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Translation averages of
dyadic weights are

not always good weights

Lesley A. Ward

Abstract

The process of translation averaging is known to improve

dyadic BMO to the space BMO of functions of bounded mean

oscillation, in the sense that the translation average of a family of

dyadic BMO functions is necessarily a BMO function. The present

work investigates the effect of translation averaging in other dyadic

settings. We show that translation averages of dyadic doubling

measures need not be doubling measures, translation averages of

dyadic Muckenhoupt weights need not be Muckenhoupt weights,

and translation averages of dyadic reverse Hölder weights need not

be reverse Hölder weights. All three results are proved using the

same construction.

1. Introduction.

Several important function spaces on the real line, such as the space
BMO of functions of bounded mean oscillation, Muckenhoupt’s spaces of
Ap weights, and the spaces of reverse Hölder weights, are defined in terms
of properties that must hold on every real interval. Such function spaces
have less restrictive dyadic versions, in which the defining property is only
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required to hold on dyadic intervals. These dyadic versions then contain
the original function spaces. Similarly, the space of doubling measures,
defined by requiring the ratio µ(I)/µ(J) to be uniformly bounded for all
pairs of adjacent intervals I and J of equal length, has a dyadic version,
in which the doubling property need only hold for dyadic sister intervals.

Averaging a collection of functions tends to smooth out irregulari-
ties, producing a better-behaved function. In this paper we consider the
following averaging process. The translation average ϕ of a collection of
functions {ϕt} on the unit interval with endpoints identified, indexed by
t ∈ [0, 1], is defined by

(1) ϕ(x) =
∫ 1

0

ϕt(x + t) dx .

The translation average of a collection of measures is defined analogously.
Garnett and Jones showed in [GJ] that the translation average of a

collection of dyadic BMO functions is necessarily a BMO function. (This
is not true for the usual average.) Specifically, if t −→ ϕt is a measurable
mapping from Rm to the space of dyadic BMO functions such that all ϕt

are supported on a fixed dyadic cube, the dyadic BMO constant of each
ϕt is bounded by 1, and each ϕt has mean zero, then the function

(2) ϕN (x) =
1

(2N)m

∫
|tj |≤N

ϕt(x + t) dt

is in BMO for each N , with uniform BMO constant. They exploit this
idea to give new proofs of theorems on the structure of BMO functions
and on the distance to L∞ in BMO, and of the factorization theorem for
Ap weights, by first obtaining each theorem in the easier dyadic case, and
then averaging the results of the dyadic decomposition over translations.
In this paper we investigate whether the translation averaging process has
the same “improving” effect in other settings.

We prove that translation averaging does not always improve dyadic
spaces. First, there are families of dyadic doubling measures, with uniform
and arbitrarily small dyadic doubling constant, whose translation averages
are not doubling measures.

Theorem 1.1. Given C > 1, there is a family of dyadic doubling measures
{µt}t∈[0,1] on [0, 1], with dyadic doubling constant at most C for all t ∈
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[0, 1], such that the translation average

(3) µ(·) =
∫ 1

0

µt(· + t) dt

is not a doubling measure.

Second, for each of Muckenhoupt’s Ap spaces, there are families of
dyadic Ap weights on the unit interval, with uniform and arbitrarily small
dyadic Ap constant, whose translation averages are not Ap weights.

Theorem 1.2. For each real p with 1 ≤ p ≤ ∞ and for each C > 1,
there is a family of Ad

p weights {wt}t∈[0,1] on [0, 1], with ‖wt‖Ad
p
≤ C for

all t ∈ [0, 1], such that the translation average

(4) w(x) =
∫ 1

0

wt(x + t) dt

is not an Ap weight.

Third, for each reverse Hölder space RHq, there are families of dyadic
reverse Hölder-q weights on the unit interval, with uniform and arbitrarily
small dyadic reverse Hölder-q constant, whose translation averages are not
reverse Hölder weights.

Theorem 1.3. For each real q with 1 < q < ∞ and for each C > 1, there
is a family of RHd

q weights {wt}t∈[0,1] on [0, 1], with ‖wt‖RHd
q
≤ C for all

t ∈ [0, 1], such that the translation average

(5) w(x) =
∫ 1

0

wt(x + t) dt

is not a RHq weight.

Doubling measures, Muckenhoupt’s classes of Ap weights, reverse Höl-
der weights, and their dyadic versions are defined in Section 2.

All three results are proved by the same construction, which is de-
veloped in Theorem 1.4 below. We construct a family of weights {wt},
0 ≤ t ≤ 1, depending on a parameter α, 0 < α < 1, with the following
properties. The weights are the densities of dyadic doubling measures µt.
The weights lie in every Ad

p space, and in every RHd
q space for which
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q < 1/α, and so by decreasing the parameter α we can ensure that the
weights lie in any given RHd

q space. Moreover, by decreasing α, we can also
make the dyadic doubling constant, the Ad

1 constant, the Ad
p constant, and

the RHd
q constant arbitrarily close to 1. However, the measure µ whose

density is the translation average w(x) =
∫ 1

0
wt(x + t) dt of the weights is

not a doubling measure, which proves Theorem 1.1.
On the other hand, measures whose densities are Ap weights or re-

verse Hölder weights are necessarily doubling; this follows from the reverse
Hölder property and ∪p≥1Ap = ∪q>1RHq. Therefore w(x) is not in Ap for
any p, nor in RHq for any q, establishing Theorems 1.2 and 1.3.

In order to state the main theorem precisely, we first make some def-
initions.

Let α be a real number with 0 < α < 1. Let β be a rational number
such that

(6) 0 < β <
α

α + 1
and β + α < 1 .

The first condition implies that α−β α−β > 0. Let {Nj}∞j=1 be a sequence
of rapidly increasing integers, chosen so that Njβ is an integer for all j, so
that N1 ≥ 1/β and N2 ≥ 2/β, and so that

(7) Nj ≥ 1
α − β α − β

(N1 + · · · + Nj−1) , for j = 2, 3, . . .

For example, when α = 1/2 and β = 1/4, the sequence N1 = 4, Nj =
8 (9)j−2 for j ≥ 2 satisfies these conditions. In general, a sequence sat-
isfying Nj ≥ C (N1 + · · · + Nj−1) must grow exponentially, since Nj ≥
C (1 + C)j−1 N1.

We identify the unit circle with the interval [0, 1]. The dyadic intervals
in [0, 1] comprise the set

(8) D =
{
I =

[ j

2k
,
j + 1
2k

)
: j, k integers, 0 ≤ j ≤ 2k−1, k = 0, 1, 2, . . .

}
of half-open dyadic subintervals of [0, 1]. Let DN denote the collection of
intervals in D of length 2−N , for N = 0, 1, 2, . . . We use the term dyadic
sisters for the two halves or daughters of a single dyadic interval, their
parent. Any two dyadic intervals are either nested or disjoint.

Define the generational distance d(I, J) between two dyadic intervals
I and J of equal length by

(9) d(I, J) = log2

( |K|
|I|

)
,
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where K is the smallest dyadic interval containing both I and J . Thus
d(I, I) = 0, and in general d(I, J) is the number of generations back to the
first dyadic common ancestor of I and J .

Given a point t ∈ [0, 1], and j ≥ 1, let Ij
t be the unique dyadic interval

in DNj
which contains t. Label the dyadic intervals in DNj

immediately
to the right of Ij

t as Jj
t , Kj

t , Lj
t , and M j

t , reading from left to right. When
t is very near the right end of [0, 1], some or all of Jj

t , Kj
t , Lj

t , and M j
t are

wrapped around to the left end of [0, 1].
On the unit circle, Kj

t is the translation of Ij
t to the right by 2 |Ij

t |.
We define a nested, decreasing sequence {Gj}∞j=1 of sets in [0, 1] by letting
G0 = [0, 1], and for j ≥ 1 letting

(10)
Gj = {t ∈ Gj−1 : d(Ij

t , Kj
t ) = Nj β}

= {t ∈ [0, 1] : d(I1
t , K1

t ) = N1 β, . . . , d(Ij
t , Kj

t ) = Nj β} .

For instance, t ∈ G2 if the generational distance from the dyadic interval
I1
t of length 2−N1 containing t, to the dyadic interval K1

t which is the
translation of I1

t to the right by twice the length of I1
t , is exactly N1 β,

and if in addition d(I2
t , K2

t ) is exactly N2 β.
Define a family {wt}t∈[0,1] of weights on the unit circle as follows. For

t ∈ G0 \ G1, let wt ≡ 1. For t ∈ Gj \ Gj+1, j ≥ 1, let

(11) wt(x) =

{
(Md(c δt(x)))α , x /∈ Ij

t ,

2Njα , x ∈ Ij
t .

Here c = (2 − 2α)1/α, δt is the Dirac delta function centred at t, Ij
t is the

unique dyadic interval of length 2−Nj that contains t, and Md is the dyadic
maximal operator, defined by

(12) Md(f)(x) = sup
I�x
I∈D

1
|I|

∫
I

|f(y)| dy .

The weight wt is constant on each dyadic interval of length 2Nj , and decays
away from its maximum, taken on the dyadic interval Ij

t containing t, as
|x − t| increases.

For each j, let Aj be the interval of length 2−Nj centred at 0, and let
Bj be the interval of the same length obtained by translating Aj to the
right by the distance 3 |Aj |. These intervals Aj and Bj are not dyadic.
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Theorem 1.4. Define the numbers α, β, and {Nj}∞j=1, the sets {Gj}∞j=1,
the weights {wt}t∈[0,1], and the intervals {Aj}∞j=1 and {Bj}∞j=1 as above.
Then the weights wt are dyadic Ap weights, with uniform Ad

p constant, for
1 ≤ p ≤ ∞, and they are dyadic reverse Hölder weights, with uniform
RHd

q constant, for 1 < q < 1/α. Also, the associated measures µt with
densities wt are dyadic doubling measures with uniform dyadic doubling
constant. All these constants converge to 1 as α decreases to 0. Finally,
the translation average µ(·) =

∫ 1

0
µt(· + t) dt of the measures µt satisfies

(13)
µ(Aj)
µ(Bj)

≥ C 2Njβα −→ ∞ , as j −→ ∞ ,

and therefore µ is not a doubling measure.

Remark. We mention that it is possible to prove Theorem 1.1 using a
completely different family of examples of dyadic doubling measures on the
unit interval. One fixes r, s such that 0 < s < r < 1 and r + s = 1, and
defines the measures µt recursively, first assigning mass r to either the left
or right half of [0, 1] and mass s to the other half. Next, one assigns the
fraction r of the mass of [0, 1/2) to either the left or right half of [0, 1/2)
and the fraction s to the other half, and similarly for [1/2, 1], and so on
at smaller and smaller scales, producing dyadic doubling measures with
uniform dyadic doubling constant r/s. However, the details of making the
ensemble of left/right choices so that the resulting translation average µ is
not doubling make the construction quite intricate.

I am grateful to a referee and to David Cruz-Uribe for pointing out
related work of Petermichl, Nazarov, Treil, and Volberg. In [P], Petermichl
obtains the kernel of the one-dimensional Hilbert transform as the result of
an averaging process over kernels of dyadic shift operators. Her averaging
process involves both dilations and translations of the standard dyadic
grid. She applies the decomposition to show that the commutator of the
Hilbert transform with matrix multiplication by a BMO matrix of size n×n
is bounded by a multiple of log n times the BMO-norm of the matrix,
and, with Pott [PP], to prove an analogue of Burkholder’s theorem for
operator-weighted spaces. Namely, for an operator weight function W
taking values in the bounded linear operators on a Hilbert space H, if
the dyadic martingale transforms are uniformly bounded on L2

R
(W ) for

every dilated and translated dyadic grid in R, then the Hilbert transform
is bounded on L2

R
(W ).

Nazarov, Treil, and Volberg [NTV] use dyadic martingale techniques
and an averaging process on dyadic lattices to extend the following well
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known result to the case where µ is not doubling. Let T be an operator of
Calderón-Zygmund type associated to a one-dimensional standard kernel
K in R2, satisfying the antisymmetry condition K(x, y) = −K(y, x), for all
x, y ∈ R2. Let µ be a positive Radon measure such that µ(Q) ≤ C �(Q) for
all squares Q, where �(Q) is the side-length of Q. Then T : L2(µ) −→ L2(µ)
is bounded if and only if the L2 estimate holds for characteristic functions
of squares. They generalize to operators T which are not antisymmetric,
and to higher dimensions.

In Section 2 we recall the definitions of doubling measures, Mucken-
houpt’s Ap spaces, the reverse Hölder spaces, and their dyadic versions.
In Section 3 we define the weights vt = (Md(c δt(x)))α in terms of dyadic
maximal functions of Dirac delta functions, and compute the dyadic Ap

constants and the dyadic reverse Hölder constants of these weights and the
dyadic doubling constants for the associated measures. We also compute
the analogous constants for the truncated weights wt defined in (11). In
Section 4 we prove our main result, Theorem 1.4.

2. Background.

A positive measure µ on the real line is called a dyadic doubling mea-
sure if there is a constant C ≥ 1 such that

(14)
1
C

≤ µ(I)
µ(J)

≤ C

for all pairs I, J of dyadic sister intervals. The smallest such constant C is
called the dyadic doubling constant of µ. Equivalently, there is a constant
C ′ ≥ 1 such that for every dyadic interval I, µ(Ĩ) ≤ C ′µ(I), where the
interval Ĩ is the dyadic parent of I. When there is a constant C ≥ 1 such
that (14) holds for every pair I, J of adjacent intervals of equal length, not
only for dyadic sisters, µ is called a doubling measure.

We say that a positive locally integrable function w on the real line is
a dyadic Ap weight, written w ∈ Ad

p, for real p with 1 < p < ∞, if

(15) sup
I∈D

( 1
|I|

∫
I

w
)( 1

|I|
∫

I

( 1
w

)1/(p−1))p−1

< ∞ .

We say w is a dyadic A1 weight, written w ∈ Ad
1, if

(16) sup
I∈D

( 1
|I|

∫
I

w
)(

ess supI

1
w

)
< ∞ .



386 L. A. Ward

The suprema in equations (15) and (16) are called the dyadic Ap constant
and the dyadic A1 constant, respectively, of the weight w, and are denoted
by ‖w‖Ad

p
and ‖w‖Ad

1
. When the suprema in equations (15) and (16) are

taken over all real intervals, not just over the dyadic intervals, we recover
the definitions of Muckenhoupt’s original Ap and A1 weights.

We say w is a dyadic reverse Hölder-q weight, written w ∈ RHd
q , for

real q with 1 < q < ∞, if the measure µ whose density is w is a dyadic
doubling measure, and if there is a constant C ≥ 1 such that for all dyadic
intervals I ∈ D,

(17)
( 1
|I|

∫
I

wq
)1/q

≤ C
1
|I|

∫
I

w .

The smallest such constant C is called the dyadic reverse Hölder-q constant
of the weight w, and is denoted by ‖w‖RHd

q
. The original reverse Hölder-q

spaces RHq are defined by requiring (17) to hold for all real intervals I,
not only for dyadic intervals. In the non-dyadic setting RHq, (17) implies
that the associated measure µ is doubling [CF], [GC-RF]. In the dyadic
setting RHd

q , this is not true [B], and we impose the additional condition
that µ is a dyadic doubling measure so that the dyadic and non-dyadic
theories will be parallel.

The dyadic doubling constant and the constants ‖w‖Ad
p
, ‖w‖Ad

1
, and

‖w‖RHd
q

are necessarily greater than or equal to 1.
The canonical examples of weights are the functions w(x) = |x|α, for

which w ∈ Ad
∞ if and only if α > −1, w ∈ Ad

p if and only if −1 < α < p−1,
w ∈ Ad

1 if and only if −1 < α ≤ 0, and w ∈ RHd
q if and only if α > −1/p.

Muckenhoupt’s spaces of Ap weights are well known in connection with
two important operators in harmonic analysis. The Hilbert transform and
the maximal function are both bounded operators from Lp to itself, for
1 < p < ∞. They are bounded from Lp(dµ) to itself if and only if µ is
absolutely continuous with respect to Lebesgue measure and the density
of µ is an Ap weight [M], [HMW]. The spaces of Ap weights are nested
and increasing with p, and their union is denoted by A∞. The reverse
Hölder spaces are nested and decreasing as q increases, 1 < q < ∞, and
their union is also A∞. The reverse Hölder spaces are also known as the
Bp spaces. In [FKP] and [B], the spaces A∞, Ap, RHq and their dyadic
versions are characterized by summation conditions. The Ap spaces are
also closely related to BMO; if w ∈ A∞ then log w is in BMO, and if log w
is in BMO then there is a β > 0 such that wβ ∈ A∞. See [GC-RF] for
more on the theory of weights.
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3. Weights from dyadic maximal functions of Dirac
deltas.

In this section we define the particular weights wt used in our construc-
tion, and compute their dyadic Ap constants, their dyadic reverse Hölder
constants, and the dyadic doubling constants of the associated measures µt.

For most values of t ∈ [0, 1], our weights wt are identically 1. For the
remaining values of t, our weights are modified versions of powers of dyadic
maximal functions of Dirac delta functions, following the characterization
of A1 weights by Coifman and Rochberg [CR]. The underlying idea is to
produce a large drop in the value of wt at a dyadic point as close as possible
to t, so that wt is large on the interval Aj + t and small on Bj + t.

Fix a number α with 0 < α < 1, and define a normalizing constant
c = (2− 2α)1/α. Fix t ∈ [0, 1]. Let δt denote the Dirac delta function at t.
Define a weight vt by

(18) vt = (Md(c δt(x)))α =
(

sup
I�x
I∈D

1
|I|

∫
I

c δt(y) dy
)α

.

See Figure 1. We will see below that the weight vt(x) has a peak at x = t,
decaying away as |x− t| increases, and that the requirement α < 1 ensures
that vt is integrable. The constant c = (2− 2α)1/α is chosen so that vt has
integral 1.

t� �

�

�

F� F�F�F�

Figure 1. The weight vt(x) = (Md(c δt(x)))α, with α = 1/2.
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We partition [0, 1] into the intervals Fk on which vt is constant. The
supremum in (18) is achieved when I is the smallest dyadic interval con-
taining both x and t. For k = 0, 1, 2, . . . let

(19)
Fk = {x ∈ [0, 1] : |Î| = 2−k , where Î is the smallest

dyadic interval containing both x and t} .

Then |Fk| = 2−k−1. The set F0 is the half of [0, 1] that does not contain t,
F1 is the half of [0, 1] \ F0 that does not contain t, and so on. The weight
vt is constant on each Fk: for x ∈ Fk,

(20) vt(x) = (Md(c δt(x)))α =
( 1

|Î|

∫
Î

c δt(y) dy
)α

= 2kα cα .

Given a weight vt, we denote by νt(·) the associated measure whose density
is vt. We use It to denote dyadic intervals containing the point t, and J
to denote dyadic intervals not containing t. In particular, for the unique
dyadic interval It ∈ DN that contains t, we have It = ∪∞

k=N Fk.
We collect here some useful properties of the weights vt.

Lemma 3.1. Suppose 0 < α < 1, and let c = (2 − 2α)1/α. Fix t ∈
[0, 1]. The weight vt(x) = (Md(c δt(x)))α and its associated measure νt(·) =∫
· vt(x) dx satisfy the following properties.

i) The total mass of νt on [0, 1] is 1.

ii) The dyadic interval It ∈ DN containing the point t has mass

νt(It) = 2Nα−N ,

and so the average value of vt on It is 2Nα.

iii) Any dyadic interval J ∈ DN not containing the point t has mass

νt(J) = 2Nα−d(It,J)α−N cα ,

and so the average value of vt on J is 2Nα−d(It,J)α cα.

iv) The measure νt associated to vt is a dyadic doubling measure, with
dyadic doubling constant 2α/(2 − 2α).

v) The weight vt lies in every dyadic Ap space. Its dyadic A1 constant
is (2 − 2α)−1. Its dyadic Ap constant, for 1 < p < ∞, is

(2 − 2α)−1 (2 − 2α/(p−1))−(p−1) .
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vi) The weight vt lies in all dyadic reverse Hölder-q spaces such that
1 < q < 1/α. Its dyadic reverse Hölder-q constant, for 1 < q < 1/α, is

(2 − 2α) (2 − 2αq)−1/q .

vii) The dyadic doubling constant, the Ad
1 constant, the Ad

p constant,
and the RHd

q constant of vt decrease to 1 as α decreases to 0.

Before proving Lemma 3.1 we define the truncated version wt of the
weight vt, and state its properties in Lemma 3.3.

Definition 3.2. Let L be an integer greater than 0. Let IL
t denote the

unique dyadic interval of length 2−L containing t. The truncation of vt at
level L is the new weight wt defined by

(21) wt(x) =

{
(Md(c δt(x)))α , x /∈ IL

t ,

2Lα , x ∈ IL
t .

Denote by µt the measure whose density is wt ; so µt(·) =
∫
· wt(x) dx.

The only difference between vt and wt is that vt has been replaced on
IL
t by its average value on IL

t . In other words, the “peak” of vt around
t has been lopped off, and replaced by the constant value 2Lα on IL

t .
The truncated weight wt has the same dyadic doubling constant and Ad

1

constant as vt, and smaller Ad
p and RHd

q constants than vt.

Lemma 3.3. Suppose 0 < α < 1, and let c = (2 − 2α)1/α. Fix t ∈ [0, 1].
Let wt be the weight given by truncating vt at level L,

wt(x) =

{
(Md(c δt(x)))α , x /∈ IL

t ,

2Lα , x ∈ IL
t ,

where t ∈ IL
t ∈ DL. Then wt and its associated measure µt(·) =

∫
· wt(x) dx

satisfy the following properties.

i) The total mass of µt on [0, 1] is 1.

ii) The dyadic interval It ∈ DN containing the point t has mass

µt(It) =

{
2Nα−N , if 0 ≤ N ≤ L (so It ⊇ IL

t ) ,

2Lα−N , if N > L (so It ⊂ IL
t ) .
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Therefore the average value of wt on It is 2Nα if 0 ≤ N ≤ L, and 2Lα if
N > L.

iii) Any dyadic interval J ∈ DN not containing the point t has mass

µt(J) =

{
2Nα−d(It,J)α−N cα , if J �⊂ IL

t ,

2Lα−N , if J ⊂ IL
t .

Therefore the average value of wt on J is 2Nα−d(It,J)α cα if J �⊂ IL
t , and

2Lα if J ⊂ IL
t .

iv) The measure µt associated to wt is a dyadic doubling measure, with
dyadic doubling constant 2α/(2 − 2α).

v) The weight wt lies in every dyadic Ap space. Its dyadic A1 constant
is (2 − 2α)−1. Its dyadic Ap constant, for 1 < p < ∞, is

(2 − 2α)−1

(2 − 2−α/(p−1))p−1

(
1 + (2−1−α/(p−1))L

( 2 − 2−1−α/(p−1)

(2 − 2α)−1/(p−1) − 1

))p−1

,

which is less than the dyadic Ap constant of the untruncated weight vt.

vi) The weight wt lies in all dyadic reverse Hölder-q spaces such that
1 < q < 1/α. Its dyadic reverse Hölder-q constant, for 1 < q < 1/α, is

2 − 2α

(2 − 2αq)1/q

(
1 + (2αq−1)L

( 2 − 2αq

(2 − 2α)q
− 1

))1/q

,

which is less than the dyadic reverse Hölder-q constant of vt.

vii) The dyadic doubling constant, the Ad
1 constant, the Ad

p constant,
and the RHd

q constant of wt converge to 1 as α decreases to 0.

Next we establish the above properties, first for the untruncated
weight vt(x) = (Md(c δt(x)))α, and then for the weight wt(x) which has
been truncated at level L.

Proof of Lemma 3.1. i) We verify that the total mass of νt is 1

νt([0, 1]) =
∫ 1

0

vt(x) dx

=
∞∑

k=0

∫
Fk

vt(x) dx
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=
∞∑

k=0

2−k−1 2kαcα(22)

=
cα

2

∞∑
k=0

(2α−1)k

=
2 − 2α

2
1

1 − 2α−1

= 1 .

ii) If It ∈ DN is the unique dyadic interval of length 2−N which
contains t, then It = ∪∞

k=NFk, and so the total mass of It is

(23)

νt(It) =
∫

It

vt(x) dx

=
∞∑

k=N

∫
Fk

vt(x) dx

=
2 − 2α

2
(2α−1)N

1 − 2α−1

= 2Nα−N .

iii) Now suppose J ∈ DN does not contain t. The smallest dyadic
interval containing both It and J is d(It, J) generations back. Here 1 ≤
d(It, J) ≤ N . Then J ⊂ FN−d(It,J). By (20), vt ≡ 2(N−d(It,J))α cα on J ,
and so

(24) νt(J) =
∫

J

vt = 2−N 2(N−d(It,J))α cα = 2Nα−d(It,J)α−N cα .

Thus the interval It containing t has the largest mass in DN , and the mass
of J ∈ DN decreases as the generational distance of J from It increases.

iv) The weight vt is doubling on dyadic sister intervals, with maximal
ratio 2α/(2− 2α). For if I, J ∈ DN have the same parent, and if neither I
nor J contains t, then I and J are at the same generational distance from
the It ∈ DN which does contain t, and so by (24)

(25) νt(I) = 2Nα−d(It,I)α−N cα = 2Nα−d(It,J)α−N cα = νt(J) .

On the other hand, if It � t, and It and J have the same parent, then
d(It, J) = 1 and so the worst possible ratio is

(26)
νt(It)
νt(J)

=
2Nα−N

2Nα−α−N cα
=

2α

cα
=

2α

2 − 2α
,
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as required. Further, 2α/(2 − 2α) decreases to 1 as α decreases to 0.

v) Next we show that the Ad
1 constant of vt is (2 − 2α)−1. If J ∈ DN

does not contain t, then vt is constant on J and so
1
|J |

∫
J

vt = ess infJ vt .

For the interval It ∈ DN which contains t, the mean value is
1
|It|

∫
It

vt = 2N 2Nα−N = 2Nα .

The interval It can be written as ∪∞
k=NFk, and on each Fk with k ≥ N ,

vt ≡ 2kα cα ≥ 2Nα cα, by (20). So the essential infimum of vt on It is
2Nα cα, and we have

(27)

1
|It|

∫
It

vt

ess infIt
vt

=
2Nα

2Nα cα
=

1
2 − 2α

.

Hence vt is in Ad
1, with Ad

1 constant equal to (2 − 2α)−1, as claimed. The
Ad

1 constant (2 − 2α)−1 decreases to 1 as α decreases to 0.
Since the Ad

p spaces are nested and increasing as p −→ ∞, the weight
vt is actually in every Ad

p. We compute the Ad
p constant of vt.

First, if J ∈ DN , and J does not contain t, then vt is constant on
J and so the product in the Ad

p condition (15) is 1. Second, if It ∈ DN

contains t, then It = ∪∞
k=N Fk, and on each Fk, vt ≡ 2kα cα. Now by (23)

the mean value of vt on It is 2Nα. So the product in (15) is

( 1
|It|

∫
It

vt

)( 1
|It|

∫
It

( 1
vt

)1/(p−1))p−1

= 2Nα
(
2N

∞∑
k=N

∫
Fk

( 1
vt

)1/(p−1))p−1

= 2Nα
(
2N

∞∑
k=N

2−k−1(2−αk c−α)1/(p−1)
)p−1

(28)

= 2Nα c−α
(
2N−1

∞∑
k=N

(2−1−α/(p−1))k
)p−1

= 2Nα c−α
(
2N (2−1−α/(p−1))N

2 − 2−α/(p−1)

)p−1

=
1

2 − 2α

1
(2 − 2−α/(p−1))p−1

.
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The last expression is greater than 1, and so it is the Ad
p constant of

the weight vt. Further, the Ad
p constant decreases to 1 as α decreases to 0,

since both its factors decrease to 1.

vi) We now show that our weights vt also lie in the dyadic reverse
Hölder-q space RHd

q , as long as q < 1/α, and we compute their dyadic
reverse Hölder-q constants. For dyadic intervals J which do not contain t,
the weight vt is constant on J and so the reverse Hölder condition (17) holds
with constant 1. For the dyadic interval It of length 2−N which contains t,
we begin by computing the average value of vq

t on It = ∪∞
k=NFk

(29)

1
|It|

∫
It

vq
t = 2N

∞∑
k=N

∫
Fk

vq
t

= 2N
∞∑

k=N

2kαq cαq 2−k−1

= 2N cαq

2

∞∑
k=N

(2αq−1)k

= 2N cαq

2
(2αq−1)N

1 − 2αq−1

=
(2 − 2α)q

2 − 2αq
2αqN ,

assuming that 2αq−1 < 1, in other words that q < 1/α. Therefore,
since the mean value of vt on It is 2αN ,

(30)
( 1
|It|

∫
It

vq
t

)1/q

=
2 − 2α

(2 − 2αq)1/q

1
|It|

∫
It

vt .

Since the expression (2−2α)/(2−2αq)1/q is greater than 1, it is the dyadic
reverse Hölder-q constant of vt.

vii) We have already observed that the dyadic doubling constant, the
Ad

1 constant, and the Ad
p constant of vt decrease to 1 as α decreases to 0.

The numerator and denominator of the RHd
q constant (2−2α)/(2−2qα)1/q

of vt both increase to 1 as α decreases to 0. The function f(α) = (2 −
2α)q − (2− 2qα) has f(0) = 0 and has positive derivative for 0 < α < 1/q.
It follows that the RHd

q constant of vt decreases to 1 as α decreases to 0.
In particular, we have shown that vt ∈ RHd

q for all q < 1/α, and that
by decreasing α towards 0 we can both make the dyadic reverse Hölder-q
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constant arbitrarily small, and make our weights lie in RHd
q spaces for

arbitrarily large q.
This completes the proof of Lemma 3.1.

We establish the corresponding properties for the truncated weight wt.

Proof of Lemma 3.3. i) The truncated weight wt has the same total
mass 1 on [0, 1] as vt does, since the only change is to replace vt on the
subinterval IL

t by its average value on IL
t .

ii) The mass of It ∈ DN is unchanged by truncation of the weight at
level L, if It ⊇ IL

t . However if It ⊂ IL
t , then wt ≡ 2Lα on It, so the mass

of It is 2Lα−N .

iii) If t �∈ J ∈ DN and J �⊂ IL
t , then the mass of J is unchanged by

truncation of vt at level L. If J ⊂ IL
t , then the mass of J becomes 2Lα−N .

iv) The ratio µt(It)/µ(J) = 2α/(2 − 2α) is achieved whenever It and
J are dyadic sisters of length 2−N , It � t, and 0 ≤ N < L. For all other
pairs of dyadic sisters, the ratio of the masses is 1. Therefore the dyadic
doubling constant of wt is still 2α/(2 − 2α), as for vt.

v) We need only consider the dyadic intervals It � t of length |It| =
2−N , where 0 ≤ N < L, since the truncated weight wt is constant on all
other dyadic intervals.

The product in the Ad
1 condition (16) achieves the value (2 − 2α)−1

for each such interval It, so the Ad
1 constant of wt is still (2 − 2α)−1. The

first factor in the product in the Ad
p condition (15) is the mean value of wt

on It, which is still 2Nα. Integrating w
−1/(p−1)
t on It,∫

It

( 1
wt

)1/(p−1)

=
L−1∑
k=N

∫
Fk

( 1
2kα cα

)1/(p−1)

dx +
∫

IL
t

( 1
2Lα

)1/(p−1)

dx

=
(c−α/(p−1)

2

L−1∑
k=N

(2−1−α/(p−1))k
)

+ (2−1−α/(p−1))L

=
c−α/(p−1)

2
(2−1−α/(p−1))N − (2−1−α/(p−1))L

1 − 2−1−α/(p−1)
+ (2−1−α/(p−1))L

=
(2 − 2α)−1/(p−1)

2 − 2−α/(p−1)
((2−1−α/(p−1))N − (2−1−α/(p−1))L)

(31)
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+ (2−1−α/(p−1))L

=
(2 − 2α)−1/(p−1)

2 − 2−α/(p−1)

·
(
(2−1−α/(p−1))N + (2−1−α/(p−1))L

( 2 − 2−1−α/(p−1)

(2 − 2α)−1/(p−1)
− 1

))
.

Hence the product in the Ad
p condition (15) is

( 1
|It|

∫
It

wt

)( 1
|It|

∫
It

( 1
wt

)1/(p−1))p−1

=
(2 − 2α)−1

(2 − 2−α/(p−1))p−1
2Nα+N(p−1)

·
(
(2−1−α/(p−1))N + (2−1−α/(p−1))L

( 2 − 2−1−α/(p−1)

(2 − 2α)−1/(p−1)
− 1

))(32)

=
(2 − 2α)−1

(2 − 2−α/(p−1))p−1

·
(
1 + (2−1−α/(p−1))L−N

( 2 − 2−1−α/(p−1)

(2 − 2α)−1/(p−1)
− 1

))p−1

.

The first factor on the right hand side is the old Ad
p constant of the un-

truncated weight vt.
The second factor is positive but less than 1, because 2−2−1−α/(p−1) <

(2 − 2α)−1/(p−1) for p > 1.
Further, since 2−1−α/(p−1) < 1, the second factor achieves its max-

imum when N = 0. Therefore the dyadic Ap constant of the truncated
weight wt is

(33)
(2 − 2α)−1

(2 − 2−α/(p−1))p−1

(
1+(2−1−α/(p−1))L

( 2 − 2−1−α/(p−1)

(2 − 2α)−1/(p−1)
−1

))p−1

,

which is less than the dyadic Ap constant (2 − 2α)−1 (2 − 2α/(p−1))−(p−1)

of the untruncated weight vt, as required.

vi) When we truncate the weight vt at level L, the dyadic reverse
Hölder-q constant also decreases. Again, we need only consider the dyadic
intervals It � t of length |It| = 2−N , where 0 ≤ N < L, since the truncated
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weight wt is constant on all other dyadic intervals. The average value of
wt on It is still 2Nα. Now we compute the average value of wq

t on It

1
|It|

∫
It

wq
t = 2N

( L−1∑
k=N

∫
Fk

(2kα cα)q dx +
∫

IL
t

(2Lα)q dx
)

= 2N
((cαq

2

L−1∑
k=N

(2αq−1)k
)

+ (2αq−1)L
)

= 2N
(cαq

2
(2αq−1)N − (2αq−1)L

1 − 2αq−1
+ (2αq−1)L

)
(34)

= 2N
( (2 − 2α)q

2 − 2αq
((2αq−1)N − (2αq−1)L) + (2αq−1)L

)
= 2N (2 − 2α)q

2 − 2αq

(
(2αq−1)N + (2αq−1)L

( 2 − 2αq

(2 − 2α)q
− 1

))
.

Hence( 1
|It|

∫
It

wq
t

)1/q

1
|It|

∫
It

wt

=
2 − 2α

(2 − 2αq)1/q
2(N/q)−Nα

·
(
(2αq−1)N + (2αq−1)L

( 2 − 2αq

(2 − 2α)q
− 1

))1/q

(35)

=
2 − 2α

(2 − 2αq)1/q

(
1 + (2αq−1)L−N

( 2 − 2αq

(2 − 2α)q
− 1

))1/q

.

The first factor on the right hand side is the old RHd
q constant of the un-

truncated weight vt. The second factor is positive but less than 1, because
2 − 2αq < (2 − 2α)q for q > 1. Further, since 2αq−1 < 1, the second factor
achieves its maximum when N = 0. Therefore the dyadic reverse Hölder-q
constant of the truncated weight wt is

(36)
2 − 2α

(2 − 2αq)1/q

(
1 + (2αq−1)L

( 2 − 2αq

(2 − 2α)q
− 1

))1/q

,

and this is less than (2 − 2α) (2 − 2αq)−1/q, as required.

vii) The dyadic doubling constant and the Ad
1 constant of wt are the

same as those of vt, so they decrease to 1 as α decreases to 0. The Ad
p
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constant, for 1 < p < ∞, and the RHd
q constant of wt are less than those

of vt, and so they also converge to 1 as α decreases to 0. This completes
the proof of Lemma 3.3.

A weight w is in Ad
∞ if and only if there is a constant C such that

(37)
1
|I|

∫
I

w ≤ C exp
( 1
|I|

∫
I

log w
)

,

for all dyadic intervals I; the smallest such C is the Ad
∞ constant of w.

Short computations, similar to those for Ad
p above, show that the Ad

∞
constant of the untruncated weight vt is c−α 2−α, which decreases to 1 as
α decreases to 0, and that the Ad

∞ constant of the weight wt truncated at
level L is (c−α 2−α)1−2−L

, which is less than that of vt.

4. Proof of Theorem 1.4.

In this section, we prove the main result of our paper, Theorem 1.4.
Here C denotes a constant that may change from line to line.

We must prove that, with the definitions given in the introduction,
the translation average µ(x) is not a doubling measure. Specifically, we
show that for our sequence of pairs Aj , Bj of non-dyadic intervals in [0, 1]
of length |Aj | = |Bj | = 2−Nj , we have µ(Aj)/µ(Bj) −→ ∞ as j −→ ∞,
where µ(·) =

∫
· w(x) dx as usual. Although our intervals Aj , Bj are not

adjacent, they are always separated by exactly twice the length of Aj : for
each j our Bj is the translation of Aj to the right by 3 |Aj |. To show
that this is sufficient, note that if µ is doubling, there is a constant C
such that for each pair of adjacent intervals of equal length, the mass of
one is at most C times the mass of the other. Let the intervals Ej and
F j be the translations of Aj to the right by |Aj | and 2 |Aj | respectively.
Then µ(Aj) ≤ Cµ(Ej) ≤ C2µ(F j) ≤ C3µ(Bj), contradicting the fact that
µ(Aj)/µ(Bj) −→ ∞ as j −→ ∞.

Given a point t ∈ [0, 1], let Ij
t denote the unique dyadic interval in

DNj
which contains t, dropping the N in I

Nj

t for ease of notation. Label
the dyadic intervals in DNj

immediately to the right of Ij
t as Jj

t , Kj
t , Lj

t ,
and M j

t , reading from left to right. When t is very near the right end of
[0, 1], some or all of Jj

t , Kj
t , Lj

t , and M j
t are wrapped around to the left

end of [0, 1]. The nested, decreasing subsets Gj of [0, 1] are defined by

G0 = [0, 1] ,
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and

(38)
Gj = {t ∈ Gj−1 : d(Ij

t , Kj
t ) = Njβ}

= {t ∈ [0, 1] : d(I1
t , K1

t ) = N1β, . . . , d(Ij
t , Kj

t ) = Njβ}

for j ≥ 1. We will see that each Gj is a non-empty, finite union of dyadic
intervals.

For t ∈ G0 \ G1, let wt ≡ 1, so that µt is Lebesgue measure on [0, 1].
For t ∈ Gj \ Gj+1, j ≥ 1, let wt be the truncation at level Nj of the
weight vt(x) = (Md(c δt(x)))α, and let µt be the measure whose density is
wt(x). In Lemma 3.3, we have explicitly computed the µt-masses of dyadic
intervals such as Ij

t and Kj
t . The key idea is that since Aj is centred at

0, the interval Aj + t almost coincides with the dyadic interval Ij
t � t,

so we can bound µ(Aj) =
∫ 1

0
µt(Aj + t) dt below via µt(I

j
t ). Similarly,

Bj +t almost coincides with Kj
t , so we can bound µ(Bj) above via µt(K

j
t ).

Moreover, for t ∈ Gj \ Gj+1, the generational distance d(Ij
t , Kj

t ) = Njβ is
very large, and so the definition of wt ensures that µt(I

j
t ) is much larger

than µt(K
j
t ).

Lemma 4.1. For j = 0, 1, 2, . . . , the measure of Gj is given by

(39) |Gj | = 2−N1β−N2β−···−Njβ+j .

Proof. Fix j, and consider the subset Sj
l of [0, 1] defined by

(40) Sj
l = {t : d(Ij

t , Kj
t ) = l} .

The dyadic intervals Ij
t and Kj

t have length 2−Nj , and Kj
t is the translation

of Ij
t to the right by 2 |Ij

t |. So Ij
t and Kj

t are never dyadic sisters.

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

t

�

� �

I
j
t K

j
t

Figure 2. The collection D5 of dyadic intervals of length 2−5,

showing intervals Ij
t � t and Kj

t with d(Ij
t , Kj

t ) = 3.
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The values taken by the generational distance d(Ij
t , Kj

t ) are the inte-
gers l such that 2 ≤ l ≤ Nj .

Let t run from 0 to 1. Half of the 2Nj dyadic intervals Ij
t in DNj

have d(Ij
t , Kj

t ) = 2. Reading from left to right, these intervals are the first
and second, fifth and sixth, ninth and tenth, and so on, up to the fourth
last and third last. Half of the remaining dyadic intervals Ij

t in DNj
have

d(Ij
t , Kj

t ) = 3; these are the third and fourth, eleventh and twelfth, and so
on. Continuing in this way we see that the total length of Sj

l is

(41) |Sj
l | = |{t : d(Ij

t , Kj
t ) = l}| = 2−l+1 , for 2 ≤ l ≤ Nj − 1 .

The set Sj
l consists of 2Nj−l+1 dyadic intervals of length 2−Nj , arranged

in 2Nj−l blocks of two adjacent intervals. The blocks are equally spaced
around the unit circle, and each block has length 2−Nj+1. Therefore the
distance between consecutive blocks is

(42)
1 − 2−l+1

2Nj−l
= 2−Nj (2l − 2) .

When l = Nj , we have instead

(43) |Sj
Nj

| = |{t : d(Ij
t , Kj

t ) = Nj}| = 2−l+2 = 2−Nj+2 , for l = Nj .

This is because there are four intervals rather than two with d(Ij
t , Kj

t ) =
Nj : the two intervals Ij

t immediately to the left of 1 as well as the two
immediately to the left of 1/2.

We prove the lemma by induction. First, G1 = {t : d(I1
t , K1

t ) =
N1β} = S1

N1β , and the hypotheses (7) and β < 1 imply that 2 ≤ N1β < N1.
Hence, by equation (41),

(44) |G1| = 2−N1β+1 .

Next, fix j and assume that

(45) |Gj | = 2−N1β−···−Njβ+j .

Recall that

(46)
Gj = {t ∈ [0, 1] : d(I1

t , K1
t ) = N1β, . . . , d(Ij

t , Kj
t ) = Njβ}

= S1
N1β ∩ · · · ∩ Sj

Njβ ,
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and define

(47) G̃j+1 = {t ∈ [0, 1] : d(Ij+1
t , Kj+1

t ) = Nj+1β} .

So G̃j+1 contains Gj+1, and in fact Gj+1 is the intersection of G̃j+1 with Gj .
Since G̃j+1 = Sj+1

Nj+1β, and 2 ≤ Njβ < Nj , the blocks of G̃j+1 are equally
spaced around the circle, and equation (42) shows that the distance be-
tween consecutive blocks of G̃j+1 is

(48) 2−Nj+1 (2Nj+1β − 2) .

The blocks of Gj are of length 2−Nj+1, and each of them contains two
dyadic sister intervals of length 2−Nj .

The set Gj+1 = G̃j+1 ∩ Gj will be nonempty as soon as the gaps in
G̃j+1 are shorter than the blocks of Gj , and this happens as soon as Nj+1

is sufficiently large. Note that the two dyadic intervals in each block are
dyadic sisters, and so the block itself is also a dyadic interval. Therefore,
since dyadic intervals are either nested or disjoint, each block of G̃j+1 that
meets a block of Gj must be wholly contained in it.

Now, our hypothesis (7) implies that

(49) Nj+1 ≥ N1 + · · · + Nj

α − β α − β
>

Nj

1 − β
,

since α − β α < 1. Therefore

(50) 2−Nj+1 (2Nj+1β − 2) < 2−Nj+1(1−β) < 2−Nj < 2−Nj+1 .

We have shown that the distance between consecutive blocks of G̃j+1 is
shorter than the length of the blocks in Gj , and so Gj+1 is nonempty.

Finally,

(51)
|Gj+1|

2−N1β−···−Njβ+j
=

|G̃j+1 ∩ Gj |
|Gj | =

|G̃j+1|
|[0, 1]| = 2−Nj+1β+1 ,

and so

(52) |Gj+1| = 2−N1β−···−Njβ−Nj+1β+j+1 ,

as required.
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Lemma 4.2. The µ-mass of the interval Aj is bounded below as follows

(53) µ(Aj) ≥ C 2−N1β−···−Njβ+Njα−Nj+j ,

where C is independent of j.

Proof. The key point is that Aj + t contains at least one of the halves
of Ij

t , and so µt(Aj + t) ≥ Cµt(It) with a constant C depending only on
the dyadic doubling constant of µt. Hence, using lemmas 3.3.ii) and 4.1 in
the fourth line,

(54)

µ(Aj) =
∫ 1

0

µt(Aj + t) dt

≥ C

∫ 1

0

µt(I
j
t ) dt

≥ C

∫
Gj\Gj+1

µt(I
j
t ) dt

≥ C 2−N1β−···−Njβ+j−1 2Njα−Nj

= C 2−N1β−···−Njβ+Njα−Nj+j ,

as required.

Lemma 4.3. The µ-mass of the interval Bj is bounded above as follows

(55) µ(Bj) ≤ C 2−N1β−···−Njβ+Njα−Njβα−Nj+j ,

where C is independent of j.

Proof. Fix j. We first bound µ(Bj) by integrals over the sets Gk \ Gk+1.
Noting that Bj+t lies in Kj

t ∪Lj
t∪M j

t , and that µt(K
j
t ) ≥ µt(L

j
t ) ≥ µt(M

j
t )

because wt decays away from its peak at t ∈ Ij
t , we obtain

µ(Bj) =
∫ 1

0

µt(Bj + t) dt

≤
∫ 1

0

µt(K
j
t ) + µt(L

j
t ) + µt(M

j
t ) dt

≤ 3
∫ 1

0

µt(K
j
t ) dt(56)
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= 3
∫
G0\G1

µt(K
j
t ) dt + 3

∞∑
k=1

∫
Gk\Gk+1

µt(K
j
t ) dt

≤ 3 · 2−Nj + 3
∞∑

k=1

∫
Gk\Gk+1

µt(K
j
t ) dt .

The last inequality holds because, for t ∈ G0 \ G1, we have wt ≡ 1 and so
µt(K

j
t ) = |Kj

t | = 2−Nj .
Next, we bound µt(K

j
t ) for t ∈ Gk\Gk+1, k > 0. We need a preliminary

lemma.

Lemma 4.4. Fix j. For t ∈ Gk, k = 1, 2, . . . , the µt-mass of the interval
Kj

t is bounded above as follows

(57) µt(K
j
t ) ≤

{
2Njα−Njβα−Nj , if k ≥ j ,

2Nkα−Nj , if 1 ≤ k < j .

The quantity 2−Njβα which appears here is the key to the whole paper.
It leads to the result µ(Aj)/µ(Bj) ≥ C 2Njβα.

Proof. The truncated weight wt is identically equal to 2Nkα on Ik
t . Since

t ∈ Gk, we have

(58) d(I1
t , K1

t ) = N1β, . . . , d(Ik
t , Kk

t ) = Nkβ .

If k ≥ j, then d(Ij
t , Kj

t ) = Njβ, and Kj
t is disjoint from Ik

t since Ik
t ⊂ Ij

t .

z �� � z �� �

I
j
t K

j
t

I
k
t

Figure 3. Here k ≥ j, and the weight wt is constant

on the small interval Ik
t inside Ij

t .

We estimate the µt-mass of the interval Kj
t by applying the first case

of Lemma 3.3.iii), with J = Kj
t , It = Ij

t , IL
t = Ik

t , L = Nk, and N = Nj .
We obtain

(59)

µt(K
j
t ) = 2Njα−d(Ij

t ,Kj
t )α−Nj cα

= 2Njα−Njβα−Nj cα

≤ 2Njα−Njβα−Nj ,

since cα = 2 − 2α < 1.
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Now suppose 1 ≤ k < j, so Ik
t contains Ij

t . There are two cases. If
Ik
t also contains Kj

t , then applying the second case of Lemma 3.3.iii) we
obtain µt(K

j
t ) = 2Nkα−Nj , as required.

z �� �

I
k
t

I
j
t K

j
t

Figure 4. Here 1 ≤ k < j, the weight wt is constant

on the large interval Ik
t , and Kj

t lies in Ik
t .

If, however, t is so close to the right endpoint of Ik
t that Kj

t lies to
the right of Ik

t , then the constant value of wt on Kj
t is less than the value

2Nkα of wt on Ik
t , by the definition of wt.

z �� �

I
k
t

I
j
t K

j
t

Figure 5. Here 1 ≤ k < j, the weight wt is constant on

the large interval Ik
t , and Kj

t lies outside Ik
t .

Therefore

(60) µt(K
j
t ) =

∫
Kj

t

wt(x) dx ≤ 2Nkα−Nj ,

as required.

Proof of Lemma 4.3, continued. We consider the cases k = j, k > j,
and 1 ≤ k < j separately. When k = j, Lemmas 4.1 and 4.4 imply that

(61)

∫
Gj\Gj+1

µt(K
j
t ) dt ≤ |Gj | 2Njα−Njβα−Nj

= 2−N1β−···−Njβ+Njα−Njβα−Nj+j .

Next, when k > j, the integral over Gk \Gk+1 is bounded by 2−kCj , where

(62) Cj = 2−N1β−···−Njβ+Njα−Njβα−Nj+j
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is the exponential factor on the right hand side of the desired inequality in
Lemma 4.3. For by Lemma 4.4,

(63) µt(K
j
t ) ≤ 2Njα−Njβα−Nj ,

and so by Lemma 4.1 on the size of Gk,

(64)

∫
Gk\Gk+1

µt(K
j
t ) dt ≤ 2−N1β−···−Nkβ+k+Njα−Njβα−Nj

= 2−Nj+1β−···−Nkβ+k−j Cj .

We claim that the first factor in the last expression is at most 2−k. To
see this, first note that our hypotheses N1 ≥ 1/β, N2 ≥ 2/β, and Nj ≥
(α − β α − β)−1(N1 + · · · + Nj−1) imply by induction that

(65) Nj ≥ j + 1
β

, for j = 1, 2, 3, . . .

To prove our claim, it is enough to show that

(66) 2 k − j ≤ Nj+1β + · · · + Nkβ .

The right hand side is

(67)

Nj+1β + · · · + Nkβ ≥ (j + 2) + · · · + (k + 1)

=
(k + 1) (k + 2)

2
− (j + 1) (j + 2)

2

=
k2 + 3 k − j2 − 3 j

2

=
k (k − 1) − (j + 1) j

2
+ 2 k − j

≥ 2 k − j ,

as required, since k ≥ j + 1.
Now suppose 1 ≤ k < j. Again, we show that the integral over

Gk \ Gk+1 is at most 2−kCj . By Lemma 4.4, we know µt(K
j
t ) ≤ 2Nkα−Nj .

Therefore, by Lemma 4.1,

(68)

∫
Gk\Gk+1

µt(K
j
t ) dt ≤ 2−N1β−···−Nkβ+k+Nkα−Nj

= 2Nk+1β+···+Njβ+Nkα−Njα+Njβα+k−j

· 2−N1β−···−Njβ+Njα−Njβα−Nj+j .
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The second factor on the right hand side is Cj . We claim that the first
factor is at most 2−k. It suffices to show that

(69) (Nk+1 + · · · + Nj−1)β + Nkα + 2 k − j ≤ Nj (α − β α − β) .

Note that k− j < 0, and that k ≤ Nk+1β < Nk+1α. Also, since β +α < 1,
our hypothesis (7) implies that

(70) Nj ≥ β + α

α − β α − β
(N1 + · · · + Nj−1) .

Therefore

(71)

(Nk+1 + · · · + Nj−1)β + Nkα + 2 k − j

≤ (Nk+1 + · · · + Nj−1)β + (Nk + Nk+1)α

≤ (N1 + · · · + Nj−1) (β + α)

≤ Nj(α − β α − β) ,

establishing (69).
We have shown that when k = j, the integral of µt(K

j
t ) over Gk \Gk+1

is at most Cj , and when k �= j, the integral is at most 2−kCj . From (56),
we conclude that

(72)

µ(Bj) ≤ 3 · 2−Nj + 3
∞∑

k=1

∫
Gk\Gk+1

µt(K
j
t ) dt

≤ 3 · 2−Nj + 6Cj

= 3 · 2−Nj + 6 · 2−N1β−···−Nj−1β+Nj(α−βα−β)+j

≤ 9 · 2−N1β−···−Nj−1β+Nj(α−βα−β)+j .

The last inequality holds because (7) implies that

(73) Nj ≥ N1β + · · · + Nj−1β .

This proves Lemma 4.3, with constant C = 9.

Incidentally, truncation of the weight was crucial in controlling the
case 1 ≤ k < j. For the original weight vt(x) = (Md(c δt(x)))α, the second
inequality µt(K

j
t ) ≤ 2Nkα−Nj in Lemma 4.4 does not hold, and indeed in

Lemma 4.3 the integral of µt(K
j
t ) over Gk \ Gk+1 is no longer bounded by
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2−kCj . The effect of truncation is to increase µt(I
j
t ) somewhat and, in

most cases, to decrease µt(K
j
t ) significantly.

Finally, by Lemmas 4.2 and 4.3,

(74)
µ(Aj)
µ(Bj)

≥ C
2−N1β−···−Njβ+Njα−Nj+j

2−N1β−···−Njβ+Njα−Njβα−Nj+j
= C 2Njβα ,

which tends to infinity as j −→ ∞. Therefore the translation average µ
is not a doubling measure. This proves Theorem 1.4, and hence theorems
1.1, 1.2, and 1.3.

References.

[B] Buckley, S. M., Summation conditions on weights. Michigan Math. J.

40 (1993), 153-170.

[CF] Coifman, R. R., Fefferman, C., Weighted norm inequalities for max-

imal functions and singular integrals. Studia Math. 51 (1974), 241-250.

[CR] Coifman, R. R., Rochberg, R., Another characterization of BMO.

Proc. Amer. Math. Soc. 79 (1980), 249-254.

[FKP] Fefferman, R. A., Kenig, C. E., Pipher, J., The theory of weights

and the Dirichlet problem for elliptic equations. Ann. of Math. 134 (1991),

65-124.

[GC-RF] Garcia-Cuerva, J., Rubio de Francia, J. L., Weighted norm in-

equalities and related topics. North Holland, 1985.

[GJ] Garnett, J. B., Jones, P. W., BMO from dyadic BMO. Pacific

J. Math. 99 (1982), 351-371.

[HMW] Hunt, R. A., Muckenhoupt, B., Wheeden, R. L., Weighted norm

inequalities for the conjugate function and Hilbert transform. Trans. Amer.

Math. Soc. 176 (1973), 227-251.

[M] Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal

function. Trans. Amer. Math. Soc. 165 (1972), 207-226.

[NTV] Nazarov, F., Treil, S., Volberg, A., Cauchy integral and Calderón-

Zygmund operators on nonhomogeneous spaces. Internat. Math. Res. No-

tices 15 (1997), 703-726.



Translation averages of dyadic weights are not always good weights 407

[P] Petermichl, S., Dyadic shifts and a logarithmic estimate for Hankel

operators with matrix symbol. C. R. Acad. Sci. Paris Sér. I Math. 330

(2000), 455-460.

[PP] Petermichl, S., Pott, S., A version of Burkholder’s theorem for

operator-weighted spaces. Preprint, 2000.

Recibido: 20 de septiembre de 2000

Lesley A. Ward∗

Department of Mathematics
Harvey Mudd College

Claremont, CA 91711, U.S.A.
ward@math.hmc.edu

∗ Research supported in part by the Research Fund of Harvey Mudd College.


