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APPROXIMATELY CONTINUOUS
FUNCTIONS HAVE APPROXIMATE

EXTREMA, A NEW PROOF

Abstract

In 1975, Richard O’Malley proved that every approximately con-
tinuous function has approximate extrema, and this result provides an
immediate solution to Scottish Book Problem 157. The purpose of
this paper is to provide an additional proof of O’Malley’s result.

1 Introduction

All sets and functions considered here will be assumed to be measurable with
respect to λ, Lebesgue measure on R. Suppose E ⊂ R and J is a given
interval with length |J |. Then the density (or relative measure) of E in J is
∆(E, J) = λ(E∩J)/|J |. The upper density of E at a point x ∈ R is defined as
lim supr→0+ ∆(E, (x− r, x+ r)) and is denoted by δ(E, x). The lower density
at x, δ(E, x) is defined similarly where lim inf replaces lim sup. If these two are
equal at x, their common value is called the density of E at x and is denoted
δ(E, x). If δ(E, x) = 1, then x is called a density point of E. We also use the
one-sided versions of the upper and lower densities of E at x using traditional
notation; so for example, the upper right density of E at a point x ∈ R is

δ
+

(E, x) = lim sup
r→0+

∆(E, (x, x+ r)).
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A function f : [a, b]→ R is approximately continuous at x0 ∈ (a, b) if there
is a set E with δ(E, xo) = 1, so that

lim
x∈E∩[a,b], x→x0

f(x) = f(x0). (1)

Approximate continuity at the endpoints is defined similarly. For example, f
is approximately continuous t a if there is a set E with δ+(E, a) = 1, so that

lim
x∈E∩[a,b], x→a+

f(x) = f(a). (2)

Finally, a function f has an approximate maximum at x0 if {x : f(x) > y}
has density 0 at x0.

In [2, Theorem 1], O’Malley proves that approximately continuous func-
tions always have approximate extrema. We state this for the maxima case
below as Theorem 1.

Theorem 1 (O’Malley). Let f : [a, b] → R be approximately continuous.
Then f attains an approximate maximum at some point x0 ∈ [a, b].

2 Proof of Theorem 1

Suppose f : [a, b] → R is approximately continuous. If any level set of f has
positive measure, then by the Lebesgue Density Theorem, that level set has
a density point and that density point is an approximate maximum. So we
may assume that every level set of f is of measure zero. Moreover, since f is
approximately continuous, if either f(a) or f(b) is an absolute maximum then
that value is an approximate maximum. So we assume that this is not the
case and that there is an x1 ∈ (a, b) with f(a) < y1 = f(x1) > f(b) and that
f−1((−∞, y1]) does not have full measure. Set a1 = a and b1 = b.

As in O’Malley’s original proof, we inductively choose y1 < y2 < . . . and
simultaneously choose nested intervals (a1, b1) ⊃ (a2, b2) ⊃ . . . in such a way
that

1.
⋂∞
k=1(ak, bk) = {c}, and

2. f(c) = lim yk is an approximate maximum of f .

To simplify notation, define

Ey = f−1((−∞, y)), E∗y = f−1((−∞, y]) and Ay = {x : δ(Ey, x) > 0}.
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Then, for each y, Ay is an Fσ set since

Ay =
⋃
n∈N

{
x : ∆(Ey, (x− r, x+ r)) ≥ 1

n
for all r ∈

(
0,

1

n

)}
.

Also, since f is approximately continuous,

Ey ⊂ Ay ⊂ E∗y . (3)

We use some notation and elementary facts later that are best defined here.
For n ∈ N, a, b ∈ R and A ⊂ R define

Rn(a,A) = {x > a : ∆(A, (z, x)) ≥ 1− 1

n
for all a ≤ z < x}

Ln(b, A) = {x < b : ∆(A, (x, z)) ≥ 1− 1

n
for all x < z ≤ b}.

Lemma 1.

1. If δ+(A, a) > 1− 1
n , then for every x > a, Rn(a,A) ∩ (a, x] 6= ∅.

2. If δ−(A, b) > 1− 1
n , then for every x < b, Ln(b, A) ∩ [x, b) 6= ∅.

Proof. Suppose x > a, ∆(A, (a, x)) > 1− 1
n and yet Rn(a,A)∩ (a, x] = ∅. In

particular, x 6∈ Rn(a,A) so there is an a ≤ z < x with ∆(A, (z, x)) < 1 − 1
n .

Let

z∗ = inf
{
z ≥ a : ∆(A, (z, x)) < 1− 1

n

}
.

If z∗ > a, then since z∗ 6∈ Rn(a,A), there is a z∗∗ < z∗ with ∆(A, (z∗∗, z∗) <
1 − 1

n . But then ∆(A, (z∗∗, x) < 1 − 1
n contradicting the minimality of z∗.

Hence, z∗ = a. However, in that case, ∆(A, (a, x)) ≤ 1 − 1
n contrary to the

choice of x. The proof of part 2 is similar.

Assume now that numbers y1 < y2 < · · · < yk and intervals (ai, bi) have
been defined for i ≤ k in such a way that

a1 < a2 < · · · < ak < bk < · · · < b2 < b1

and for all i ≤ k, {ai, bi} ⊂ Ayi , but ∆(Ayi , (ai, bi)) < 1. We show how to
determine yk+1, ak+1, bk+1 along with an important natural number that we
call nk+1. Let e : N2 → N be a fixed injection.

First, choose yk+1 > yk such that 1− 1
2nk

< ∆(Ayk+1
, (ak, bk)) < 1. Since

no level set of f has positive measure, λ(Ey) is a continuous function of y.
Too, ∆(Ayk+1

, (ak, bk)) < 1 and so (ak, bk)\Ayk+1
6= ∅. Fix d ∈ (ak, bk)\Ayk+1

.
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For i ≤ k + 1 the Ayi are nested as Ay1 ⊂ Ay2 ⊂ · · · ⊂ Ayk+1
and each

such set is an Fσ. So, for each i ≤ k + 1 we write

Ayi =

∞⋃
n=1

Fe(i,n), (4)

where Fe(i,n) is closed for every i ≤ k + 1 and every n ∈ N. Define

nk+1 = min{m = e(i, n) : i ≤ k + 1 and Fm ∩ (ak, bk) 6= ∅}.

This exists because, at the very least, Ayk+1
∩ (ak, bk) 6= ∅. Finally, define

ak+1 = supRnk
(ak, Ayk+1

) ∩ (ak, d), and

bk+1 = inf Lnk
(bk, Ayk+1

) ∩ (d, bk).

This completes the inductive definition of the numbers yk and nk as well as
the intervals (ak, bk). What remains is to use these to locate an approximate
maximum of f .

Since ak and bk are in Ayk , it follows by (3) and approximate continuity
that they are density points of Ayk+1

. It also follows from the definition of
Ayk+1

that both ak+1 and bk+1 are in Ayk+1
. Hence, by Lemma 1 and the

choice of d we have ak < ak+1 < d < bk+1 < bk. The following lemma will be
used to show bk+1 − ak+1 <

1
2 (bk − ak).

Lemma 2. Suppose a < r < s and (r, s) ∩ Rn(a,A) = ∅. Then there is an
a ≤ z ≤ r with ∆(A, (z, s)) ≤ 1− 1

n . A similar statement holds for Ln(b, A).

Proof. Let {si} ⊂ (r, s) be any sequence converging to s and set zi = inf{z ≥
a : ∆(A, (zi, si)) ≤ 1− 1

n}. Since si 6∈ Rn(a,A) it follows that such a zi exists
and, as (r, s) ∩ Rn(a,A) = ∅, that zi ≤ r. If z is any accumulation point of
{zi}, then z ∈ [a, r] and ∆(A, (z, s)) ≤ 1− 1

n as promised.

Suppose that bk+1−ak+1

bk−ak ≥ 1/2. Since (ak+1, d) ∩ Rnk
(ak, Ayk+1

) = ∅, we

can apply Lemma 2 to find a z1 with ak ≤ z1 ≤ ak+1 and ∆(Ayk+1
, (z1, d)) ≤

1− 1
nk

. Similarly, there is a z2 such that bk ≥ z2 ≥ bk+1 and ∆(Ayk+1
, (d, z2)) ≤

1− 1
nk

. But then ∆(Ayk+1
, (z1, z2)) ≤ 1− 1

nk
as well, so that

∆(Ayk+1
, (ak, bk)) ≤

(1− 1
nk

)(bk+1 − ak+1)

bk − ak
+ 1− bk+1 − ak+1

bk − ak

= 1− bk+1 − ak+1

nk(bk − ak)
.
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However, yk+1 was initially chosen so that ∆(Ayk+1
, (ak, bk)) > 1 − 1

2nk
. So

bk+1−ak+1 < (bk−ak)/2 as claimed. Hence, there is a unique point c ∈ (a, b)
with

∞⋂
k=1

(ak, bk) = {c}.

Also, {nk} → ∞ for if not, then there is a minimal m ∈ N such that ni = m
infinitely often. Let k be such that m = e(k, n). As Fm is closed, c ∈ Fm ⊂ Ayk
and so f(c) ≤ yk. But f is approximately continuous at c (and on land), and
so by (2) for large indices i, c ∈ Rm(ai, Ayi+1)∩Lm(bi, Ayi+1). If ni = m, then
c is excluded from (ai+1, bi+1).

There are two consequences to nk → ∞. The first is that c avoids all of
the closed sets Fe(i,n) and so by (2) we get f(c) ≥ lim yi. Secondly, by choice

of ak+1 for every z ∈ [ak, ak+1) we have ∆(Ayk+1
, (z, ak+1)) ≥ 1 − 1

nk
. And

so using (2), Ef(c) has left density 1 at c. Similarly, Ef(c) has right density 1
at c and so c is an approximate maximum. This then, completes the proof of
Theorem 1.
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