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INEQUALITIES FOR MEAN VALUES IN
TWO VARIABLES

Abstract

We present various inequalities for means in two variables. One of
our results states that the inequalities

0 ≤ 1

Mr
− 1

Ms
≤ 1

G
− 1

A
(r, s ≥ 0)

hold for all x, y > 0 if and only if 0 ≤ s − r ≤ 1. Here, A =
A(x, y) = (x + y)/2, G = G(x, y) =

√
xy and Mt = Mt(x, y) = [(xt +

yt)/2]1/t denote the arithmetic, geometric and power mean of x and y,
respectively.

1 Introduction

In view of their importance in various parts of mathematics, like, for instance,
probability theory, statistics, and the theory of special functions, means and
mean value families have attracted the attention of researchers since many
years. In this paper we are concerned with certain mean values in two vari-
ables. Numerous articles and monographs were published providing remark-
able properties of means of two variables. We refer to [10], [19], [20], [21],
[23], [26], [27], [28], [30], and the references therein. In particular, we can find
many interesting inequalities for these mean values; see [1], [3], [9], [11], [12],
[13], [14], [15], [16], [29], [32], [34], [35], [37], [39], [40], [41], [42], [43], [45],
[46], [47], [48], [49], [50], [53]. It is the aim of this paper to continue the study
of this subject and to present several new inequalities involving the classical
arithmetic, geometric and power means as well as the Heinz mean and its
complementary.
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Throughout, we maintain the notations given in this section. The arith-
metic and geometric means,

A = A(x, y) =
x+ y

2
and G = G(x, y) =

√
xy,

were already known in the time of Pythagoras around 500 BC. Both are mem-
bers of the one-parameter family of power means

Mt = Mt(x, y) =
(xt + yt

2

)1/t
(t ∈ R \ {0}),

M0 = M0(x, y) = lim
t→0

Mt(x, y) =
√
xy.

The function t 7→Mt(x, y) with x 6= y is strictly increasing on R with

lim
t→−∞

Mt(x, y) = min{x, y} and lim
t→∞

Mt(x, y) = max{x, y}.

These and other properties of Mt(x, y) can be found, for instance, in [11,
chapter III] and [21, chapter II].

The Heinz mean of x and y of order t (introduced by Bhatia [6] in 2006)
is defined by

Ht(x, y) =
xty1−t + x1−tyt

2
(0 ≤ t ≤ 1).

We have

H0(x, y) =
x+ y

2
, H1/2(x, y) =

√
xy, Ht(x, y) = H1−t(x, y).

Since Ht(x, y) is decreasing on [0, 1/2] with respect to t, we obtain a refinement
of the classical arithmetric mean - geometric mean inequality:

G(x, y) ≤ Ht(x, y) ≤ A(x, y).

A corresponding result for positive definite matrices was proved by Heinz [22]
in 1951.

The following elegant upper and lower bounds for Ht(x, y) and Ht(x, y)2

were published in 2010 and 2011 by Kittaneh and Manasrah [24], [25].
If x, y > 0 and t ∈ [0, 1], then

A(x, y) + r0 (
√
x−√y)2 ≤ Ht(x, y) ≤ A(x, y) +R0 (

√
x−√y)2 (1.1)

where
r0 = −max{t, 1− t} and R0 = −min{t, 1− t}
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and

A(x, y)2 + r1 (x− y)2 ≤ Ht(x, y)2 ≤ A(x, y)2 +R1 (x− y)2 (1.2)

where

r1 = −1

2
max{t, 1− t} and R1 = −1

2
min{t, 1− t}.

Interesting matrix versions of (1.1), (1.2) and numerous related inequalities
for positive real numbers can be found in [5], [6], [7], [17], [18], [24], [25].

The weighted arithmetic and geometric means of x and y are given by

At(x, y) = tx+ (1− t)y and Gt(x, y) = xty1−t (0 ≤ t ≤ 1).

We have the representation

Ht(x, y) = A
(
Gt(x, y), G1−t(x, y)

)
. (1.3)

If we exchange in (1.3) A and G, then we obtain the complementary Heinz
mean of x and y of order t:

H∗t (x, y) = G
(
At(x, y), A1−t(x, y)

)
=
√(

tx+ (1− t)y
) (

(1− t)x+ ty
)
.

The function t 7→ H∗t (x, y) is increasing on [0, 1/2] and satisfies H∗t (x, y) =
H∗1−t(x, y). This yields

G(x, y) = H∗0 (x, y) ≤ H∗t (x, y) ≤ H∗1/2(x, y) = A(x, y). (1.4)

It is the aim of this paper to present various new inequalities for the means
G, A, Mt, Ht, and H∗t . In particular, we obtain several improvements of the
arithmetic mean - geometric mean inequality and refinements of (1.1), (1.2)
and (1.4). Moreover, we study monotonicity properties of Ht and 1/H∗t .

2 Inequalities for means

First, we offer a chain of four inequalities which provides improvements of the
arithmetic mean - geometric mean inequality.

Theorem 2.1. Let λ and µ be real numbers. The inequalities

G <
(x+G)(y +G)

4G
< λ

(
G+A

)
+ µ

G2 +A2

G+A
<

(x+A)(y +A)

4A
< A (2.1)

are valid for all x, y > 0 with x 6= y if and only if

2λ+ µ = 1 and
1

2
< λ+ µ ≤ 3

4
. (2.2)



104 H. Alzer

Proof. Let x, y > 0 and x 6= y. Then,

(x+G)(y +G)

4G
−G =

A−G
2

> 0 and

A− (x+A)(y +A)

4A
=
A2 −G2

4A
> 0.

This settles the first and the last inequality in (2.1). We define

F (t) = t(G+A) + (1− 2t)
G2 +A2

G+A
.

Since

F ′(t) = − (G−A)2

G+A
< 0,

we obtain
F (1/2) < F (t) ≤ F (1/4), if 1/4 ≤ t < 1/2.

We have

F (1/2) =
(x+G)(y +G)

4G
and

F (1/4)− (x+A)(y +A)

4A
= −G(G−A)2

4A(G+A)
< 0.

Thus, if (2.2) holds, then the second and the third inequality in (2.1) are valid.
Next, we assume that (2.1) holds for all x, y > 0 with x 6= y. We fix x and
let y tend to x. Then, (2.1) leads to 2λx+ µx = x. Therefore, 2λ+ µ = 1. If
λ+ µ = 1/2, then λ = 1/2 and µ = 0. Hence,

(x+G)(y +G)

4G
= λ (G+A) + µ

G2 +A2

G+A
.

A contradiction. It follows that λ+ µ 6= 1/2. We let y tend to 0. Then, (2.1)
gives

x

4
≤ λ x

2
+ µ

x

2
≤ 3x

8
.

Thus,
1

2
< λ+ µ ≤ 3

4
.

This completes the proof.

The next theorems provide refinements of G ≤ A by using power means.
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Theorem 2.2. Let r, s be real numbers. The inequalities

G ≤ Mr +Ms

2
≤ A (2.3)

hold for all x, y > 0 if and only if 0 ≤ r + s ≤ 2.

Proof. We assume that that (2.3) is valid for all x, y > 0. Let

Ur,s(x) = Mr(x, 1) +Ms(x, 1)− 2G(x, 1)

and
Vr,s(x) = 2A(x, 1)−Mr(x, 1)−Ms(x, 1).

Then, for x > 0,

Ur,s(x) ≥ 0 = Ur,s(1) and Vr,s(x) ≥ 0 = Vr,s(1).

Since U ′r,s(1) = V ′r,s(1) = 0, we obtain

U ′′r,s(1) =
r + s

4
≥ 0 and V ′′r,s(1) =

2− (r + s)

4
≥ 0.

Hence, 0 ≤ r + s ≤ 2.
Next, we suppose that 0 ≤ r + s ≤ 2. Using the identity

Mr(x, y)M−r(x, y) = G(x, y)2

and the fact that r 7→Mr(x, y) is increasing on R, we get

Mr(x, y) +Ms(x, y) ≥Mr(x, y) +M−r(x, y)

= 2G(x, y) +

(
Mr(x, y)−G(x, y)

)2
Mr(x, y)

≥ 2G(x, y).

This settles the left-hand side of (2.3). We set r = 1 + t. Then, s ≤ 1− t and

Mr(x, y) +Ms(x, y) ≤M1+t(x, y) +M1−t(x, y).

Thus, it remains to show that

M1+t(x, y) +M1−t(x, y) ≤ 2A(x, y)

is valid for x, y, t > 0. Since

Mr(x, y) = yMr(x/y, 1),
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we may assume that y = 1 and x ≥ 1. Let

Pt(x) = 2A(x, 1)−M1−t(x, 1)−M1+t(x, 1).

We have

Pt(1) = P ′1(1) = 0 (2.4)

and

x1+t

t
(x1+t + 1)2(x1−t + 1)2P ′′t (x)

= (x1+t + 1)2M1−t(x, 1)− x2t(x1−t + 1)2M1+t(x, 1). (2.5)

Let

Qt(x) = log
[
(x1+t + 1)2M1−t(x, 1)

]
− log

[
x2t(x1−t + 1)2M1+t(x, 1)

]
.

Since Qt(1) = 0 and

x(x1+t + 1)(x1−t + 1)Q′t(x) = x1−t(x2t − 1) + 2t(x2 − 1) ≥ 0,

we get Qt(x) ≥ 0 for x ≥ 1 and t > 0. From (2.5) we conclude that P ′′t (x) ≥ 0,
so that (2.4) implies that Pt is non-negative on [1,∞). This proves the right-
hand inequality of (2.3).

The following companion of (2.1) holds.

Corollary 2.3. For all x, y > 0 with x 6= y and all real numbers t we have

G ≤ G2 +M2
t

4Mt
+
G

2
<
G+A

2
≤ G2 +M2

t

4Mt
+
A

2
< A.

The sign of equality holds if and only if t = 0.

Proof. The first and the third inequality are equivalent to (Mt − G)2 ≥ 0.
Using (2.3) with r = t and s = −t we obtain

A

2
− G2 +M2

t

4Mt
=

1

2

(
A− Mt +M−t

2

)
≥ 0.

Since x 6= y, strict inequality holds. This settles the second and the fourth
inequality.
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Theorem 2.4. Let r, s be real numbers. The inequalities

G ≤
√
MrMs ≤ A (2.6)

hold for all x, y > 0 if and only if 0 ≤ r + s ≤ 2.

Proof. We assume that (2.6) is valid for all x, y > 0. Then we have for x > 0:

Yr,s(x) = Mr(x, 1)Ms(x, 1)−G(x, 1)2 ≥ 0 = Yr,s(1)

and
Zr,s(x) = A(x, 1)2 −Mr(x, 1)Ms(x, 1) ≥ 0 = Zr,s(1).

Since

Y ′r,s(1) = 0, Y ′′r,s(1) =
r + s

4
≥ 0

and

Z ′r,s(1) = 0, Z ′′r,s(1) =
2− (r + s)

4
≥ 0,

we obtain 0 ≤ r + s ≤ 2.
Conversely, if 0 ≤ r + s ≤ 2, then

G(x, y) =
√
Mr(x, y)M−r(x, y) ≤

√
Mr(x, y)Ms(x, y)

≤ Mr(x, y) +Ms(x, y)

2
≤ A(x, y),

where the right-hand inequality follows from Theorem 2.2.

Remark 2.5. The referee pointed out that (2.6) can be refined. For all
x, y > 0 and r, s ≥ 0 with r + s ≤ 2 we have

G ≤
√
MrMs ≤M(r+s)/2 ≤ A.

These inequalities follow from the monotonicity of t 7→Mt(x, y) and the con-
cavity of t 7→ logMt(x, y) on [0,∞). See [4], [11, pp. 168-169], [33], [44].

In order to prove the next theorem we need a functional inequality for
convex functions which was published by Petrović [36] in 1932; see also [31,
pp. 22-23].

Lemma 2.6. If the function f is convex on [0,∞), then we have for x, y ≥ 0:

f(x) + f(y) ≤ f(x+ y) + f(0).



108 H. Alzer

Theorem 2.7. Let r, s be nonnegative real numbers. The inequalities

0 ≤ 1

Mr
− 1

Ms
≤ 1

G
− 1

A
(2.7)

hold for all x, y > 0 if and only if 0 ≤ s− r ≤ 1.

Proof. Since t 7→ 1/Mt(x, y) (x 6= y) is strictly decreasing on R, we conclude
from the left-hand side of (2.7) that r ≤ s. Let

Br,s(x) =
1

G(x, 1)
− 1

A(x, 1)
− 1

Mr(x, 1)
+

1

Ms(x, 1)
.

We assume that the right-hand of (2.7) is valid for all x, y > 0. Then, for
x > 0,

Br,s(x) ≥ 0 = Br,s(1).

Since B′r,s(1) = 0, we obtain

B′′r,s(1) =
r − s+ 1

4
≥ 0.

Thus, s ≤ r + 1.
Next, let r ≤ s ≤ r + 1. Then, the first inequality in (2.7) holds for all

x, y > 0. Moreover, we get

1

Mr(x, y)
− 1

Ms(x, y)
≤ 1

Mr(x, y)
− 1

Mr+1(x, y)
.

Therefore, to prove the second inequality in (2.7) it suffices to show that if
x ≥ y > 0 and r > 0, then

1

Mr(x, y)
− 1

Mr+1(x, y)
≤ 1

G(x, y)
− 1

A(x, y)
. (2.8)

Let t > 0. We define

Cr(t) =
1

G(et, e−t)
− 1

A(et, e−t)
− 1

Mr(et, e−t)
+

1

Mr+1(et, e−t)

and
Dt(r) =

(
cosh(tr)

)−1/r
(r 6= 0), Dt(0) = lim

r→0
Dt(r) = 1.

Then,
Cr(t) = Dt(0)−Dt(1)−Dt(r) +Dt(r + 1). (2.9)
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We obtain for r > 0:

r3
d2

dr2
logDt(r) = E(rt), (2.10)

where

E(x) = 2x tanh(x)−
( x

cosh(x)

)2
− 2 log(cosh(x)).

Since

E(0) = 0 and E′(x) = 2
( x

cosh(x)

)2
tanh(x) ≥ 0 for x ≥ 0,

we conclude that E is non-negative on [0,∞). From (2.10) we obtain that
Dt(r) is log-convex on [0,∞) with respect to r. It follows that Dt is convex
on [0,∞). Applying Lemma 2.6 yields

Dt(r) +Dt(1) ≤ Dt(r + 1) +Dt(0). (2.11)

From (2.9) and (2.11) we conclude that Cr(t) ≥ 0. We set t = (1/2) log(x/y).
Then,

0 ≤ 1
√
xy
Cr

(1

2
log

x

y

)
=

1

G(x, y)
− 1

A(x, y)
− 1

Mr(x, y)
+

1

Mr+1(x, y)
.

This settles (2.8).

The next lemma plays an important role in the proof of following two
theorems; see [21, p. 106].

Lemma 2.8. Let f and g be functions which are continuous on [0, 1] and
differentiable on (0, 1). Moreover, let f(1) = g(1) = 0 and g′ 6= 0 on (0, 1). If
f ′/g′ is increasing on (0, 1), then f/g is also increasing on (0, 1).

We are now in a position to show that in (1.1) the given factors r0 and R0

can be replaced by better constants.

Theorem 2.9. Let t ∈ (0, 1). For all x, y > 0 we have

A(x, y) + δt (
√
x−√y)2 ≤ Ht(x, y) ≤ A(x, y) + ∆t (

√
x−√y)2 (2.12)

with the best possible factors

δt = −1

2
and ∆t = −2t(1− t). (2.13)
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Proof. It suffices to prove (2.12) for x ∈ (0, 1) and y = 1. We define

R(x) = Ht(x
2, 1)−A(x2, 1) and S(x) = (x− 1)2.

Then,

R(1) = R′(1) = 0, S(1) = S′(1) = 0 and S′ 6= 0 6= S′′ on (0, 1).

Let

T (x) =
R′′(x)

S′′(x)
=

1

2

(
t(2t− 1)x2t−2 + (1− t)(1− 2t)x−2t − 1

)
.

We have
T ′(x) = t(1− t)(2t− 1)x−2t−1

(
1− x2(2t−1)

)
≥ 0.

Applying Lemma 2.8 reveals that R′/S′ is increasing on (0, 1). Applying
Lemma 2.8 again gives that R/S is also increasing on (0, 1). It follows that

Wt(x) =
Ht(x, 1)−A(x, 1)

(
√
x− 1)2

is increasing on (0, 1). Since

lim
x→0

Wt(x) = −1

2
and lim

x→1
Wt(x) = −2t(1− t),

we conclude that (2.12) holds and that the factors given in (2.13) are sharp.

The following improvement of double-inequality (1.2) is valid.

Theorem 2.10. Let t ∈ (0, 1). For all x, y > 0 we have

A(x, y)2 + θt (x− y)2 ≤ Ht(x, y)2 ≤ A(x, y)2 + Θt (x− y)2 (2.14)

with the best possible factors

θt = −1

4
and Θt = −t(1− t). (2.15)

Proof. In order to prove (2.14) for x ∈ (0, 1) and y = 1 we apply Lemma
2.8. Let

I(x) = Ht(x, 1)2 −A(x, 1)2 and J(x) = (x− 1)2.

Then,

I(1) = I ′(1) = 0, J(1) = J ′(1) = 0, J ′ 6= 0 6= J ′′ on (0, 1)
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and

−4
I ′′(x)

J ′′(x)
= t(1− 2t)x2t−2 − (1− t)(1− 2t)x−2t + 1 = K(x), say.

Since
K ′(x) = 2t(1− t)(1− 2t)x−2t−1

(
1− x2(2t−1)

)
≤ 0,

we conclude that I ′′/J ′′ is increasing on (0, 1). This implies that I ′/J ′ and
I/J are also increasing on (0, 1). We have

lim
x→0

I(x)

J(x)
= −1

4
and lim

x→1

I(x)

J(x)
= −t(1− t).

This proves (2.14) and reveals that the factors in (2.15) are best possible.

The logarithmic mean

L = L(x, y) =
x− y

log x− log y
(x, y > 0; x 6= y)

has interesting applications in physics, chemistry and economics. A known
result states that L separates the geometric and arithmetic means,

G < L < A; (2.16)

see [31, pp. 272-274]. For more information on this mean value we refer to
[38]. The logarithmic mean plays a role in the proof of the next theorem
which offers sharp upper and lower bounds for the ratio of two mean value
differences.

Theorem 2.11. Let t and λ be real numbers with t ∈ (0, 1), t 6= 1/2 and
λ ≥ 1. For all positive real numbers x, y with x 6= y we have

4t(1− t) < A(x, y)λ −Ht(x, y)λ

A(x, y)λ −G(x, y)λ
< 1. (2.17)

Both bounds are sharp.

Proof. From

G(x, y) < Ht(x, y) < A(x, y) (x 6= y; 0 < t < 1, t 6= 1/2)

we conclude that the second inequality in (2.17) is valid. Next, we show that
if t ∈ (0, 1), t 6= 1/2, λ ≥ 1 and 0 < x 6= 1, then the function

Φ(t) = Φ(t;λ, x) = A(x, 1)λ −Ht(x, 1)λ − 4t(1− t)
(
A(x, 1)λ −G(x, 1)λ

)
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is positive. In view of Φ(t) = Φ(1 − t), we may assume that t ∈ (0, 1/2).
Differentiation yields

Φ′(t) = −λ(log x)
xt − x1−t

xt + x1−t
Ht(x, 1)λ + 4(2t− 1)

(
A(x, 1)λ −G(x, 1)λ

)
.

Applying

q − 1 ≤ qλ − 1

λ
(0 < q < 1)

with q = G(x, 1)/A(x, 1) yields

1

4λA(x, 1)λ
Φ′(0) = (log x)

x− 1

4(x+ 1)
+

(
G(x, 1)/A(x, 1)

)λ − 1

λ

≥ (log x)
x− 1

4x(x+ 1)
+
G(x, 1)

A(x, 1)
− 1 =

(log x)(
√
x− 1)

2(x+ 1)

(
A(
√
x, 1)− L(

√
x, 1)

)
,

where L denotes the logarithmic mean. Using the right-hand side of (2.16) we
get Φ′(0) > 0. Since Φ(0) = 0, we conclude that Φ attains positive values in
the neighbourhood of 0.
We assume (for a contradiction) that Φ′ has two zeros on (0, 1/2). Since
Φ′(1/2) = 0, it follows that Φ′ has three zeros on (0, 1/2]. Then, Φ′′ has two
zeros on (0, 1/2) and Φ′′′ has at least one zero on (0, 1/2). We obtain

Φ′′′(t) = −λ(log x)3
xt − x1−t

(xt + x1−t)3
Ht(x, 1)λ χ(t;λ, x)

with
χ(t;λ, x) = λ2(xt − x1−t)2 + 4(3λ− 2)x > 0.

Using (log x)(xt − x1−t) < 0 gives Φ′′′(t) > 0 for t ∈ (0, 1/2). This contra-
diction reveals that Φ′ has at most one zero on (0, 1/2). We have Φ(0) =
Φ(1/2) = 0. This implies that Φ′ has precisely one zero on (0, 1/2) and that Φ
has no zero on (0, 1/2). Since Φ attains positive values in the neighbourhood
of 0, we conclude that Φ is positive on (0, 1/2). Thus,

0 <
yλ Φ(t;λ, x/y)

A(x, y)λ −G(x, y)λ
=
A(x, y)λ −Ht(x, y)λ

A(x, y)λ −G(x, y)λ
− 4t(1− t).

This settles the left-hand side of (2.17).
The limit relations

lim
x→1

A(x, 1)λ −Ht(x, 1)λ

A(x, 1)λ −G(x, 1)λ
= 4t(1− t) and lim

x→0

A(x, 1)λ −Ht(x, 1)λ

A(x, 1)λ −G(x, 1)λ
= 1

reveal that the lower and upper bounds given in (2.17) are sharp.
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The next theorem is a counterpart of Theorem 2.9. It offers upper and
lower bounds for H∗t (x, y).

Theorem 2.12. Let t ∈ (0, 1). For all x, y > 0 we have

G(x, y) + κt (
√
x−√y)2 ≤ H∗t (x, y) ≤ G(x, y) +Kt (

√
x−√y)2 (2.18)

with the best possible factors

κt = 2t(1− t) and Kt =
√
t(1− t). (2.19)

Proof. It suffices to prove (2.18) for x ∈ (0, 1) and y = 1. Let

Ψ(t, x) = H∗t (x, 1)2 −
[√
x+ 2t(1− t)(

√
x− 1)2

]2
and

Ω(t, x) =
[√
x+

√
t(1− t)(

√
x− 1)2

]2 −H∗t (x, 1)2.

We have to show that

Ψ(t, x) ≥ 0 and Ω(t, x) ≥ 0. (2.20)

Since Ψ(t, x) = Ψ(1 − t, x) and Ω(t, x) = Ω(1 − t, x), we may assume that
0 < t ≤ 1/2. Partial differentiation gives

∂

∂t
Ψ(t, x) = 8(t− t1)(t− t2)(1− 2t)(

√
x− 1)4,

where

t1 =
2−
√

2

4
= 0.14... and t2 =

2 +
√

2

4
= 0.85....

It follows that
∂

∂t
Ψ(t, x) ≥ 0, if 0 < t ≤ t1

and
∂

∂t
Ψ(t, x) ≤ 0, if t1 ≤ t ≤ 1/2.

This implies that

Ψ(t, x) ≥ min{Ψ(0, x),Ψ(1/2, x)} = 0.

We have

∂

∂t
Ω(t, x) = 16

(t− t3)(t− t4)(1− 2t)(
4
√
t(1− t) + 1

)√
t(1− t)

√
x(
√
x− 1)2,
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where

t3 =
2−
√

3

4
= 0.06... and t4 =

2 +
√

3

4
= 0.93....

This gives
∂

∂t
Ω(t, x) ≥ 0, if 0 < t ≤ t3

and
∂

∂t
Ω(t, x) ≤ 0, if t3 ≤ t ≤ 1/2.

It follows that
Ω(t, x) ≥ min{Ω(0, x),Ω(1/2, x)} = 0.

Thus, (2.20) is proved.
If (2.18) is valid for all x, y > 0, then we get for x 6= 1:

κt ≤
H∗t (x, 1)−

√
x

(
√
x− 1)2

≤ Kt.

Since

lim
x→0

H∗t (x, 1)−
√
x

(
√
x− 1)2

=
√
t(1− t) and lim

x→1

H∗t (x, 1)−
√
x

(
√
x− 1)2

= 2t(1− t),

we conclude that the factors given in (2.19) are sharp.

In order to prove the following theorems we need convexity and concavity
properties of Ht(x, y) and H∗t (x, y).

Lemma 2.13. Let x, y > 0 with x 6= y. Then, t 7→ Ht(x, y) is strictly log-
convex on [0, 1] and t 7→ H∗t (x, y) is strictly concave on [0, 1].

Proof. We have

∂2

∂t2
logHt(x, y) =

xy(log x− log y)2

Ht(x, y)2
> 0

and
∂2

∂t2
H∗t (x, y) =

−(x2 − y2)2

4H∗t (x, y)3
< 0.

Next, we present refinements of the inequalities G2/A ≤ A and G ≤ 2A−G
by using the Heinz mean and its complementary mean.
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Theorem 2.14. Let x, y > 0 with x 6= y and s, t ≥ 0 with s+ t ≤ 1. Then,

G(x, y)2

A(x, y)
≤ Hs(x, y)Ht(x, y)

Hs+t(x, y)
≤ A(x, y). (2.21)

Equality holds on the left-hand side if and only if s = t = 1/2 and on the
right-hand side if and only if s = 0 or t = 0.

Proof. Let s ∈ [0, 1] be a fixed number. If s = 0, then the left-hand side of
(2.21) holds with “<”, whereas equality is valid on the right-hand side. Next,
let 0 < s ≤ 1. We assume that s ≤ t. Then, 0 < s ≤ t ≤ 1− s < 1. Let

σ(t) = σ(t;x, y) = logHt(x, y)

and

η(t) = η(t;x, y) = σ(s) + σ(t)− σ(s+ t).

Applying Lemma 2.13 yields

η′(t) = σ′(t)− σ′(s+ t) < 0.

This leads to

η(t) ≤ η(s) (2.22)

and

η(1− s) ≤ η(t), (2.23)

where the sign of equality is valid in (2.23) if and only if t = 1 − s. We have
0 < s ≤ 1/2. Since σ is strictly convex on [0, 1], we have

σ(s) <
σ(0) + σ(2s)

2
.

Thus,

η(s) = 2σ(s)− σ(2s) < σ(0). (2.24)

From (2.22) and (2.24) we obtain the right-hand side of (2.21) with “<”. Since
σ is strictly decreasing on [0, 1/2], we find

η(1− s) = σ(s) + σ(1− s)− σ(1) = 2σ(s)− σ(1) ≥ 2σ(1/2)− σ(1) (2.25)

with equality if and only if s = 1/2. Combining (2.23) and (2.25) gives the
left-hand side of (2.21), where the sign of equality holds if and only if t =
1− s = 1/2.
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Theorem 2.15. Let x, y > 0 with x 6= y and s, t ≥ 0 with s+ t ≤ 1. Then,

G(x, y) ≤ H∗s (x, y) +H∗t (x, y)−H∗s+t(x, y) ≤ 2A(x, y)−G(x, y). (2.26)

Equality holds on the left-hand side if and only if s = 0 or t = 0 and on the
right-hand side if and only if s = t = 1/2.

Proof. The proof is similar to that of Theorem 2.14. Therefore, we only offer
a proof sketch. Let 0 ≤ s ≤ t ≤ 1− s ≤ 1 and

ζ(s, t) = ζ(s, t;x, y) = H∗s (x, y) +H∗t (x, y)−H∗s+t(x, y).

Since t 7→ ζ(s, t) is strictly increasing on [s, 1− s] we obtain

ζ(s, s) ≤ ζ(s, t) ≤ ζ(s, 1− s). (2.27)

We have

ζ(0, 0) ≤ ζ(s, s) and ζ(s, 1− s) ≤ ζ(1/2, 1/2). (2.28)

From (2.27) and (2.28) we conclude that (2.26) is valid.

The following lemma is due to Wright [52].

Lemma 2.16. Let I ⊂ R be an interval. If f : I → R is positive, monotone
or convex, then, for x, y, z ∈ I,

0 < (x− y)(x− z)f(x) + (y − x)(y − z)f(y) + (z − x)(z − y)f(z), (2.29)

unless x = y = z.

This lemma extends a result of Schur, who proved (2.29) for the special case
f(x) = xµ (µ ≥ 0). We conclude this section with two Schur-type inequalities
involving Ht(x, y) and H∗t (x, y).

Theorem 2.17. Let x and y be positive real numbers.
(i) If xy > 1, then, for r, s, t ∈ [0, 1],

1 ≤ Hr(x, y)(r−s)(r−t)Hs(x, y)(s−r)(s−t)Ht(x, y)(t−r)(t−s). (2.30)

(ii) If x+ y < 2, then, for r, s, t,∈ [0, 1],

H∗r (x, y)(r−s)(r−t)H∗s (x, y)(s−r)(s−t)H∗t (x, y)(t−r)(t−s) ≤ 1. (2.31)

The sign of equality holds in (2.30) and (2.31) if and only if r = s = t.
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Proof. If xy > 1, then

logHt(x, y) ≥ logH1/2(x, y) =
1

2
log(xy) > 0. (2.32)

Using Lemma 2.13 and (2.32) we obtain that t 7→ logHt(x, y) is positive and
convex on [0, 1].

Since t 7→ H∗t (x, y) is concave on [0, 1], we conclude that t 7→ − logH∗t (x, y)
is convex on [0, 1]. Moreover, if x+ y < 2, then

− logH∗t (x, y) ≥ − logH∗1/2(x, y) = − log
x+ y

2
> 0.

Applying Lemma 2.16 with f(t) = logHt(x, y) and f(t) = − logH∗t (x, y),
respectively, leads to (2.30) and (2.31).

3 Complete monotonicity

In Section 1, we pointed out that Ht(x, y) and 1/H∗t (x, y) are decreasing on
[0, 1/2] with respect to t. In the final part of this paper we show that these
monotonicity properties can be substantially extended.

A function f : I → R, where I ⊂ R is an interval, is called completely
monotonic, if f has derivatives of all orders and satisfies

(−1)nf (n)(x) ≥ 0 (n = 0, 1, 2, ...; x ∈ I).

These functions play an important role in probability theory and they have
applications in potential theory, numerical analysis and other branches. The
basic properties of completely monotonic functions are collected in [51, chapter
IV]. In several recently published articles it was proved that certain functions
which are defined in terms of gamma, polygamma and other classical functions
are completely monotonic; see [2] and the references therein. A helpful tool
for proving the complete monotonicity of a function is

Lemma 3.1. Let I ⊂ R be an interval. The function exp
(
−f(x)

)
is completely

monotonic on I, if f ′ is completely montonic on I.

This can be proved by using induction and the Leibniz rule for differenti-
ation; see also [8, p. 83].

Theorem 3.2. Let x, y > 0. The functions t 7→ Ht(x, y) and t 7→ 1/H∗t (x, y)
are completely monotonic on [0, 1/2].
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Proof. (i) We may assume that x ≥ y. Let z = x/y ≥ 1. Since

(−1)nz2t + z ≥ −z2t + z ≥ −z + z = 0 (n = 0, 1, 2, ...; 0 ≤ t ≤ 1/2),

we obtain

(−1)n
∂n

∂tn
Ht(x, y) =

y (log z)n

2 zt
[(−1)nz2t + z] ≥ 0.

(ii) Let x ≥ y and t ∈ [0, 1/2]. We apply Lemma 3.1 with

f(t) = − log
1

H∗t (x, y)
=

1

2
log
(
tx+ (1− t)y

)
+

1

2
log
(
(1− t)x+ ty

)
.

Then, for n ≥ 0,

(−1)nf (n+1)(t) =
n!

2
(x− y)n+1

[
1(

tx+ (1− t)y
)n+1 +

(−1)n+1(
(1− t)x+ ty

)n+1

]
.

If n+1 is even, then (−1)nf (n+1)(t) ≥ 0, and if n+1 is odd, then we conclude
from

1

tx+ (1− t)y
− 1

(1− t)x+ ty
=

(x− y)(1− 2t)(
tx+ (1− t)y

)(
(1− t)x+ ty

) ≥ 0

that (−1)nf (n+1)(t) ≥ 0. If follows that t 7→ 1/H∗t (x, y) is completely mono-
tonic on [0, 1/2].
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