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OUTER MEASURES ON THE REAL LINE
BY WEAK SELECTIONS

Abstract

A weak selection on an infinite set X is a function f : [X]2 → X
such that f(F ) ∈ F for each F ∈ [X]2 := {E ⊆ X : |E| = 2}. If
f : [X]2 → X is a weak selection and x, y ∈ R, then we say that x <f y
if f({x, y}) = x and x ≤f y if either x = y or x <f y. Given a weak
selection f on X and x, y ∈ X, we let (x, y]f = {z ∈ X : x <f z ≤f y}.
If f : [R]2 → R is a weak selection and A ⊆ R, then we define

λ∗f (A) := inf
{∑

n∈N

|bn − an| : A ⊆
⋃
n∈N

(an, bn]f
}

if there exists a countable cover by semi open f -intervals of A, and if
there is not such a cover, then we say that λ∗f (A) = +∞. This function
λ∗f : P(R) −→ [0,+∞] is an outer measure on the real line R which
generalizes the Lebesgue outer measure. In this paper, we show several
interesting properties of these kind of outer measures.

1 Preliminaries

The Euclidian (standard) order on the real numbers will be denoted by ≤.
The Lebesgue outer measure will be denoted by λ∗ and M and N will stand
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for the family of all Lebesgue measurable sets and the family of all null (zero
measure) sets, respectively. The cardinality of the real line shall be denoted
by c.

For an infinite set X, we let [X]2 = {F ⊆ X : |F | = 2}. A function
f : [X]2 → X is called a weak selection if f(F ) ∈ F for all F ∈ [X]2. The
most common example of a weak selection on the real line is the Euclidian
weak selection fE : [R]

2 → R given by

fE ({x, y}) = x iff x < y,

for each {x, y} ∈ [R]2. The weak selections have been recently studied in
topology (see for instance [2], [4], [5], [6], [7], [9], [11], [10] and [12]). One
important property of the weak selections is that each one of them generates a
topology which has many strong topological properties like complete regularity
and Hausdorff property (see [4], [7] and [11]). In this article we shall only
consider weak selections defined on R.

For a weak selection f : [X]2 → X and {x, y} ∈ [X]2, we say x <f y
if f({x, y}) = x, and for x, y ∈ R we define x ≤f y if either x <f y or
x = y. This relation ≤f is reflexive, antisymmetric and linear, but it could
fail to be transitive: To see this let us define f : [R]2 → R by f({0, 1}) = 0,
f({1, 2}) = 1, f({0, 2}) = 2 and for the other points we keep the Euclidian
order. It is evident that ≤f is not transitive.

If f is a weak selection and a, b ∈ R, then the f -intervals are

(a, b)f :=
{
x ∈ X : a <f x <f b

}
,

(a, b]f :=
{
x ∈ X : a <f x <f b

}
,

(a,→)f :=
{
x ∈ X : a <f x

}
, etc.

For the Euclidian weak selection fE we just write (a, b), (a, b], (a,→) etc.. In
the notation (a, b) we shall understand that a < b. Meanwhile, in the general
notation (a, b)f we do not require that a <f b since the relation <f is not
always transitive.

Definition 1.1. Let f be a weak selection and r ∈ R. We say that r is f -
minimal if r <f x, for every x in R \ {r}. If x <f r for all x ∈ R \ {r}, then r
is called f -maximal.

We remark that every weak selection f admits at most one f -minimal point
and also at most one f -maximal point.

Let us make some comments concerning the f -intervals. It is clear that
if r ∈ R is f -maximal for some weak selection f , then (r, s)f = ∅ for all
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s ∈ R\{r}, and if r is f -minimal, then (s, r)f = ∅ for all s ∈ R\{r}. Now, we
shall define a weak selection f to see that the f -intervals and the Euclidian
intervals could be quite different one from the other: Consider the Euclidean
interval (a, b), d /∈ (a, b) and its middle point c. Define

f ({x, y}) :=



x if x ∈ (a, c] and y = a

a if x = a and y = d

d if x = b and y = d

x if x < y otherwise

for each {x, y} ∈ [R]
2
. Then we have that (a, b)f = (c, b) ∪ {d} and hence

(a, b) 6⊆ (a, b)f 6⊆ (a, b). Also we can define a weak selection f so the f -interval
(0, 1)f has only one single point:

f ({x, y}) :=


x if y = 0 and x ∈ (0, 12 )

1 if x = 1 and y ∈ ( 1
2 , 1)

x if x < y otherwise

for each {x, y} ∈ [R]
2
. It is evident that (0, 1)f = { 12}.

As it is mentioned in the Abstract, the main purpose of this article is
to introduce new outer measures on the real line by slightly generalizing the
Lebesgue outer measure and by using weak selections. By analyzing several
examples, we shall see how the analytical properties of these outer measures
interact with the combinatorial properties of the weak selection. In the first
chapter, we give some general properties of our outer measures. In the second
chapter, several examples are given comparing them with the known properties
of the Lebesgue outer measure. We are completely sure that this king of outer
measures will provide several nice examples of new measure spaces with some
exotic properties.

2 Outer measures by weak selections

The concept of outer measure is due to C. Carathéodory and it is defined as
follows.

Definition 2.1. Let X be an infinite set. A set function µ : P(X) → [0,∞)
is called an outer measure if it satisfies the following properties:
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1. µ(∅) = 0.

2. If A,B ⊆ X and A ⊆ B, then µ(A) ⊆ µ(B).

3. If (An)n∈N is a sequence of subsets of X, µ(
⋃
n∈NAn) ≤

∑
n∈N µ(An).

For basic properties of outer measure we refer the reader to the books
[1], [3] and [8]. Recall that the Lebesgue outer measure uses the length of
the Euclidian intervals and countable covers by them to estimate the outer
measure of an arbitrary subset of R. By using the basic idea of the definition
of the Lebesgue outer measure, we introduce the following notion.

Definition 2.2. Let f be a weak selection on the real line R. The outer
measure induced by f is the set function λ∗f : P(R) → [0,+∞] defined, for
every A ⊆ R, by

λ∗f (A) := inf
{∑
n∈N
|bn − an| : A ⊆

⋃
n∈N

(an, bn]f

}
if there exists a countable cover of A by semi open f -intervals, and if there is
not a countable cover of this form, then we say λ∗f (A) = +∞.

Clearly, for the Euclidian weak selection fE we have that λ∗ = λ∗fE . The
proof of the following theorem is similar to the one for the Lebesgue outer
measure.

Theorem 2.3. For every weak selection f , λ∗f is an outer measure on R.

The outer measure induced by a weak selection f will be called f -outer
measure, and Mf will denote the family of all λ∗f - measurable sets and Nf
will denote the family of all λ∗f -null sets.

It is well known that the singleton sets of the reals are null sets. For the
outer measures introduced in Definition 2.2 a singleton set can have f -outer
measure equal to either 0 or +∞, for any weak selection f . We shall prove
this assertion in the next theorem, but first we need to state an easy lemma.

Lemma 2.4. Let f be a weak selection and r ∈ R.

1. If (an)n∈N ⊂ R is a sequence that converges to r and an <f r holds for
each n ∈ N, then λ∗f ({r}) = 0.

2. If a <f r and (an)n∈N ⊂ R is a sequence that converges to a such that
r <f an for all n ∈ N, then λ∗f ({r}) = 0.

3. If r <f a and (an)n∈N ⊂ R is a sequence that converges to a such that
an <f r for all n ∈ N, then λ∗f ({r}) = 0.
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Theorem 2.5. For every weak selection f and for every r ∈ R we have that

λ∗f ({r}) =

{
0

+∞

Proof. Clearly, if r is f -minimal, then r /∈ (a, b]f for every a, b ∈ R. Thus,
in this case, we have that λ∗f ({r}) = +∞. If r is f -maximal, then take a
sequence (an)n∈N in R \ {r} that converges to r. As an <f r for each n in N,
by Lemma 2.4 (1), we obtain that the f -outer measure of {r} is zero. Suppose
that we can find two points a, b ∈ R so that r ∈ (a, b)f . Assume the negation of
Lemma 2.4(2). Then there is δ > 0 such that c <f r, for each c ∈ [a− δ, a+δ].
We have to consider the following two cases:

Case I. a < r. We know that a + δ <f r and we may assume, in the
Euclidian order, that a+ δ < r. Consider the set

A =
{
s ∈ R : a < s < r and s <f r

}
,

which is not void since (a, a + δ] ⊆ A. Let d = supA. If d = r, then we
are done by clause (1) of Lemma 2.4. Suppose that d < r. Then choose two
sequences (cn)n∈N ⊆ (←, d) with cn → d and cn <f r for every n ∈ N, and
(dn)n∈N ⊆ (d, r) with dn → d. Notice that r <f dn for every n ∈ N. Then,
r ∈ (cn, dn]f , for all n ∈ N, and hence λ∗f ({r}) = 0.

Case II. r < a. We may assume that r < a− δ and consider the set

B =
{
s ∈ R : r < s < a and s <f r

}
,

which is not empty since [a − δ, a) ⊆ B. Let c = inf B. If c = r, then we are
done by clause (1) of Lemma 2.4. Suppose that r < c. Choose two sequences
(cn)n∈N ⊆ (c, a) with cn → c and cn <f r for every n ∈ N, and (dn)n∈N ⊆ (r, c)
with dn → c. Then, we must have that r ∈ (cn, dn]f , for all n ∈ N, and hence
we obtain that λ∗f ({r}) = 0.

We list some direct consequences of Theorem 2.5.

Corollary 2.6. Let f a weak selection and r ∈ R.

1. If r is f -maximal, then λ∗f ({r}) = 0.

2. r is f -minimal if and only if λ∗f ({r}) = +∞.

In particular, if there is an f -minimal point in R, then λ∗f (R) = +∞.
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Corollary 2.7. If X ⊆ R is countable and f is any weak selection, then

λ∗f (X) =

{
0

+∞

Corollary 2.8. For every weak selection f , each countable subset of R is
λ∗f -measurable.

Corollary 2.9. For every weak selection f , |Mf | ≥ c.

Unfortunately, we could not answer the following questions.

Question 2.10. Is there a weak selection f such that |Mf | = c ?

Question 2.11. Given an arbitrary weak selection f , is there A ∈ Mf such
that |A| = |A \ R| = c ?

We shall see next that the Lebesgue outer measure coincides with an outer
measure induced by a weak selection that only changes the Euclidian order on
a countable subset of the reals.

Theorem 2.12. Let f be a weak selection. Assume that there is a countable
subset M of R such that

f ({x, y}) = x if and only if x < y and |{x, y} ∩M | ≤ 1,

for every {x, y} ∈ [R]
2
. Then λ∗f (A) = λ∗(A) for all A ⊆ R.

Proof. First, notice that (a, b]f = (a, b] whenever a, b /∈ M . On the other
hand, we known that if B ⊆ R, then

λ∗(B) = inf
{∑
n∈N
|yn − xn| : B ⊆

⋃
n∈N

(xn, yn] and ∀n ∈ N(xn, yn ∈ R \M)
}
.

So, λ∗f (B) ≤ λ∗(B) for every B ⊆ R. Fix z ∈M . For each n ∈ N, choose two
points an, bn ∈ R \M so that

z ∈ (an, bn] and bn − an <
1

2n
.

It then follows that

λ∗f ({z}) ≤ λ∗f
(
(an, bn]

)
= λ∗f

(
(an, bn]f

)
≤ 1

2n
,

for every n ∈ N. Thus, λ∗f ({z}) = 0 for each z ∈ M . So, λ∗f (M) = 0 and
hence the set M is λ∗f -null. Now, fix A ⊆ R. Applying the Carathéodory’s
condition to M , we obtain that

λ∗f (A) = λ∗f (A ∩M) + λ∗f (A \M) = λ∗f (A \M) .
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To finish the proof we only need to show that the f -outer measure of A \M
is equal to its Lebesgue outer measure. We already know that λ∗f (A \M) ≤
λ∗(A \M). Assume that λ∗f (A \M) < λ∗ (A \M). Then, we can find ε > 0
and a countable cover of A \M by f -intervals {(xn, yn]f : n ∈ N} satisfying∑

n∈N
|yn − xn|+ ε < λ∗ (A \M) .

For each n ∈ N choose εn for which εn <
ε

2n+1
and xn − εn, yn + εn /∈ M .

Observe that (xn, yn]f \M ⊆ (xn − εn, yn + εn] for all n ∈ N. Hence,

A \M ⊆
⋃
n∈N

(xn − εn, yn + εn]

and so

λ∗ (A \M) ≤
∑
n∈N
|yn − xn|+

∑
n∈N

ε

2n
=
∑
n∈N
|yn − xn|+ ε < λ∗ (A \M) ,

but this is a contradiction. Thus, we have proved that λ∗f (A) = λ∗ (A \M).
Therefore, λ∗f (A) = λ∗ (A).

3 Examples

In this section, we give several examples of weak selections that provide several
very interesting outer measures on R.

In the first example, we shall see that an Euclidean interval can have infinite
f -outer measure for a suitable weak selection f .

Example 3.1. Let (a, b) an Euclidean interval where a < b. We shall use
transfinite induction to define the weak selection f . To do that we enumerate

all sequences of R as
{
Sξ : ξ < c

}
and each Sξ as

{
xξn : n ∈ N

}
. Take

r0 ∈ (a, b) \ S0 and define r0 <f x
0
n, for all n ∈ N. Let θ < c and suppose that

for each ξ < θ we have carefully chosen a real number rξ ∈ R. Fix

rθ ∈ (a, b) \

⋃
ξ≤θ

Sξ ∪
{
rξ : ξ < θ

}
and define rθ <f x

ξ
n for each n ∈ N and for each ξ ≤ θ. The weak selection

f will preserve the Euclidean order in the rest of the two point sets which



108 J. A. Astorga-Moreno and S. Garcia-Ferreira

were not considered above. Let {(an, bn]f : n ∈ N} be a countable family of
f -intervals. Pick θ < c so that xθ2n = an and xθ2n+1 = bn for all n ∈ N. By
definition, we know that rθ <f x

θ
n, for every n ∈ N, and so

rθ ∈ (a, b) \

[ ∞⋃
n=0

(an, bn]f

]
.

This shows that (a, b) cannot be cover by a countable family of semi open
f -intervals. Therefore, λ∗f

(
(a, b)

)
= +∞.

Now we shall see that the f -outer measures are not in general translation
invariant.

Example 3.2. Fix r ∈ R and consider the weak selection f given by

f ({x, y}) :=


r if x ∈ R \ {r

}
and y = r

x if x < y and x 6= r 6= y

for each {x, y} ∈ [R]
2
. As the point r is f -minimal, by Corollary 2.6, the

f -outer measure of the set {r} is infinite. Therefore, by Theorem 2.5, we have
that

λ∗f ({r}+ 1) = λ∗f ({r + 1}) = 0 < +∞ = λ∗f ({r}) .

We shall continue giving examples of f -outer measures that satisfy some
unusual properties when we compare them with the properties of the Lebesgue
outer measure.

Example 3.3. If the point a ∈ R is f -maximal for some weak selection f ,
then λ∗f ((a, b)f ) = 0 since (a, b)f = ∅, for every b ∈ R \ {a}.

The most trivial outer measure on an infinite set is the one taking the
constant value 0 everywhere. But by using weak selections we can collapse
the outer measure of an Euclidian open interval to 0 as it is shown in the next
example.

Example 3.4. The f -outer measure of an Euclidean open interval could be
zero for some weak selection f .

Fix an Euclidean open interval (a, b). Without loss of generality, we may
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assume that 1
n+1 < a for each n ∈ N. Our weak selection f is defined by

f ({x, y}) :=



x if x ∈ (a, b) and y =
1

n+1

y if x ∈ (a, b) and y = − 1

n+1

x if x < y otherwise

for each {x, y} ∈ [R]
2

and for each n ∈ N. By the definition of the weak se-

lection, we have (a, b) ⊆
(
− 1

n+1
,

1

n+1

]
f

, for every n ∈ N. Hence, λ∗f
(
(a, b)

)
≤

2

n+1
, for each n ∈ N. Therefore, λ∗f

(
(a, b)

)
= 0.

Example 3.5. The f -outer measure of an Euclidean interval could be positive
and smaller than its Lebesgue outer measure.

To see this consider the weak selección f defined by

f ({x, y}) :=


y if x =

1

3
and y ∈

(
1

3
,
2

3

]
x if x < y otherwise

for each {x, y} ∈ [R]
2
. Notice that

(
1

3
,
2

3

]
f
∩
(

1

3
,
2

3

]
= ∅. We claim that

(0, 1] = (0,
1

3
]f ∪ (

2

3
, 1]f .

Indeed, fix r ∈ (0, 1].

• If r ∈ (0,
1

3
], then 0 <f r and r <f

1
3 . So, r ∈ (0,

1

3
]f .

• If r ∈ (
2

3
, 1], then 2

3 <f r and r <f 1. Hence, r ∈ (
2

3
, 1]f .

• If r ∈ (
1

3
,
2

3
], then 0 <f r and r <f

1
3 . That is, r ∈ (0,

1

3
]f .

Thus we have shown that (0, 1] ⊆ (0,
1

3
]f ∪ (

2

3
, 1]f . Evidently, by definition,

(0,
1

3
]f ∪ (

2

3
, 1]f ⊆ (0, 1].

This shows our claim.
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Since (0,
1

3
]f ∪ (

2

3
, 1]f covers (0, 1], we must have that λ∗f

(
(0, 1]

)
≤ 2

3
. On

the other hand, it follows from the definition of the weak selection that

[(0,
1

3
) ∪ (

2

3
, 1)] ∩ (a, b)f = [(0,

1

3
) ∪ (

2

3
, 1)] ∩ (a, b),

for every a, b ∈ R with a < b. Hence,

2

3
= λ∗

(
(0,

1

3
) ∪ (

2

3
, 1)
)

= λ∗f
(
(0,

1

3
) ∪ (

2

3
, 1)
)
≤ λ∗f

(
(0, 1]

)
.

Therefore, λ∗f
(
(0, 1]

)
=

2

3
.

In the next example, we give a weak selection f for which all subsets of R
are λ∗f -measurable.

Example 3.6. There exists a weak selection f such that R ∈ Nf . In partic-
ular, every subset of R is λ∗f -measurable.

Construct a sequence
(
(aiz)z∈Z

)
i∈N of sequences of real numbers as follows:

First set a0z = z for all z ∈ Z. Suppose that the sequence (aiz)z∈Z has been
defined for i ∈ N. Then, for each z ∈ Z we define ai+1

2z as the middle point
of the interval (aiz+1, a

i
z+2), and ai+1

2z−1 = aiz+1. Then we have the following
properties of these sequences.

1. The sequence (aiz)z∈Z is a not bounded neither below nor above, discrete
in R and strictly increasing, for all i ∈ N,

2. aiz+1 < ai+1
2z for all (i, z) ∈ N× Z, and

3. aiz+1 − aiz <
1

2i−1
for all (i, z) ∈ N× Z.

Let A = {aiz : (i, z) ∈ N × Z}. By definition, we have that if (i, z) ∈ N × Z,

then aiz+1 < ai+j2jz for every positive j ∈ N. The weak selection f : [R]
2 → R is

defined by:

i. For every pair (i, z) ∈ N × Z and for every real r ∈ (aiz, a
i
z+1) \ A we

define ai+j2jz <f r <f a
i+j
2jz+1, for each positive j ∈ N.

ii. The Euclidean order is preserved in the rest of the points not being
considered above.

Notice that there are neither f -minimal point nor f -maximal point. Thus, by
Corollary 2.7, λ∗f (A) = 0. Let us calculate λ∗f (R \ A). Fix (i, z) ∈ N× Z. We
know that

(aiz, a
i
z+1) \A ⊆ (ai+j2jz , a

i+j
2jz+1]f ,
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for each positive j ∈ N. Hence,

λ∗f
(
(aiz, a

i
z+1) \A

)
≤ ai+j2jz+1 − a

i+j
2jz ≤

1

2i+j−1
,

for every positive j ∈ N. This implies that λ∗f
(
(aiz, a

i
z+1) \ A

)
= 0, for all

(i, z) ∈ N× Z. So,

λ∗f
(
R \A

)
≤ λ∗f

( ⋃
z∈Z

[(a0z, a
0
z+1) \A]

)
≤
∑
z∈Z

λ∗f
(
(a0z, a

0
z+1) \A

)
= 0.

Therefore, λ∗f (R) = 0.

By a slight modification of the previous construction we obtain the follo-
wing example.

Example 3.7. For each proper subset N ⊂ R there exists a weak selection f
such that N ∈ Nf and λ∗f (R \N) = +∞.

Fix r ∈ R \ N and consider the sequence
(
(aiz)z∈Z

)
i∈N constructed in

Example 3.6. Assume, without loss of generality, that r 6= aiz /∈ N for each
(i, z) ∈ N× Z, and let A = {aiz : (i, z) ∈ N× Z}. Then define f as follows:

1. r <f s for all s ∈ R \ {r};

2. for every (i, z) ∈ N×Z and for every s ∈ (aiz, a
i
z+1) \

(
A∪{r}

)
we define

ai+j2jz <f s <f a
i+j
2jz+1, for each positive j ∈ N; and

3. the Euclidean order is preserved in the rest of the points not being con-
sidered above.

In connection with Examples 3.6 and 3.7, we pose the following question.

Question 3.8. Given an arbitrary weak selection f such that 0 < λ∗f (R) <
+∞, is P(R) \Mf 6= ∅ ?

Example 3.9. Let (a, b) be an Euclidian interval. Then there are a weak
selection f and r ∈ R such that E + r ∈ Mf and λ∗

(
E
)

= λ∗f
(
E
)
, for every

E ⊆ (a, b).
Choose a positive r ∈ R so that [−1, 1]∩(a+r, b+r) = ∅ = [a, b]∩(a+r, b+r).

We define the weak selection f as follows:

f ({x, y}) :=



x if x ∈ (a+ r, b+ r) and y =
1

n+1

− 1

n+1
if x ∈ (a+ r, b+ r) and y = − 1

n+1

x if x < y otherwise
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for every n ∈ N and for each {x, y} ∈ [R]
2
. By definition, we have that

(a+ r, b+ r) ⊆ (− 1

n+1
,

1

n+1
)f ,

for every n ∈ N. Hence, λ∗f
(
(a + r, b + r)

)
= 0 and so λ∗f

(
E + r

)
= 0, for

every E ⊆ (a, b). Thus we obtain that E + r ∈ Mf . Since (x, y] ∩ (a, b) =
(x, y]f ∩ (a, b) for distinct x, y ∈ R, we conclude that λ∗

(
E
)

= λ∗f
(
E
)
, for each

E ⊆ (a, b).

As an interesting consequence of the previous example is that if E is a
non-measurable subset of (a, b) (for the existence of this set see, for instance,
the book [1, Th. 1.4.7]), then there are a weak selection f and r ∈ R such
that E + r ∈Mf and λ∗

(
E
)

= λ∗f
(
E
)
.

We know that every Euclidean interval (a, b) is Lebesgue measurable, con-
trary to this fact we have the following example.

Example 3.10. There is a weak selection f such that (0, 1)f is not λ∗f -
measurable.

Our weak selection f is given by the rule:

f ({x, y}) :=



x if x ∈ (3, 4) and y = 1

0 if x ∈ (3, 4) and y = 0

x if x ∈ (2, 3) and y = 0

−1 if x ∈ (2, 3) and y = −1

x if x ∈ (2, 4) and y = 6

5 if x ∈ (2, 4) and y = 5

x if x < y otherwise

for each {x, y} ∈ [R]
2
. We have the following properties:

• (2, 4) = (2, 4)f , (2, 3) = (2, 3)f and (3, 4) = (3, 4)f .

• (0, 1)f = (0, 1) ∪ (3, 4) and (−1, 0)f = (−1, 0) ∪ (2, 3).

• (5, 6)f = (5, 6) ∪ (2, 4).



Outer Measures on the real line by weak selections 113

It is not hard to show that λ∗f
(
(2, 4)

)
= λ∗f

(
(2, 3)

)
= λ∗f

(
(3, 4)

)
= 1. If

E = (0, 1)f and A = (2, 4)f , then

E ∩A = [(0, 1) ∪ (3, 4)] ∩ (2, 4) = (3, 4) = (3, 4)f , and

Ec ∩A = [(−∞, 0] ∪ [1, 3] ∪ [4,+∞)] ∩ (2, 4) = (2, 3) = (2, 3)f .

So, λ∗f (E ∩ A) = λ∗f (Ec ∩ A) = 1. On the other hand, since (2, 4) ⊆ (5, 6)f ,

we must have that λ∗f
(
(2, 4)f

)
≤ 1. Thus,

λ∗f
(
E ∩A

)
+ λ∗f

(
Ec ∩A

)
= 2 > 1 = λ∗f

(
A
)
.

Therefore, (0, 1)f cannot be λ∗f -measurable.

Question 3.11. Let f be a weak selection. Given an f -interval (a, b)f , is
there a weak selection g such that (a, b)g is not λ∗f -measurable ?

Next, we shall see that a subset of R of size c can have arbitrary positive
real f -outer measure by defining a suitable weak selection f .

Example 3.12. If A ⊆ R has size c and a, b ∈ R satisfy a < b, then there
exists a weak selection f such λ∗f

(
A
)

= b− a.
Without loss of generality, we may assume that A∩ (a, b) = ∅. The defini-

tion of the weak selection f will be by transfinite induction. First we define

• a <f r <f b for all r ∈ A. Next, consider the set

R =
{
S ∈ Rω : S = (xn)n∈N and ∀n ∈ N (x2n 6= x2n+1)

}
.

Enumerate R as
{
Sξ : ξ < c

}
and Sξ by (xξn)n∈N for each ξ < c. Now,

suppose that the weak selection f and the number rξ ∈ A have been
defined in a certain convenient way, for all ξ < θ < c. Consider the
sequence Sθ. Fix

rθ ∈ A \
[{
rξ : ξ < θ

}
∪
{
xξn : ξ ≤ θ and n ∈ N

}]
,

This is possible, since the cardinality of this set is c. We define the weak
selection f on the point rθ with respect to xξn, for each n ∈ N, as follows:

• If xξ2n 6= a for all n ∈ N, then rθ <f x
ξ
2n.

• If there is n ∈ N such that xξ2n = a and xξ2n+1 = b, then a <f rθ <f b.
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• If there is n ∈ N such that xξ2n = a and xξ2n+1 6= b for all n ∈ N, then

xξ2n+1 <f rθ.

The weak selection f will preserve the Euclidean order on the rest of the
points. By the definition of the weak selection, we have that A ⊆ (a, b]f and
hence λ∗f [A] ≤ b− a. Suppose that

A ⊆
∞⋃
n=0

(an, bn]f .

Let θ < c such that the sequence Sθ = (xθn)n∈N satisfies xθ2n = an and xθ2n+1 =
bn, for all n ∈ N. Applying the definition of f , for every n ∈ N we have the
following cases:

rθ /∈ (xξ2n, x
ξ
2n+1]f if a 6= xξ2n and b 6= xξ2n+1,

rθ /∈ (xξ2n, b]f if a 6= xξ2n and

rθ /∈ (a, xξ2n+1]f if b 6= xξ2n+1.

Hence, it follows that if either a 6= xξ2n or b 6= xξ2n+1, for all n ∈ N, then

rθ /∈
∞⋃
n=0

(xξ2n, x
ξ
2n+1]f .

This shows that the only possible cover of A by f -intervals should contain the
f -interval (a, b]f . Therefore, λ∗f

(
A
)

= b− a.

Corollary 3.13. If a, b ∈ R satisfy a < b, then there exists a weak selection
f such that λ∗f

(
(0, 1)

)
= b− a.

We end the article with an open question.

Question 3.14. Let f and g be two weak selections. If λ∗f
(
(a, b]f

)
= λ∗g

(
(a, b]g

)
,

for all a, b ∈ R, must λ∗f = λ∗g ?
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