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A SIMPLER PROOF FOR THE ε-δ
CHARACTERIZATION OF BAIRE CLASS

ONE FUNCTIONS

Abstract

We offer a new and simpler proof of a recent ε-δ characterization of
Baire class one functions using a theorem by Henri Lebesgue. The proof
is more elementary in the sense that it does not use the Baire Category
Theorem. Furthermore, the proof requires only that the domain and
range be separable metric spaces instead of Polish spaces.

1 Introduction

Let X and Y be metric spaces. A function f : X → Y is Baire class one if
for every open set U in Y , f−1(U) is Fσ. Henri Lebesgue proved in 1904 the
real line version of the following theorem:

Theorem 1. ([2, p. 115], [4, p. 375]) Let Y be a separable metric space. A
function f : X → Y is Baire class one if and only if for each natural number

k, there exists a sequence of closed sets {En} in X such that X =

+∞⋃
n=1

En and

ωf (En) < 1
k for each n where

ωf (En) = sup {dY (f(x), f(y)) : x, y ∈ En}
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denotes the oscillation of f on En.

For easy reference, we shall call Theorem 1 Lebesgue’s theorem.
More than a hundred years later since Rene Baire [1] defined this class of

functions, a new characterization of Baire class one functions in terms of ε-δ
was discovered by P.Y. Lee, W.K. Tang and D. Zhao [6] and later indepen-
dently by D.N. Sarkhel [7]. We state it as a theorem below:

Theorem 2. Let (X, dX) and (Y, dY ) be Polish spaces. The following state-
ments are equivalent.

(1) f : X → Y is Baire class one

(2) For each ε > 0 there is a positive function δ : X → R+ such that for any
x, y ∈ X

dX(x, y) < min{δ(x), δ(y)} =⇒ dY (f(x), f(y)) < ε.

The proof of Theorem 2 relies on the Baire Category Theorem as well as
on the fact that a function f : X → Y is Baire class one if and only if for every
closed K in X, f |K has at least one point of continuity in K. In this paper,
we shall prove Theorem 2 in a more general setting using Lebesgue’s theorem.

2 A New Proof

Throughout the paper, (X, dX) and (Y, dY ) are assumed to be separable metric
spaces. Denote the minimum between a and b by a∧b, the closure of a set A by
A and its diameter by diam {A}. Also denote the open ball with center x0 ∈ X
and radius δ > 0 by Nδ (x0), that is, Nδ (x0) = {y ∈ X : dX (x0, y) < δ}.

Before we provide the proof of our main theorem, let us recall first the
following important results. Proposition 3 is stated for the real number line
in [8, Lemma 1] without proof. On the other hand, Lemma 4 is proved in
[8, Lemma 2] for the real line. Though Proposition 3 is quite well-known it
is hard to find a proof for general spaces in the literature. For the sake of
completeness, we shall give proofs of Proposition 3 and Lemma 4 in space X
by adapting the proofs found in [3, p. 75] and [8, Lemma 2], respectively.

Proposition 3. If X =

+∞⋃
n=1

En with each En an Fσ set in X, then there are

disjoint Fσ sets Fn , n = 1, 2, . . . , in X such that Fn ⊆ En and X =

+∞⋃
n=1

Fn.
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Proof. For every n, En =

+∞⋃
i=1

Ein for some sequence
{
Ein
}

of closed sets in

X. Thus, we can express X =

+∞⋃
k=1

Ak where for each k, Ak is closed in X and

Ak ⊆ En for some n. Let H1 = A1 and Hk = Ak − (A1 ∪A2 ∪ · · · ∪Ak−1) for

k ≥ 2. Notice that each Hk is Fσ in X, X =

+∞⋃
k=1

Hk and Hi∩Hj = ∅ for i 6= j.

For each i, let Ni = {k ∈ N : Hk ⊆ Ei}. The sets Fi =
⋃
k∈Ni

Hk are pairwise

disjoint Fσ sets, Fi ⊆ Ei for each i and X =

+∞⋃
i=1

Fi.

Lemma 4. Let X =

+∞⋃
n=1

Fn where Fn’s are disjoint Fσ sets. Then there is a

positive function δ(·) on X such that x ∈ Fn , y ∈ Fm and n 6= m imply

dX(x, y) ≥ δ(x) ∧ δ(y).

Proof. Since each Fn is Fσ set, then there exists a sequence
{
F in
}+∞
i=1

of closed

sets such that Fn =

+∞⋃
i=1

F in and F in ⊆ F i+1
n for all i. For each n and x ∈ Fn,

let x ∈ F ixn , but x /∈ F jn for all j < ix. Define a function δ : X → R+ such that

F jm ∩Nδ(x) (x) = ∅

for all m 6= n and m + j ≤ n + ix. Let x ∈ Fn and y ∈ Fm, m 6= n. If
n + ix ≤ m + iy, then F ixn ∩ Nδ(y) (y) = ∅. Hence, dX (x, y) ≥ δ (y). On the

other hand, if m+iy ≤ n+ix, then F
iy
m ∩Nδ(x) (x) = ∅. Thus, dX (x, y) ≥ δ (x).

All these show that dX(x, y) ≥ δ(x) ∧ δ(y). The lemma follows.

We are now ready to state and prove our main theorem. Recall that X
and Y are assumed only to be separable metric spaces. Hence, our result
generalizes the theorem of P.Y. Lee, W.K. Tang and D. Zhao [6].

Theorem 5. Let X and Y be separable metric spaces. The following state-
ments are equivalent.

(1) f : X → Y is Baire class one
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(2) For each ε > 0 there is a positive function δ : X → R+ such that for any
x, y ∈ X

dX(x, y) < δ(x) ∧ δ(y) =⇒ dY (f(x), f(y)) < ε.

Proof. (1) ⇒ (2). Suppose f : X → Y is Baire class one. Let ε > 0 be
given. Find a natural number k such that 1

k < ε. By Lebesgue’s theorem,

there exists a sequence of closed sets {En}+∞n=1 in X such that X =

+∞⋃
n=1

En and

ωf (En) < 1
k for each n. There exists a sequence of Fσ sets {Fn}+∞n=1 in X such

that X =

+∞⋃
n=1

Fn, Fn ⊆ En for each n and Fi ∩Fj = ∅ for i 6= j. By Lemma 4,

there is a positive function δ : X → R+ such that if x ∈ Fm and y ∈ Fn with
m 6= n implies

dX(x, y) ≥ δ(x) ∧ δ(y).

Let x, y ∈ X and dX(x, y) < δ(x)∧δ(y). By the property of δ there is a unique
n such that x, y ∈ Fn. Since Fn ⊆ En and ωf (En) < 1

k it immediately follows
that dY (f(x), f(y)) < 1

k < ε.

(2)⇒ (1) This direction is proved using the ideas from [7].
Suppose for each ε > 0 there is a positive function δ : X → R+ such that for
any x, y ∈ X

dX(x, y) < δ(x) ∧ δ(y) =⇒ dY (f(x), f(y)) <
ε

3
.

For each n, let An =
{
x ∈ X : δ(x) > 1

n

}
and find a closed cover

{
F kn
}+∞
k=1

of

X such that diam
{
F kn
}
< 1

n for each k. Notice that
{
F kn
}+∞
k=1

exists because
X is a separable metric space. Hence, we can write the space X as

X =

+∞⋃
n=1

+∞⋃
k=1

(
F kn ∩An

)
.

Let n, k ∈ N and x, y ∈ F kn ∩An. Since {An} is an increasing sequence of sets
then there is a j > n such that x, y ∈ Aj . We can find x1, y1 ∈ An such that

0 ≤ dX(x, x1) <
1

j
, 0 ≤ dX(y, y1) <

1

j
and dX(x1, y1) <

1

n
.

Since An ⊆ Aj , then x1, y1 ∈ Aj . Consequently,

dY (f(x), f(y)) ≤ dY (f(x), f(x1)) + dY (f(x1), f(y1)) + dY (f(y), f(y1)) < ε.
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This implies the Lebesgue’s theorem. The proof is complete.

Acknowledgement: The authors wish to thank the referee for the sugges-
tions that led to the significant improvement of this paper.
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