd
md

. In this situation, the Lemma follows by induction
hypothesis on δ as in the case a.i).

β) A = Ad +C1 + · · ·+Cd and B = Bd +C1 + · · ·+Cd, with Bd = 0.
In this case, we also get the Lemma by taking expressions of Ad,
C1, . . ., Cd.

b) l > rm.

In this case, let us write

j2 = min{j; b1
j �= 0 and j > rm} and k2 = max{j; a1

j �= 0}.
We have k < k2 ≤ rm < j2.

Now, we consider the sequence of non-negative integers (r1
i )i≥0, given by

r1
0 = k2, and r1

i+1 = r1
i + h(r1

i ), for i ≥ 0. We have

r1
0 < r1

1 < · · · < r1
i < · · · .

Let r1
m1

be such that r1
m1−1 < j2 ≤ r1

m1
.

We can write A =
∑r1

m1
j=0 a′′

j nj , where a′′
j = a1

j , 0 ≤ j < k2 = r1
0, a′′

r1
i

= 0,

0 ≤ i ≤ m1 − 1 and a′′
j = 1, k2 ≤ j ≤ r1

m1
, j �∈ {r1

0, . . . , r
1
m1−1}. Note that

a′′
j ∈ {0, 1} for k < j ≤ r1

m1
.

Let us write C2 =
∑r1

m1
j=j2

b1
jnj , A2 =

∑r1
m1

j=0 a2
jnj and B2 =

∑l
j=0 b2

jnj,

where a2
j = a′′

j , 0 ≤ j < j2, a2
j = 0 if b1

j �= 0, j2 ≤ j ≤ r1
m1

, a2
j = a′′

j if
b1
j = 0, j2 ≤ j ≤ r1

m1
, b2

j = b1
j , 0 ≤ j < j2, b2

j = 0, j2 ≤ j ≤ r1
m1

and b2
j = b1

j ,
r1
m1

< j ≤ l. (Here b1
j = 0 if l < j ≤ r1

m1
).

We have A1 = A2 + C2 and B1 = B2 + C2. At this point, we have also
two possibilities:

b.i) l ≤ r1
m1

. In this case, b2
j = 0 for j > k. If a2

j = 0 for j > k, the result
follows by induction on δ as above.

If there exists a2
j �= 0 for some j > k, we are in a similar situation as

in the case a). So we also get the Lemma with a similar reasoning as
case a).
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b.ii) l > r1
m1

. In this case, we can repeat in a similar way the reasoning
in b). After a finite number, say d, of steps we get l ≤ rd

md
. Therefore,

we get the Lemma in a similar way as case b.i). �

Theorem 22 With the above notations, let us consider A =
∑k

j=0 ajnj and

B =
∑k

j=0 bjnj, with aj and bj non-negative integers for 0 ≤ j ≤ k. If
A ≥ B > 0 then we can write A =

∑s
j=0 αjnj and B =

∑s
j=0 βjnj such that

αj , βj are non-negative integers and αj ≥ βj ≥ 0 for 0 ≤ j ≤ s. Moreover, s,
α0, . . . , αs, β0, . . . , βs can be constructed by using only a0, . . . , ak, b0, . . . , bk,
and the sequence (h(i))i≥0.

Proof: Let δ ≥ 1 be the positive integer given by

δ =
k∑

j=0

bj .

If δ = 1, the result follows from Lemma 21. If δ > 1, let us assume bi �= 0.

By Lemma 21 applied to A and ni, we can write ni =
∑k

j=0 b∗jnj , such
that aj , b

∗
j are non-negative integers and aj ≥ b∗j for 0 ≤ j ≤ k. Note that

A ≥ B ≥ ni > 0.
We write A′ =

∑k
j=0 a′

jnj and B′ =
∑k

j=0 b′jnj, with a′
j = aj − b∗j , 0 ≤

j ≤ k, b′j = bj if j �= i and b′i = bi − 1.

As
∑k

j=0 b′j = δ − 1, applying induction on δ we get A′ =
∑s

j=0 α′
jnj and

B′ =
∑s

j=0 β ′
jnj such that α′

j , β
′
j are non-negative integers and α′

j ≥ β ′
j for

0 ≤ j ≤ s. Note that A′ ≥ B′ > 0 and we can assume s ≥ k.

To obtain the result we must only write αj = α′
j + b∗j (resp. βj = β ′

j + b∗j)
for 0 ≤ j ≤ s. (Here b∗j = 0 for k < j ≤ s). �

Corollary 23 With the above notations, let us consider A =
∑k

j=0 ajnj and

B =
∑k

j=0 bjnj, with aj , bj non-negative integers for 0 ≤ j ≤ k and B �= 0.

Let A/B = [q0, q1, q2 . . .] be the continued fraction associated to A/B.
Then q0, q1, . . . can be constructed by using only a0, . . . , ak b0, . . . , bk, and
the sequence (h(i))i≥0.

Proof: If A ≥ B then by Theorem 22 we can assume that aj , bj are non-
negative integers and aj ≥ bj for 0 ≤ j ≤ k, and bj > 0 for some j. In this
case

A

B
= 1 +

A1

B
,

with A1 =
∑k

j=0 a1
jnj and a1

j = aj − bj, 0 ≤ j ≤ k.

If A1 ≥ B, by Theorem 22, we can assume that a1
j ≥ bj for 0 ≤ j ≤ k.
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Now, we can repeat the process with A1/B and after q0 steps we get

A

B
= q0 +

Aq0

B
= q0 +

1
B

Aq0

,

with Aq0 =
∑k

j=0 aq0

j nj , aq0

j a non-negative integer for 0≤j≤k and B > Aq0.

If A < B then q0 = 0 and we shall take Aq0 = A to have

A

B
= 0 +

1
B

Aq0

,

and B > Aq0.

At this point, we can use induction to obtain the result in any case. �
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