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Abstract

Let λ denote the probability Lebesgue measure on T2. For any
C2-Anosov diffeomorphism of the 2-torus preserving λ with measure-
theoretic entropy equal to topological entropy, we show that the set
of points with nondense orbits is hyperplane absolute winning (HAW).
This generalizes the result in [18, Theorem 1.4] for C2-expanding maps
of the circle.

1 Introduction

For a dynamical system f : X → X on a set X with a topology, we say that a
point has nondense forward orbit if its forward orbit closure is a proper subset
of X, and we call the set of these points the nondense set and denote it by
ND(f). The study of nondense orbits is important for the interactions between
ergodic theory and Diophantine approximation and, partly inspired by this,
there has been much recent interest in these sets (see [1, 3, 5, 6, 13, 18, 20, 21],
for example). Of particular interest is the size ofND(f) and whether these sets
have the winning property, which is a strengthening of having full Hausdorff
dimension and is stable under intersections. (See Section 2 for the precise def-
inition of the winning property.) Almost all of the known dynamical systems
that have winning nondense sets are (piecewise) linear or come from automor-
phisms. A class of exceptions is the result by the author for C2-expanding
self-maps on the circle [18, Theorem 1.4]. There is also a recent result by
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W. Wu [21, Section 2] for partially hyperbolic diffeomorphisms on compact
manifolds in which the diffeomorphisms are conformal when restricted to the
unstable manifolds or the unstable manifolds are one-dimensional. Wu’s re-
sult, however, shows only that the nondense set when restricted to an unstable
manifold is winning, but does not show that the whole nondense set is win-
ning.1 General diffeomorphisms present a challenge in dimensions higher than
one for determining whether their nondense sets are winning or not.

1.1 Statement of results

The purpose of this brief note is to show that the members of a large, nat-
ural class of nonlinear self-maps on the 2-torus have winning nondense sets,
thereby, giving a large, natural class of higher-dimensional examples of winning
nondense sets for more general diffeomorphisms. Since the winning property
is stable under intersections, our results, in fact, also apply to nondense com-
plete orbits. Let λ denote the probability Lebesgue measure on T2. Our main
result is the following.

Theorem 1.1. Let g : T2 → T2 be a C2-Anosov diffeomorphism preserving λ
such that hλ(g) = htop(g). Let x0 ∈ T2. Then the set

ND(g,x0) :=
{
x ∈ T2 : x0 /∈ {gn(x)}∞n=0

}
is hyperplane absolute winning (HAW) and thus has full Hausdorff dimension.

Note that the hyperplane absolute winning property is a variant of the winning
property and implies it (see Section 2).

Corollary 1.2. Let {gm}∞m=0 be a family of C2-Anosov diffeomorphisms pre-
serving λ such that hλ(gm) = htop(gm) for all m. Let {x`}∞`=0 ⊂ T2. Then
the set

∞⋂
m=0

∞⋂
`=0

(
ND(gm,x`) ∩ND(g−1m ,x`)

)
(1.1)

is hyperplane absolute winning (HAW) and thus has full Hausdorff dimension.

1Wu’s result does imply that the whole nondense set has full Hausdorff dimension, which
is a significant result. We are, however, interested in the strengthening to winning because
of its stability under intersections. In particular, our result, Theorem 1.1, applies to the
smaller set of points with nondense complete orbits because the winning property is stable
under intersections and shows that this smaller set also has full Hausdorff dimension.
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Remark 1.3. Since the countable intersection property holds for all HAW sub-
sets on T2 (see Section 2), we may intersect the set from (1.1) with any count-
able family of HAW subsets on T2 and still retain the HAW property and, thus,
also retain the property of having full Hausdorff dimension. For example, the
intersection of the set from (1.1) with any countable collection of translates
of badly approximable vectors on T2 (which is HAW [4, Theorem 2.5]) is still
HAW and, thus, has full Hausdorff dimension.

Remark 1.4. We can also obtain results when the dimension d is greater than
two. It follows from the proof of Theorem 1.1 and from (4) of Lemma 2.1 that
any Anosov diffeomorphism having a bilipschitz (or quasisymmetric) conju-
gacy with a hyperbolic automorphism on Td will have an α-winning nondense
set for some α > 0 (see also Section 3.1).

Theorem 1.1 answers the question, first raised in [18, Section 6], of whether
there are nonlinear dynamical systems with winning nondense sets in dimen-
sions greater than one.

2 Winning and hyperplane absolute winning

The winning property was introduced by W. Schmidt [17] in 1966 and has
many later variants (see [4, 10, 16]). We define the winning property and one
particular strengthening, the hyperplane absolute winning (HAW) property,
for Rd. HAW was introduced in [4].

Let 0 < α < 1 and 0 < β < 1. Let S ⊂ Rd and ρ(·) denote the radius of a
closed ball. Two players, Alice A and Bob B, alternate choosing nested closed
balls

B1 ⊃ A1 ⊃ B2 ⊃ A2 · · ·

on Rd according to the following rules:

ρ(An) = αρ(Bn) and ρ(Bn) = βρ(An−1). (2.1)

A set S is called (α, β)-winning if Alice has a strategy guaranteeing
⋂
iBi lies

in S for the given α and β. A set S is called α-winning if it is (α, β)-winning
for the given α and every β. A set S is called winning if it is α-winning for
some α. These sets have four important properties for us [16, 17]:

Lemma 2.1. Properties of winning sets.

1. An α-winning set in Rn is dense and has full Hausdorff dimension.

2. A countable intersection of α-winning sets is α-winning.
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3. An α-winning set in Rn with a countable number of points removed is
α-winning.

4. The image of an α-winning set under a bilipschitz map is α′-winning,
where α′ depends only on α and the map.

Now fix a k ∈ {0, 1, · · · , d − 1} and restrict 0 < β < 1/3. Bob initially
chooses x1 ∈ Rd and r1 > 0 and forms a closed ball B1 = B(x1, r1). At each
stage of the game, after Bob chooses xi ∈ Rd and ri > 0, Alice chooses an
affine subspace L of dimension k and removes an εi-neighborhood Ai = L(εi)

from Bi := B(xi, ri) for some 0 < εi ≤ βri. Then Bob chooses xi+1 and
ri+1 ≥ βri such that

Bi+1 := B(xi+1, ri+1) ⊂ Bi\Ai.

A set S is said to be k-dimensionally β-absolute winning if Alice has a strat-
egy guaranteeing that

⋂
iBi intersects S. A set S is k-dimensionally absolute

winning if it is k-dimensionally β-absolute winning for every 0 < β < 1/3. We
call (d − 1)-dimensionally absolute winning sets hyperplane absolute winning
(HAW) sets. These sets have three important properties for us [4, Proposi-
tion 2.3]:

Lemma 2.2. Properties of k-dimensionally absolute winning sets.

1. HAW (and thus k-dimensional absolute winning for all 0 ≤ k ≤ d − 1)
implies α-winning for all 0 < α < 1/2.

2. The countable intersection of k-dimensionally absolute winning sets is
k-dimensionally absolute winning.

3. The image of a k-dimensionally absolute winning set under a C1 diffeo-
morphism of Rd is k-dimensionally absolute winning.

3 Proofs

In this section, we prove Theorem 1.1 and its corollary. The two main ingre-
dients are the HAW property, already introduced, and the following smooth
classification of Anosov diffeomorphisms of the 2-torus (see [9, Corollary 20.4.5]
for example):

Theorem 3.1. Suppose g : T2 → T2 is a C2-Anosov diffeomorphism pre-
serving λ such that hλ(g) = htop(g). Then g is C1-conjugate to a linear
automorphism.
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Proof of Theorem 1.1. The Anosov diffeomorphism g is C1-conjugate to
a linear automorphism T by Theorem 3.1. Let h : T2 → T2 be this conjugacy
from the Anosov diffeomorphism to the linear automorphism. The nondense
set ND(T, h(x0)) is HAW by [4, Theorem 2.6]. Consequently, ND(g,x0) is
HAW by (3) from Lemma 2.2. This proves the desired result.

Proof of Corollary 1.2. The desired result follows from the theorem and
(1) and (2) from Lemma 2.2 and (1) from Lemma 2.1.

3.1 Remarks

A key ingredient in the proof of the smooth classification is the fact that the
stable and unstable foliations for a C2-Anosov diffeomorphism of the 2-torus
are C1. The proof of the fact relies on a more general result, namely that a
codimension-1 stable manifold for a C2-Anosov diffeomorphism of a compact
manifold forms a C1 foliation [8, Corollary 4]. The same applies to the unstable
manifold, from which we obtain the desired C1 foliations for the 2-torus. This
leads to a characterization of smooth conjugacies for the 2-torus [11, 14, 15]
(also see [9, Chapter 20.4.b]) and to our smooth classification. (Note that,
for a torus of dimension three or greater, either the unstable manifold or the
stable manifold will not be codimension-1.)

For dimensions three and greater, we lack a smooth classification theorem.
In fact, the characterization of smooth conjugacies is more complicated, and
R. de la Llave showed that two Anosov diffeomorphisms of Td for d ≥ 4 may be
topologically conjugate without being Lipschitz conjugate [12, Theorem 6.3].
(For the 3-torus, the situation is not settled.) A. Gogolev noted that de la
Llave’s counterexample can be generalized so that (in most cases) one can
take one of the diffeomorphisms to be a linear automorphism [7, Theorem B].
Should a smooth classification in higher dimensions be found, it would be
more complicated than Theorem 3.1, especially since it must allow for cases
in which the conjugacy is only Hölder. On the other hand, we always have a
Hölder classification theorem for this context: every Anosov diffeomorphism
of Td is Hölder conjugate to a linear hyperbolic automorphism of Td [9, The-
orems 18.6.1 and 19.1.2]. This Hölder classification is, however, not strong
enough for us because we need the conjugacy to be quasisymmetric or bilips-
chitz (see [16] and (4) from Lemma 2.1) to carry out the proof in this paper.

Another way of approaching this problem for dimensions three and greater
that should avoid using a smooth classification is to employ a technique used
earlier [18, 21], namely using a bounded distortion property (i.e. universal
bounds on the ratio of the absolute values of the Jacobian determinant for
nearby points—see [18, Section 2.1.1] for example). If we assume conformality,
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bounded distortion follows. However, without this assumption (in dimensions
two or greater), bounded distortion may not follow, and without it we may not
be able to control the local “shape” of successive iterates of small balls. Since
the variants of the game involve intersections with balls, this lack of control
is an obstacle that needs to be overcome if this approach were to succeed for
more general nonlinear maps.

Also, we note that for linear maps, one can replace bounded distortion
with linear properties of the map. In particular, one can decompose Rd into a
direct sum of subspaces appropriate for the linear action and, using the HAW
property, one is allowed to remove “bad” affine hyperplanes [4]. Linearity
seems important to this step and may not be possible with a nonlinear system.

Finally, we mention a theorem closely related to our results. For pairs
of toral mappings, one can consider the set of points with orbits that are
nondense under one of the pair and dense under the other, a problem first
considered in [2]. The nonlinear case for this setup of simultaneous dense
and nondense orbits is also interesting, and, for generic pairs of C2-Anosov
diffeomorphisms of T2, it is known that the desired set is uncountable and
dense [19, Theorem 1.3].
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