
SURVEY Real Analysis Exchange
Vol. 41(2), 2016, pp. 233–262

John C. Morgan II, Department of Mathematics and Statistics, California
State Polytechnic University, Pomona, CA 91764, U.S.A.
email: jcmorganii@yahoo.com

COMPLETION FROM AN ABSTRACT
PERSPECTIVE

Abstract

A general conception of a completion is developed with illustrations,
primarily crafted from Euclidean material, accompanied by a compre-
hensive survey of characterizations of completeness encountered in anal-
ysis.
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1 Introduction

The expansion of the rational number line to include the multitude of irra-
tional numbers which lay hidden in kinds of clouds at infinity, the subsequent
formation of the extended real number line by the addition of negative and
positive infinite numbers, the compactification of the Euclidean plane via ad-
junction of an infinitely remote entity to form the Riemann sphere, and the
creation of projective space through the appending of points, lines, and planes
at infinity to Euclidean space are completion processes. A space Y is concep-
tualized as a completion of a space X if there exists a system S composed of
cascades (certain types of nets) of nonempty open sets in X, an embedding
of X in Y, and an interrelated set mapping transforming the system S into a
system of cascades of nonempty open sets in Y which are convergent to points
in Y. The foregoing examples, as well as Niemytzki’s tangent disc space and
Alexandrov’s two circle compactification, are discerned to be completions in
this sense.

A general procedure, exemplified by Epstein’s approach to Carathéodory’s
compactification of a bounded simply connected planar region by the aggre-
gation of prime ends, is found to underlie the construction of copies of the
cited completions. This procedure also plays a fundamental role in affirming
that Alexandrov’s one point compactification, Wallman’s compactification,
the Stone–Čech compactification, the Hewitt–Nachbin realcompactification,
Morita’s completion of generalized uniform spaces, Hausdorff’s completion of
metrized spaces, and certain ordered spaces are completions in the presented
sense.

Each of the two systems involved in the completion procedure begets a
framework of descending cascades of open covers of the respective spaces rela-
tive to that pair of which the embedding is a uniform isomorphism. In certain
situations it will actually be an isometry or order isomorphism. The observa-
tion that a generalized form of Bolzano’s convergence principle is valid with
respect to the associated frameworks of numerous completions prompts the
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investigation of related forms and implications of that principle in various
settings. Detailed verification of assertions, oftentimes tedious, is omitted.

2 Abstract spaces

A space X = (X,D) consists of a nonempty set X of points, and a family D of
nonempty sets, designated domains, with X =

⋃
D. The domains containing a

given point and their supersets are called neighborhoods of that point. Unions
of families of domains are termed open sets. Spaces having the same open sets
are said to be basically equivalent spaces. A subset of X is dense in X when
it contains at least one point in each domain. A subspace P = (P,DP ) of a
space X = (X,D) consists of a nonempty subset P of X with DP = {D ∩ P :
D ∈ D and D ∩ P 6= ∅}.

Continuous functions and homeomorphisms are defined in the usual neigh-
borly manner. An embedding of a space X in a space Y = (Y, E) is a homeo-
morphism h : X → Y with h(X) dense in Y.

Product spaces are defined as follows: Let T be a nonempty set, let Ξ =
(Xt : t ∈ T) be a nonempty collection of spaces Xt = (Xt,Dt), called coordinate
spaces, and let M be a family of nonempty subsets of T with

⋃
M = T. Set

W =
∏

(Xt : t ∈ T) and define A to be the family of all the product sets
A =

∏
(At : t ∈ T) such that, for some M ∈ M, the set At ∈ Dt whenever

t ∈ M and At = Xt whenever t ∈ T \ M . The space W = (W,A) is the
product space determined by Ξ and M. Particular cases considered below are
the Cartesian product spaces of order n (T = {1, . . . , n} and M = {T} for
each n ∈ N, the set of natural numbers), the Tihonov product spaces (T is
an infinite set and M is the family of nonempty finite subsets of T), and the
generalized Tihonov product spaces (T is a set of regular cardinality ℵα and
M is the family of nonempty subsets of T having cardinality less than ℵα).

Limit points and concepts based thereon are defined relative to a hypo-
thetical cardinal number ℵα, while condensation points, separability, the hier-
archy of Borel sets, and Baire’s classification of functions are defined relative
to a stipulated cardinal number ℵβ . The familiar denumerably based Gδ–sets
become G∆–sets (i.e., intersections of families having cardinality at most ℵβ
comprised of open sets).

3 Index schemes

In his inaugural dissertation, Vietoris introduced the basic convergence theory
of what are presently known as nets and filter bases. (See [52, pp. 184–186] and



236 Completion from an Abstract Perspective

[44, 45, 53].) Here a cardinality modification of his definition of an oriented
set with no last element is adopted.

An index scheme I = (I,≺,ℵα) consists of a nonempty index set I on
which is defined an irreflexive, transitive relation ≺ having the property that
if K is a subset of I with cardinality |K| less than a stipulated cardinal number
ℵα, then there exists an index λ such that κ ≺ λ for every κ ∈ K. We denote
by Wα the set of non-zero numbers less than the initial ordinal number ωα of
cardinality ℵα. Relative to an assigned index scheme for a space, the point set
theoretic concepts mentioned above pertain to the stipulated cardinal number
ℵα and the cardinality ℵβ of the index set. Following are the main types of
index schemes.

(I1) The sequential scheme I = (N, <,ℵ0).

(I2) The more general ωα–sequential scheme I = (Wα, <,ℵα) for a regular
cardinal number ℵα.

(I3) The Cartesian scheme I = (Hn,≺,ℵα) of order n ∈ N for a fixed index
scheme (H, <,ℵα) with indices 〈ξ1, . . . , ξn〉 ≺ 〈η1, . . . , ηn〉 if and only if
ξj < ηj for all j = 1, . . . , n.

(I4) Moore’s index scheme I = (I,≺,ℵ0) for an infinite set T with I the
family of nonempty finite subsets of T and ≺ proper set inclusion.

(I5) The transordinal scheme I = (I,≺,ℵα) for a set T of cardinality at
least ℵα, where ℵα is a regular cardinal number, the set I consists of the
functions λ : T→Wα∪{0} for which the set N(λ) = {t ∈ T : λ(t) 6= 0}
satisfies the condition 0 < |N(λ)| < ℵα, and the relation ≺ is defined
by λ ≺ µ if and only if λ(t) < µ(t) for all t ∈ N(λ) (see [39]).

The latter three schemes are employed for the respective product spaces
in Section 2. An index scheme is well-directed if |{κ ∈ I : κ ≺ λ}| < ℵα for
all λ ∈ I, well-founded if every nonempty subset of I has at least one minimal
element, and well-endowed when it is well-directed and well-founded.

Functions defined on an index set I are termed cascades. A cascade F̂ of
sets or families of sets is a descending cascade if F (µ) ⊂ F (λ) for all indices
λ, µ ∈ I with λ ≺ µ. A cascade of sets or points converges to a point in a
space if its terms are eventually contained in any neighborhood of the point,
in which case, the point is called a limit of the cascade.

A framework for a space is a descending cascade R̂ of coverings R(λ) of the
space comprised of nonempty open sets. For the real line R = (R,D), whose
domains are the intervals (a, b) with a < b, the primary sequential framework is
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that for which R(λ) is the family of those intervals having length at most λ−1.
The assignment of a framework to a space induces a notion of “smallness.”
Each subset of a set in a given family R(λ) is called a λ–small set. A family
of sets in the space is said to contain arbitrarily small sets if it contains at
least one nonempty λ–small set for every λ ∈ I. Generalizing the concept of
a strong measure zero set, a set is designated a minuscule set when, for each
cascade λ̂ of indices, there exists a cascade M̂ of sets M(ξ) ∈ R(λ(ξ)) covering
that set.

Given spaces X,Y with assigned frameworks R̂, S̃ having index sets I, J,
respectively, and a set P ⊂ X, a function f : P → Y is called a uniform
function relative to 〈R̂, S̃〉 if, for every ν ∈ J, there exists λ ∈ I such that
the image of each λ–small subset of P is a ν–small subset of Y. Minuscule
sets remain such under uniform functions for spaces with frameworks of the
same type. See [49]. As evidenced by Dirichlet’s characteristic function of the
set of rational numbers, a uniform function may be discontinuous. A one-to-
one continuous uniform function whose inverse is also a continuous uniform
function is termed a uniform isomorphism.

4 Completeness

The conception of completeness of the real line originating with Bolzano (see
[10] and [46, p. 171]) amounts to distinguishing a certain system of sequences of
points and deeming each of them convergent to some point. This stipulation is
equivalent to the specification of a particular system of sequences of nonempty
open sets on the line which are convergent to points. In an endeavor to unify
constructions of completions and compactifications, the latter idea appears
promising.

A system for a space is a nonempty set of cascades for a fixed index scheme
whose terms are nonempty open sets. The terminology sequential system,
Moore system, etc., identifies the type of index scheme. A space is complete
relative to an assigned system if each cascade in the system converges to some
point in the space.

Let W be a product space with systems St of the same type assigned to
each of the spaces Xt in the collection Ξ. Under certain assumptions, a product
system S is defined for W. For a Cartesian product space of order n it is
presumed that all the index schemes It = (Ht,≺t,ℵα) have a common type
(H, <,ℵα), the Cartesian index scheme I is assigned to W, and S consists
of the cascades Ĉ of product sets C(λ) =

∏
(Ct(λ) : t ∈ T) satisfying the

condition

(∗) there is an assemblage ∆(Ĉ) = (S̆t : t ∈ T) with S̆t ∈ St for each t ∈ T
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such that, for all indices λ = 〈ξ1, . . . , ξn〉 ∈ I, the set Ct(λ) = St(ξt) for
every t ∈ T.

For a Tihonov product space it is presumed that each system St is comprised
of sequences of proper subsets of the sets Xt, Moore’s index scheme for T is
assigned to W, and S consists of the cascades of product sets satisfying the
condition (∗) with the modification that Ct(λ) = St(|λ|) for each t ∈ λ and
Ct(λ) = Xt for each t ∈ T\λ, for all λ ∈ I. For a generalized Tihonov product
space it is presumed that each system St is comprised of ωα–sequences of
proper subsets of the sets Xt, the transordinal index scheme is assigned to W,
and S consists of the cascades of product sets satisfying condition (∗) with
the modification that Ct(λ) = St(sup(λ)) whenever t ∈ N(λ) and Ct(λ) = Xt

whenever t ∈ T \ N(λ), for all λ ∈ I. The stated conditions ensure that a
cascade Ĉ ∈ S converges to a point w = (wt : t ∈ T) in W if and only if
S̆t ∈ ∆(Ĉ) converges to wt in Xt for all t ∈ T and that the open, continuous
projection mappings are uniform functions. Ensuing theoretical statements
pertaining to product spaces are valid for each of these product systems.

Theorem 4.1. A product space is complete if and only if all coordinate spaces
are complete.

5 Completion formalized

Let X = (X,D) and Y = (Y, E) be spaces with H the family of nonempty
open sets in Y. Denote by B the family of terms of cascades belonging to a
system S assigned to X. Given a mapping ϕ : B → H, we define ϕ(S) to be
the system of cascades ϕ(Ŝ) with terms ϕ(S(λ)), for all cascades Ŝ ∈ S.

A space Y is a completion of a space X if, for some system S of cascades
in X, there exists a mapping ϕ : B → H such that Y is complete relative to
ϕ(S) and an embedding h of X in Y which are interrelated by the condition:
for all x ∈ X and all B ∈ B, the point x ∈ B precisely when the point
h(x) ∈ ϕ(B); more accurately, Y is a completion of [ X, S] with respect to
〈ϕ, h〉. A completion is called a sequential completion, Moore completion,
etc. according to the nature of the index scheme for S. A completion Y of
a space X in which h(X) is an open set in Y, is called an augmentation of
X. A completion where the embedding is the identity mapping is termed an
extension. In that case, the elements of X are called ordinary points, while
those of Y \X are called extraordinary points.

We note that the interrelating condition can be replaced by the condition:
h(B) = ϕ(B) ∩ h(X) for all B ∈ B. It is seen that ϕ is one-to-one and, for all
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A,B ∈ B, the inclusion h(A) ⊂ h(B) implies that A ⊂ B; when the reverse
implication is true, the mapping and completion are called monotone.

Defining connectedness in the usual manner, we have in harmony with [51]

Theorem 5.1. A completion of a connected space is a connected space.

Theorem 5.2. A homeomorphic image of a completion is a completion of the
same space.

The following is valid for each product space.

Theorem 5.3. If W is a product space for a collection of spaces Xt and Yt is
a completion of Xt for each t ∈ T, then the product space for those completions
is a completion of W.

The following examples are noteworthy.

Example 5.4. Let Q = (Q,D) be the rational line with domains the open
intervals (a, b). Let S be comprised of the descending sequences of domains
whose nth term has length n−1. The real line R is a completion of [Q, S].

Denote by (Y,<′) the ordered set obtained by expansion of the natural or-
dering < of R wherein each rational number x is replaced by three consecutive
elements α(x) <′ β(x) <′ γ(x). (The set Y is order isomorphic to the subset
of R resulting from adjoining to the Cantor set the midpoints of all contigu-
ous open intervals and deleting 0 and 1.) Let E consist of the open intervals
(β(u), β(v)) of Y for u, v ∈ Q with u < v. The space Y = (Y, E), referred to
as the tri-rational line, is also a completion of [Q,S] which is not a Hausdorff
space.

We denote by Rm = (Rm,D) Euclidean m–space whose domains are the
open balls with respect to the Euclidean metric δm, for each m ∈ N.

Example 5.5. Let S consist of the sequences Â(x, ·) of intervals A(x, n) =
(x− (2n)−1, x+ (2n)−1) of R1, for each x ∈ R, together with the sequences Ĉ
and D̂ of rays C(n) = (∗,−n) = {x ∈ R : x < −n} and D(n) = (n, ∗) = {x ∈
R : x > n}. The extended real line with domains the nonempty open intervals
of its order topology is a completion of [R1, S].

Example 5.6. Take X = (X,D) to be the open unit disc of the Euclidean
plane centered at θ with D the family of open discs having center x ∈ X and
radius r < 1 − δ2(θ, x). For each x ∈ X and n ∈ N, define A(x, n) to be the
open disc centered at x with radius [1 − δ2(θ, x)] · 2−n. For each half line L
emanating from θ and each n ∈ N, define C(L, n) as the open disc centered
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at the point on L at distance 1 − 2−n from θ with radius 2−n. Let S be the
totality of sequences Â(x, ·) and Ĉ(L, ·).

Denote by C1 the unit circle and by Y the closed unit disc. Let E consist
of the open discs in D and the sets C(L, n) ∪ α(L), where α(L) ∈ L ∩ C1, for
all half lines L. The space Y = (Y, E) is an augmentation of X, referred to as
the tangent disc space determined by X. This completion is a rotund version
of Niemytzki’s tangent disc space for the upper half plane introduced in [41,
p. 70].

Example 5.7. Let Y be the union of the concentric circles C1 and C2 = {u ∈
R2 : δ2(θ, u) = 2}. Let E be comprised of the singleton subsets of C2 and the
sets of the form I ∪ ρ[I \m(I)] where I is an open arc on C1 with midpoint
m(I) and ρ : C1 → C2 is the radial projection mapping. The compact space
Y = (Y, E) is Alexandrov’s two circle space. See [2, pp. 13–15].

Define X = (X,D) with X = C2 and D the family of nonempty subsets
of C2. Let S consist of the sequences Â(x, ·) of singletons A(x, n) = {x} and
the sequences Ĉ(x, ·) of sets C(x, n) = J(x, n) \ {x} where J(x, n) is the open
arc on X centered at x having arclength n−1, for all x ∈ X. The space Y is
a completion of [X, S] with respect to the identity function and the mapping
ϕ defined for all x ∈ Xand n ∈ N by ϕ[A(x, n)] = A(x, n) and ϕ[C(x, n)] =
C(x, n) ∪ ρ−1[J(x, n)].

6 Representation systems

A system for a space is designated a representation system if each point is rep-
resentable as a limit of at least one cascade in the system all of whose terms
contain that point. Each space possessing a representation system is neces-
sarily a topological space (defined here as a space where intersections of pairs
of neighborhoods of any point contain a neighborhood of the point). Every
topological space X has at least one Moore representation system. Namely, let
M̃ = (M(ξ) : ξ ∈Wγ) be an arrangement of least cardinality of all nonempty
open sets, one of which is repeated ℵ0 times (to cover the finite case). Take
J to be Moore’s index scheme for T = Wγ . For each x ∈ X and λ ∈ I, set

S(x, λ) =
⋂
{M(ξ) : ξ ∈ λ and x ∈ M(ξ)}. Then S = {Ŝ(x, ·) : x ∈ X} is a

representation system for X.

Product systems are representation systems if and only if all the coordinate
systems are representation systems. If P is a subspace of a space X having an
assigned system S, then the subspace system assigned to P is the system of
the same type as S composed of the cascades T̂ of sets in P for which there
exists a cascade Ŝ ∈ S such that T (λ) = S(λ)∩ P 6= ∅ for all λ ∈ I. Subspace
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systems determined by representation systems are representation systems, and
we have

Theorem 6.1. If a space is complete relative to a representation system, then
each closed subspace is complete relative to its subspace system.

A completion Y of a pair [X,S] with respect to 〈ϕ, h〉 is called a repre-
sentable completion when ϕ(S) is a representation system for Y. The topolog-
ical identity of completions of a common pair is actualized in the following
situation.

Theorem 6.2. If Y and Z are regular Kolmogorov spaces which are monotone,
representable completions of the same pair [X,S] with respect to 〈ϕ, h〉 and
〈ψ, i〉, then there is a homeomorphism j from X onto Z with j ◦ h = i.

Each representation system S generates the framework R̂〈S〉 whose terms
(R̂〈S〉)(λ) are comprised of the sets occurring in the λ–tail {S(µ) : µ < λ} of
some cascade Ŝ ∈ S, leading to the deduction of a general fact.

Theorem 6.3. If Y is a completion of [X,S] with S a representation sys-
tem, then the families of sets T (λ) = h[(R̂〈S〉](λ) constitute a framework T̂
for the subspace of Y determined by h(X), and the embedding is a uniform
isomorphism relative to 〈R̂〈S〉, T̂ 〉.

A representation system all of whose cascades are descending is called a
determinant system. Subspace and product systems of determinant systems
are determinant systems.

7 Ascoli completions

An Ascoli system is a determinant system each of whose cascades converges to
a point belonging to all its terms (see [6, pp. 1064–1065]). A space complete
relative to such a system is said to be Ascoli complete. A completion Y of a pair
[X, S] with respect to 〈ϕ, h〉 for which ϕ(S) is an Ascoli system is designated
an Ascoli completion.

Theorem 7.1. A subspace of an Ascoli complete Hausdorff space is Ascoli
complete if and only if it is a closed subspace.

Theorem 7.2. A product space is Ascoli complete if and only if all coordinate
spaces are Ascoli complete.

The existence of Ascoli completions is guaranteed by



242 Completion from an Abstract Perspective

Theorem 7.3. Each Kolmogorov space X with a prescribed determinant sys-
tem S has a monotone Ascoli completion which is a Kolmogorov space.

The construction employed, referred to as the Ascoli Completion Process
and abbreviated ACP, is as follows (see [18, 20, 56]): Define X+ to be the set
of equivalence classes of cascades Ŝ, T̂ ∈ S which are interlaced (i.e., for every
λ ∈ I, there is index µ � λ such that T (µ) ⊂ S(λ) and, for every µ ∈ I, there is
an index ν � µ such that S(ν) ⊂ T (µ)). For each set B belonging to the family
B of all terms of cascades in S, define ϕ(B) as the set of elements x+ ∈ X+

such that each cascade in x+ has a term included in B and set D+ = ϕ(B).
For each x ∈ X, define h(x) to be the equivalence class containing a cascade
in S of neighborhoods of x converging to x. The space X+ = (X+,D+) is the
desired completion.

It ensues that if B̂ is any cascade of sets in B converging to a point x in
X, then ϕ(B̂) converges to h(x) in X+. It is also follows that the embedding
maps dense sets to dense sets.

In order that X+ be a Hausdorff space, it is necessary and sufficient that
S satisfy the following condition.

(H) Every pair of noninterlaced cascades has at least one pair of disjoint
terms.

The validity of this condition in general settings is hereditary and productive
provided that the coordinate systems are comprised of descending cascades.
A system satisfying condition (H) is called a Hausdorff system.

It is noted that the hypothesis that X be a Kolmogorov space is only utilized
to establish that the function h is one-to-one and that X+ is a Kolmogorov
space. Absent that assumption, the constructed space is referred to as a
pseudocompletion.

8 Illustrations

Application of the ACPto each of the pairs [X,S] of Examples 5.4–5.7 yields
(homeomorphic) copies of the completions Y defined therein. We provide some
additional informative examples.

In connection with Example 5.4, the question arises as to whether the
ACPcan be utilized directly to enlarge the ordered set of rational numbers
through interposition of new entities corresponding to the irrational numbers,
whose nebulous nature has been noted by Michael Stifel (see [23, pp. 74–75]
and [32, pp. 251–252] ). An affirmative answer is obtained by either of the
following approaches, akin to Dedekind’s order-theoretic method and Cantor’s
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arithmetic method. The use of the ACPin both constructions enhances Haus-
dorff’s observation ([22, p. 316]) of the existence of an analogy between those
procedures. See also Theorems 14.2 and 14.5.

Example 8.1. Let X = (Q,D) with D the family of sets (∗, q) = {x ∈
Q : x < q} for all q ∈ Q, and let S consist of the descending sequences of
domains whose intersection is a nonempty set which is not a domain. Let
X

+ = (X+,D+) be the completion of [X,S] determined by the ACP. The re-
lation <+, defined for w+, x+ ∈ X+ by w+ <+ x+ if and only if there are
non-equivalent sequences Ê ∈ w+ and F̂ ∈ x+ such that, for each m ∈ N,
there exists n ∈ N with E(n) ⊂ F (m), is an order relation relative to which
X+ has neither initial nor final elements and the Infimum Principle (see page
253) is valid. The family B = D and, for each set B = (∗, q) ∈ B, the set
ϕ(B) = {w+ ∈ X+ : w+ <+ h(q)}. The embedding h is an order isomor-
phism and h(Q) is ordinally dense in X+. We refer to this completion as the
Dedekind completion of the ordered set Q.

Example 8.2. Take X to be the rational line. Define

D = {k · 2−n : k is any integer and n ∈ N}.

The system S of descending sequences of domains with endpoints in D whose
nth term contains at most one of the fractions j · 2−m in D with m ≤ n
and has none of these fractions as an endpoint is a Hausdorff determinant
system. The relation <+ defined for w+, x+ ∈ X+ by w+ <+ x+ when and
only when there exist Ê ∈ w+, F̂ ∈ x+, and p ∈ N such that E(p) < F (p)
(i.e., u < v for all u ∈ E(p) and v ∈ F (p)) satisfies the order-theoretic axioms
characterizing the real line. The embedding h is an order isomorphism and
ϕ(B) = {x+ ∈ X+ : h(a) <+ x+ <+ h(b)} for B = {u ∈ X : a < u < b} ∈ B.
This example is referred to as the Cantorian completion of the ordered set Q.

Example 8.3. The space X = (R,D) whose domains are the intervals [a, b)
is called Alexandrov’s line (see [2, pp. 6 and 76–78] and [12, 13]). Take
S to consist of the sequences Â(x, ·), Ĉ(x, ·), D̂, and Ê of sets A(x, n) =
[x−n−1, x), C(x, n) = [x, x+n−1), D(n) = (∗,−n), and E(n) = [n, ∗). The
completion X+ derived via the ACPis a compactification of X where the set
X+, ordered as in the preceding example, has order type 1 + 2λ+ 1; i.e., like
the extended real line with each real number x replaced by consecutive elements
α(x) <+ β(x). The four varieties of sequences in S correspond respectively
to the elements α(x), β(x), the minimal element, and the maximal element
of X+. The embedding is an order isomorphism with h(x) = β(x) for each
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x ∈ R. The family ϕ(B) is comprised of the sets

ϕ[(A(x, n)] = {z+ ∈ X+ : α(x− n−1) <+ z+ <+ β(x)},
ϕ[C(x, n)] = {z+ ∈ X+ : α(x) <+ z+ <+ β(x+ n−1)},
ϕ[D(n)] = {z+ ∈ X+ : z+ <+ β(−n)}, and

ϕ[(E(n)] = {z+ ∈ X+ : α(n) <+ z+}

which constitute a basis for the order topology on X+. (In the terminology of
[2, p. 7], X+ is basically equivalent to a space TΘ with Θ = 1 + 2λ+ 1.)

It is noted that Alexandrov’s two arrow space, defined on the same set
X+ having neighborhoods {α(x)} ∪ {z+ ∈ X+ : β(x) <+ z+ <+ α(y)} and
{z+ ∈ X+ : β(x) <+ z+ <+ α(y)} ∪ {β(y)} with x < y, is not basically
equivalent to the space X+, contrary to what a remark in [2, p. 77] seems to
indicate.

Example 8.4. Let X be Euclidean space R3. For each x ∈ X, let Â(x, ·) be
the sequence of open balls A(x, n) with center x and radius (2n)−1. Let L be
the family of lines in X. For each L ∈ L, select a point o(L) on L and, for
each n ∈ N, define π(L, n) and ρ(L, n) to be the planes perpendicular to L
containing the points p(L, n) and r(L, n) on L at length n from o(L). The set
X \ [π(L, n) ∪ ρ(L, n)] is composed of three disjoint open regions, the union
of those two of which not containing o(L) is denoted by C(L, n). Take the
system S to consist of the sequences Â(x, ·) for all x ∈ X and the sequences
Ĉ(L, ·) for all L ∈ L. The completion X+ of [X,S] determined by the ACPis
a prototype for the classical projective space.

Denoting by ω(L) the equivalence class containing Ĉ(L, ·) for each L ∈ L,
we have ω(L) = ω(M) precisely when L and M are coincident or parallel
lines and the set X+ = h(X) ∪ {ω(L) : L ∈ L}. (A natural choice for a
set of representative elements in the equivalence classes is the set of sequences
Ĉ(L, ·) with L belonging to the bundle of lines passing through one fixed point.)
Denoting by P the family of planes of X, the lines of X+ are the sets h(L) ∪
{ω(L)}, for all L ∈ L, together with the sets λ(P ) = {ω(L) : L ∈ L and L ⊂
P} for each P ∈ P. The planes of X+ are the sets h(P ) ∪ λ(P ) for all P ∈ P
and the set Π = {ω(L) : L ∈ L}. The separation relation is defined by certain
linear arrangements of points or circular arrangements of lines in X. (See [11,
17].)

Application 8.5. Taking S as the system of descending sequences of nonempty
open sets in a first countable Kolmogorov topological space, the ACPyields the
fact that such a space can be embedded in a first countable Baire space (i.e., a
space every nonempty open subset of which is a second category set).
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Example 8.6. Assume that X is a non-compact, locally compact Kolmogorov
topological space. (A space is locally compact if, for each point x, we can single
out an open neighborhood N(x) of x whose closure is a compact set.) Assign
to X the Moore scheme for the family T of nonempty open sets with compact
closure. Let S be the cascades Â(x, ·) of sets A(x, λ) = N(x) ∩ [

⋂
{G ∈ λ :

x ∈ G}] for all x ∈ X and the cascade Ĉ of sets C(λ) = X \ Cl(
⋃
λ). The

completion X+ obtained via the ACPis a compactification of X with X+ =
h(X)∪{ω}, where ω is the equivalence class containing Ĉ. If X is a Hausdorff
space, then X+ is likewise; the open sets being the sets h(G) for G open in
X, together with the sets X+ \ h(K) for each compact set K in X. In this
case, X+ is identified as Alexandrov’s one point compactification of X. See [1,
2 pp. 68–72, 22 p. 285].

We formulate a generalized version of Alexandrov’s two circle space.

Example 8.7. Let W = (W, C) be a compact Hausdorff topological space
having no isolated points with C closed under finite intersections and satisfying
the condition: If J,K ∈ C, u ∈ J, v ∈ K and the inclusion J \ {u} ⊂ K \ {v}
holds, then J ⊂ K. Let J be Moore’s scheme for T = C. For each w ∈W and
each λ ∈ I , select a neighborhood N(w) ∈ C, define J(w, λ) = N(w)∩ [

⋂
{C ∈

λ : w ∈ C}], and define G(w, λ) = J(w, λ) \ {w}. Take X = (X,D) to be
the discrete space with D = {{w} : w ∈ W}, and let S be comprised of the
constant cascades Â(x, ·) with terms A(x, λ) = {x} and the cascades Ĝ(x, ·)
for all x ∈ X. The completion X+ of [X,S] determined by the ACPis a
Hausdorff compactification of X with X+ \ h(X) homeomorphic to the space
W via the bijection k(w) = {Ĝ(w, ·)}. It is seen here that ϕ[A(x, λ)] = h(x)
and ϕ[G(x, λ)] = h[G(x, λ)] ∪ k[J(x, λ)] for all x ∈ X and λ ∈ I.

9 Filter spaces

A general method originating with Alexandrov has been employed in the con-
struction of various compactifications (see [7, 19, 26, 33, 50, 54]). A specific
collection O of open filters is assigned to a topological space X, which includes
all neighborhood filters and has the property that none of the filters is a sub-
family of any other filter. The existence of such a set of filters necessitates
that X be a T1–topological space. A filter space Y = (O, E) which is a T1–
topological space is then defined by specifying that E be comprised of the sets
of the form {F ∈ O : B ∈ F} where B varies over all nonempty open sub-
sets of X. All Hausdorff compactifications of non-compact, completely regular
Hausdorff topological spaces are obtainable by this method, and these com-
pactifications have been depicted as completions of certain uniformized spaces
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(see [3, 4, 5, 50]). Wallman’s T1–compactification of a T1–topological space
is also constructible by this method (see [33, 50]). As a matter of fact, every
space arising in this manner is a completion in the general sense and derivable
via the ACP.

Theorem 9.1. The filter space Y = (O, E) is a Moore completion of X.

Proof. As before, let M̃ = {M(ξ) : ξ ∈ Wγ} be an arrangement of least
cardinality of all nonempty open sets, one of which is repeated ℵ0 times, and
let J be the Moore index scheme for T = Wγ . Define S〈O〉 as the system

of cascades Ŝ(F , ·) with S(F , λ) =
⋂

(F ∩ {M(ξ) : ξ ∈ λ}) for all F ∈ O
and all λ ∈ I. [When X is infinite, one can simply take T to be the family
of all nonempty open sets and S(F , λ) =

⋂
(F ∩ λ).] A point w is a limit for

a cascade Ŝ(F , ·) precisely when it is a limit for the filter F . This system is
thus a determinant system for X with each point representable as a limit of the
cascade determined by its neighborhood filter and B is the family of nonempty
open sets.

For the completion X+ = (X+, ϕ(B)) of [X,S〈O〉] given by the ACP, the
set X+ consists of the singleton sets {Ŝ(F , ·)} for all F ∈ O. Let q : X+ → O
be the bijection q({Ŝ(F , ·)}) = F . Let i = q ◦ h and ψ = q ◦ ϕ. The space
Y = (O, ψ(B)) is a completion of [X,S〈O〉] with respect to 〈ψ, i〉 whose domains
are deduced to have the form ψ(B) = {F ∈ O :B ∈ F}.

We turn to the filter space completion for generalized uniform structures
discussed by Morita in [38]. A topological space X is said to be parauniformized
by a nonempty collection Φ of open covers if the following two conditions are
satisfied.

(α) The infimum of each pair of covers in Φ has a refinement in Φ,

(β) {St(x,U) : U ∈ Φ} is a neighborhood base for each point x.

It is called semiuniformized if the conditions (α), (β), and the following addi-
tional condition are satisfied.

(γ) Every cover in Φ has a local star refinement in Φ.

And X is said to be uniformized by Φ if the conditions (α), (β), and the
following additional condition are satisfied.

(δ) Every cover in Φ has a star refinement in Φ.
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We refer to the collection Φ accordingly as a parauniform, semiuniform, or
uniform structure for X. The topological spaces which can be parauniformized,
semiuniformized, or uniformized coincide respectively with the weakly regular,
regular, and completely regular spaces.

A filter F on X is called a weak star-filter if it has the following two prop-
erties.

(µ) Every cover in Φ contains a superset of some set in F ,

(ν) For each F ∈ F , there is a cover U ∈ Φ with
⋃

(F ∩ U) ⊂ F .

Completeness is defined in [38] by the requirement that every weak star-filter
converge. (Alternative characterizations of this definition of completeness and
related matters are found in [8, 9, 24, 48].)

If O consists of the weak star-filters on a T1–topological space X parau-
niformized by a collection Φ, then the space Y is parauniformized by the
collection ψ(Φ) = {ψ(U) : U ∈ Φ} and every weak star-filter with respect to
ψ(Φ) converges in Y. If X is semiuniformized (respectively, uniformized) by Φ,
then Y is semiuniformized (respectively, uniformized) by ψ(Φ).

10 Bolzano’s convergence condition

Of especial interest are completions with respect to whose generated frame-
works a generalized form of Bolzano’s convergence principle is valid. We for-
mulate that and related conditions for an arbitrary framework.

Let R̂ be a prescribed framework for a space X. A cascade M̂ of sets
M(λ) ∈ R(λ) for each λ ∈ I is called a regular cascade. We say that a cascade
Q̂ of sets is dominated by a cascade M̂ of sets if the inclusion Q(λ) ⊂ M(λ)
holds for all λ ∈ I. A diminishing cascade is one comprised of nonempty sets
which is dominated by a regular cascade. Generalizing the finite intersection
property, a family of sets has the intersection property if each subfamily with
cardinality less than ℵα has a nonempty intersection. A cascade of sets has
the intersection property if its terms constitute a family having the intersection
property. A regular cascade having the intersection property is designated a
principal cascade. A cascade x̂ of points is termed a fundamental cascade if
there is a regular cascade M̂ satisfying the condition that, for each λ ∈ I,
there exists µ ∈ I such that x(π) ∈ M(λ) for all indices π < µ. In the
case of the primary sequential framework for the real line this condition is
equivalent to Bolzano’s condition that, for all positive real numbers ε, there
exists a natural number n such that, for all natural numbers p > n, the
quantity |x(n)− x(p)| < ε (see [10, 46 p.171]). Fundamental cascades remain
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fundamental cascades under uniform functions for spaces with frameworks of
the same type.

By a filter on X, in the present context, we mean a nonempty family
of nonempty subsets of X which has the intersection property and includes
all supersets contained in X of each of its members. A Cauchy filter is a
filter on X containing a regular cascade of sets or, equivalently, containing
arbitrarily small sets. As usual, a filter converges to a point in the space, if
all neighborhoods of the point belong to the filter.

We consider the following statements.

(L1) Each regular cascade of pairwise intersecting sets converges.

(L2) Every principle cascade of sets converges.

(L3) All Cauchy filters converge.

(L4) Every fundamental cascade of points converges.

(L5) Each family of closed sets which has the intersection property and con-
tains arbitrarily small sets has a nonempty intersection.

A space with a framework R̂ satisfying condition (L2) is said to be prin-
cipally complete relative to R̂. In the vernacular of Section 5, a space is
principally complete relative to R̂ if it is complete with respect to the sys-
tem S〈R̂〉 of principal cascades for R̂. A completion Y of a pair [X,S] with
ϕ(S) a representation system is designated a principal completion when it is
principally complete with respect to R̂〈ϕ(S)〉.

Theorem 10.1. The implications (L1) ⇒ (L2) ⇒ (L3) ⇒ (L4) and (L2) ⇒
(L5) subsist. Whenever ℵα is a regular cardinal number, the implication
(L3)⇒ (L5) is valid.

We say that a representation system S satisfies Bolzano’s Convergence
Principle (abbreviated BCP) if condition (L4) is satisfied by the framework
R̂〈S〉.

Theorem 10.2. If a representation system satisfies BCP, then so do all
closed subspace systems.

It is seen that BCP is satisfied by the system ϕ(S) for many of the above
completions, including the tri-rational line, the Dedekind completion (which
is not a principal completion), the Cantorian completion (which is a principal
completion), and Niemytzki’s tangent disc space. This is not true of Alexan-
drov’s two circle space and the given compactification of Alexandrov’s line.
Equivalent characterizations of BCP are discussed in the following sections.
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11 Localization structures

A space X has a localization structure if there exists a framework R̂ for X
satisfying the condition

(X) If N is any neighborhood of a point x then there is a subset M of N
which is a neighborhood of x and an index κ with St(M,R(κ)) ⊂ N ,

or the equivalent separation condition

(Y) If F is a closed set not containing a given point x, then there ex-
ists a neighborhood M of x and an index µ such that St(M,R(µ)) ∩
St(F,R(µ)) = ∅.

To such a space is assigned the system S〈R̂〉. This class of spaces can be
alternatively delineated in terms of a hypothetical system.

Theorem 11.1. If S is a representation system for a space X satisfying the
condition

(Z) For each neighborhood N of a point x, there is a subset M of N which
is a neighborhood of x and an index κ such that each term in the κ–tail
of any cascade in S which intersects M is a subset of N ,

then the framework R̂〈S〉 satisfies condition (X). Inversely, if R̂0 is a frame-
work for a space X satisfying condition (X), then S〈R̂0〉 is a representation
system for X satisfying condition (Z) with R̂〈S〈R̂0〉〉 = R̂0.

A representation system S satisfying the condition (Z) is called a localiza-
tion system for X with R̂〈S〉 the associated localization structure.

The fact that localization structures exist for each semi-uniformized space
reveals that the spaces possessing a localization structure are precisely the
regular topological spaces. A space having a localization structure is a nor-
mal space whenever the indexing relation is an order relation. Subspace and
product systems formed from localization systems are localization systems.

Hewitt–Nachbin realcompactifications, Stone–Čech compactifications, and
zero-dimensional compactifications have been constructed via the following
general method: An infinite set T of continuous functions f from a given T1–
topological X to a space Uf is specified for which the evaluation mapping e
of the space X into the Tihonov product space Z determined by the collection
(Uf : f ∈ T) is a homeomorphism. The desired space is the closure Y∗ of the
subspace Y of Z determined by the set Y = e(X). Now, each of the particular
spaces Uf can be assigned an Ascoli complete sequential localization system
Sf which is a determinant system satisfying condition (H); see page 242. In



250 Completion from an Abstract Perspective

the first case, take each Sf to be the system defined in Example 8.2 for the
real line (in lieu of the rational line). In the second and third cases, take the
Sf to be the subspace systems of that system for the unit interval and the
set {0, 1}, respectively. It ensues successively that the Moore product system
SZ for the space Z, its subspace system SY , and the system S = e−1(SY )
are determinant systems for their respective spaces. The ACPproduces a
completion Y+ of [Y,S] with respect to mappings 〈ψ, g〉 and Y+ is a completion
of [X,S] with respect to the mappings 〈ψ ◦ e, g ◦ e〉. The recognition that the
spaces Y∗ obtained in these situations are completions in the general sense is
a consequence of the following fact.

Theorem 11.2. If Z is a Kolmogorov space with an Ascoli complete local-
ization system SZ satisfying condition (H) then the completion Y+ of each
subspace Y of Z (relative to the subspace system SY ) derived via the ACPis
homeomorphic to the subspace Y∗ of Z determined by the set Y ∗ = ClZ(Y ).

Concerning the statements in the preceding section, there is

Theorem 11.3. For a space having a localization structure with a well-directed
index scheme, the conditions (L2) through (L4) are equivalent.

Each uniform function on a subset of a space having an assigned framework
to a space having a localization structure is a continuous function. In regard
to extensions of continuous functions the classical Sierpiński–Zygmund and
Lavrentiev theorems have the following generalized forms.

Theorem 11.4. If X and Y are spaces having localization structures of identi-
cal type with Y a Hausdorff space satisfying BCP, then each function f : P →
Y continuous on a subset P of X can be extended to a function g : Q → Y
continuous on a G∆-set Q where P ⊂ Q ⊂ ClX(P ).

Theorem 11.5. If BCP is valid for Hausdorff spaces X and Y having local-
ization structures of identical type then each homeomorphism between subsets
P of X and R of Y can be extended to a homeomorphism between G∆–sets Q
and S with P ⊂ Q ⊂ ClX(P ) and R ⊂ S ⊂ ClY (R).

For generalizations of aspects of the descriptive theory of sets and functions
to spaces possessing a localization structure, consult [27, 28, 29, 30, 38].

12 Pseudometrized spaces

A space X is said to be pseudometrized (respectively, metrized) by a specific
pseudometric (respectively, metric) d on X if it is basically equivalent to the
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space whose domains are the d–open balls. The primary sequential framework
assigned to a pseudometrized space is that whose nth term consists of all open
balls with radius at most (2n)−1. This constitutes a localization structure
for X. We assemble some characterizations of principal completeness for this
framework.

Theorem 12.1. The following conditions are equivalent relative to the pri-
mary sequential framework for a pseudometrized space.

(M1) All principal sequences of open balls converge,

(M2) Every Cauchy filter converges,

(M3) Each fundamental sequence of points converges,

(M4) The intersection of any family of closed sets, which has the finite in-
tersection property and contains arbitrarily small sets, is nonempty,

(M5) Every regular sequence of pairwise intersecting open balls converges,

(M6) Each diminishing sequence of pairwise intersecting closed balls con-
verges to some point belonging to all of its terms,

(M7) The intersection of any descending, diminishing sequence of closed
balls is nonempty,

(M8) Every descending, diminishing sequence of open balls converges,

(M9) Each diminishing sequence of open balls with closure Cl[S(n+ 1)] ⊂
S(n) for all n ∈ N converges to some point belonging to all of its
terms,

(M10) Every totally bounded infinite set has at least one limit point.

For all i 6= 2 or 4, condition (Mi) is equivalent to the condition (Mi*): There
exists a dense set Q for which the condition (Mi) holds with the proviso that
the centers of the hypothetical balls (or points) belong to Q.
For a metrized space there are the additional equivalences

(M11) All totally bounded closed sets are compact,

(M12) Each contraction mapping from a nonempty closed set to itself has a
fixed point.
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See further ([25, 34, 42, 47, 50, 55].
To verify that Hausdorff’s completion of a metrized space X is a completion

in the present sense, we assign to X the system S of descending sequences of
open balls whose nth term has radius at most (2n)−1 and apply the ACPto
obtain the completion X+ = (X+,D+) of [X,S] with respect to 〈ϕ, h〉. The
function

d+(w+, x+) = sup{d(S(n), T (n)) : Ŝ ∈ w+, T̂ ∈ x+, and n ∈ N},

defined for all points w+, x+ ∈ X+, is a pseudometric on X+. However,
as seen from the tri-rational completion of the rational line, X+ need not be
basically equivalent to the space X∗ = (X+,D∗) with D∗ the family of d+–open
balls. Let ϕ∗ : B → D∗ associate with the open ball B(x, r) in B the open
ball B∗(h(x), r) in D∗. The space X∗ is a completion of [X,S] with respect
to 〈ϕ∗, h〉 that satisfies the condition (M8*) relative to the primary sequential
framework for X∗ with Q = h(X) and consequently satisfies the condition
(M5).

Denote by Y the quotient set obtained by identifying points w+, x+ ∈ X+

with d+(w+, x+) = 0, denote by q : X+ → Y the quotient mapping, and
denote by dY the quotient metric. Then the composition i = q ◦ h : X →
Y is an isometry. Denote by Y = (Y, E) the space whose domains are the
open balls determined by dY . Let χ : D∗ → E associate with each open
ball B∗(x+, r) in D∗ the open ball BY (q(x+), r) in E and set ψ = χ ◦ϕ∗. The
space Y is a completion of [X,S] with respect to 〈ψ, i〉 satisfying condition (M5)
with respect to the primary sequential framework for Y which is isometric to
Hausdorff’s completion. Summarizing, we have

Theorem 12.2. Each metrized space has a metrized completion satisfying
BCP in which it is isometrically embedded.

Deduced in consequence is

Theorem 12.3. A metrized space X is principally complete relative to its
primary sequential framework if and only if, for every isometric mapping of X
into a metrized space Y, the image of X is a closed set in Y.

The pseudometrizable spaces form a subclass of the class of gaugeable
spaces. Let X = (X,D) be a space, T an infinite set, and Ξ = (Xt : t ∈ T) a
collection of spaces Xt = (X,Dt) pseudometrized by (not necessarily different)
pseudometrics dt on X with respective open balls Bt(x, r). We say that X is
a gaugeable space relative to Ξ if it is basically equivalent to the space whose
domains are the generalized open balls B(x, r, λ) = ∩{Bt(x, r) : t ∈ λ} with
x ∈ X, r ∈ R+, and λ a nonempty finite subset of T. A space X with such
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a specified collection is called a gauged space. The primary Moore framework
for a gauged space R̂ is that where R(λ) consists of the generalized open balls
B(x, r, µ) for all x ∈ X, µ � λ, and r ≤ (2|λ|)−1. This framework is a
localization structure for X.

Theorem 12.4. For the primary Moore framework of a gaugeable space, the
conditions (L1) through (L5) are equivalent.

13 The Induction Principle

The symbol X below denotes a set containing at least two elements which is
ordered by a relation <. Elements smaller (respectively, larger) than a given
element are called its predecessors (respectively, successors).

Let Φ be a propositional function of elements of X and let E = {u ∈ X :
Φ(x) is true for all predecessors of u}. The Induction Principle is the state-
ment

(O1) If E is nonempty and every element in E has a successor in E, then
Φ(x) is true for all x ∈ X.

This may be rephrased in the alternate logical form

(O1′) If E is nonempty and Φ(x) is false for some element of X, then there
exists an element in E which has no successor in E.

Bolzano deduced the latter statement for the real line assuming the validity
of his convergence principle. In that setting the equivalent form (O1) is referred
to as Bolzano’s Induction Principle or the Real Induction Principle (see [10,
14, 31, 43, 46 p.174]).

We list several related statements. Dedekind’s Principle, the Supremum
Principle, and the Infimum Principle are, respectively,

(O2) If (U, V ) is a partition of X with U < V then either U has a final
element or V has an initial element.

(O3) Every nonempty subset of X having an upper bound in X has a
supremum in X.

(O4) Every nonempty subset of X having a lower bound in X has an
infimum in X.

Theorem 13.1. The conditions (O1) through (O4) are equivalent for the or-
dered set X.
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A subset of an ordered set satisfying any one of these conditions with
respect to its relativized ordering is called an inductive set.

An ideal of an ordered set is a nonempty subset which contains all prede-
cessors of each of its elements; it is a proper ideal if it is a proper subset of
that set. The principal ideals of an ordered set M are the sets of the form
{x ∈ M : x ≤ w} with w ∈ M . Let J (M) be the family of proper ideals
of an ordered set M , with the exclusion of all non-principal ideals having a
supremum in M . The family J (M) is an inductive set relative to ordering by
inclusion whose subfamily of principal ideals is order isomorphic to M . Ergo

Theorem 13.2. Each ordered set is order isomorphic to a subset of an in-
ductive set.

If M is a subset of an inductive set U then the set σU (M) = {sup(I) : I ∈
J (M)} of suprema relative to U is an inductive set containing M and there
results

Theorem 13.3. If X and Y are inductive sets, P ⊂ X, and R ⊂ Y then each
order isomorphism between P and R can be extended to an order isomorphism
between σX(P ) and σY (R).

Assume now that X = (X,D) is an ordered space; i.e., X is an ordered set
having at least two elements and X is basically equivalent to a space whose
domains are the nonempty intervals (a, b), as well as the intervals [θ, b) when
X has an initial element θ, and (a, ω] when X has a final element ω. The
intervals [a, b] with a < b are termed segments. The Covering Principle is

(O5) Each family of domains covering a segment of X has a finite sub-
covering.

Theorem 13.4. The conditions (O1) through (O5) are equivalent for the space
X.

The Connectedness Principle and Intermediate Value Principle are, respec-
tively, as follows.

(O6) Given two nonempty families of domains, the sets in each family
being disjoint from those in the other family, the union of all the
domains is not an interval.

(O7) For each continuous function f : X → X, if a, b, y ∈ X and f(a) <
y < f(b), then there is a point c ∈ X between a and b such that
f(c) = y.
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Theorem 13.5. When X is ordinally dense, conditions (O1) through (O7)
are equivalent for the space X.

A family of sets is a monotone family if, for each pair of its sets, one is
a subset of the other. The Monotone Intersection Principle and Descending
Interval Principle are

(O8) The intersection of each monotone family of segments is nonempty.

(O9) Every descending sequence of segments has a nonempty intersection.

A point of X is designated a limit point for a subset S ⊂ X if every domain
containing that point contains infinitely many points of S. The Limit Point
Principle is

(O10) For each bounded infinite set, there is at least one limit point.

The Subsequential Convergence Principle and Monotone Convergence Princi-
ple are

(O11) Every bounded sequence of points has a convergent subsequence.

(O12) Each bounded monotone sequence of points converges.

Theorem 13.6. If X has a denumerable subset ordinally dense in X then
conditions (O1) through (O12) are equivalent for the space X.

It is noted that the concept of a limit point was apparently introduced
by Weierstrass who proved that every bounded infinite set of points in a Eu-
clidean space has at least one limit point (see [16 pp. 58, 77]). The designation
Bolzano–Weierstrass Theorem recognizes that the linear case of Weierstrass’
theorem is a consequence of Bolzano’s Induction Principle.

14 Completeness of ordered spaces

Assume that X = (X,D) is an ordered space having neither initial nor final
elements and containing a set E of regular cardinality ℵα having the property
that between any two different elements of X there are ℵα elements of E.
Denote by e∗ = (e(ξ) : ξ ∈Wα) a fixed enumeration of E.

The primary Moore framework, R̂ for X (relative to e∗) is defined by as-
signing the Moore index scheme for T = Wα and taking R(λ) to be the family
of domains with endpoints in E which contain at most one of the elements
e(ξ) with ξ ∈ λ and has none of these elements as an endpoint, for each index
λ. This framework constitutes a localization structure for X.
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Theorem 14.1. For the primary Moore framework, conditions (L1) through
(L5), (O1) through (O7), and the following are equivalent:

(O13) Every descending cascade of segments has a nonempty intersection.

(O14) For any set Q ordinally dense in X, each descending cascade of
segments whose endpoints belong to Q has a nonempty intersection.

(O15) Every descending regular cascade has a nonempty intersection.

(O16) Each descending regular cascade converges.

The space X is called a Dedekind continuum of order α if any one of these
conditions is satisfied.

If X0 = (X0,D0) is the particular space with X0 = E, the family D0 is
comprised of the intervals (a, b), and S0 is the system of descending cascades
regular with respect to the primary framework for X0 then application of the
ACPyields

Theorem 14.2. The space X0 can be order isomorphically embedded in a
Dedekind continuum of order α which is a principal completion of [X0,S0].

Assume now that X and Y are ordered spaces as specified above with as-
signed primary Moore frameworks of identical type. Then Theorem 13.3 yields
the following counterpart of Lavrentiev’s Theorem which is fundamental in the
divination of certain analogies (see [35, 36, 37]).

Theorem 14.3. If BCP is valid for the spaces X and Y then each order
isomorphism between subsets P of X and Q of R can be extended to an order
isomorphism between G∆–sets Q and S where P ⊂ Q ⊂ ClX(P ) and R ⊂ S ⊂
ClY (R).

Unification Query: Is there a general extension theorem having both The-
orem 11.5 and Theorem 14.3 as special cases for the real line?

Suppose now that the set E of regular cardinality ℵα is an ηα-set (cf. [21]).
The primary ωα-sequential framework R̂ for X (relative to e∗) is comprised of
the families R(λ) of nonempty intervals (a, b) having endpoints in E which
contain at most one of the elements e(ξ) with ξ ≤ λ and has none of these
elements as an endpoint. This framework is a localization structure for X.

Theorem 14.4. For the primary ωα-sequential framework, the conditions
(L1) through (L5) and (O13) through (O16) are equivalent.
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The space X is termed a homogeneous continuum of order α whenever any
one of these conditions is satisfied.

If X = (X,D) is the particular space with X = E, the family D consists
of the nonempty intervals (a, b) with endpoints in E , and S is the system
of descending ωα-sequences regular with respect to the primary ωα-sequential
framework for X, then we derive from the ACP

Theorem 14.5. The space X can be order isomorphically embedded in a ho-
mogeneous continuum of order α which is a principal completion of [X,S] and
is an ηα-set.

Finally, we have

Theorem 14.6. In the case that α = 0, the space X is principally complete
relative to the primary ω0-sequential framework if and only if it is principally
complete relative to the primary Moore framework.

For further results see [15, 40].
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[49] E. Szpilrajn, Sur une hypothèse de M. Borel, Fund. Math., 15 (1930),
126–127.

[50] W. J. Thron, Topological Structures, Holt, Rinehart, and Winston, New
York, 1966.



J. C. Morgan II 261
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