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Abstract

We study shift-generated finite conformal constructions; i.e. confor-
mal constructions generated by a general shift (shift of finite type, sofic
shift and non-sofic shift alike) over a finite alphabet. These construc-
tions are not restricted to shifts of finite type or sofic shifts as in the
classical limit set constructions. In particular, we prove that the limit
sets of such constructions satisfy Bowen’s formula, which gives the Haus-
dorff dimension of the limit set as the zero of the topological pressure.
We look at several examples, including a one-dimensional construction
generated by the so-called context-free shift.

1 Introduction

Finite iterated functions systems (IFSs) have been studied for more than 30
years now (among others, see [6, 2], as well as the textbooks [4, 1]). Of major
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interest is their limit set and its Hausdorff dimension. Bowen’s formula char-
acterizes the Hausdorff dimension of the limit set as the zero of the topological
pressure function of the system (in a more general context, see also [3]).

Finite IFSs are generated by a full shift over a finite alphabet. Systems gen-
erated by subshifts of finite type were later studied (for instance, see [13, 14]).
These systems are nowadays called graph directed Markov systems (GDMSs)
and have even been examined when generated by countably infinite alphabets
(see [9, 10, 16, 12]). It turns out that Bowen’s formula holds for every finite
conformal GDMS (see [5]). However, there are many IFS- or GDMS-like con-
structions that are generated by subshifts which are not of finite type. An
example is given in this paper of a construction generated by the context free
shift (cf. section 4). In this case, the underlying space of the construction is
neither of finite type nor sofic (see [7] for a general presentation of shifts).

In section 2 we give a general overview of shift-generated constructions
that are just an extension of the standard IFSs to the case where a full shift
is replaced by a subshift. In section 3 we first define the topological pressure
function for such a construction. Then we prove Bowen’s formula by construct-
ing a measure on the symbolic space and pushing it downwards to the phase
space. The fact that the shift space is compact permits such a construction.
Many techniques from the theory of IFSs and GDMSs will be used as well as
many results previously proven. Finally, in section 4 we look at several exam-
ples including the one-dimensional conformal construction generated by the
context-free shift. In the particular case where the generators are similarities,
the topological pressure function of the construction is closely related to the
topological entropy of the context-free shift, and thus the Hausdorff dimension
of the limit set of the induced constructions can be expressed in terms of the
topological entropy of the context-free shift.

2 Preliminaries

Let E be a finite set with at least two elements. Let A be a subshift of the
(one-sided) full shift E∞ on E. This is equivalent to A being shift invariant
and closed, and therefore compact. Every ω ∈ A is said to be an infinite
admissible word. Let Bn(A) be the set of all subwords of length n ≥ 1 that
appear in words of A. Hence Bn(A) contains all the admissible words (a.k.a.
blocks) of length n. Let B(A) = ∪n≥1Bn(A) be the set of all finite admissible
blocks. For every ω ∈ B(A), we denote by |ω| the length of ω. For every
ω ∈ B(A) ∪A and 1 ≤ n ≤ |ω|, we denote by ω|n the word ω1ω2 . . . ωn.

Let X be a non-empty compact metric space. A construction generated by
the subshift A is based upon a set of generators Φ = {ϕe : Xe → X}e∈E , where
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the ϕe’s are one-to-one contractions and the Xe’s are non-empty compact
subsets of X such that ϕf (Xf ) ⊆ Xe whenever ef ∈ B2(A). Let 0 < s < 1 be
such that all these generators have a contraction ratio that does not exceed s.
For every ω ∈ B(A), set Xω = Xω|ω| and

ϕω : Xω → X, ϕω := ϕω1 ◦ ϕω2 ◦ . . . ◦ ϕω|ω| .

Given ω ∈ A, the compact sets ϕω|n(Xω|n), n ≥ 1, are decreasing and their
diameters converge to zero. More precisely,

diam
(
ϕω|n(Xω|n)

)
≤ sndiam(X).

This implies that the set ⋂
n≥1

ϕω|n(Xω|n)

is a singleton. We define the coding map π : A→ X by

{π(ω)} =
⋂
n≥1

ϕω|n(Xω|n)

and by
JA = π(A)

the limit set associated to the construction generated by A.

We call a shift-generated construction conformal if the following conditions
are satisfied:

(1) Xe is a connected compact subset of a Euclidean space Rd and Xe =
IntRd(Xe) for every e ∈ E, where d is common to all e.

(2) (Open Set Condition (OSC)) For every e, f ∈ E, e 6= f ,

ϕe(Int(Xe)) ∩ ϕf (Int(Xf )) = ∅.

(3) For every f ∈ E, there exists a connected open setWf withXf ⊆Wf ⊆ Rd
so that the map ϕf extends to a C1 conformal diffeomorphism of Wf into⋂
e∈E:ef∈B2(A)

We.

(4) There are two constants L ≥ 1 and α > 0 so that∣∣|ϕ′e(x)| − |ϕ′e(y)|
∣∣ ≤ L‖(ϕ′e)−1‖−1 · |x− y|α

for every e ∈ E and for every pair of points x, y ∈We, where |ϕ′e(x)| represents
the norm of the derivative.
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Remark 1. If d ≥ 2 and a construction satisfies conditions (1) and (3), then
it also satisfies condition (4) with α = 1 according to Proposition 4.2.1 in [11].

As a straightforward consequence of (4) we get the following:

(4’) (Bounded Distortion Property (BDP)) There exists K ≥ 1 such that
for all ω ∈ B(A) and for all x, y ∈Wω,

|ϕ′ω(y)| ≤ K|ϕ′ω(x)|.

We shall now list some basic geometric consequences of conditions (1)—
(4′). They directly extend the properties found on pages 73 and 74 of [11].
We included their proofs for the sake of completeness.

We first obtain a metric upper bound on the size of the image of any
convex set, as well as a set-theoretic upper bound on the image of any ball.
For every ω ∈ B(A), set ‖ϕ′ω‖ = ‖ϕ′ω‖Xω = supx∈Xω |ϕ

′
ω(x)| and ‖ϕ′ω‖Wω =

supx∈Wω
|ϕ′ω(x)|.

Lemma 2. For all ω ∈ B(A) and all convex subsets C of Wω,

diam(ϕω(C)) ≤ ‖ϕ′ω‖Wω
diam(C) ≤ K‖ϕ′ω‖diam(C). (1)

Moreover, for all ω ∈ B(A), all x ∈ Xω and all radii 0 ≤ r ≤ dist(Xω, ∂Wω),

ϕω(B(x, r)) ⊆ B
(
ϕω(x), r‖ϕ′ω‖Wω

)
⊆ B

(
ϕω(x),Kr‖ϕ′ω‖

)
. (2)

Proof. These results are simple consequences of the Mean Value Inequality
and BDP.

We now give an upper bound on the size of the images of the sets Xe.

Lemma 3. For each 0 ≤ r ≤ min{dist(Xe, ∂We) : e ∈ E}, there is a constant
D = D(r) ≥ 1 such that

diam
(
ϕω(B(Xω, r))

)
≤ D‖ϕ′ω‖Wω ≤ KD‖ϕ′ω‖, ∀ω ∈ B(A). (3)

In particular, there exists D = D(0) ≥ 1 such that

diam
(
ϕω(Xω)

)
≤ D‖ϕ′ω‖Wω ≤ KD‖ϕ′ω‖, ∀ω ∈ B(A). (4)

Proof. Take 0 ≤ r < ∆ := min{dist(Xe, ∂We) : e ∈ E} and let r′ = ∆ − r.
Then ϕf (B(Xf , r)) ⊆ B(Xe, sr) for all ef ∈ B2(A), which implies that we

may take B(Xe, r) as We for all e ∈ E. Since the set B(Xe, r) is compact and
connected, we may cover it by a finite chain of balls B(x1e, r

′), . . . , B(xqe, r
′)
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with centers x1e, . . . , x
q
e in B(Xe, r); i.e. B(xie, r

′) ∩ B(xi+1
e , r′) 6= ∅ for each

1 ≤ i < q and
⋃q
i=1B(xie, r

′) ⊇ Xe. Using (1), we then conclude that

diam
(
ϕω(B(Xω, r))

)
≤ q‖ϕ′ω‖Wω

2r′ ≤ D‖ϕ′ω‖Wω

for all ω ∈ B(A), where D = 2∆q.

We shall now obtain lower bounds. First, we establish the counterpart
of (2).

Lemma 4. For all ω ∈ B(A), all x ∈ Xω and all 0 ≤ r ≤ dist(Xω, ∂Wω),

ϕω(B(x, r)) ⊇ B
(
ϕω(x),K−1r‖ϕ′ω‖Wω

)
. (5)

Proof. First, using BDP observe that for any ω ∈ B(A) and z ∈Wω,∣∣(ϕ−1ω )′(ϕω(z))
∣∣−1 =

∣∣((ϕ−1ω )′(ϕω(z))
)−1∣∣ = |ϕ′ω(z)| ≥ K−1‖ϕ′ω‖Wω

.

So
‖(ϕ−1ω )′‖ϕω(Wω) ≤ K‖ϕ

′
ω‖−1Wω

. (6)

Now, fix ω, x and r as in the statement. Let R > 0 be the maximal radius
such that

B(ϕω(x), R) ⊆ ϕω(B(x, r)). (7)

Then ∂
(
B(ϕω(x), R)

)
∩ ∂
(
ϕω(B(x, r))

)
6= ∅, and in view of the Mean Value

Inequality and (6), we have

ϕ−1ω
(
B(ϕω(x), R)

)
⊆ B

(
x,R‖(ϕ−1ω )′‖ϕω(Wω)

)
⊆ B

(
x,KR‖ϕ′ω‖Wω

)
,

which implies that B(ϕω(x), R) ⊆ ϕω(B(x,KR‖ϕ′ω‖Wω )). It ensues from the
openness of map ϕω that KR‖ϕ′ω‖−1Wω

≥ r. Using (7), we finally obtain (5).

We shall now prove the counterpart of (4).

Lemma 5. There exists a constant D ≥ 1 such that

diam(ϕω(Xω)) ≥ D−1‖ϕ′ω‖Wω , ∀ω ∈ B(A). (8)

Proof. Let ∆ = dist(Xω, ∂Wω). Fix x ∈ Xω and y ∈ (Xω\{x})∩B(x,K−1∆).
For every ω ∈ B(A) we have by (5) that

ϕω(B(x,∆)) ⊇ B
(
ϕω(x),K−1∆‖ϕ′ω‖Wω

)
,

while we have by (2) that

ϕω(y) ∈ B
(
ϕω(x),K−1∆‖ϕ′ω‖Wω

)
.
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Applying the Mean Value Inequality to ϕ−1ω restricted to the convex set
B
(
ϕω(x),K−1∆‖ϕ′ω‖Wω

)
followed by (6), we obtain

|y − x| = |ϕ−1ω (ϕω(y))− ϕ−1ω (ϕω(x))|
≤ ‖(ϕ−1ω )′‖ϕω(Wω)|ϕω(y)− ϕω(x)|
≤ K‖ϕ′ω‖−1Wω

|ϕω(y)− ϕω(x)|.

Thus,

diam(ϕω(Xω)) ≥ |ϕω(y)− ϕω(x)| ≥ K−1‖ϕ′ω‖Wω
|y − x|.

Finally, we make a simple geometric observation which follows from the
OSC.

Lemma 6. For all 0 < κ1 < κ2 <∞, all r > 0 and all x ∈ X, the cardinality
of any collection of mutually incomparable words ω ∈ B(A) that satisfy the
conditions

ϕω(Xω) ∩B(x, r) 6= ∅

and

κ1r ≤ diam(ϕω(Xω)) < κ2r

is bounded above by the number

((1 + κ2)KD(Rκ1)−1)d,

where R is the minimum between the radius of the largest ball that can be
inscribed in all the sets Xe and min{dist(Xe, ∂We) : e ∈ E}.

Proof. Let Vd = λd(B(0, 1)) be the Lebesgue measure of the unit ball in
Rd. Fix 0 < κ1 < κ2 < ∞, r > 0 and x ∈ X. Let W be a collection of
incomparable words as described in the statement. Then for every ω ∈W , we
have

ϕω(Xω) ⊆ B
(
x, r + diam(ϕω(Xω))

)
⊆ B(x, (1 + κ2)r).

Since all the sets {ϕω(Int(Xω))}ω∈W are mutually disjoint by the OSC, us-
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ing (5) and (4) successively we obtain that

(1 + κ2)drdVd = λd
(
B(x, (1 + κ2)r)

)
≥ λd

( ⋃
ω∈W

ϕω(Int(Xω))
)

=
∑
ω∈W

λd
(
ϕω(Int(Xω))

)
≥

∑
ω∈W

λd
(
ϕω(B(x,R))

)
≥

∑
ω∈W

λd
(
B
(
ϕω(x),K−1R‖ϕ′ω‖Wω

))
≥

∑
ω∈W

λd
(
B
(
ϕω(x),K−1RD−1diam(ϕω(Xω))

))
≥

∑
ω∈W

λd
(
B
(
ϕω(x), (KD)−1Rκ1r

))
= #W ((KD)−1Rκ1r)

dVd.

Hence
#W ≤ ((1 + κ2)(KD)(Rκ1)−1)d.

3 Bowen’s formula for finite conformal constructions

Next, we define the topological pressure function which will play a central role
in studying shift-generated conformal constructions.

Given t ≥ 0 and n ≥ 1, we denote the nth-level partition function Zn,A(t)
by

Zn,A(t) =
∑

ω∈Bn(A)

‖ϕ′ω‖t.

For every t ≥ 0, the sequence (Zn,A(t))n≥1 is submultiplicative and thus we
can define the topological pressure function PA(t) of the construction by

PA(t) = lim
n→∞

1

n
logZn,A(t) = inf

n≥1

1

n
logZn,A(t).

The topological pressure function PA : [0,∞) → R is strictly decreasing to
negative infinity, convex and hence continuous. Indeed, the strictly decreasing
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behavior of the pressure can be more precisely described as follows. Let 0 ≤
t1 < t2. Then Zn,A(t2) ≤ sn(t2−t1)Zn,A(t1) for all n ≥ 1. Therefore PA(t2) ≤
(t2−t1) log s+PA(t1). The convexity of the pressure follows from the convexity
of its partition functions Zn,A. The continuity is a direct consequence of the
convexity.

Let h be the unique zero of the topological pressure function. The following
proposition affirms that the Hausdorff dimension of the limit set is less than
or equal to that zero.

Proposition 7. Let Φ be a finite conformal construction generated by a sub-
shift A, and let h be the zero of its topological pressure function. Then

HD(JA) ≤ h,

where HD(JA) is the Hausdorff dimension of the limit set JA. In particular,
if h = 0, then HD(JA) = h = 0.

Proof. Let t > h. Then PA(t) < 0. Using (4), for every sufficiently large
n ≥ 1, we get that∑

ω∈Bn(A)

[
diam(ϕω(Xω))

]t ≤ (KD)t
∑

ω∈Bn(A)

‖ϕ′ω‖t ≤ (KD)te
1
2nPA(t).

Since the families {ϕω(Xω)}ω∈Bn(A), n ≥ 1, are covers of JA whose diameters
tend to 0 as n → ∞, we conclude that Ht(JA) = 0, where Ht represents the
t-dimensional Hausdorff measure. Thus, HD(JA) ≤ t and since t > h was
arbitrarily chosen, we conclude that HD(JA) ≤ h.

Proposition 8. Let Φ be a finite conformal construction generated by a sub-
shift A, and let h be the zero of its pressure function. There exists a constant
S ≥ 1 so that for each 0 ≤ t ≤ h there exists a Borel probability measure µ on
A such that

µ([ω]) ≤ S‖ϕ′ω‖t, ∀ ω ∈ B(A).

Proof. Assume momentarily that h > 0. Fix 0 ≤ t < h. For every k ≥ 1
and every ω ∈ Bk(A), choose an arbitrary ζω ∈ [ω] and thereafter define

µk(B) =

∑
ω∈Bk(A) ‖ϕ′ω‖tδζω

Zk,A(t)

for every Borel subset B of A, where δζ is the Dirac measure concentrated at
ζ. In particular,

µk([ω]) =
‖ϕ′ω‖t

Zk,A(t)
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for every ω ∈ Bk(A). Since t < h, we know that PA(t) > 0 and hence
supk≥1 Zk,A(t) = ∞. Thus, there exists a strictly increasing subsequence
(kj)j≥1 of natural numbers so that for every j ≥ 1 and for every 1 ≤ p ≤ kj ,

Zkj ,A(t) ≥ Zp,A(t).

Since E is finite, the sets E∞ and A are compact and therefore the sequence
(µkj )j≥1 has a convergent subsequence in the weak* topology. Without loss
of generality, we may denote such a subsequence by the same notation as the
sequence itself and let µ be its weak* limit. Let n ≥ 1 and ω ∈ Bn(A). Choose
j so that kj > n. We then have

µkj ([ω]) = µkj

( ⋃
α∈Bkj−n(A)

[ωα]
)

=
∑

α∈Bkj−n(A)

µkj ([ωα])

≤

∑
α∈Bkj−n(A) ‖ϕ′ω‖t‖ϕ′α‖t

Zkj ,A(t)
= ‖ϕ′ω‖t

Zkj−n,A(t)

Zkj ,A(t)
≤ ‖ϕ′ω‖t.

Since [ω] is clopen, we deduce from the Portmanteau theorem that

µ([ω]) ≤ ‖ϕ′ω‖t.

If t = h (whether h = 0 or not), a dichotomy exists: either supk≥1 Zk,A(h) =∞
or supk≥1 Zk,A(h) < ∞. In the former case, the above argument applies. In
the latter case, since PA(h) ≥ 0 we know that infk≥1 Zk,A(h) ≥ 1. Therefore,
the argument above yields

µ([ω]) ≤ S‖ϕ′ω‖h,

where µ is the weak* limit of a convergent subsequence of (µk)k≥1 and 1 ≤
S := supk≥1 Zk,A(h).

This measure µ on A induces a measure m on X via the coding map. For
every Borel set Y ⊆ X, let

m(Y ) = µ(π−1(Y )).

Note that m is supported on JA.

Proposition 9. Let Φ be a finite conformal construction generated by a sub-
shift A, and let h be the zero of its pressure function. There exists a constant
C ≥ 1 such that for all 0 ≤ t ≤ h, all x ∈ JA and all 0 < r < 1

2diam(X) we
have

m(B(x, r))

rt
≤ C.

In particular, HD(JA) ≥ h and Hh(JA) > 0.
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Proof. Let 0 ≤ t ≤ h. Fix x ∈ JA and 0 < r < 1
2diam(X). Then x = π(ω)

for some ω ∈ A. Let W be the family of all minimal (in the sense of length)
words τ ∈ B(A) such that

ϕτ (Xτ ) ∩B(x, r) 6= ∅ and diam(ϕτ (Xτ )) < 2r.

Let τ ∈ W . Then diam(ϕτ ||τ|−1
(Xτ ||τ|−1

)) ≥ 2r, and it successively follows
from (8), BDP and (4) that

diam(ϕτ (Xτ )) ≥ D−1‖ϕ′τ‖Wτ ≥ (KD)−1‖ϕ′τ ||τ|−1
‖Wτ||τ|−1

‖ϕ′τ|τ|‖Wτ

≥ (KD)−1D−1diam(ϕτ ||τ|−1
(Xτ ||τ|−1

))ξ

≥ 2(KD2)−1ξr,

where ξ := min{‖ϕ′e‖ : e ∈ E} > 0. Given that the family W consists of
mutually incomparable words and in virtue of Lemma 6 with κ1 = 2(KD2)−1ξ
and κ2 = 2, we get

#W ≤
(
3KD(R2(KD2)−1ξ)−1

)d
=
(
3K2D3(2Rξ)−1

)d
.

Since π−1(B(x, r)) ⊆
⋃
τ∈W [τ ], we obtain using Proposition 8 and (8) that

m(B(x, r)) = µ ◦ π−1(B(x, r)) ≤ µ(∪τ∈W [τ ]) =
∑
τ∈W

µ([τ ])

≤
∑
τ∈W

S‖ϕ′τ‖t ≤ S
∑
τ∈W

(
Ddiam(ϕτ (Xτ ))

)t
< S(#W )(D · 2r)t

≤ S
(
3K2D3(2Rξ)−1

)d
(2D)drt.

This finishes the proof.

Using Propositions 7 and 9, we obtain Bowen’s formula.

Proposition 10. Let Φ be a finite conformal construction generated by a
subshift A, and let h be the zero of its pressure function. Then HD(JA) = h
and Hh(JA) > 0.

If we additionally assume that the strong separation condition is fulfilled,
then we further have the following.

Proposition 11. If Φ satisfies the strong separation condition, i.e. if

ϕe(Xe) ∩ ϕf (Xf ) = ∅, ∀ e, f ∈ E, e 6= f,

then the measure m supported on JA is such that for every 0 ≤ t ≤ h and
ω ∈ B(A),

m(ϕω(Xω)) ≤ S‖ϕ′ω‖t.
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Proof. Since π([ω]) ⊆ ϕω(Xω), we obtain

m(ϕω(Xω)) = µ(π−1(ϕω(Xω))) ≥ µ([ω]).

Since both m and µ are probability measures and the same-level sets are
mutually disjoint, we deduce that

m(ϕω(Xω)) = µ([ω]) ≤ S‖ϕ′ω‖t

by Proposition 8.

4 Examples

Context-free shift-generated constructions

In this section we look at some examples including the limit set inside the
unit interval generated by the context-free subshift on a three-letter alphabet
and three similarities that have the same ratio 0 < a ≤ 1

3 . We give the exact
value of the Hausdorff dimension of the limit set of such constructions, using
the value of the topological entropy of the context-free shift (see [8]). So let
X = [0, 1] and 0 < a ≤ 1

3 . Let E = {0, 1, 2}. For every e ∈ E, let ϕe : X → X
be defined by ϕe(x) = ax+ e

3 . Let A be the context-free subshift of E∞; i.e.
the subshift which has for a forbidden set of words F = {01k2l0 : 0 < k 6= l}.
Let Φ = {ϕe}0≤e≤2. Let’s have a look at the topological pressure function
associated to this construction. For every n ≥ 1, we have

Zn,A(t) =
∑

ω∈Bn(A)

‖ϕ′ω‖t =
∑

ω∈Bn(A)

(an)t = #Bn(A) · ant.

Therefore,

PA(t) = lim
n→∞

1

n
logZn,A(t)

= lim
n→∞

1

n
log #Bn(A) + lim

n→∞

nt log a

n

= htop(A) + t log a,

where htop(A) is the topological entropy of the context-free shift as a symbolic
system. Consequently, the Hausdorff dimension of the limit set, which is the
zero of the topological pressure function PA according to Bowen’s formula, is
equal to

HD(JA) = −htop(A)

log a
= −

log
(
1 +

√
1 +
√

3
)

log a
.
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Families of one-dimensional systems generated by any shift-generated
conformal construction

Let E = {1, ..., k}, k ≥ 2, and let A be any subshift of the one-sided full
shift E∞. Consider also 0 < a ≤ 1

k . Let X = [0, 1]. For every e ∈ E let
ϕe : X → X; ϕe(x) = ax+ e

k . As before, for every n ≥ 1 we have

Zn,A(t) =
∑

ω∈Bn(A)

‖ϕ′ω‖t =
∑

ω∈Bn(A)

(an)t = #Bn(A) · ant,

and so

PA(t) = lim
n→∞

1

n
logZn,A(t)

= lim
n→∞

1

n
log #Bn(A) + lim

n→∞

nt log a

n

= htop(A) + t log a.

Thus,

HD(JA) = −htop(A)

log a
.

Remark 12. When 0 ≤ a < 1
k , the strong separation condition is satisfied

and we also have 0 ≤ HD(JA) < 1
k .

Remark 13. The only case in which the limit set has positive Lebesgue mea-
sure is when a = 1

k and A is the full shift.
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