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A NON SELF-SIMILAR SET

Abstract

For each s ∈ (0, 1], we give an example of a nowhere dense per-
fect set E contained in the unit interval with dimH(E) = s, which is not
an attractor for any iterated function system composed of weak contrac-
tions. This answers a problem posed by Zoltán Buczolich at the Summer
Symposium in Real Analysis XXXIX (June 8-13, 2015, St. Olaf College,
Northfield, MN).

1 Introduction

Let X be a complete metric space with S = {S1, . . . , SN} a finite set of
contraction maps from X to itself. Call a non-empty compact subset E of X an
attractor for the iterated function system (IFS) S if E =

⋃N
i=1 Si(E) = S(E)

([5], [4]). Since S is a contraction on the compact metric space (H,K(X))
comprised of the non-empty compact subsets of X endowed with the Hausdorff
metric, there exists a unique compact set E ⊆ X such that E = S(E). Take
T = {E ∈ K(X) : E = S(E);S a finite collection of contraction maps} to be
the set of attractors for contractive systems defined on X. From [2] and [3] one
sees that T is always an Fσ subset of K(X) and, in the case that X = [0, 1]

n
,

the set T is of the first category. In particular, there is a set K?? comprised of
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certain nowhere dense perfect sets contained in the irrationals which is residual
in K([0, 1]) and has the property that K?? ∩ T = ∅.

In this brief note, for each s ∈ (0, 1] we give a simple construction of a
nowhere dense perfect set E contained in the unit interval with dimH(E) = s,
which is not invariant with respect to any iterated function system comprised
of weak contractions. That is, E 6= S(E) whenever S = {S1, . . . , SN}, and
d(Si(x), Si(y)) < d(x, y) for i = 1, 2, . . . , N .

This example answers a problem posed by Zoltán Buczolich at the Sum-
mer Symposium in Real Analysis XXXIX (June 8-13, 2015, St. Olaf College,
Northfield, MN). Its construction exploits ideas found in [6] and [1].

2 Notations

Let (X, d) be a metric space. A map f : X → X is a contraction if there exists
a constant M ∈ (0, 1) such that, for each x, y in X,

d(f(x), f(y)) ≤Md(x, y).

A map f : X → X is a weak contraction if, for each x, y in X, x 6= y,

d(f(x), f(y)) < d(x, y).

Let A and B be subsets of X. Set d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}. By
|A| we denote the diameter of A.

3 Main result

Theorem 1. For each s ∈ (0, 1], there exists a subset E of [0, 1], nowhere
dense and perfect, with dimHE = s, that is not the attractor for any iterated
function system composed of weak contractions.

Proof.

1. Construction of E.

Fix s ∈ (0, 1]. The set E is defined as

E = {0} ∪
{ ∞⋃
n=1

En

}
,

where the sets En are taken so that, for each n:

(a) |En| = 1
5

1
2n ,
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(b) sn = dimHEn = s − s
n+1 ; hence, {sn} is an increasing sequence

with limn sn = supn sn = s,

(c) minEn = 1
2n , and

(d) 0 < Hsn(En) < 1.

One notes immediately that

2. d(En, E \ En) > |En|,

3. dimHE = s and Hs(E) = 0, and

4. if m > n, then Hsm(f(En) ∩ Em) = 0, for any Lipschitz map f .

5. We will be interested in two types of behavior inherent to weak contrac-
tions defined on E.

Let f : E → E be a weak contraction.

(a) Suppose f : E → E, and f(0) = 0. We first show that, for any
n, f(En) ⊂ E \

⋃n
i=1 Ei. In fact, there exists x ∈ En such that

d(0, x) = d(0, En). Therefore, d(0, f(x)) < d(0, x) = d(0, En).
Hence f(x) ∈ E \

⋃n
i=1 Ei. The conclusion follows from the ob-

servation that

|f(En)| < |En| < d(En, E \ En).

(b) Suppose f : E → E, and f(0) 6= 0. We show that there exists
M ∈ N such that Hsm(f(E) ∩ Em) = 0 whenever m > M . Then
f(0) = x ∈ En, for some n. Now, f continuous implies the existence
of some N ∈ N such that f(Em) ⊆ En whenever m > N . Consider

L =
⋃N
i=1 Ei. Then Hsm(f(L) ∩ Em) = 0 for any m > N , and

Hsm(f(E) ∩ Em) = 0 for any m > M = max{N,n}.

6. Consider S = {S1, . . . , St} where each Si is a weak contraction from [0, 1]
to itself. Consider two subsets of S, A and B, so defined. Let Si ∈ A if
Si(0) = 0 and Si ∈ B if Si(0) 6= 0. If Si ∈ B, then there exists Ni such
thatHsm(Si(E)∩Em) = 0 for any m > Ni. Let N? = max{Ni : Si ∈ B}.
Fix Ek, k > N?. If Si ∈ B, then Hsk(Si(E) ∩ Ek) = 0. If Si ∈ A, then

Si
−1(Ek) ⊆

⋃k−1
j=1 Ej . Thus, Hsk(Si(E) ∩ Ek) = 0. We conclude that∑t

i=1Hsk(Si(E) ∩ Ek) = 0 and consequently Ek 6⊆ S(E).
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