Two endpoint bounds for generalized Radon transforms in the plane

Jong-Guk Bak, Daniel M. Oberlin and Andreas Seeger

1. Introduction

The purpose of this note is to prove $L^{p} \rightarrow L^{q}$ inequalities for averaging operators in the plane (also known as generalized Radon transforms). To describe our setup let Ω_{L} and Ω_{R} be open sets in \mathbb{R}^{2} and let \mathcal{M} be a submanifold in $\Omega_{L} \times \Omega_{R}$ which will contain the singular support of the kernel of our operator. We assume that the projections $\mathcal{M} \rightarrow \Omega_{L}$ and $\mathcal{M} \rightarrow \Omega_{R}$ have surjective differential; thus the varieties

$$
\begin{align*}
& \mathcal{M}_{x}=\left\{y \in \Omega_{R} ;(x, y) \in \mathcal{M}\right\} \\
& \mathcal{M}_{y}=\left\{x \in \Omega_{L} ;(x, y) \in \mathcal{M}\right\} \tag{1.1}
\end{align*}
$$

are smooth immersed curves in Ω_{L} and Ω_{R}, respectively.
Let $\chi \in C^{\infty}\left(\Omega_{L} \times \Omega_{R}\right)$ be compactly supported. We consider the operator

$$
\begin{equation*}
\mathcal{R} f(x)=\int_{\mathcal{M}_{x}} \chi(x, y) f(y) d \sigma_{x}(y) \tag{1.2}
\end{equation*}
$$

where $d \sigma_{x}$ is a smooth density on \mathcal{M}_{x} depending smoothly on $x \in \Omega_{L}$.
The regularity properties of \mathcal{R} depend on certain finite type conditions, formulated in [15]. We recall that a vector field V on \mathcal{M} is of type $(1,0)$ on an open subset U of \mathcal{M} if for every $P \in U$ we have $V_{P} \in T_{P} \mathcal{M} \cap\left(T_{P} \Omega_{L} \times\{0\}\right)$. V is of type $(0,1)$ on U if $\left.V_{P} \in T_{P} \mathcal{M} \cap\left(\{0\} \times T_{P} \Omega_{R}\right\}\right)$ for every $P \in U$. The $C^{\infty}(U)$ modules of vector fields of type $(1,0)$ and $(0,1)$ on U are denoted by $\mathcal{V}^{1,0}(U)$ and $\mathcal{V}^{0,1}(U)$, respectively. Since \mathcal{M} is three-dimensional there is a nonvanishing one-form ω which annihilates $(1,0)$ and $(0,1)$ vectors. If X and Y are nonvanishing vector fields of type $(1,0)$ and $(0,1)$, respectively, then

Keywords: Generalized Radon transforms, averaging operators.
the quantity $\langle\omega,[X, Y]\rangle$ is comparable to the rotational curvature introduced by Phong and Stein. In fact if \mathcal{M} is given by the equation $\Phi(x, y)=0$ with $\Phi_{x} \neq 0, \Phi_{y} \neq 0$ and if we choose $X=\Phi_{x_{2}} \partial_{x_{1}}-\Phi_{x_{1}} \partial_{x_{2}}, Y=\Phi_{y_{2}} \partial_{y_{1}}-\Phi_{y_{1}} \partial_{y_{2}}$ and $\omega=\Phi_{x} d x-\Phi_{y} d y$, then $\langle\omega,[X, Y]\rangle / 2$ is equal to

$$
J=\operatorname{det}\left(\begin{array}{cc}
\Phi_{x y} & \Phi_{x}^{t} \\
\Phi_{y} & 0
\end{array}\right)
$$

the rotational curvature. The generalized Radon transform \mathcal{R} is a Fourier integral operator of class $I^{-1 / 2}\left(\Omega_{L}, \Omega_{R} ; N^{*} \mathcal{M}^{\prime}\right)$ in the sense of [5], and $N^{*} \mathcal{M}^{\prime}$ is a local canonical graph if and only if J does not vanish.

We now recall the notion of finite type (μ, ν). We write $\operatorname{ad} V(W)=$ $[V, W]$ for the commutator of V and W and for integers $\mu \geq 1, \nu \geq 1$, we let $\mathcal{V}^{\mu, \nu}(U)$ denote the $C^{\infty}(U)$-module generated by all vector fields in $\mathcal{V}^{1,0}(U) \cup \mathcal{V}^{0,1}(U)$ and all vector fields of the form $g \operatorname{ad} V_{1} \cdots \operatorname{ad} V_{n-1}\left(V_{n}\right)$, where g is smooth, $V_{i} \in \mathcal{V}^{1,0}(U) \cup \mathcal{V}^{0,1}(U)$, at most μ of the V_{i} are in $\mathcal{V}^{1,0}(U)$ and at most ν of the V_{i} are in $\mathcal{V}^{0,1}(U)$. We say that \mathcal{M} is of type (μ, ν) at P if there is an open neighborhood U and a vector field $V \in \mathcal{V}^{\mu, \nu}(U)$ so that $\left\langle\omega_{P}, V_{P}\right\rangle \neq 0$ but $\left\langle\omega_{P}, W_{P}\right\rangle=0$ for all $W \in \mathcal{V}^{\mu-1, \nu}(U) \cup \mathcal{V}^{\mu, \nu-1}(U)$. Thus type $(1,1)$ corresponds to the nondegenerate situation of nonvanishing rotational curvature.

Let $n \geq 2, m \geq 2$. Following [14] we also say that \mathcal{M} satisfies a left finite type condition of degree n in U if \mathcal{M} is of finite type $(1, k)$ for some k with $k \in\{1, \ldots, n-1\}$, for every $P \in U$. We note (see [15]) that \mathcal{M} satisfies this condition if only if for all $\left(x_{0}, y_{0}\right) \in \mathcal{U}$ the quantity $J\left(x_{0}, y\right)$ when restricted to the curve $\mathcal{M}_{x_{0}}$ vanishes of order at most $n-2$ at $y=y_{0}$. Likewise \mathcal{M} satisfies a right finite type condition of degree m in U if \mathcal{M} is of finite type $(j, 1)$ at P for some $j \in\{1, \ldots, m-1\}$, for every $P \in U$. Again an equivalent formulation is that for all $P_{0}=\left(x_{0}, y_{0}\right) \in \mathcal{U}$ the quantity $J\left(x, y_{0}\right)$ when restricted to the curve $\mathcal{M}^{y_{0}}$ vanishes of order at most $m-2$ at $x=x_{0}$.

We now state an endpoint $L^{p} \rightarrow L^{q}$ estimate for two-sided finite type conditions. In fact a sharper statement can be obtained by working with Lorentz-spaces $L^{p, q}$; note that $L^{p} \subset L^{p, r}$, if $r \geq p$, with continuous embedding.

Theorem 1.1. Suppose that \mathcal{M} satisfies a left finite type condition of degree n and a right finite type condition of degree m.
(i) Suppose that $(1 / p, 1 / q)$ belongs to the closed trapezoid $\mathcal{T}(m, n)$ with corners $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{n+1}, \frac{1}{n+1}\right)$. Then \mathcal{R} maps L^{p} boundedly to L^{q}.
ii) \mathcal{R} maps $L^{\frac{n+1}{2}, n+1}$ to L^{n+1} and $L^{\frac{m+1}{m}}$ to $L^{\frac{m+1}{m-1}, \frac{m+1}{m}}$.
(iii) If there is a point P such that $\chi(P) \neq 0$ and \mathcal{M} is of type $(1, n-1)$ at P then \mathcal{R} does not map $L^{\frac{n+1}{2}, r}$ to L^{n+1} if $r>n+1$. If there is a point P such that $\chi(P) \neq 0$ and \mathcal{M} is of type $(m-1,1)$ at P then \mathcal{R} does not map $L^{\frac{m+1}{m}}$ to $L^{\frac{m+1}{m-1}, s}$ for $s<(m+1) / m$.

Remarks:

(a) Let $\mathcal{G}(P)$ be the graph connecting $(0,0)$ and $(1,1)$ with the points $\left(\frac{\mu+1}{\mu+\nu+1}, \frac{\mu}{\mu+\nu+1}\right)$ for which \mathcal{M} is of type (μ, ν) at P and suppose that $(1 / p, 1 / q)$ lies above $\mathcal{G}(P)$. Then a result in [15] states that \mathcal{R} maps L^{p} to L^{q} provided that the cutoff function has sufficiently small support close to P; see also Phong-Stein [6], [7] for sharp endpoint bounds in several model cases. If $(1 / p, 1 / q)$ lies below $\mathcal{G}(P)$ and $\chi(P) \neq 0$ then $L^{p} \rightarrow L^{q}$ boundedness fails ([15]). In the present situation this implies the following: If there is a point P with $\chi(P) \neq 0$ such that \mathcal{M} is of type $(1, n-1)$ and of type $(m-1,1)$ and if \mathcal{M} is not of type (μ, ν) at P for all (μ, ν) with $\left(\frac{\mu+1}{\mu+\nu+1}, \frac{\mu}{\mu+\nu+1}\right) \notin \mathcal{T}(m, n)$ then the result in part (i) of Theorem 1.1 is sharp. In particular, the $L^{(n+1) / 2, n+1} \rightarrow L^{n+1}$ estimate is best possible if \mathcal{M} is of type $(1, n-1)$ and of type $(m-1,1)$ for some m.
(b) The sharp bounds for $p>(n+1) / 2, q=2 p$, and $p<m /(m-1)$, $1 / q=2 / p-1$ are in [14], [15]. The $L^{(n+1) / 2, n+1} \rightarrow L^{n+1}$ endpoint inequality for polynomial surfaces of the form $\mathcal{M}=\left\{(x, y): y_{2}=\right.$ $\left.x_{2}+\sum_{j+k \leq n} a_{j, k} x_{1}^{j} y_{1}^{k}\right\}$, with $a_{1, n-1} \neq 0$ was obtained by the first author in [1] based on multilinear arguments in [3], [11]; our proofs of Theorem 1.1 and Theorem 1.2 below rely on this technique as well.
(c) Let \mathcal{M} be defined by a polynomial as in (b). Then \mathcal{M} is of type (μ, ν) at the origin if $a_{\mu, \nu} \neq 0$ but $a_{j, k}=0$ whenever $j \leq \mu$ and $k \leq \nu-1$ or $j \leq \mu-1, k \leq \nu$.

Our second result concerns weighted Radon transforms which incorporate the rotational curvature J as an improving factor (see e.g. [16]), namely for $\gamma>0$ one defines

$$
\mathcal{R}_{\gamma} f(x)=\int_{\mathcal{M}_{x}} \chi(x, y)|J(x, y)|^{\gamma} f(y) d \sigma_{x}(y)
$$

It is known ([15]) that \mathcal{R}_{γ} maps L^{2} into the Sobolev space $L_{1 / 2}^{2}$, provided that $\gamma>1 / 2$. By standard arguments combining Littlewood-Paley theory
and (complex) interpolation (cf. [2]) one can see that $\mathcal{R}_{\gamma}: L^{p} \rightarrow L_{\alpha}^{p^{\prime}}$ if $\alpha \leq 2-3 / p, \gamma>1 / p^{\prime}$ and $1<p \leq 2$, in particular it maps $L^{3 / 2} \rightarrow L^{3}$ for $\gamma>1 / 3$. In various cases the endpoint bounds for $\gamma=1 / 3$ are known. If \mathcal{M} is given by the equation $y_{2}=x_{2}+S\left(x_{1}, y_{1}\right)$ then $J=S_{x_{1} y_{1}}$ and for real analytic S the endpoint $L^{3 / 2} \rightarrow L^{3}$ estimate can be deduced from the endpoint L^{2} estimates for damped oscillatory integrals in Phong-Stein [9]. We shall prove an $L^{3 / 2} \rightarrow L^{3}$ endpoint estimate for the case where S is a polynomial of degree $\leq N$, which will have the added feature that the operator norms depend only on N. In the translation invariant case such theorems were obtained by the second author in [10], [13]. As in [7] our operator is now globally defined (without inserting cutoff-functions) and we obtain an improved inequality using Lorentz-spaces. We note that the standard interpolation argument alluded to above does not seem to yield this estimate since one uses analytic interpolation with changing powers of γ.

Theorem 1.2. Define

$$
\begin{equation*}
\mathcal{A} f\left(x_{1}, x_{2}\right)=\int_{-\infty}^{\infty}\left|\frac{\partial^{2} P}{\partial x_{1} \partial y_{1}}\right|^{1 / 3} f\left(y_{1}, x_{2}+P\left(x_{1}, y_{1}\right)\right) d y_{1} \tag{1.3}
\end{equation*}
$$

where P is a polynomial in $\left(x_{1}, y_{1}\right)$ of degree at most N. Then there is a constant $C(N)$ (independent of the particular polynomial) so that for $3 / 2 \leq$ $r \leq 3$

$$
\begin{equation*}
\|\mathcal{A} f\|_{L^{3, r}} \leq C(N)\|f\|_{L^{\frac{3}{2}}, r} \tag{1.4}
\end{equation*}
$$

for all $f \in L^{\frac{3}{2}, r}\left(\mathbb{R}^{2}\right)$.
If $\partial^{2} P /\left(\partial x_{1} \partial y_{1}\right)$ does not vanish identically then the operator \mathcal{A} does not map $L^{3 / 2, r}$ to $L^{3, s}$ for any $s<r$.

In particular \mathcal{A} maps $L^{3 / 2}$ to L^{3}.
The proof of Theorem 1.1 will be given in $\S 2$, and the proof of Theorem 1.2 in $\S 3$. We shall use the notation \lesssim for inequalities involving admissible constants; here the definition of admissibility depends on the context and will be made precise in $\S 2$ and $\S 3$, respectively.

2. Boundedness under finite type assumptions

In this section we give a proof of the boundedness result in Theorem 1.1. It suffices to establish the $L^{\frac{n+1}{2}, n+1} \rightarrow L^{n+1}$ inequality. This also implies
the $L^{\frac{m+1}{2}, m+1} \rightarrow L^{m+1}$ inequality for the adjoint operator \mathcal{R}^{*} and thus the $L^{\frac{m+1}{m}} \rightarrow L^{\frac{m+1}{m-1}, \frac{m+1}{m}}$ inequality for \mathcal{R}.

By compactness arguments it suffices to prove the theorem for the case that our cutoff function χ is supported in a small neighborhood of a fixed point $P \in \mathcal{M}$; by performing translations we may assume that the coordinates vanish at P.

We may assume that \mathcal{M} is given as

$$
\mathcal{M}=\left\{(x, y): y_{2}=G\left(x_{1}, x_{2}, y_{1}\right),\left|x_{1}\right|,\left|x_{2}\right|,\left|y_{1}\right| \leq 2\right\}
$$

where G is a C^{n+1} function defined on $[-2,2]^{3}$ and G satisfies

$$
\begin{gather*}
G(0,0)=0, \quad G_{x_{1}}(0,0)=G_{y_{1}}(0,0)=0 \\
G_{x_{2}}(0,0)=1, \quad \frac{1}{2} \leq G_{x_{2}}\left(x, y_{1}\right) \leq 2 \tag{2.1}
\end{gather*}
$$

We then also have for $x_{1}, x_{2}, y_{1} \in[-1,1]$

$$
y_{2}=G\left(x, y_{1}\right) \Longleftrightarrow x_{2}=H\left(y, x_{1}\right)
$$

where H is defined on $[-1,1]^{3}$ and satisfies

$$
\begin{gather*}
H(0,0)=0, \quad H_{y_{1}}(0,0)=H_{x_{1}}(0,0)=0 \\
H_{y_{2}}(0,0)=1, \quad \frac{1}{2} \leq H_{y_{2}}\left(y, x_{1}\right) \leq 2 \tag{2.2}
\end{gather*}
$$

Let $M=\max \{n+1, m+1\}$. We let $\|(G, H)\|_{C^{M}}$ be the maximum of all derivative of order at most M of G or H in the cube $[-1,1]^{4}$ and assume that

$$
\begin{equation*}
\|(G, H)\|_{C^{M}} \leq B \tag{2.3}
\end{equation*}
$$

note that $B \geq 1$.
The rotational curvature (with respect to the defining function $\Phi(x, y)=$ $y_{2}-G\left(x, y_{1}\right)$ is given by

$$
J\left(x, y_{1}\right)=\operatorname{det}\left(\begin{array}{ll}
G_{x_{1} y_{1}}\left(x, y_{1}\right) & G_{x_{1}}\left(x, y_{1}\right) \tag{2.4}\\
G_{x_{2} y_{1}}\left(x, y_{1}\right) & G_{x_{2}}\left(x, y_{1}\right)
\end{array}\right)
$$

By our finite type assumptions there are constants $a_{L}>0$ and $a_{R}>0$ so that

$$
\begin{gather*}
\min _{x} \max _{0 \leq k \leq n-2}\left|\frac{\partial^{k}}{\left(\partial y_{1}\right)^{k}} J\left(x, y_{1}\right)\right| \geq a_{L} \tag{2.5-L}\\
\min _{y} \max _{0 \leq j \leq m-2}\left|\frac{\partial^{j}}{\left(\partial x_{1}\right)^{j}}\left[J\left(x_{1}, H\left(y, x_{1}\right), y_{1}\right)\right]\right| \geq a_{R}
\end{gather*}
$$

(2.5-L) means that \mathcal{M} is of type $(1, k)$ (some $k \leq n-1)$ and (2.5-R) means that \mathcal{M} is of type $(j, 1)$ (some $j \leq m-1$), for any point under consideration, $c f$. the discussion in [15].

In what follows we choose

$$
\begin{equation*}
0<\varepsilon \leq \frac{1}{4} \min \left\{((m+1)!)^{-1} B^{-m} a_{R}, 2^{-n-5} n^{-1} B^{-2} a_{L}\right\} . \tag{2.6}
\end{equation*}
$$

We define

$$
R f(x)=\int_{-\varepsilon}^{\varepsilon} \chi\left(x_{1}, x_{2}, y_{1}, G\left(x, y_{1}\right)\right) f\left(y_{1}, G\left(x, y_{1}\right)\right) d y_{1}
$$

where χ is the characteristic function of $[-\varepsilon, \varepsilon]^{4}$. Note that if $x_{1}, x_{2}, y_{1} \in$ $[-\varepsilon, \varepsilon]$ then $\left|G\left(x, y_{1}\right)\right| \leq 2 \varepsilon$.

It suffices to show that

$$
\|R f\|_{L^{n+1}} \lesssim\|f\|_{L^{\frac{n+1}{2}, n+1}}
$$

where the notation $\alpha \lesssim \beta$ means $\alpha \leq C \beta$ where C depends only on B, m, n, a_{L}, a_{R}. Since R is a positive operator we may assume that f is nonnegative.

As in [1] we use a multilinear interpolation argument due to M. Christ [3]. In order to establish that R maps $L^{\frac{n+1}{2}, n+1}$ to L^{n+1} one shows the more general multilinear estimate

$$
\int \prod_{i=1}^{n+1} R f_{i}(x) d x \lesssim \prod_{i=1}^{n+1}\left\|f_{i}\right\|_{L^{\frac{n+1}{2}, n+1}}
$$

and by symmetry and real interpolation ([3]) this will follow from

$$
\int \prod_{i=1}^{n+1} R f_{i}(x) d x \lesssim\left\|f_{1}\right\|_{1} \prod_{i=2}^{n+1}\left\|f_{i}\right\|_{L^{n, 1}}
$$

Now we use the change of variable $x_{2} \mapsto u_{2}=G\left(x_{1}, x_{2}, u_{1}\right)$ and write

$$
\begin{aligned}
& \int \prod_{k=1}^{n+1} R f_{k}(x) d x=\iint \chi\left(x_{1}, x_{2}, u_{1}, G\left(x, u_{1}\right)\right) f_{1}\left(u_{1}, G\left(x, u_{1}\right)\right) \prod_{i=2}^{n+1} R f_{i}(x) d x d u_{1} \\
& \quad=\iint \chi\left(x_{1}, H\left(u, x_{1}\right), u_{1}, u_{2}\right) f_{1}\left(u_{1}, u_{2}\right) \times \\
& \quad \times \prod_{k=2}^{n+1} R f_{k}\left(x_{1}, H\left(u, x_{1}\right)\right)\left|\frac{\partial H}{\partial u_{2}}\left(u_{1}, u_{2}, x_{1}\right)\right| d u d x_{1}
\end{aligned}
$$

and, since $\left|(\partial H) /\left(\partial y_{2}\right)\right|$ is bounded by B, we may omit this factor. We have reduced matters to the estimate

$$
\begin{equation*}
\int \prod_{k=2}^{n+1} R f_{k}\left(x_{1}, H\left(u, x_{1}\right)\right) d x_{1} \lesssim \prod_{i=2}^{n+1}\left\|f_{i}\right\|_{L^{n, 1}} \tag{2.7}
\end{equation*}
$$

for every u with $\left|u_{1}\right| \leq \varepsilon,\left|u_{2}\right| \leq 2 \varepsilon$. In what follows we fix u. By Hölder's inequality it suffices to show

$$
\begin{equation*}
\left(\int\left[R f\left(x_{1}, H\left(u, x_{1}\right)\right)\right]^{n} d x_{1}\right)^{1 / n} \lesssim\|f\|_{L^{n, 1}} \tag{2.8}
\end{equation*}
$$

By duality (2.8) is implied by

$$
\int R f(s, H(u, s)) g(s) d s \lesssim\|f\|_{L^{n, 1}\left(\mathbb{R}^{2}\right)}\|g\|_{L^{n /(n-1)}(\mathbb{R})}
$$

for any nonnegative step function g. The left hand side is equal to (2.9)

$$
\iint \chi\left(s, H(u, s), y_{1}, G\left(s, H(u, s), y_{1}\right)\right) f\left(y_{1}, G\left(s, H(u, s), y_{1}\right)\right) g(s) d y_{1} d s
$$

and we define

$$
\omega^{y_{1}, u}(s)=G\left(s, H(u, s), y_{1}\right)
$$

to change variables in this integral (after interchanging the order of integration).

Lemma 2.1. (i)

$$
\left(\omega^{y_{1}, u}\right)^{\prime}(s)=\frac{\left(y_{1}-u_{1}\right) E\left(s, u, y_{1}\right)}{G_{x_{2}}\left(s, H(u, s), u_{1}\right)}
$$

where

$$
\begin{align*}
& E\left(s, u, y_{1}\right)= \tag{2.10}\\
& \quad \int_{0}^{1} \operatorname{det}\left(\begin{array}{ll}
G_{x_{1} y_{1}}\left(s, H(u, s), u_{1}+\tau\left(y_{1}-u_{1}\right)\right) & G_{x_{1}}\left(s, H(u, s), u_{1}\right) \\
G_{x_{2} y_{1}}\left(s, H(u, s), u_{1}+\tau\left(y_{1}-u_{1}\right)\right) & G_{x_{2}}\left(s, H(u, s), u_{1}\right)
\end{array}\right) d \tau .
\end{align*}
$$

(ii) Suppose that $u_{1}, y_{1}, s \in[-\varepsilon, \varepsilon],\left|u_{2}\right| \leq 2 \varepsilon$ and $y_{1} \neq u_{1}$. Then the derivative of $\omega^{y_{1}, u}$ vanishes at no more than $m-2$ points in $[-\varepsilon, \varepsilon]$.

The elementary proof will be given below. Given y_{1}, u there are intervals $I_{i}^{y_{1}, u}, i=1, \ldots, m$ with $\cup_{i=1}^{m} I_{i}^{y_{1}, u}=[-\varepsilon, \varepsilon]$ whose boundary points are measurable functions on (y_{1}, u) so that $\omega^{y_{1}, u}$ has nonzero derivative in the interior of $I_{i}^{y_{1}, u}$. On each interval $I_{i}^{y_{1}, u}$ let $\omega \mapsto s_{i}^{y_{1}, u}(\omega)$ be the inverse function of $\omega^{y_{1}, u}$ and let $\widetilde{I}_{i}^{y_{1}, u}$ the image of $I_{i}^{y_{1}, u}$ under $\omega^{y_{1}, u}$. Then the integral (2.9) becomes

$$
\begin{aligned}
& \sum_{i=1}^{m} \int_{-\varepsilon}^{\varepsilon} \int_{I_{i}^{y_{1}, u}} \chi\left(s, H(u, s), y_{1}, \omega^{y_{1}, u}(s)\right) f\left(y_{1}, \omega^{y_{1}, u}(s)\right) g(s) d s d y_{1} \\
& =\sum_{i=1}^{m} \int_{-\varepsilon}^{\varepsilon} \int_{\omega \in \tilde{I}_{i}^{y_{1}, u}} \chi\left(s_{i}^{y_{1}, u}(\omega), H\left(u, s_{i}^{y_{1}, u}(\omega)\right), y_{1}, \omega\right) f\left(y_{1}, \omega\right) g\left(s_{i}^{y_{1}, u}(\omega)\right)\left|\frac{d s_{i}^{y_{1}, u}}{d \omega}\right| d \omega d y_{1} \\
& \leq \sum_{i=1}^{m}\|f\|_{L^{n, 1}}\left\|T_{i, u}\right\|_{L^{\frac{n}{n-1}, \infty}}
\end{aligned}
$$

where

$$
T_{i, u} g\left(y_{1}, \omega\right)=\chi_{[-\varepsilon, \varepsilon]}\left(y_{1}\right) \chi_{\widetilde{I}_{i}^{y_{1}, u}}(\omega) g\left(s_{i}^{y_{1}, u}(\omega)\right) \frac{d s_{i}^{y_{1}, u}}{d \omega} .
$$

In order to finish the proof we have to show that $T_{i, u}$ maps $L^{n /(n-1)}$ to $L^{n /(n-1), \infty}$, that is

$$
\begin{equation*}
\operatorname{meas}\left(\left\{\left(y_{1}, \omega\right):\left|T_{i, u} g\left(y_{1}, \omega\right)\right|>\lambda\right\}\right) \lesssim \frac{1}{\lambda^{n /(n-1)}}\|g\|_{L^{n /(n-1)(\mathbb{R})}}^{n /(n-1)} \tag{2.11}
\end{equation*}
$$

The left hand side of (2.11) is equal to

$$
\begin{align*}
& \iint_{\substack{\left.\left(y_{1}, s\right) \in[-\varepsilon,]^{2}, s \in I^{y_{1}, u} \\
g(s) \geq \lambda\left|\left(\omega^{y_{1}, u}\right)^{\prime}(s)\right|\right\}}}\left|\left(\omega^{y_{1}, u}\right)^{\prime}(s)\right| d y_{1} d s \tag{2.12}\\
\lesssim & \int_{-\varepsilon}^{\varepsilon} \frac{|g(s)|}{\lambda} \operatorname{meas}\left(\left\{y_{1}:\left|y_{1}-u_{1}\right|\left|E\left(s, u, y_{1}\right)\right| \leq 2|g(s)| / \lambda\right\}\right) d s
\end{align*}
$$

where we have used that $\left|G_{x_{2}}\right| \leq 2$. We now employ the following standard
Sublevel set estimate [4]. For any positive integer ℓ there is a constant C_{ℓ} such that for any interval $I \subset \mathbb{R}$, any $h \in C^{\ell}(I)$ and any $\gamma>0$ the inequality

$$
\operatorname{meas}\{x \in I:|h(x)| \leq \gamma\} \leq C_{\ell} \gamma^{1 / \ell} \inf _{x \in I}\left|h^{(\ell)}(x)\right|^{-1 / \ell}
$$

holds.

In order to apply this we use
Lemma 2.2. For $u_{1}, s, y_{1} \in[-\varepsilon, \varepsilon],\left|u_{2}\right| \leq \varepsilon$ we have

$$
\max _{1 \leq k \leq n-1}\left|\frac{\partial^{k}}{\left(\partial y_{1}\right)^{k}}\left[\left(y_{1}-u_{1}\right) E\left(s, u, y_{1}\right)\right]\right| \geq 2^{-n-2} n^{-1} a_{L}
$$

Taking Lemma 2.2 for granted we apply the sublevel estimate for suitable $\ell \leq n-1$ and $\gamma=2|g(s)| / \lambda$ if $g(s) / \lambda \leq 1$ (otherwise estimate the size of any sublevel set by 2ε). We obtain

$$
\begin{align*}
& \operatorname{meas}\left(\left\{y_{1} \in[-\varepsilon, \varepsilon]:\left|\left(y_{1}-u_{1}\right) E\left(s, u, y_{1}\right)\right| \leq 2|g(s)| / \lambda\right\}\right) \tag{2.13}\\
& \leq \min \left\{2 \varepsilon, \max _{1 \leq \ell \leq n-1} C_{\ell}\left(2^{n+3} n a_{L}^{-1}|g(s)| / \lambda\right)^{1 / \ell}\right\} \lesssim(|g(s)| / \lambda)^{1 /(n-1)}
\end{align*}
$$

and thus by (2.12), (2.13)

$$
\begin{aligned}
\operatorname{meas} & \left(\left\{\left(y_{1}, \omega\right):\left|T_{i, u} g\left(y_{1}, \omega\right)\right|>\lambda\right\}\right) \leq C \int \frac{|g(s)|}{\lambda}\left(\frac{|g(s)|}{\lambda}\right)^{1 /(n-1)} d s \\
& =C \frac{1}{\lambda^{n /(n-1)}}\|g\|_{L^{n /(n-1)}(\mathbb{R})}^{n /(n-1)}
\end{aligned}
$$

2.1. Proof of Lemmas 2.1 and 2.2

We need the following elementary
Sublemma. Let g, h be functions having N derivatives at a point x and suppose that $\max _{j \leq r}\left|u^{(j)}(x)\right| \leq B_{r}, r \leq N$. Suppose that $\max _{0 \leq j \leq N-1} \mid\left(u h^{\prime}-\right.$ $\left.u^{\prime} h\right)^{(j)}(x) \mid \geq \alpha_{N}$. Then also

$$
\max _{1 \leq j \leq N}\left|h^{(j)}(x)\right| \geq 2^{-N} \alpha_{N}-B_{N}|h(x)| .
$$

Proof. By the Leibniz rule $\left(h^{\prime} u-h u^{\prime}\right)^{(k-1)}=\sum_{l=1}^{k} b_{k l} h^{(l)}-h u^{(k)}$ where the coefficients are given by $b_{k l}(x)=\left[\binom{k-1}{l-1}-\binom{k-1}{l}\right] u^{(k-l)}(x)$ if $1 \leq l<k$, and $b_{k k}(x)=u(x)$. Thus

$$
\begin{aligned}
\max _{1 \leq k \leq N-1} & \left|\left(h^{\prime} u-h u^{\prime}\right)^{(k-1)}\right| \\
& \leq \sup _{k} \sum_{l}\left|b_{k l}(x)\right| \max _{1 \leq j \leq N}\left|h^{(j)}(x)\right|+|h(x)| \max _{1 \leq k \leq N-1}\left|u^{(k)}(x)\right| \\
& \leq 2^{N-1} B_{N} \max _{1 \leq j \leq N}\left|h^{(j)}(x)\right|+B_{N}|h(x)|
\end{aligned}
$$

which implies the assertion.

Proof of Lemma 2.1 Note that

$$
\left(\omega^{y_{1}, u}\right)^{\prime}(s)=G_{x_{1}}\left(s, H(u, s), y_{1}\right)+G_{x_{2}}\left(s, H(u, s), y_{1}\right) H_{x_{1}}(u, s) .
$$

The defining equation for H is $x_{2}=G\left(u_{1}, H\left(x_{1}, x_{2}, u_{1}\right), x_{1}\right)$. Implicit differentiation yields that $H_{x_{1}}\left(u_{1}, G\left(x, u_{1}\right), x_{1}\right)=-\left(G_{x_{1}} / G_{x_{2}}\right)\left(x, u_{1}\right)$ or

$$
H_{x_{1}}\left(u_{1}, u_{2}, x_{1}\right)=-\frac{G_{x_{1}}\left(x_{1}, H\left(u, x_{1}\right), u_{1}\right)}{G_{x_{2}}\left(x_{1}, H\left(u, x_{1}\right), u_{1}\right)} .
$$

Thus

$$
\begin{aligned}
\left(\omega^{y_{1}, u}\right)^{\prime}(s) & =\left[\frac{1}{\left.\frac{G_{x_{2}}\left(x, u_{1}\right)}{} \operatorname{det}\left(\begin{array}{ll}
G_{x_{1}}\left(x, y_{1}\right) & G_{x_{1}}\left(x, u_{1}\right) \\
G_{x_{2}}\left(x, y_{1}\right) & G_{x_{2}}\left(x, u_{1}\right)
\end{array}\right)\right]_{x=(s, H(u, s))}} \begin{array}{l}
\\
\end{array}\right)=\frac{\left(y_{1}-u_{1}\right) E\left(s, u, y_{1}\right)}{G_{x_{2}}\left(s, H(u, s), u_{1}\right)} .
\end{aligned}
$$

Now we prove (ii). Since $G_{x_{2}}$ does not vanish it suffices to show that

$$
\begin{equation*}
\max _{0 \leq j \leq m-2}\left|\left(\frac{\partial}{\partial s}\right)^{j} E\left(s, u, y_{1}\right)\right| \geq \frac{a_{R}}{2} . \tag{2.14}
\end{equation*}
$$

We expand

$$
\begin{equation*}
E\left(s, u, y_{1}\right)=E\left(s, u, u_{1}\right)+\left(y_{1}-u_{1}\right) r\left(s, u, y_{1}\right) \tag{2.15}
\end{equation*}
$$

where $E\left(s, u, u_{1}\right)=J\left(u_{1}, H(u, s), s\right)$ and

$$
\begin{aligned}
r\left(s, u, y_{1}\right)=\int_{0}^{1} \int_{0}^{1} & {\left[G_{x_{1} y_{1} y_{1}}\left(X, U_{1}\right) G_{x_{2}}\left(X, u_{1}\right)-\right.} \\
& \left.-G_{x_{2} y_{1} y_{1}}\left(X, U_{1}\right) G_{x_{1}}\left(X, u_{1}\right)\right]_{\substack{X=(s, H(u, s)) \\
U_{1}=u_{1}+\sigma \tau\left(y_{1}-u_{1}\right)}} d \sigma \tau d \tau .
\end{aligned}
$$

By assumption (2.5-R) we have

$$
\begin{equation*}
\max _{0 \leq j \leq m-2}\left|\partial_{s}^{j} E\left(s, u, u_{1}\right)\right| \geq a_{R} . \tag{2.16}
\end{equation*}
$$

To get a concrete upper bound for the derivatives of r we need a well known fact about multiple applications of the chain rule. Namely let v be \mathbb{R}^{d}-valued and let η be a scalar function on the range of μ, both in C^{k}. Then $(\eta \circ v)^{(k)}$ is a sum of at most $\prod_{i=0}^{k-1}(d+i)$ terms each of which is of the form $\xi w_{1} \cdots w_{\ell}$ where ξ is a derivative of η, of order $\leq k$, the w_{i} are derivatives of a component of v, of order at most k, and $\ell \leq k$. Of course more explicit formulas are known (such as the Faà di Bruno formula) but we don't need these here. Applying
this with $d=2$ we see that a derivative of order k of $s \mapsto G_{x_{1}}\left(s, H(u, s), y_{1}\right)$ can be estimated by $(k+1)!B^{k+1}$, and a similar remark applies to the other terms in the integrand defining r. Thus by the Leibniz rule we have the bound $\left|\partial^{j} r /(\partial s)^{j}\right| \leq \sum_{l=0}^{j}\binom{j}{l}(l+1)!B^{l+1}(j-l+1)!B^{j-l+1} \leq(j+3)!B^{j+2}$, $j \leq m-2$. Combining this with (2.16) and $\left|y_{1}-u_{1}\right| \leq 2 \varepsilon$ we see that the left hand side of (2.14) has a lower bound $a_{R}-2 \varepsilon(m+1)!B^{m}$. Thus (2.14) follows by our choice of ε in (2.6).

Proof of Lemma 2.2. First

$$
\frac{\partial^{k}}{\left(\partial y_{1}\right)^{k}}\left[\left(y_{1}-u_{1}\right) E\left(s, u, y_{1}\right)\right]=\frac{\partial^{k-1} E}{\left(\partial y_{1}\right)^{k-1}}\left(s, u, y_{1}\right)+\left(y_{1}-u_{1}\right) \frac{\partial^{k} E}{\left(\partial y_{1}\right)^{k}}\left(s, u, y_{1}\right) .
$$

Now we expand the k th derivative of the integrand in (2.10) about u_{1} and get $\frac{\partial^{k-1} E}{\left(\partial y_{1}\right)^{k-1}}\left(s, u, y_{1}\right)=M_{k}(s, u)+\rho_{k}\left(s, u, y_{1}\right)$ where

$$
M_{k}(s, u)=\frac{1}{k+1}\left[G_{x_{2}} \frac{\partial^{k+1} G_{x_{1}}}{\left(\partial y_{1}\right)^{k+1}}\right]_{\left(s, H(s, u), u_{1}\right)}
$$

and

$$
\begin{aligned}
\rho_{k}\left(s, u, y_{1}\right)= & -\frac{1}{k+1}\left[G_{x_{1}} \frac{\partial^{k+1} G_{x_{2}}}{\left(\partial y_{1}\right)^{k+1}}\right]_{\left(s, H(s, u), u_{1}\right)}+ \\
+ & \left(y_{1}-u_{1}\right) \int_{0}^{1} \int_{0}^{1}\left[G_{x_{2}}\left(x, u_{1}\right) \frac{\partial^{k+1} G_{x_{1}}}{\left(\partial y_{1}\right)^{k+1}}\left(x, U_{1}\right)\right. \\
& \left.-G_{x_{1}}\left(x, u_{1}\right) \frac{\partial^{k+1} G_{x_{2}}}{\left(\partial y_{1}\right)^{k+1}}\left(x, U_{1}\right)\right]_{\substack{x=(s, H(u, s)) \\
U_{1}=u_{1}+\sigma \tau\left(y_{1}-u_{1}\right)}} d \sigma \tau^{k} d \tau .
\end{aligned}
$$

Since $\left|G_{x_{1}}\right| \leq 8 \varepsilon B$ it is easy to see that $\left|\rho_{k}\left(s, u, y_{1}\right)\right| \leq 12 \varepsilon B^{2}$, moreover the term $\left|\left(y_{1}-u_{1}\right) \partial_{y_{1}}^{k} E\left(s, u, y_{1}\right)\right|$ above is bounded by $8 \varepsilon B^{2} /(k+1)$. Since $G_{x_{2}} \geq 1 / 2$ we obtain by the Sublemma that

$$
\begin{aligned}
\max _{k=0, \ldots, n-2} & \left|M_{k}(s, u)\right| \geq(n-1)^{-1} 2^{1-n} \times \\
& \times \max _{k=0, \ldots, n-2}\left|\frac{\partial^{k}}{\left(\partial y_{1}\right)^{k}}\left[G_{x_{1} y_{1}} G_{x_{2}}-G_{x_{2} y_{1}} G_{x_{1}}\right]_{\left(s, H(u, s), u_{1}\right)}\right|-B\left\|G_{x_{1}}\right\|_{\infty} \\
& \geq 2^{1-n} n^{-1} a_{L}-8 \varepsilon B^{2} .
\end{aligned}
$$

Here the L^{∞} norm of $G_{x_{1}}$ is taken over the cube $[-2 \varepsilon, 2 \varepsilon]^{4}$. We finally get

$$
\left|\frac{\partial^{k}}{\left(\partial y_{1}\right)^{k}}\left[\left(y_{1}-u_{1}\right) E\left(s, u, y_{1}\right)\right]\right| \geq 2^{-n} n^{-1} a_{L}-20 B^{2} \varepsilon
$$

and the assertion follows from our choice of ε in (2.6).

Remark. For the $L^{(n+1) / 2, n+1} \rightarrow L^{n+1}$ inequality the lower bound a_{R} in (2.5-R) enters only in the definition of ε in (2.6), the bounds depend on m but not on a_{R}. Indeed the type $(m, 1)$ assumption can be replaced by an assumption of bounded multiplicity; i.e. there is $\ell \in \mathbb{N}$ so that for almost all u (sufficiently small) the inverse images of the maps $s \mapsto G\left(s, H(u, s), y_{1}\right)$ have cardinality $\leq \ell$

2.2. Sharpness of Lorentz exponents

It is well known that the necessary condition $1 / q \geq 2 / p-1$ follows by testing \mathcal{R} on characteristic functions of small balls. We assume $1 / q=2 / p-1,1<$ $r<\infty$, and verify that \mathcal{R} does not map $L^{p, r} \rightarrow L^{q, r-\varepsilon}$. Then applying this to the adjoint operator one also obtains the necessary condition $1 / q \geq 1 /(2 p)$ and also that \mathcal{R} does not map $L^{p, r} \rightarrow L^{2 p, r-\varepsilon}$.

It suffices to consider $1 \leq p<2$. We assume that near the origin \mathcal{M} is defined by $y_{2}=G\left(x, y_{1}\right)$ as in (2.1). For a large positive integer ℓ let $f \equiv f_{\ell}(y)=|y|^{-2 / p}$ for $2^{-4 \ell} \leq|y| \leq 2^{-\ell / 2}$. Then if $\left|x_{2}-H\left(0, x_{1}\right)\right| \approx 2^{-k}$ and $\ell \leq k \leq 2 \ell$ then $|\mathcal{R} f(x)| \geq c 2^{-k(1-2 / p)}$ and this happens on a set of measure $\approx 2^{-k}$. Thus if $\lambda_{\mathcal{R} f}$ denotes the distribution function of $\mathcal{R} f$ then $\lambda_{\mathcal{R} f}\left(2^{-k(1-2 / p)}\right) \gtrsim 2^{-k}$ and

$$
\begin{aligned}
\|\mathcal{R} f\|_{L^{q, s}} & \gtrsim\left(\int\left[\alpha \lambda_{\mathcal{R} f}^{\frac{1}{q}}(\alpha)\right]^{s} \frac{d \alpha}{\alpha}\right)^{1 / s} \\
& \gtrsim\left(\sum_{k=\ell}^{2 \ell}\left[c 2^{-k(1-2 / p)} \lambda_{\mathcal{R} f}^{1 / q}\left(c 2^{-k(1-2 / p)}\right)\right]^{s}\right)^{1 / s} \\
& \gtrsim\left(\sum_{k=\ell}^{2 \ell} c^{\prime} 2^{-k(1-2 / p+1 / q) s}\right)^{1 / s} \gtrsim \ell^{1 / s}
\end{aligned}
$$

if $1 / q=-1+2 / p$, and by a similar computation $\|f\|_{L^{p, r}} \lesssim \ell^{1 / r}$. Thus \mathcal{R} does not map $L^{p, r} \rightarrow L^{q, s}$ if $s<r$.

3. Polynomial Radon transforms with weights

We now give a proof of Theorem 1.2. Fix a real-valued polynomial $P(s, t)$ of degree $\leq N$; we may assume that $\left(\partial^{2} P\right) /(\partial s \partial t)$ is not identically zero (otherwise there is nothing to prove).

In this section the notation $\alpha \lesssim \beta$ means $\alpha \leq C \beta$ where C depends only on N. It suffices to establish the $L^{3 / 2,3} \rightarrow L^{3}$ boundedness since applying this result to the polynomial $P\left(y_{1}, x_{1}\right)$ and using duality implies the $L^{3 / 2} \rightarrow L^{3,3 / 2}$
boundedness and then by real interpolation the $L^{3 / 2, r} \rightarrow L^{3, r}$ boundedness for $3 / 2 \leq r \leq 3$. The sharpness assertion is proved as in the previous section (by working close to points with $\left.\left(\partial^{2} P\right) /(\partial s \partial t) \neq 0\right)$.

We use the argument of the previous section; now $G\left(x, y_{1}\right)=x_{2}+$ $P\left(x_{1}, y_{1}\right), H\left(y, x_{1}\right)=y_{2}-P\left(x_{1}, y_{1}\right)$ and $J\left(x_{1}, y_{1}\right)=\left(\partial^{2} P\right) /\left(\partial x_{1} \partial y_{1}\right)$ are globally defined. For each $s \in \mathbb{R}$, let $I_{1}^{s}, I_{2}^{s}, \ldots, I_{M(N)}^{s}$ be disjoint intervals with union \mathbb{R} so that $t \mapsto \partial_{s} \partial_{t} P(s, t)$ has constant sign on the interior of each I_{j}^{s}. For $1 \leq j \leq M(N)$ let U_{j} be the set of all (s, t) such that $t \in I_{j}^{s}$ and we can choose the I_{j}^{s} so that the U_{j} are measurable. Let χ_{j} be the characteristic function of U_{j} and define the operator \mathcal{A}_{j} by

$$
\mathcal{A}_{j} f(x)=\int f\left(y_{1}, x_{2}+P\left(x_{1}, y_{1}\right)\right)\left|J\left(x_{1}, y_{1}\right)\right|^{1 / 3} \chi_{j}\left(x_{1}, y_{1}\right) d y_{1}
$$

It is enough to prove that \mathcal{A}_{j} maps $L^{3 / 2,3}$ to L^{3}, for any j. The goal is to show

$$
\int_{\mathbb{R}^{2}} \prod_{k=1}^{3} \mathcal{A}_{j} f_{k}(x) d x \lesssim \prod_{k=1}^{3}\left\|f_{k}\right\|_{L^{3 / 2,3}}
$$

and the argument in $\S 2$ reduces this to the following analogue of (2.8),

$$
\sup _{u \in \mathbb{R}^{2}}\left(\int\left|J\left(x_{1}, u_{1}\right)\right|^{1 / 3}\left|\mathcal{A}_{j} f\left(x_{1}, u_{2}-P\left(x_{1}, u_{1}\right)\right)\right|^{2} d x_{1}\right)^{1 / 2} \lesssim\|f\|_{L^{2,1}\left(\mathbb{R}^{2}\right)}
$$

or, with the measure $d \mu_{u}(s)=\left|J\left(s, u_{1}\right)\right|^{1 / 3} d s$, to

$$
\begin{align*}
& \int\left|J\left(s, u_{1}\right)\right|^{1 / 3} \mathcal{A}_{j} f\left(s, u_{2}-P\left(s, u_{1}\right)\right) \chi_{j}\left(s, u_{1}\right) g(s) d s \tag{3.1}\\
= & \iint \chi_{j}(s, t)|J(s, t)|^{1 / 3}\left|J\left(s, u_{1}\right)\right|^{1 / 3} f\left(t, u_{2}+P(s, t)-P\left(s, u_{1}\right)\right) g(s) d s d t \\
\lesssim & \|f\|_{L^{2,1}(\mathbb{R})}\|g\|_{L^{2}(\mathbb{R}, d \mu)} .
\end{align*}
$$

In view of the assumption that J is not identically zero it is not hard to see that for every u_{1} the function $s \mapsto P(s, t)-P\left(s, u_{1}\right)$ is not constant except for a finite set of values of t. Thus for almost all t there are intervals $I_{i}^{t, u}, i=1, \ldots, N$ with $\cup_{i=1}^{N} I_{i}^{t, u}=\mathbb{R}$ whose boundary points are measurable functions on (t, u) so that

$$
\omega^{t, u}(s)=u_{2}+P(s, t)-P\left(s, u_{1}\right)
$$

has nonzero derivative in the interior of $I_{i}^{t, u}$ and, as in the previous section, we denote by $\omega \mapsto s_{i}^{t, u}(\omega)$ the inverse function of $\omega^{t, u}$ on $I_{i}^{t, u}$ and let $\widetilde{I}_{i}^{t, u}$ be
the image of $I_{i}^{t, u}$ under $\omega^{t, u}$. Let

$$
S_{i, j, u} g(t, \omega)=\left.\chi_{\widetilde{I}_{i}^{t, u}}(\omega) \frac{d s_{i}^{t, u}}{d \omega} \chi_{j}(s, t)|J(s, t)|^{1 / 3}\left|J\left(s, u_{1}\right)\right|^{1 / 3} g(s)\right|_{s=s_{i}^{t, u}(\omega)}
$$

and, arguing as in the proof of Theorem 1.1, we see that (3.1) follows from

$$
\begin{equation*}
\operatorname{meas}\left(\left\{(t, \omega):\left|S_{i, j, u} g(t, \omega)\right|>\lambda\right\}\right) \lesssim \lambda^{-2} \int|g(s)|^{2}\left|J\left(s, u_{1}\right)\right|^{1 / 3} d s \tag{3.2}
\end{equation*}
$$

The left hand side of (3.2) is equal to

$$
\begin{align*}
& \iint_{\substack{\left\{(s, t): s \in I_{i}^{t, u},(s, t) \in U_{j},|J(s, t)|^{1 / 3}\left|J\left(s, u_{1}\right)\right|^{1 / 3} \\
\lambda\left|\left(\omega^{t, u}\right)^{\prime}(s)\right|\right\}}}\left|\left(\omega^{t, u}\right)^{\prime}(s)\right| d s d t \tag{3.3}\\
& \leq \int_{-\infty}^{\infty} \int_{\substack{\left\{t \in I_{j}^{s}\right.}}\left|\frac{\partial P}{\partial s}(s, t)-\frac{\partial P}{\partial s}\left(s, u_{1}\right)\right| d t d s \\
& \left.\left.|J(s, t)|\right|^{1 / 3}\left|J\left(s, u_{1}\right)\right|\right|^{1 / 3} g(s) \\
& \left.\geq \lambda\left|\frac{\partial P}{\partial s}(s, t)-\frac{\partial P}{\partial s}\left(s, u_{1}\right)\right|\right\}
\end{align*}
$$

and we have to show that the right hand side is controlled by

$$
\lambda^{-2} \int_{\mathbb{R}}|g(s)|^{2}\left|J\left(s, u_{1}\right)\right|^{1 / 3} d s
$$

with constant only depending on N. This is accomplished by applying the following lemma to the inner integral in (3.3), with $p(t)=\frac{\partial P}{\partial s}(s, t)$ (which has constant sign on I_{j}^{s}).

Lemma 3.1. There is a constant $C(N)$ such that the following is true: If p is a real-valued polynomial of degree $\leq N-1$ and I is an interval with p^{\prime} of constant sign on I, then for all $t_{1} \in I$ and all $B>0$ the inequality

$$
\begin{equation*}
\int_{\substack{\left.\left.\left|p^{\prime}(t) p^{\prime}\left(t_{1}\right)\right|\right|^{1 / 3} \\(t)-p\left(t_{1}\right) \mid\right\}}}\left|p(t)-p\left(t_{1}\right)\right| d t \leq C(N) B^{2}\left|p^{\prime}\left(t_{1}\right)\right|^{1 / 3} \tag{3.4}
\end{equation*}
$$

holds.
Proof. Note that the integration in (3.4) is always extended over a finite interval, thus we may assume that I is finite.

We begin by observing that there is $C_{1}(N)$ such that for $0 \leq \theta \leq 1$

$$
\begin{equation*}
|b-a|\left|p^{\prime}(a)\right|^{1-\theta}\left|p^{\prime}(b)\right|^{\theta} \leq C_{1}(N) \int_{[a, b]}\left|p^{\prime}(u)\right| d u . \tag{3.5}
\end{equation*}
$$

If $a=0, b=1$ this is true because the $L^{1}([0,1])$ and $L^{\infty}([0,1])$ norms are equivalent on the (finite-dimensional) space of polynomials of degree bounded by $N-2$. For other intervals $[a, b]$ an affine change of variables reduces to the case $a=0, b=1$.

Continuing the proof of the lemma, the set

$$
\left\{t \in I: B\left|p^{\prime}(t) p^{\prime}\left(t_{1}\right)\right|^{1 / 3} \geq\left|p(t)-p\left(t_{1}\right)\right|\right\}
$$

is contained in the union of two minimal subintervals $\left[t_{0}, t_{1}\right]$ and $\left[t_{1}, t_{2}\right]$ of I (so that the defining inequality holds for $t=t_{0}$ and $t=t_{2}$). It is enough to bound the integral of $\left|p(t)-p\left(t_{1}\right)\right|$ over each of these intervals by $C_{1}(N) B^{2}\left|p^{\prime}\left(t_{1}\right)\right|^{1 / 3}$. The argument is the same in both cases, so we consider the integral over $\left[t_{0}, t_{1}\right]$. Clearly

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}}\left|p(t)-p\left(t_{1}\right)\right| d t \leq \int_{t_{0}}^{t_{1}} \int_{t}^{t_{1}}\left|p^{\prime}(v)\right| d v d t \leq\left(t_{1}-t_{0}\right) \int_{t_{0}}^{t_{1}}\left|p^{\prime}(v)\right| d v \tag{3.6}
\end{equation*}
$$

We apply (3.5) with $\theta=1 / 3$ and see that the right hand side of (3.6) is dominated by

$$
\begin{equation*}
C_{1}(N)\left(\int_{t_{0}}^{t_{1}}\left|p^{\prime}(v)\right| d v\right)^{2}\left|p^{\prime}\left(t_{0}\right)\right|^{-2 / 3}\left|p^{\prime}\left(t_{1}\right)\right|^{-1 / 3} \leq C_{1}(N) B^{2}\left|p^{\prime}\left(t_{1}\right)\right|^{1 / 3} \tag{3.7}
\end{equation*}
$$

where the last inequality holds since $B\left|p^{\prime}\left(t_{0}\right) p^{\prime}\left(t_{1}\right)\right|^{1 / 3} \geq\left|\int_{t_{0}}^{t_{1}} p^{\prime}(v) d v\right|$ and p^{\prime} is of constant sign on $\left[t_{0}, t_{1}\right]$. The assertion follows from (3.6), (3.7).

Remark. Suppose that the polynomial $P(s, t)$ is replaced by a C^{2} function $S(s, t)$ with the property that for almost all t_{1} the generic multiplicities of the maps $(s, t) \mapsto\left(S(s, t)-S\left(s, t_{1}\right), t\right)$ and $s \mapsto S_{s}(s, t)-S_{s}\left(s, t_{1}\right)$ are bounded by some number ℓ (here we say that $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ has generic multiplicity bounded by ℓ if $F^{-1}(y)$ has cardinality $\leq \ell$ for almost all $\left.y \in \mathbb{R}^{n}\right)$. In this case a variant of the argument used by the second author in [12] can be employed to show a slightly weaker inequality, namely that \mathcal{A} is of restricted strong type $(3 / 2,3)$; i.e. it maps $L^{3 / 2,1}$ to L^{3}, with operator norm depending only on ℓ.

References

[1] BAK, J.-G., An $L^{p}-L^{q}$ estimate for Radon transforms associated to polynomials. Duke Math. J. 101 (2000), 259-269.
[2] Brenner, P., $L_{p}-L_{p^{\prime}}$ estimates for Fourier integral operators related to hyperbolic equations. Math. Z. 152 (1977), 273-286.
[3] Christ, M., On the restriction of the Fourier transform to curves: Endpoint results and the degenerate case. Trans. Amer. Math. Soc. 287 (1985), 223-238.
[4] Christ, M., Hilbert transforms along curves, I. Nilpotent groups. Ann. of Math. 122 (1985) 575-596.
[5] Hörmander, L., Fourier integral operators I. Acta Math. 127 (1971), 79-183.
[6] Phong, D. H. and Stein, E. M., Radon transforms and torsion. Int. Math. Res. Notices, appended to Duke Math. J. (1991), 49-60.
[7] Phong, D. H. and Stein, E. M., Models of degenerate Fourier integral operators and Radon transforms. Ann. of Math. 140 (1994), 703-722.
[8] Phong, D. H. and Stein, E. M., The Newton polyhedron and oscillatory integral operators. Acta Math. 179 (1997), 146-177.
[9] Phong, D. H. and Stein, E. M., Damped oscillatory integral operators with analytic phases. Adv. Math. 134 (1998), 146-177.
[10] Oberlin, D. M., Oscillatory integrals with polynomial phase. Math. Scand. 69 (1991), 45-56.
[11] Oberlin, D. M., Multilinear proofs for two theorems on circular averages. Colloq. Math 63 (1992), 187-190.
[12] Oberlin, D. M., Convolution with affine arclength measures in the plane. Proc. Amer. Math. Soc. 127 (1999), 3591-3592.
[13] Oberlin, D. M., Convolution with measures on polynomial curves, to appear in Math. Scand.
[14] Seeger, A., Degenerate Fourier integral operators in the plane. Duke Math. J. 71 (1993), 685-745.
[15] Seeger, A., Radon transforms and finite type conditions. J. Amer. Math. Soc. 11 (1998), 869-897.
[16] Sogge, C. D. and Stein, E. M., Averages of functions over hypersurfaces: smoothness of generalized Radon transforms. J. Anal. Math. 54 (1990), 165-188.

Recibido: 7 de septiembre de 2000

Jong-Guk Bak
Department of Mathematics
Pohang University of Science and Technology, Pohang 790-784 and Korea Institute for Advanced Study, Seoul 130-012

Korea
bak@euclid.postech.ac.kr
Daniel M. Oberlin
Department of Mathematics
Florida State University
Tallahassee, FL 32306
USA
oberlin@math.fsu.edu
Andreas Seeger
Department of Mathematics
University of Wisconsin
Madison, WI 53706
USA
seeger@math.wisc.edu

