Perturbing plane curve singularities

Eduardo Casas-Alvero and Rosa Peraire

Abstract

We describe the singularity of all but finitely-many germs in a pencil generated by two germs of plane curve sharing no tangent.

Introduction

Let $\xi: f=0, f \in \mathbb{C}\{x, y\}$, be a germ of analytic curve at the origin of \mathbb{C}^{2} and assume that $g \in \mathbb{C}\{x, y\}$ has $n=$ ord $g \geq$ ord f and the initial forms of f and g share no factor. In this paper we describe the singularities of the germs of curve $\zeta^{\lambda}: f+\lambda g=0$ for all but finitely-many $\lambda \in \mathbb{C}$, by giving their infinitely near singular points and multiplicities. This in particular determines their topological (or equisingularity) type in terms of n and the singularity of ξ (the topological type of ξ if it is reduced). As already well known, for ξ reduced, n big enough and no further hypothesis on g, all germs ζ^{λ} have the topological type of ξ (see [8] and [5], where the minimal n with this property is computed). Also a case with a non-reduced ξ and $n \gg 0$ has been treated in [6], chap. 5 .

1. Free and satellite points. Clusters

In this section we briefly recall basic notions about infinitely near points. The reader is referred to [2], [3] or [4] for more details. Also, we introduce some new numerical invariants related to infinitely near points that are needed in the sequel.

Points infinitely near to a point O on a smooth analytic surface S being constructed by successive blowing-ups, each point p infinitely near to O lies on the exceptional divisor $E_{p}=\pi_{p}^{-1}(O)$ of the composition $\pi_{p}: S_{p} \longrightarrow S$
of a finite sequence of blowing-ups. We write $<$ the ordering on infinitely near points induced by the blowing-ups, i.e. $p<q$ means that q is infinitely near to p. The point p is called a satellite point if it is a singular (double in fact) point of E_{p}, otherwise it is called a free point. Assume that p is equal or infinitely near to O. Points lying on the exceptional divisor of blowing up p or on any of its successive strict transforms by further blowing-ups are called points proximate to p. As it is easy to see, free points are proximate to just one point, while satellite points are proximate to exactly two points.

Let p be either O or a free point infinitely near to O and let p^{\prime} be a point infinitely near to p with no free points between p and p^{\prime}. If p^{\prime} is free, then we will say that it is a point next p. Otherwise, if p^{\prime} is satellite, it will be called a satellite of p.

For a point p infinitely near to O, we denote $\widetilde{\xi}_{p}$ (respectively, $\bar{\xi}_{p}$) the germ at p of the strict transform (respectively, total transform) of the germ of curve ξ by the composition π_{p} of the blowing-ups giving rise to p. We denote by $e_{p}(\xi)$ the multiplicity at p of $\widetilde{\xi}_{p}$, usually called the (effective) multiplicity of ξ at p. The point p is said to be a non-singular point of ξ if and only if it is simple on ξ (i.e., $e_{p}(\xi)=1$) and ξ contains no satellite point equal or infinitely near to p. Equivalently, p is a non-singular point of ξ if and only if $\widetilde{\xi}_{p}$ and E_{p} are transverse at p.

A cluster with origin at O is a finite set K of points equal or infinitely near to O such that for each $p \in K$ it contains all points preceding p (by the ordering of the blowing-ups). A pair $\mathcal{K}=(K, \nu)$, where K is a cluster and $\nu: K \longrightarrow \mathbb{Z}$ an arbitrary map, will be called a weighted cluster. For each $p \in K, \nu_{p}=\nu(p)$ is called the virtual multiplicity of p in \mathcal{K}. Consistent clusters are the weighted clusters $\mathcal{K}=(K, \nu)$ such that

$$
\nu_{p}-\sum_{q \text { prox. to } p} \nu_{q} \geq 0, \quad \text { for all } p \in K .
$$

We will say that a germ ξ at O goes sharply through the weighted cluster $\mathcal{K}=(K, \nu)$ if ξ goes through K with effective multiplicities equal to the virtual ones (i.e., for all $p \in K, e_{p}(\xi)=\nu_{p}$) and has no singular points outside of K. The reader may notice that if ξ goes sharply through \mathcal{K}, then the singularity of ξ, both regarding its topological or equisingularity type (see [10] or also [1] or [4]) and the position of singular points, is fully determined by \mathcal{K}.

If p is a free point on a germ of curve ξ, we will write $\mathcal{S}_{p}(\xi)$ for the set of points consisting of p and all satellite points of p on ξ. As it is well known $\mathcal{S}_{p}(\xi)$ is a finite set. Also if the free point p belongs to a cluster $K, \mathcal{S}_{p}(\mathcal{K})$ will denote the set of p and all satellite points of p in K.

Let $\mathcal{K}=(K, \nu)$ be a weighted cluster and $p \in K$ a free point. We define the set of extremal satellites of p in $\mathcal{K}, \mathcal{R}_{p}(\mathcal{K})$, as the set of all points $q \in \mathcal{S}_{p}(\mathcal{K})$ such that

$$
\varepsilon_{q}(\mathcal{K})=\nu_{q}-\sum_{p^{\prime}} \nu_{p^{\prime}}>0,
$$

summation running on the points $p^{\prime} \in \mathcal{S}_{p}(\mathcal{K})$ proximate to q. Note that p may belong to $\mathcal{R}_{p}(\mathcal{K})$.

Let ξ be a germ of curve at O and p a free point on ξ. Similarly, the set of extremal satellites of p on $\xi, \mathcal{R}_{p}(\xi)$ is defined as the set of the points $q \in \mathcal{S}_{p}(\xi)$ for which

$$
\varepsilon_{q}(\xi)=e_{q}(\xi)-\sum_{p^{\prime}} e_{p^{\prime}}(\xi)>0
$$

summation running on the points $p^{\prime} \in \mathcal{S}_{p}(\xi)$ proximate to q.
Remark 1.1 If ξ is a germ of curve going sharply through $\mathcal{K}=(K, \nu)$, then for any free $p \in K, \mathcal{S}_{p}(\mathcal{K})=\mathcal{S}_{p}(\xi)$; for any $q \in \mathcal{S}_{p}(\xi), \varepsilon_{q}(\mathcal{K})=\varepsilon_{q}(\xi)$ and hence $\mathcal{R}_{p}(\mathcal{K})=\mathcal{R}_{p}(\xi)$.

Remark 1.2 Since for any branch γ of a germ of curve $\xi, e_{q}(\gamma)$ equals the sum of the multiplicities of γ at points proximate to q (proximity equality, cf. [2], 1.4.1), one has

$$
\varepsilon_{q}(\xi)=\sum_{\gamma} e_{q}(\gamma),
$$

where γ ranges over the set of branches of ξ with a free point in the first neighbourhood of q. In particular, $q \in \mathcal{R}_{p}(\xi)$ if and only if ξ has a point next p in the first neighbourhood of q. Clearly, $\mathcal{R}_{p}(\xi)$ is cofinal in $\mathcal{S}_{p}(\xi)$.

Remark 1.3 Let $\mathcal{K}=(K, \nu)$ be a weighted cluster and $p \in K$ a free point. The integers $\varepsilon_{q}(\mathcal{K})$, for $q \in \mathcal{S}_{p}(\mathcal{K})$, determine (and are of course determined by) the virtual multiplicities ν_{q}. Indeed if q is maximal in $\mathcal{S}_{p}(\mathcal{K})$, then $\varepsilon_{q}(\mathcal{K})=\nu_{q}$ after which the multiplicities ν_{q} are inductively determined by the equalities defining the $\varepsilon_{q}(\mathcal{K})$. Similarly, if p is a free point and lies on a germ of curve ξ, the effective multiplicities of ξ at the points $q \in \mathcal{S}_{p}(\xi)$ are determined by their corresponding $\varepsilon_{q}(\xi)$. The inductive procedure that determines the multiplicities being in both cases the same, if $\mathcal{S}_{p}(\mathcal{K})=\mathcal{S}_{p}(\xi)$ and $\varepsilon_{q}(\mathcal{K})=\varepsilon_{q}(\xi)$ for all $q \in \mathcal{S}_{p}(\mathcal{K})$, then $e_{q}(\xi)=\nu_{q}$ for all $q \in \mathcal{S}_{p}(\mathcal{K})$.

Let p be a free point infinitely near to O. Let q be either p or a satellite of p. Write $p=q_{1}, q_{2}, \ldots, q_{h}=q$ the ordered sequence of points between p and q. One may decompose $h=h_{1}+\cdots+h_{r}$, all $h_{i}>0$
and $h_{r}>1$, in such a way that $q_{1}, \ldots, q_{h_{1}+1}$ are proximate to the point just preceding $p, q_{h_{1}+1}, \ldots, q_{h_{1}+h_{2}+1}$ are proximate to $q_{h_{1}}$, and so on, till $q_{h_{1}+\cdots+h_{r-1}+1}, \ldots, q_{h_{1}+\cdots+h_{r}}$ that are proximate to $q_{h_{1}+\cdots+h_{r-1}}$. Then, we define the slope of the satellite point q as

$$
s(q)=\frac{1}{h_{1}+\frac{1}{h_{2}+\frac{1}{\ddots \quad \frac{1}{h_{r}}}}} .
$$

Since satellite points are quite determined by the points they are proximate to, it easily follows

Lemma 1.4 a) $s(q) \leq 1$ and the equality holds if and only if $q=p$.
b) $s(q)=s\left(q^{\prime}\right)$ if and only if $q=q^{\prime}$.

Let ξ be a germ of curve at O, p a free point on ξ and $q \in \mathcal{R}_{p}(\xi)$. Fix a branch θ_{p}^{q} with origin at p, having multiplicity one at q and such that all its points after q are non-singular and do not belong to ξ : the integer $I(p, q)$ is defined as

$$
I(p, q)=\left[\theta_{p}^{q} \cdot \widetilde{\xi}_{p}\right]
$$

where $[\cdot]$ stands for intersection multiplicity of germs at p.
The multiplicities $e_{p^{\prime}}\left(\theta_{q}^{p}\right), p^{\prime}<q$, being all determined by the proximity equalities from the fact that q is simple and followed by non-singular points, it easily follows from the Noether formula ([2], 1.3.1) that $I(p, q)$ does not depend on θ_{q}^{p}, but only on ξ, p and q. Moreover, $I(p, q)$ may be easily computed from a weighted Enriques diagram of ξ.

2. Virtual and total transforms

For any point p equal or infinitely near to O, denote by \mathcal{O}_{p} its local ring on the surface \mathcal{S}_{p} it is lying as a proper point, $\mathcal{O}_{p} \simeq \mathbb{C}\{x, y\}$ if x, y are local coordinates on S_{p} at p. Let $\mathcal{K}=(K, \nu)$ be a weighted cluster and η a germ of curve, both with origin at O. Going through \mathcal{K} (or through the points $p \in K$ with the virtual multiplicities ν_{p}) is defined using induction on $\# K$ in the following way
a) If $K=\{O\}$, then η goes through \mathcal{K} if and only if $e_{O}(\eta) \geq \nu_{O}$.

In such a case, for each q in the first neighbourhood of O we define the virtual transform $\widehat{\eta}_{q}$ of η (relative to $\left.\nu_{O}\right)$ as $\widetilde{\eta}_{q}+\left(e_{O}(\eta)-\nu_{O}\right) \mathcal{E}_{q}$, where \mathcal{E}_{q} is the germ at q of the exceptional divisor of blowing up O.
b) If $K \neq\{O\}$, let q_{1}, \ldots, q_{s} be the points of K in the first neighbourhood of O and denote by \mathcal{K}_{i} the weighted cluster consisting of q_{i} and the points infinitely near to it in K, and the restriction of ν. Then, η goes through \mathcal{K} if and only if η goes through $\left(O, \nu_{O}\right)$ and the virtual transforms $\widehat{\eta}_{q_{i}}$, relative to ν_{O}, go through \mathcal{K}_{i} for $i=1, \ldots, s$.

Assume that η goes through \mathcal{K} and let q be a point in the first neighbourhood of any $p \in K$. The virtual transform $\widehat{\eta}_{q}$ of η with origin at q and relative to the multiplicities $\nu_{p^{\prime}}, p^{\prime}<q$ has been already defined if $p=O$. Otherwise and using induction on the order of the neighbourhood, $\widehat{\eta}_{q}$ is the virtual transform of $\widehat{\eta}_{p}$ relative to ν_{p}. If needed we will take $\widehat{\eta}_{O}=\eta$.

We will make use of the following result, see [2], (2.4) or [4], chap. 4 for its proof.

Proposition 2.1 The equations of the germs going through a weighted cluster \mathcal{K} describe the set of non-zero elements of a finite codimensional ideal $H_{\mathcal{K}}$ of \mathcal{O}_{O}. Furthermore, for each $p \in K$ there is a morphism of \mathcal{O}_{O}-modules $\psi_{p}: H_{\mathcal{K}} \longrightarrow \mathcal{O}_{p}$ such that for any $f \in H_{\mathcal{K}}, \psi_{p}(f)$ is an equation of the virtual transform $\widehat{\eta}_{p}$ of $\eta: f=0$.

Let $p \in K$. The exceptional divisor E_{p} decomposes into a sum of components, $E_{p}=\sum_{q<p} F_{p}^{q}$, each F_{p}^{q} being the strict transform of the exceptional divisor of blowing up the point q.

Let η be a germ of curve with origin at O. We will assign to each $p \in K$ integers $u_{p}^{\mathcal{K}}(\eta), v_{p}(\eta)$ defined using induction on the order of the neighbourhood p is belonging to. If $p=O, u_{O}^{\mathcal{K}}(\eta)=e_{O}(\eta)-\nu_{O}, v_{O}(\eta)=$ $e_{O}(\eta)$. Let $p \in K$ be infinitely near to O. The points p is proximate to belong to K and we may define

$$
\begin{aligned}
u_{p}^{\mathcal{K}}(\eta) & =e_{p}(\eta)-\nu_{p}+\sum_{p \text { prox. to } q} u_{q}^{\mathcal{K}}(\eta) \\
v_{p}(\eta) & =e_{p}(\eta)+\sum_{p \text { prox. to } q} v_{q}(\eta) .
\end{aligned}
$$

Remark 2.2 a) The integer $u_{p}^{\mathcal{K}}(\eta)$ depends only on p and the points preceding p, their virtual multiplicities and the multiplicities of η at these points.
b) The integer $v_{p}(\eta)$ depends only on p and the points preceding p and the multiplicities of η at these points.

Proposition 2.3 Let $\mathcal{K}=(K, \nu)$ be a weighted cluster with origin at O and denote by p^{\prime} any point in the first neighbourhood of some $p \in K$. Let η be a germ of curve with origin at O.
a) η goes through \mathcal{K} if and only if $u_{p}^{\mathcal{K}}(\eta) \geq 0$ for all $p \in K$. In such a case the $u_{q}^{\mathcal{K}}(\eta), q<p^{\prime}$, are the multiplicities of the germs of the components $F_{p^{\prime}}^{q}$ of the exceptional divisor in the virtual transform $\widehat{\eta}_{p^{\prime}}$.
b) The multiplicities of the germs of the components $F_{p^{\prime}}^{q}$ of the exceptional divisor in the total transform $\bar{\eta}_{p^{\prime}}$ are the $v_{q}(\eta), q<p^{\prime}$.
c) The difference $v_{p}(\eta)-u_{p}^{\mathcal{K}}(\eta)$ does not depend on η. In particular, $v_{p}(\eta)-u_{p}^{\mathcal{K}}(\eta)=v_{p}(\xi)$ for any germ ξ going through \mathcal{K} with effective multiplicities equal to the virtual ones.

Proof: Parts a), b) and c) follow from the definitions by an easy induction (see [4] chap. 4 for details).

3. Newton polygon

Let ξ be a germ of curve at O, fix a free point p on ξ (hence $p \neq O$) and take local coordinates x, y at p so that the y-axis is the germ of the exceptional divisor at p and the x-axis is not tangent to $\widetilde{\xi}_{p}$. Next we will show how $s(q)$, $\varepsilon_{q}(\xi)$ and $I(p, q)$, for $q \in \mathcal{R}_{p}(\xi)$, are related to the Newton polygon of $\widetilde{\xi}_{p}$.

Remark 3.1 Assume that $\widetilde{\xi}_{p}$ has equation $f=\sum a_{i, j} x^{i} y^{j}$ and denote by $\mathbf{N}(f)$ its Newton polygon. Let $\Gamma_{1}, \ldots, \Gamma_{k}$ be the sides of $\mathbf{N}(f)$, ordered so that, for each i, Γ_{i} has ends $\left(\alpha_{i-1}, \beta_{i-1}\right)$ and $\left(\alpha_{i}, \beta_{i}\right)$, and $\beta_{i-1}>\beta_{i}$. For each of these sides write

$$
\Omega_{i}(z)=\sum_{(\alpha, \beta) \in \Gamma_{i}} a_{\alpha, \beta} z^{\beta-\beta_{i}},
$$

which is currently called the equation associated to Γ_{i}.
Then, as it is well known ([7], appendix B, for instance), the branches of $\widetilde{\xi}_{p}$ (or the branches of ξ through p) correspond to the sides of $\mathbf{N}(f)$ so that the branches corresponding to the side Γ_{i} have a Puiseux series

$$
\begin{equation*}
y=b x^{m_{i} / n_{i}}+\cdots, \tag{1}
\end{equation*}
$$

$-n_{i} / m_{i}$ being the slope of Γ_{i} and b a root of Ω_{i}. Furthermore, for any side of $\mathbf{N}(f)$ and any root b of its associated equation, there is at least one such branch. Notice that $m_{i} / n_{i} \leq 1$, for $i=1, \ldots k$, as, by hypothesis, there are
no branches of $\widetilde{\xi}_{p}$ tangent to the x-axis. Assume that γ is a branch of ξ whose strict transform $\widetilde{\gamma}_{p}$ has the Puiseux series (1) above and let p^{\prime} be the point on γ next p. We will take coordinates at p^{\prime} according to next lemma (proved in [2], 10.2).

Lemma 3.2 Denote \bar{x}, \bar{y} the inverse images at p^{\prime} of the local coordinates x, y at p. There are local coordinates \tilde{x}, \tilde{y} at p^{\prime} related to \bar{x}, \bar{y} by the equalities

$$
\begin{aligned}
& \bar{x}=\tilde{x}^{n_{i}} \\
& \bar{y}=\tilde{x}^{m_{i}}(b+\tilde{y})
\end{aligned}
$$

and so that \tilde{x} is an equation of the germ of the exceptional divisor at p^{\prime}.
Remark 3.3 It follows from an easy computation using the above lemma that p^{\prime} is a non-singular point of ξ if and only if b is a simple root of Ω_{i}. In the sequel we will assume that $\operatorname{gcd}\left(n_{i}, m_{i}\right)=1$.

By the Enriques theorem (see [4], 5.5.1 or [1], III.8.4, th. 12), all irreducible germs θ with origin at p and Puiseux series

$$
y=a x^{m_{i} / n_{i}}+\cdots,
$$

$a \neq 0$, and so in particular all branches corresponding to Γ_{i} go through the same sequence of satellite points of p, the last of them q_{i} having $s\left(q_{i}\right)=m_{i} / n_{i}$ (if $m_{i} / n_{i}=1$, then $i=k$, the sequence is empty and we take $q_{k}=p$). Furthermore, the germ θ above shares a further point (hence a point next p) with one of the branches of $\widetilde{\xi}_{p}$ if and only if $\Omega_{i}(a)=0$.

It follows from (1.2) that the extremal satellites of p on ξ are one for each side of $\mathbf{N}(f)$, more precisely $\mathcal{R}^{p}(\xi)=\left\{q_{1}, \ldots, q_{k}\right\}$.

Lemma 3.4 For $i=1, \ldots, k$,
a) $I\left(p, q_{i}\right)=n_{i} \alpha_{i}+m_{i} \beta_{i}$.
b) $\beta_{i-1}-\beta_{i}=\varepsilon_{q_{i}}(\xi) n_{i}, \alpha_{i}-\alpha_{i-1}=\varepsilon_{q_{i}}(\xi) m_{i}$. In particular, $\varepsilon_{q_{i}}(\xi)=$ $\operatorname{gcd}\left(\beta_{i-1}-\beta_{i}, \alpha_{i}-\alpha_{i-1}\right)$.

Proof: a) By (3.3), $\theta_{p}^{q_{i}}$ has a Puiseux parameterization of the form

$$
\begin{align*}
& x=t^{n_{i}} \\
& y=a t^{m_{i}}+\cdots \tag{2}
\end{align*}
$$

with $\Omega_{i}(a) \neq 0$, because $\theta_{p}^{q_{i}}$ goes through no point on ξ in the first neighbourhood of q_{i}. By substituting (2) in the equation of $\widetilde{\xi}_{p}$ and computing the initial term, one easily gets $\left[\theta_{p}^{q_{i}} \cdot \widetilde{\xi}_{p}\right]=n_{i} \alpha_{i}+m_{i} \beta_{i}$, as wanted.
b) Since the side Γ_{i} has slope $-n_{i} / m_{i}$ and ends $\left(\alpha_{i-1}, \beta_{i-1}\right),\left(\alpha_{i}, \beta_{i}\right)$ it is enough to check that $\beta_{i-1}-\beta_{i}=\varepsilon_{q_{i}}(\xi) n_{i}$.

Let $\gamma_{1}^{(i)}, \ldots, \gamma_{\ell_{i}}^{(i)}$ be the branches of ξ through q_{i} with a free point in the first neighbourhood of q_{i}. If g_{i} is the product of the equations of all branches of $\widetilde{\xi}_{p}$ corresponding to the side Γ_{i}, then g decomposes into factors g_{1}, \ldots, g_{k} and the Newton polygon of g_{i} has as single side a translated of $\Gamma_{i}([9])$. In particular, $\operatorname{deg}_{y} g_{i}=\beta_{i-1}-\beta_{i}$ while

$$
g_{i}=\prod_{j=1}^{\ell_{i}}\left(y^{d_{j} n_{i}}-a_{j} x^{d_{j} m_{i}}+\ldots\right)
$$

and $\gamma_{j}^{(i)}: y^{d_{j} n_{i}}-a_{j} x^{d_{j} m_{i}}+\cdots=0$ are the branches of $\widetilde{\xi}_{p}$ corresponding to Γ_{i}. Then, by the Enriques theorem, $e_{q_{i}}\left(\gamma_{j}^{(i)}\right)=\operatorname{gcd}\left(d_{j} n_{i}, d_{j} m_{i}\right)=d_{j}$ and so

$$
\sum_{j=1}^{\ell_{i}} e_{q_{i}}\left(\gamma_{j}^{(i)}\right)=\sum_{j=1}^{\ell_{i}} d_{j}=\operatorname{deg}_{y} g_{i} / n_{i}=\left(\beta_{i-1}-\beta_{i}\right) / n_{i}
$$

Since, by (1.2), $\varepsilon_{q_{i}}(\xi)=\sum_{j=1}^{\ell_{i}} e_{q_{i}}\left(\gamma_{j}^{(i)}\right)$, the claim follows.
Remark 3.5 Let p be a free point infinitely near to O and assume there is given a set $\left\{\left(q_{1}, \varepsilon_{1}\right), \ldots,\left(q_{k}, \varepsilon_{k}\right)\right\}$, where each q_{i} is either p or a satellite of p and each ε_{i} is a strictly positive integer. We associate to them a weighted cluster $\mathcal{A}=(A, \mu)$ with origin at p, by taking p and all its infinitely near points that precede or are equal to one of the q_{i} and the virtual multiplicities determined (cf. (1.3)) by taking $\varepsilon_{\mathcal{A}}\left(q_{i}\right)=\varepsilon_{i}, \varepsilon_{\mathcal{A}}(q)=0$ if $q \in A, q \neq q_{i}$, $i=1, \ldots, k$.

Assume that the points q_{i} are ordered so that $s\left(q_{1}\right)<\cdots<s\left(q_{k}\right)$. Clearly there is a single Newton polygon in $\mathbb{R}^{2}, \mathbf{N}_{\mathcal{A}}$, with both ends on the axis and sides $\Gamma_{1}, \ldots, \Gamma_{k}$ such that for each $i, i=1, \ldots, k, \Gamma_{i}$ contains $\varepsilon_{i}+1$ integral points and its slope is $-1 / s\left(q_{i}\right)$. If we write the ends of $\Gamma_{i},\left(\alpha_{i-1}, \beta_{i-1}\right)$, $\left(\alpha_{i}, \beta_{i}\right) \in \mathbb{Z}^{2}$ with $\beta_{i-1}>\beta_{i}$, then $\alpha_{i-1}<\alpha_{i}, \operatorname{gcd}\left(\alpha_{i}-\alpha_{i-1}, \beta_{i-1}-\beta_{i}\right)=\varepsilon_{i}$.

Take local coordinates x, y at p so that $x=0$ is the germ of the exceptional divisor at p.

Proposition 3.6 a) Let ξ be a germ of curve with origin at O and assume that $\widetilde{\xi}_{p}$ is $f=0, f \in \mathbb{C}\{x, y\}$. If $\mathbf{N}(f)=\mathbf{N}_{\mathcal{A}}$ then, $\mathcal{S}_{p}(\xi)=A$ and $e_{q}(\xi)=\mu_{q}$ for all $q \in A$.
b) Let $\eta: g=0, g \in \mathbb{C}\{x, y\}$, be a germ of curve with origin at p. If $\mathbf{N}(g)$ has no vertex below $\mathbf{N}_{\mathcal{A}}$, then η goes through \mathcal{A}.

Proof: a) Since $\mathbf{N}(f)=\mathbf{N}_{\mathcal{A}}$, by (3.3), the extremal satellites of p on ξ are q_{1}, \ldots, q_{k} and therefore $\mathcal{S}_{p}(\xi)=A$. Moreover, by $(3.4), \varepsilon_{q_{i}}(\xi)=\varepsilon_{i}$ so, by $(1.3), e_{q}(\xi)=\mu_{q}$ for all $q \in A$, as wanted.
b) By (2.1), it is enough to prove that for any (α, β) not below $\mathbf{N}_{\mathcal{A}}$, the $\operatorname{germ} x^{\alpha} y^{\beta}=0$ goes through \mathcal{A}.

Choose any $h \in \mathbb{C}\{x, y\}$ such that $\mathbf{N}(h)=\mathbf{N}_{\mathcal{A}}$. We claim that $\zeta: h=0$ goes through \mathcal{A}. Indeed, since $\mathbf{N}_{\mathcal{A}}$ has its ends on the axis, h has no factor x, so $\zeta: h=0$ does not contain the germ of the exceptional divisor and therefore $\zeta=\widetilde{\xi}_{p}$ for some germ of curve ξ with origin at O. Thus, part a) applies, $e_{q}(\zeta)=\mu_{q}$ for all $q \in A$ and hence, ζ goes through \mathcal{A} as claimed.

Since (α, β) does not lie below $\mathbf{N}_{\mathcal{A}}$ one may clearly choose $\lambda \in \mathbb{C} \backslash\{0\}$ so that $\mathbf{N}\left(h+\lambda x^{\alpha} y^{\beta}\right)=\mathbf{N}_{\mathcal{A}}$. Arguing as above for $h=0$, also the germ $h+\lambda x^{\alpha} y^{\beta}=0$ goes through \mathcal{A} and thus, by (2.1), so does

$$
x^{\alpha} y^{\beta}=\left(h^{\lambda}-h\right) / \lambda=0 .
$$

Let $g=\sum_{i, j \geq 0} a_{i, j} x^{i} y^{j} \in \mathbb{C}\{x, y\}$ and $(n, m) \in \mathbb{N}^{2}$. We define

$$
\operatorname{deg}_{(n, m)}(g)=\min \left\{n i+m j \mid a_{i j} \neq 0\right\}
$$

Proposition 3.7 Let $\eta: g=0$ be a germ of curve with origin at p so that $\mathbf{N}(g)=\mathbf{N}_{\mathcal{A}}$. Assume that $\zeta: f=0$ is any germ with origin at p. Then,
a) $v_{q_{\ell}}(\zeta)=\operatorname{deg}_{\left(n_{\ell}, m_{\ell}\right)}(f)$.
b) $u_{q_{\ell}}^{\mathcal{A}}(\zeta)=\operatorname{deg}_{\left(n_{\ell}, m_{\ell}\right)}(f)-\operatorname{deg}_{\left(n_{\ell}, m_{\ell}\right)}(g)$.

Proof: Let p^{\prime} be any free point in the first neighbourhood of q_{ℓ}. Using at p^{\prime} the coordinates of (3.2), an equation of the total transform $\bar{\eta}_{p^{\prime}}$ is

$$
\bar{g}=\tilde{x}^{k_{\ell}}\left(\sum_{(i, j) \in \Gamma_{\ell}} a_{i j}(b+\tilde{y})^{j}\right)+\sum_{n_{\ell} i+m_{\ell} j>k_{\ell}} a_{i j} \tilde{x}^{n_{\ell} i+m_{\ell} j}(b+\tilde{y})^{j} .
$$

Thus, $\bar{g}=\tilde{x}^{k} \ell \widetilde{g}$ and since $a_{i j} \neq 0$ for some $(i, j) \in \Gamma_{\ell}, \tilde{g}$ has no further factor \tilde{x}. By (2.3.b), $v_{q_{\ell}}(\eta)=k_{\ell}$. Computing as above, one also gets that the total transform of $\zeta: f=0$ contains exactly $\operatorname{deg}_{\left(n_{\ell}, m_{\ell}\right)}(f)$ times the germ of $E_{p^{\prime}}$, that is, by (2.3.b), $v_{p}(\zeta)=\operatorname{deg}_{\left(n_{\ell}, m_{\ell}\right)}(f)$. So, by (2.3.c), $u_{q_{\ell}}^{\mathcal{A}}(\zeta)=$ $v_{q_{\ell}}(\zeta)-v_{q_{\ell}}(\eta)=\operatorname{deg}_{\left(n_{\ell}, m_{\ell}\right)}(g)-\operatorname{deg}_{\left(n_{\ell}, m_{\ell}\right)}(f)$, as claimed.

4. Behaviour of ζ^{λ}

Let O be the origin of \mathbb{C}^{2} (or a point on a smooth surface, there is no difference from the local viewpoint). Let $\xi: f=0, \eta: g=0$ be (nonnecessarily reduced) germs of curve at O. Assume that $e_{O}(\xi) \leq e_{O}(\eta)$ and that ξ and η share no tangent.

Consider the germs of curve $\zeta^{\lambda}: f+\lambda g=0, \lambda \in \mathbb{C}$. For all but at most a finite number of λ, the germs ζ^{λ} go sharply through a weighted cluster $\mathcal{T}=(T, \tau)$ that we will describe in terms of the infinitely near points and multiplicities of ξ.

First we will assign to each p on ξ an integer u_{p}, defined using induction on the order of the neighbourhood p is belonging to:

If $p=O$, we take $u_{O}=e_{O}(\eta)-e_{O}(\xi)$ and for p on ξ and infinitely near to O,

$$
u_{p}=\sum_{p \text { prox. to } q} u_{q}-e_{p}(\xi) .
$$

Remark 4.1 Let $\mathcal{K}_{p}=\left(K_{p}, \nu\right)$ be the weighted cluster consisting of all points q on ξ that precede or equal p with virtual multiplicities $\nu_{q}=e_{q}(\xi)$. Since ξ and η have no common tangent, $e_{q}(\eta)=0$ for all $q \in K_{p}$ infinitely near to O, and so $u_{p}=u_{p}^{\mathcal{K}_{p}}(\eta)$, as defined in $\S 2$.

The weighted cluster $\mathcal{T}=(T, \tau)$ will be defined inductively. After taking $O \in T$ and assuming that either $p=O$ or p is a free point already in T, we will define
(1) The satellites of p in T, or equivalently $\mathcal{S}_{p}(\mathcal{T})$.
(2) The integers $\varepsilon_{q}(\mathcal{T})$ for $q \in \mathcal{S}_{p}(\mathcal{T})$.
(3) The points next p in T, all taken on ξ.

Once it is proved that such inductive procedure involves finitely many points only, it clearly defines the weighted cluster $\mathcal{T}=(T, \tau)$, the virtual multiplicities τ_{p} being determined by the $\varepsilon_{q}(\mathcal{T})$, by (1.3).

For $p=O$ we take
(1) $S_{O}(\mathcal{T})=\{O\}$,
(2) $\varepsilon_{O}(\mathcal{T})=e_{O}(\xi)$,
(3) either no point next O in T if $e_{O}(\xi)=e_{O}(\eta)$, or all points in the first neighbourhood of O on ξ if $e_{O}(\xi)<e_{O}(\eta)$.

Obviously, in case $e_{O}(\xi)=e_{O}(\eta)$ the definition is complete and $\mathcal{T}=$ $\left(O, e_{O}(\xi)\right)$. Otherwise assume that p is a free point on ξ already taken in T. Write $\mathcal{R}_{p}(\xi)=\left\{q_{1}, \ldots, q_{k}\right\}$ and

$$
s\left(q_{i}\right)=\frac{m_{i}}{n_{i}}, \quad i=1, \ldots, k \quad\left(\operatorname{gcd}\left(m_{i}, n_{i}\right)=1, \frac{m_{1}}{n_{1}}<\cdots<\frac{m_{k}}{n_{k}}\right) .
$$

Put $w_{p}=u_{p}+e_{p}(\xi)$ and

$$
\begin{align*}
r_{p} & =\max \left\{\left\{i \mid n_{i} w_{p}>I\left(p, q_{i}\right)\right\} \cup\{0\}\right\} \\
\alpha_{k} & =I\left(p, q_{k}\right) / n_{k}, \quad \beta_{k}=0 \\
\alpha_{\ell-1} & =\alpha_{\ell}-\varepsilon_{q_{\ell}}(\xi) m_{\ell} \quad \ell=1, \ldots, k \tag{4.2}\\
\beta_{\ell-1} & =\beta_{\ell}+\varepsilon_{q_{\ell}}(\xi) n_{\ell} \quad \ell=1, \ldots, k
\end{align*}
$$

Then the definition of \mathcal{T} continues as follows:
(1) The satellites of p are
(a) the points $q_{1}, \ldots, q_{r_{p}}$ and all points infinitely near to p preceding one of them, and
(b) in case $r_{p}<k$ and $w_{p}>0$, the satellite \bar{q} of p with slope $s(\bar{q})=$ $\left(w_{p}-\alpha_{r_{p}}\right) / \beta_{r_{p}}$ and all points infinitely near to p preceding it.
(2) For $q \in \mathcal{S}_{p}(\mathcal{T}) \backslash\left\{q_{1}, \ldots, q_{r_{p}}, \bar{q}\right\}, \varepsilon_{q}(\mathcal{T})=0, \varepsilon_{q_{i}}(\mathcal{T})=\varepsilon_{q_{i}}(\xi)$ for $i=$ $1, \ldots, r_{p}$ and, if \bar{q} is defined, $\varepsilon_{\bar{q}}(\mathcal{T})=\operatorname{gcd}\left(\beta_{r_{p}}, w_{p}-\alpha_{r_{p}}\right)$.
(3) The points next p in T are the points next p on ξ lying in the first neighbourhood of some $q_{i}, i=1, \ldots, r_{p}$.

Remark 4.3 By (3.4), $\left(\alpha_{i}, \beta_{i}\right), i=0, \ldots, k$ are the vertices of the Newton polygon of $\widetilde{\xi}_{p}$ relative to coordinates whose first axis is not tangent to $\widetilde{\xi}_{p}$ and whose second axis is the exceptional divisor.

In particular, if $u_{p} \geq 0$, then $w_{p} \geq e_{p}(\xi)=n_{k} I\left(p, q_{k}\right)$, so in this case $r_{p}=k$ and therefore $\mathcal{S}_{p}(\mathcal{T})=\mathcal{S}_{p}(\xi)$ and $\tau_{q}=e_{q}(\xi)$ for $q \in \mathcal{S}_{p}(\mathcal{T})$.

Remark 4.4 It easily follows from the definition of r_{p}, the above remark and (3.4.a) that in case $r_{p}>0, w_{p}>I\left(p, q_{r_{p}}\right) / n_{r_{p}} \geq \alpha_{r_{p}}$. Since $\alpha_{0}=0$ and we are assuming $w_{p}>0$, in all cases $w_{p}-\alpha_{r_{p}}>0$ and the definition of \bar{q} makes sense.

It will turn out in the proof of next theorem that w_{p} is positive for all free points $p \in T$ and therefore the condition $w_{p}>0$ in 1.b) above is in fact a redundant one.

Let us prove that T is actually a finite set.
Lemma 4.5 The set T is finite.
Proof: Since satellite points on a germ of curve ξ are always finitely many (they are among the singular points of $\xi_{\text {red }}$) we take j_{0} so that any point on ξ from the j_{0}-th neighbourhood onwards is free and, hence, proximate to just the point preceding it. Clearly the function u_{p} is strictly decreasing on these points (i.e. $u_{p}<u_{p^{\prime}}$ if $p>p^{\prime}$) and so p is free and $u_{p} \leq 0$ for all but finitely many points on ξ. Assume now that $p \in T$ is free (hence, it lies on ξ) and has $u_{p} \leq 0$. Then, clearly $\mathcal{S}_{p}(\xi)=\{p\}, s(p)=1, I(p, p)=e_{p}(\xi)=\varepsilon_{p}(\xi) \geq w_{p}$, so $r_{p}=0$ and there are no points next p in T. Thus, T is finite as claimed.

Theorem 4.6 There exists a finite set $M \subset \mathbb{C}$ such that for $\lambda \in \mathbb{C} \backslash M$ the germs $\zeta^{\lambda}: f+\lambda g=0$ go sharply through \mathcal{T} and no two of them share any point outside of T.
Proof: Unless otherwise stated all virtual transforms will be taken relative to the virtual multiplicities τ_{q} and denoted by the sign ^. If $p \in T$, we will write \mathcal{E}_{p} for the germ at p of the exceptional divisor E_{p}.

Let $p \in T$, either $p=O$ or p a free point. We will use induction on the order of the neighbourhood p is belonging to for proving the following claim:
Claim. There exists a finite subset $M_{p} \subset \mathbb{C}$ so that for any $\lambda \in \mathbb{C} \backslash M_{p}$
a) $\mathcal{S}_{p}\left(\zeta^{\lambda}\right)=\mathcal{S}_{p}(\mathcal{T})$ and $e_{q}\left(\zeta^{\lambda}\right)=\tau_{q}$ for all $q \in \mathcal{S}_{p}(\mathcal{T})$.
b) Any point next p in T lies on ζ^{λ}.
c) For any point p^{\prime} next p in T, both ξ and η go through all points q preceding p^{\prime} with the virtual multiplicities τ_{q} and $\widehat{\xi}_{p^{\prime}}=\widetilde{\xi}_{p^{\prime}}, \widehat{\eta}_{p^{\prime}}=w_{p^{\prime}} \mathcal{E}_{p^{\prime}}$ with $w_{p^{\prime}}>0$.
d) ζ^{λ} has no singular point next p outside of T and any two different germs ζ^{λ} share no point next p outside T.
It is clear that theorem (4.6), with $M=\bigcup_{p \in T} M_{p}$, follows from parts a) and d) of the above claim once it has been proved for all $p \in T$.

First we deal with the point O. Obviously $\mathcal{S}_{O}\left(\zeta^{\lambda}\right)=\mathcal{S}_{O}(\mathcal{T})=\{O\}$ because O has no satellite points. Since $e_{O}(\xi) \leq e_{O}(\eta)$ there is at most one $\lambda_{0} \in \mathbb{C}$ such that $e_{O}\left(\zeta^{\lambda}\right)=e_{O}(\xi)$ for $\lambda \neq \lambda_{0}$, as claimed in a).

If $e_{O}(\xi)=e_{O}(\eta)$, then $(T, \tau)=\left(\{O\}, e_{O}(\xi)\right)$ and so there are no points next O in T. In this case, it is straightforward to check that for all but at most a finite number of λ the germs ζ^{λ} have $e_{O}(\xi)$ different tangents at O and no two of them have a common tangent, from which d) follows.

Assume now that $e_{O}(\xi)<e_{O}(\eta)$. Then, η goes through the points in the first neighbourhood of O on ξ. On the other hand, since we are assuming that η and ξ share no tangent, the effective multiplicity of η at the points infinitely near to O on ξ is zero, so $\widehat{\eta}_{p^{\prime}}=\left(e_{O}(\eta)-e_{O}(\xi)\right) \mathcal{E}_{p^{\prime}}, p^{\prime}$ any point in the first neighbourhood of O on ξ. From the definition of $w_{p^{\prime}}$ it follows that $w_{p^{\prime}}=e_{O}(\eta)-e_{O}(\xi)$, which gives part c). Finally, since $e_{O}(\eta)>e_{O}(\xi)$, the tangent cone to the germs ζ^{λ} is the tangent cone to ξ for all $\lambda \in \mathbb{C}$, so part d) follows.

Let $p \in T$ be a free point infinitely near to O and assume, by induction, that a), b), c) and d) are satisfied for all free points in T preceding p. Next we will prove them for p.

Take local coordinates x, y at p so that the y-axis is the germ of the exceptional divisor at p and the x-axis is not tangent to $\widetilde{\xi}_{p}$.

Since $\zeta^{\lambda}: f+\lambda g=0, \xi: f=0, \eta: g=0$, by (2.1), $\widehat{\left(\zeta^{\lambda}\right)_{p}}: \widetilde{f}+\lambda \widetilde{g}=0$ where \widetilde{f} is an equation of $\widetilde{\xi}_{p}=\widehat{\xi}_{p}$ and \widetilde{g} is an equation of $\widehat{\eta}_{p}$. Since, by c) of the induction hypothesis, $\widehat{\eta}_{p}$ has equation $x^{w_{p}}=0$, we may assume without restriction $\widetilde{g}=x^{w_{p}}$. For $\lambda \notin \bigcup_{q<p} M_{q}=M_{p}^{\prime}$, by the induction hypothesis a), ζ^{λ} goes through the points preceding p with effective multiplicities equal to the virtual ones and so, $\widetilde{\left(\zeta^{\lambda}\right)_{p}}={\left.\widehat{\left(\zeta^{\lambda}\right.}\right)_{p}}$.

Let $\mathcal{R}_{p}(\xi)=\left\{q_{1}, \ldots, q_{k}\right\}$ be the extremal satellites of p on ξ. Let $\Gamma_{1}, \ldots, \Gamma_{k}$ be the sides of $\mathbf{N}(\tilde{f})$ and $\Omega_{1}, \ldots, \Omega_{k}$ their associated equations. By (3.4), each $\Gamma_{i}, i=1, \ldots, k$, has ends $\left(\alpha_{i}, \beta_{i}\right),\left(\alpha_{i-1}, \beta_{i-1}\right), \beta_{i-1}>\beta_{i}$, given by the formulas (4.2), slope $-n_{i} / m_{i}$, with $s\left(q_{i}\right)=m_{i} / n_{i}\left(\operatorname{gcd}\left(m_{i}, n_{i}\right)=1\right)$ and $I\left(p, q_{i}\right)=n_{i} \alpha_{i}+m_{i} \beta_{i}$.

By induction $w_{p}>0$, so in case $r_{p}<k$, let \bar{q} be the satellite of p with slope $s(\bar{q})=\left(w_{p}-\alpha_{r_{p}}\right) / \beta_{r_{p}}$ and let $\bar{\varepsilon}=\operatorname{gcd}\left(w_{p}-\alpha_{r_{p}}, \beta_{r_{p}}\right)$. We define the set Λ in the following way

$$
\Lambda= \begin{cases}\left\{\left(q_{i}, \varepsilon_{q_{i}}(\xi)\right)\right\}_{i=1, \ldots, r_{p}} \cup\{(\bar{q}, \bar{\varepsilon})\} & \text { if } r_{p}<k \\ \left\{\left(q_{i}, \varepsilon_{q_{i}}(\xi)\right)\right\}_{i=1, \ldots, r_{p}} & \text { if } r_{p}=k\end{cases}
$$

We associate to Λ the consistent cluster $\mathcal{A}=(A, \mu)$ as in (3.5). Notice that $A=\mathcal{S}_{p}(\mathcal{T})$ and since $\varepsilon_{q}(\mathcal{A})=\varepsilon_{q}(\mathcal{T})$ for all $q \in A$, by (1.3), $\tau_{q}=\mu_{q}$ for all $q \in A$. So, we write $\mathcal{A}=(A, \tau)$.

The polygonal line $\mathbf{N}_{\mathcal{A}}$ has sides $\Gamma_{i}, i=1, \ldots r_{p}$, with slope $-1 / s\left(q_{i}\right)$, and, in case $r_{p}<k$, a further side $\bar{\Gamma}$ with slope $-\beta_{r_{p}} /\left(w_{p}-\alpha_{r_{p}}\right)$ and $\bar{\varepsilon}+1$ integral points. Clearly, for all but finitely-many $\lambda \in \mathbb{C}, \mathbf{N}\left(\tilde{f}+\lambda x^{w_{p}}\right)=\mathbf{N}_{\mathcal{A}}$.

Thus, after enlarging M_{p}^{\prime} to a still finite set $M_{p}^{\prime \prime}$, for $\lambda \in \mathbb{C} \backslash M_{p}^{\prime \prime}, \widetilde{\left(\zeta^{\lambda}\right)_{p}}=\widehat{\left(\zeta^{\lambda}\right)_{p}}$ and $\mathbf{N}\left(\tilde{f}+\lambda x^{w_{p}}\right)=\mathbf{N}_{\mathcal{A}}$. Therefore, by (3.6.a), for $\lambda \notin M_{p}^{\prime \prime}, \mathcal{S}_{p}(\mathcal{T})=\mathcal{S}_{p}\left(\zeta^{\lambda}\right)$ and $e_{q}\left(\zeta^{\lambda}\right)=\tau_{q}$ for all $q \in \mathcal{A}$, as claimed in a).

Now we prove part b). For $\lambda \notin M_{p}^{\prime \prime}$, the Newton polygons $\mathbf{N}(\widetilde{f})$ and $\mathbf{N}\left(\tilde{f}+\lambda x^{w_{p}}\right)$ have in common the sides $\Gamma_{1}, \ldots, \Gamma_{r_{p}}$ with the same associated equations so, by (3.1), the germs $\widetilde{\left(\zeta^{\lambda}\right)_{p}}: \tilde{f}+\lambda x^{w_{p}}=0$ and $\widetilde{\xi}_{p}: \widetilde{f}=0$ go through the same points next p in the first neighbourhood of $q_{1}, \ldots, q_{r_{p}}$, that is, the points next p in T, as wanted.

Next we will prove part c). Let p^{\prime} be a point next p in T, so p^{\prime} is in the first neighbourhood of q_{i} for some $i=1, \ldots, r_{p}$. First we deal with $\widetilde{\xi}_{p}$. By (3.6.b), $\widetilde{\xi}_{p}$ goes through \mathcal{A} because $\mathbf{N}(\widetilde{f})$ has no vertex below $\mathbf{N}_{\mathbf{A}}$. Since, by induction, $\widetilde{\xi}_{p}=\widehat{\xi}_{p}$, then the virtual transform $\widehat{\xi}_{p^{\prime}}$ is the virtual transform of $\widetilde{\xi}_{p}$ relative to the virtual multiplicities $\tau_{q}, p \leq q<p^{\prime}$.

On the other hand, for $\lambda \notin M_{p}^{\prime \prime}, \mathbf{N}\left(\tilde{f}+\lambda x^{w_{p}}\right)=\mathbf{N}_{\mathcal{A}}$, so, by (3.7.b), $u_{q_{i}}^{\mathcal{A}}\left(\widetilde{\xi}_{p}\right)=\operatorname{deg}_{\left(n_{i}, m_{i}\right)}(\widetilde{f})-\operatorname{deg}_{\left(n_{i}, m_{i}\right)}\left(\widetilde{f}+\lambda x^{w_{p}}\right)$. That is, by (2.3.a), $\widehat{\xi}_{p^{\prime}}$ contains $\operatorname{deg}_{\left(n_{i}, m_{i}\right)}(\widetilde{f})-\operatorname{deg}_{\left(n_{i}, m_{i}\right)}\left(\tilde{f}+\lambda x^{w_{p}}\right)$ times $\mathcal{E}_{p^{\prime}}$. Since $\mathbf{N}(\widetilde{f})$ and $\mathbf{N}\left(\widetilde{f}+\lambda x^{w_{p}}\right)$ have in common the side Γ_{i} of slope $-1 / s\left(q_{i}\right)=-n_{i} / m_{i}$, then $\operatorname{deg}_{\left(n_{i}, m_{\overparen{i}}\right)}(\widetilde{f})=$ $\operatorname{deg}_{\left(n_{i}, m_{i}\right)}\left(\tilde{f}+\lambda x^{w_{p}}\right)$ and therefore $\widehat{\xi}_{p^{\prime}}$ does not contain $\mathcal{E}_{p^{\prime}}$. Hence, $\widetilde{\xi}_{p^{\prime}}=\widehat{\xi}_{p^{\prime}}$ as claimed.

Now we deal with $\widehat{\eta}_{p}$. Since we have shown that $\widetilde{\xi}_{p^{\prime}}=\widehat{\xi}_{p^{\prime}}$, by (2.3.a), $u_{q_{i}}^{\mathcal{T}}(\xi)=0$ and, by (2.3.c),

$$
\begin{equation*}
v_{q_{i}}(\eta)-u_{q_{i}}^{\mathcal{T}}(\eta)=v_{q_{i}}(\xi) . \tag{3}
\end{equation*}
$$

Let $\mathcal{K}_{p^{\prime}}$ be as in (4.1). Since ξ goes through $\mathcal{K}_{p^{\prime}}$ with effective multiplicities equal to the virtual ones, by (2.3.c),

$$
\begin{equation*}
v_{q_{i}}(\eta)-u_{q_{i}}^{\mathcal{K}_{p^{\prime}}}(\eta)=v_{q_{i}}(\xi) . \tag{4}
\end{equation*}
$$

Thus, by (3) and (4), $u_{q_{i}}^{\mathcal{K}_{p^{\prime}}}(\eta)=u_{q_{i}}^{\mathcal{T}}(\eta)$ and, by (4.1), $u_{q_{i}}^{\mathcal{K}_{p^{\prime}}}(\eta)=u_{q_{i}}$. Since, by induction, $\widehat{\eta}_{p}: x^{w_{p}}=0$, by (3.6.b) $\widehat{\eta}_{p}$ goes through \mathcal{A}. Thus, by definition of going through, η goes through the points q preceding p^{\prime} with the virtual multiplicities τ_{q} and $\widehat{\eta}_{p^{\prime}}$ is the virtual transform of $\widehat{\eta}_{p}=w_{p} \mathcal{E}_{p}$ relative to the virtual multiplicities $\tau_{q}, p \leq q<p^{\prime}$.

Hence, by (2.3.a), $u_{q_{i}}^{\mathcal{T}}(\eta)=u_{q_{i}}^{\mathcal{A}}\left(\widehat{\eta}_{p}\right)$ and so, by (3.7.b),

$$
u_{q_{i}}^{\mathcal{T}}(\eta)=\operatorname{deg}_{\left(n_{i}, m_{i}\right)}\left(x^{w_{p}}\right)-\operatorname{deg}_{\left(n_{i}, m_{i}\right)}\left(\tilde{f}+\lambda x^{w_{p}}\right)=w_{p} n_{i}-I\left(p, q_{i}\right) .
$$

Since, by definition, $u_{q_{i}}=w_{p^{\prime}}$, then $w_{p^{\prime}}=w_{p} n_{i}-I\left(p, q_{i}\right)$ and so, as $i \leq r_{p}$, by (4.2), $w_{p^{\prime}}>0$ as claimed.

Finally we show part d). We have just proved that for $\lambda \notin M_{p}^{\prime \prime}, \widetilde{\xi}_{p}$ and $\widetilde{\left(\zeta^{\lambda}\right)_{p}}$ share the sides $\Gamma_{1}, \ldots, \Gamma_{r_{p}}$ of their Newton polygons and also have the same associated equations $\Omega_{1}, \ldots, \Omega_{r_{p}}$; therefore, for $\lambda \notin M_{p}^{\prime \prime}$, the points next p on ζ^{λ} and not belonging to T must be proximate to \bar{q}, the extremal satellite of p corresponding to the last side $\bar{\Gamma}$ of $\mathbf{N}\left(\tilde{f}+\lambda x^{w_{p}}\right)$.

Since the equation associated to this side is

$$
\bar{\Omega}=\sum_{(\alpha, \beta) \in \bar{\Gamma}} a_{\alpha \beta} z^{\beta}+\lambda,
$$

there is a finite set $M_{p} \subset \mathbb{C}, M_{p}^{\prime \prime} \subset M_{p}$, such that for all $\lambda \notin M_{p}$, all roots of $\bar{\Omega}$ are simple. So, by (3.3), all points on ζ^{λ} in the first neighbourhood of \bar{q} are non-singular. Moreover, since different values of λ give different roots of $\bar{\Omega}$, no two germs ζ^{λ} share any point next p in the first neighbourhood of \bar{q}, as claimed. So, the claim is satisfied.

5. An example

Under the hypothesis of 4 , let ξ be irreducible with characteristic exponents $\{10 / 6,15 / 6\}$ (see figure 1) and write $e_{O}(\eta)=n$.

Figure 1: Enriques diagram of the points on ξ up to the 9 -th neighbourhood. Besides each point p there is shown its multiplicity $e_{p}(\xi)$ and the corresponding value of u_{p} as a function of n.

The singularities of ζ^{λ} may be described, according to the values of n, as follows (cf. figure 2):

- $\mathbf{n}=6: \zeta^{\lambda}$ has an ordinary singular point of multiplicity six.
- $\mathbf{n}=\mathbf{7}: \zeta^{\lambda}$ is irreducible with single characteristic exponent $7 / 6$ and tangent to ξ.
- $\mathbf{n}=8: \zeta^{\lambda}$ has two branches both tangent to ξ, with characteristic exponent $4 / 3$ and sharing all their singular points.
- $\mathbf{n}=9: \zeta^{\lambda}$ has three branches both tangent to ξ, with characteristic exponent $3 / 2$ and sharing all their singular points.
- $\mathbf{n}=10:$ As in case $n=8$ but with characteristic exponent $5 / 3$.
- $\mathbf{n}=11: \zeta^{\lambda}$ is irreducible with two characteristic exponents $\{10 / 6,13 / 6\}$. All its singular points but the last one lie on ξ.
- $\mathbf{n} \geq 12: \zeta^{\lambda}$ is equisingular to ξ, ζ^{λ} and ξ share all their singular points and $6 n-70$ non-singular points (C^{0}-sufficiency degree of ξ is 12).

Figure 2: Enriques diagrams of the weighted clusters \mathcal{T} for $n=$ $7, \ldots, 11$. Some points on ξ not in \mathcal{T} are represented by unlabelled points on dotted lines in order to show relative position of infinitely near points.

References

[1] Brieskorn, E. and Knörrer, H.: Plane Algebraic Curves. Birkhäuser, Basel 1986.
[2] Casas-Alvero, E.: Infinitely near imposed singularities and singularities of polar curves. Math. Ann. 287 (1990), no. 3, 429-454.
[3] Casas-Alvero, E.: Singularities of polar curves. Compositio Math. 89 (1993), 339-359.
[4] Casas-Alvero, E.: Singularities of plane curves. London Mathematical Society Lecture Notes Series 276. Cambridge Univ. Press, Cambridge, 2000.
[5] Kuo, T. C. and Lu, Y. C.: On analytic function germs of two variables. Topology 16 (1977), no. 4, 299-310.
[6] Maugendre, H.: Topologie des germes jacobiens. Thèse de Doctorat, Université de Nantes, 1995.
[7] Semple, J. G. and Kneebone, G. T.: Algebraic curves. Oxford University Press, London-New York, 1959.
[8] Teissier, B.: Variétés polaires I. Invariants polaires des singularités d'hypersurfaces. Invent. Math. 40 (1977), no. 3, 267-292.
[9] Teissier, B.: Polyèdre de Newton jacobien et equisingularité. In Seminaire sur les singularités, 193-221. Publ. Math. Univ. Paris VII 7, Paris, 1980.
[10] Zariski, O.: Studies in equisingularity I. Equivalent singularities of plane algebroid curves. Amer. J. Math 87 (1965), 507-536.

Recibido: 20 de febrero de 2002
Revisado: 31 de diciembre de 2002

Eduardo Casas-Alvero
Departament d'Àlgebra i Geometria
Universitat de Barcelona
Gran Via, 585, 08007 Barcelona, Spain
casas@mat.ub.es
Rosa Peraire
Departament d'Àlgebra i Geometria
Universitat de Barcelona
Gran Via, 585, 08007 Barcelona, Spain
peraire@mat.ub.es

[^0]
[^0]: Partially supported by CAICYT PB98-1185, DGR Generalitat de Catalunya 2000SGR00028 and HCM project no. ERBCHRXCT-940557.

