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ON INTERNALLY STRONG
ŚWIA̧TKOWSKI FUNCTIONS

Abstract

In this paper we introduce some notions which are related to quasi-
continuity and a strong Świa̧tkowski property. We examine the basic
properties, the uniform closure, and several varieties of maximal classes
for the family of internally strong Świa̧tkowski functions. Moreover we
study when the function f can be expressed as the sum of two inter-
nally quasi-continuous functions and the sum of two internally strong
Świa̧tkowski functions.

1 Preliminaries

We use mostly standard terminology and notation. The letters R, Z, and N
denote the sets of real numbers, integers, and positive integers, respectively.
For all a, b ∈ R we define I[a, b) = [a, b), if a < b, and I[a, b) = (b, a] otherwise.
The symbols I(a, b) and I[a, b] are defined analogously. For each A ⊂ R we
use the symbols intA, clA, bdA, cardA, µ(A), and χA to denote the interior,
the closure, the boundary, the cardinality, the Lebesgue measure, and the
characteristic function of A, respectively.
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Let I be a nondegenerate interval and f : I → R (the interval I can be also
equal to R). The symbols C(f) and A(f) will stand for the set of all points
of continuity of f and the set of all local maxima (not necessarily strict) of
f , respectively. We say that f is a Darboux function (f ∈ D), if it maps
connected sets onto connected sets. We say that f is quasi-continuous in
the sense of Kempisty [3] (f ∈ Q), if for all x ∈ I and open sets U 3 x
and V 3 f(x), the set int(U ∩ f−1(V )) is nonempty. We will say that f is
internally quasi-continuous (f ∈ Qi), if it is quasi-continuous and its set of
points of discontinuity is nowhere dense. We say that f is a strong Świa̧tkowski
function [5] (f ∈ Śs), if whenever a, b ∈ I, a < b, and y ∈ I(f(a), f(b)), there
is an x0 ∈ (a, b)∩C(f) such that f(x0) = y. We will say that f is an internally
strong Świa̧tkowski function (f ∈ Śsi), if whenever a, b ∈ I, a < b, and y ∈
I(f(a), f(b)), there is an x0 ∈ (a, b) ∩ int C(f) such that f(x0) = y. (Clearly
Śsi ⊂ Śs ⊂ D∩Q.) We say that f ∈ Const if and only if f [I] is a singleton. We
will identify functions with their graphs. Later in this paper the word function
will denote a mapping from R into R unless otherwise explicitly stated. For
each nonempty set A ⊂ I we define osc(f,A) as the oscillation of f on A, i.e.,
osc(f,A) = sup

{
|f(x) − f(t)| : x, t ∈ A

}
. For each x ∈ I we define osc(f, x)

as the oscillation of f at x, i.e., osc(f, x) = limδ→0+ osc
(
f, I ∩ (x− δ, x+ δ)

)
.

If L is a family of real functions, then we define:

Ma(L) =
{
f : ∀ g ∈ L f + g ∈ L

}
,

Mm(L) =
{
f : ∀ g ∈ L f · g ∈ L

}
,

Mmax(L) =
{
f : ∀ g ∈ L max{f, g} ∈ L

}
.

The above classes are called the maximal additive class for L, the maximal
multiplicative class for L, and the maximal class with respect to maximums
for L, respectively.

2 Introduction

In 1988 Z. Grande [2] proved that a function f is quasi-continuous if and only
if f�C(f) is dense in f . Similarly we can write an equivalent definition of inter-
nally quasi-continuity, namely, f is internally quasi-continuous if and only if
f� int C(f) is dense in f . It turns out that this stronger condition is fulfilled by
some subclasses of Darboux functions, e.g., Baire one star Darboux functions
[8] or finitely continuous Darboux functions [7]. In 1988 E. Strońska [9] con-
structed an approximately continuous quasi-continuous function which is al-
most everywhere discontinuous. Clearly such a function is not internally quasi-
continuous. On the other hand every internally quasi-continuous function is
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quasi-continuous and it easy to prove that every internally strong Świa̧tkowski
function is internally quasi-continuous.

In 1966 A.M. Bruckner, J.G. Ceder and M.L. Weiss defined the class of real
functions U in the following way [1]: f ∈ U if and only if for all a < b and each
set A ⊂ [a, b] with cardA < c (where c = cardR) the set f([a, b] \ A) is dense
in I[f(a), f(b)]. They showed that the class U is the uniform closure of the
family of all Darboux function, i.e., f ∈ U , if f is the limit of some uniformly
convergent sequence of Darboux functions. In 1995 A. Maliszewski [5] proved
that the function f is the limit of some uniformly convergent sequence of strong
Świa̧tkowski functions if and only if f ∈ U and it is quasi-continuous.

The main goal of this paper is to characterize the uniform closure of the
family of internally strong Świa̧tkowski functions (Corollary 4.6). Moreover we
show that the maximal additive class, the maximal multiplicative class, and
the maximal class with respect to maximums for the family of internally strong
Świa̧tkowski functions consist of constant functions only (Theorems 4.7–4.9).
Finally we examine when the function f can be expressed as the sum of two
internally quasi-continuous functions and the sum of two internally strong
Świa̧tkowski functions (Theorem 4.10).

3 Auxiliary lemmas

Definition 3.1. We will say that the function f is internally quasi-continuous
at a point x ∈ R, if there is a sequence (xn) ⊂ int C(f) such that xn → x and
f(xn)→ f(x).

Lemma 3.2 is evident.

Lemma 3.2. The function f is internally quasi-continuous if and only if it
is internally quasi-continuous at every point.

Lemmas 3.3 and 3.4 can be easily proved using [4, Theorem 12].

Lemma 3.3. Let g : [α, β]→ R and x ∈ (α, β). If g�[α, x) ∈ Śs, g�(x, β] ∈ Śs,
and x ∈ C(g), then g ∈ Śs.

Lemma 3.4. Let g : [α, β]→ R and x ∈ (α, β). If g�[α, x] ∈ Śs, g�(x, β] ∈ Śs,
and g(x) ∈ g

[
[x, t] ∩ C(g)

]
for each t ∈ (x, β), then g ∈ Śs.

Now we will prove two analogous lemmas for the family Śsi.

Lemma 3.5. Let g : [α, β] → R and x ∈ (α, β). If g�[α, x) ∈ Śsi, g�(x, β] ∈
Śsi, and x ∈ int C(g), then g ∈ Śsi.
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Proof. Let a, b ∈ [α, β], a < b, and y ∈ I(g(a), g(b)). We may assume that
a ≤ x ≤ b. If y ∈ I(g(a), g(x)), then we can choose a point c ∈ (a, x) such that

|g(c)− g(x)| < |y − g(x)|.

Hence y ∈ I(g(a), g(c)) and since g�[α, x) ∈ Śsi, we have g(x0) = y for some
x0 ∈ (a, c)∩int C(g) ⊂ (a, b)∩int C(g). Similarly we proceed if y ∈ I(g(x), g(b)).
If y = g(x), then a < x < b and x ∈ int C(g). So, we have proved that
g ∈ Śsi.

Lemma 3.6. Let g : [α, β] → R and x ∈ (α, β). If g�[α, x] ∈ Śsi, g�(x, β] ∈
Śsi, and g(x) ∈ g

[
[x, t] ∩ int C(g)

]
for each t ∈ (x, β), then g ∈ Śsi.

Proof. Let a, b ∈ [α, β], a < b, and y ∈ I(g(a), g(b)). We may assume that
x /∈ int C(g) (see Lemma 3.5) and a ≤ x < b. If y ∈ I(g(a), g(x)), then
since g�I ∩ [α, x] ∈ Śsi, we have g(x0) = y for some x0 ∈ (a, x) ∩ int C(g) ⊂
(a, b) ∩ int C(g). If y ∈ I[g(x), g(b)), then we can choose a z ∈ (x, b) ∩ int C(g)
such that g(x) = g(z). Hence y ∈ I[g(z), g(b)), and since g�(x, β] ∈ Śsi, there
is an x0 ∈ [z, b) ∩ int C(g) ⊂ (a, b) ∩ int C(g) with g(x0) = y. So, we proved
that g ∈ Śsi.

The proof of Lemma 3.7 is immediate.

Lemma 3.7. Let I ⊂ R be an interval, g : I → R, and f : R→ R. If g ∈ Śsi
and f is continuous, then f ◦ g ∈ Śsi.

The next lemma is due to A. Maliszewski [5, Lemma 3].

Lemma 3.8. Assume that the set K is nowhere dense and closed, function
g ∈ U is locally bounded on R \ K and quasi-continuous, and η > 0. Then
there is a nowhere dense closed set F and a continuous function α such that
α = 0 on K, |α| ≤ η on R, and

[lim
t→x

g(t), lim
t→x

g(t)] ⊂ (g + α)[I ∩ F \K]

for every x ∈ K and every open interval I 3 x.

The proof of Lemma 3.9 is similar to the proof of [5, Lemma 1].

Lemma 3.9. Let g ∈ U . If for every x 6∈ int C(g) and every open interval
I 3 x the following condition holds:

[lim
t→x

g(t), lim
t→x

g(t)] ⊂ g[I ∩ int C(g)],

then g is an internally strong Świa̧tkowski function.
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Proof. Let a < b and y ∈ I(g(a), g(b)). Without loss of generality we may
assume that g(a) < g(b). Since g ∈ U , there is an a′ ∈ (a, b) such that
g(a′) < y. Put

x0 = sup{t ∈ [a′, b) : g < y on [a′, t]}.
Using once more that g ∈ U we have x0 < b and

lim
t→x0

g(t) ≤ y ≤ lim
t→x0

g(t).

So, if x0 ∈ int C(g), then g(x0) = y. In the other case, since x0 ∈ (a, b), by
assumption,

y ∈ [ lim
t→x0

g(t), lim
t→x0

g(t)] ⊂ g[(a, b) ∩ int C(g)].

Hence there is an x1 ∈ (a, b) ∩ int C(g) with g(x1) = y, which proves that
g ∈ Śsi.

4 Main results

First we present some properties of the families Śsi and Qi.

Proposition 4.1. There is an internally quasi-continuous and strong
Świa̧tkowski function which is not internally strong Świa̧tkowski.

Proof. For a < b and x ∈ (a, b) define

ϕa,b(x) = (b− a) sin2 π(b− a)

2(x− a)
+ a,

Then the function ϕa,b is continuous on (a, b), and for each δ ∈ (0, b− a)

ϕa,b[(a, a+ δ)] = [a, b]. (1)

For each n ∈ N put an = 1
n . Define

f(x) =

{
ϕa2n,a2n−1(x) if x ∈ (a2n, a2n−1), n ∈ N,

x otherwise.

Note that R \ C(f) = { 1
2n : n ∈ N}. So, using condition (1) we ob-

tain that f� int C(f) is dense in f , hence the function f is internally quasi-
continuous. Moreover, using once more condition (1) and Lemma 3.4 we have
f�
[

1
2n+1 ,

1
2n−1

]
∈ Śs for each n ∈ N. Finally, by Lemma 3.3, f ∈ Śs. Since

f(x) < 0 for x < 0, f(x) > 0 for x > 0, and 0 /∈ int C(f), the function f is not
internally strong Świa̧tkowski.
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Theorem 4.2. Assume that the function f is quasi-continuous and ε > 0.
Then there is an internally quasi-continuous function g such that |f − g| < ε
on R. Additionally, if f ∈ U , then g ∈ U .

Proof. Let ε > 0 and f is quasi-continuous. Define

F = {x ∈ R : osc(f, x) ≥ ε}.

Note that the set F is closed and boundary, hence nowhere dense. Write the
set R \ F as the union of a family I, consisting of nonoverlapping compact
intervals, such that

for each x ∈ R \ F , there are I1, I2 ∈ I with x ∈ int(I1 ∪ I2),

osc(f, I) < ε for each I ∈ I.

Now fix an I = [p, q] ∈ I and put mI = inf{f(x) : x ∈ I}, and MI =
sup{f(x) : x ∈ I}. Define the function gI : I → [mI ,MI ] by the formula:

gI(x) =


f(x) if x ∈ bd I,

(MI −mI) sin2 π(q−p)
4(x−p) +mI if x ∈ (p, (p+ q)/2],

(MI −mI) sin2 π(q−p)
4(q−x) +mI if x ∈ ((p+ q)/2, q).

Observe that the function gI is continuous on the interval int I = (p, q) and

gI(I) = [mI ,MI ]. (2)

Now define

g(x) =

{
gI(x) if x ∈ I, I ∈ I,

f(x) otherwise.

Since osc(f, I) = MI −mI < ε for each I ∈ I, and since f(x) = g(x) for each
x ∈ F , using condition (2) we obtain that |f − g| < ε on R. Now we will show
that g is internally quasi-continuous.

Fix an x0 ∈ R. If x0 ∈ R \ F , then the function g is internally quasi-
continuous at x0 directly from its construction. So, let x0 ∈ F . Since f is
quasi-continuous, there is a sequence (xn) ⊂ C(f) such that xn → x0 and
f(xn) → f(x0). Fix an n ∈ N. The condition xn ∈ C(f) implies that xn ∈
R \ F . Therefore xn ∈ In for some In ∈ I. Without loss of generality we can
assume that x0 < xn and xn is not the left endpoint of In. Then there is a
tn ∈ int In ∩ (x0, xn) with g(tn) = f(xn) and since g is continuous on int In,
we obtain that tn ∈ int C(g). Consequently, there is a sequence (tn) ⊂ int C(g)
such that tn → x0 and g(tn)→ f(x0) = g(x0). This proves that g ∈ Qi.
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To complete the proof assume that f ∈ U . We will show that g ∈ U , too.
Let a < b and fix a set A ⊂ [a, b] with cardA < c. Observe that g�(R\F ) ∈ D,
hence if [a, b] ⊂ R \ F , then g([a, b] \ A) is dense in I[g(a), g(b)]. In the other
case suppose that g([a, b] \ A) is not dense in I[g(a), g(b)]. Then there is an
open interval J ⊂ I(g(a), g(b)) such that g([a, b] \A) ∩ J = ∅. Hence(

g([a, b]) ∩ J
)
\ g(A) = ∅. (3)

We consider two cases.

Case 1. J ∩ I(f(a), f(b)) = ∅.
Then J ⊂ I(f(a), g(a)) or J ⊂ I(f(b), g(b)). Assume that J ⊂ I(f(a), g(a)).

(The second case is analogous.) Since f(a) 6= g(a), there is an I ∈ I such that
a ∈ int I. By assumption, the interval [a, b] 6⊂ I, hence

g(I ∩ [a, b]) = [mI ,MI ] ⊃ I[g(a), f(a)] ⊃ J.

So, g([a, b]) ∩ J = J and finally
(
g([a, b]) ∩ J

)
\ g(A) = J \ g(A) 6= ∅, which

contradicts (3).

Case 2. J ∩ I(f(a), f(b)) 6= ∅.
Since f ∈ U , we obtain that f([a, b] \ A) ∩ J ∩ I[f(a), f(b)] 6= ∅, hence

f([a, b] \ A) ∩ J 6= ∅. So, there is a t ∈ [a, b] such that f(t) ∈ J and g(t) 6∈ J .
Therefore f(t) 6= g(t), which implies that t ∈ int I for some I ∈ I. But
[a, b] 6⊂ I, so there is a z ∈ int I ∩ [a, b] with g(z) = f(t) ∈ J . Hence g([a, b]) ∩
J ⊃ [mI ,MI ]∩ J and [mI ,MI ]∩ J is a nondegenerate interval. Consequently(
g([a, b])∩J

)
\ g(A) 6= ∅, which contradicts (3). This completes the proof.

In the proof of the next theorem we will use a construction quite similar
to the one used in [9].

Theorem 4.3. Assume that the function f is quasi-continuous and ε > 0.
Then there is a quasi-continuous function g with the set of discontinuity points
of full Lebesgue measure such that |f − g| < ε on R.

Proof. Let f be quasi-continuous and ε > 0. For each k ∈ Z put fk =
f�[k, k + 1]. Fix a k ∈ Z. If µ

(
[k, k + 1] \ C(f)

)
= 1, then define the function

α(k) = 0 on [k, k + 1]. In the other case µ
(
[k, k + 1] \ C(f)

)
< 1. Put

Gk = [k, k + 1] ∩ C(f). Then Gk is a Gδ set with positive Lebesgue measure

0 < r ≤ 1. Define C
(k)
0 = ∅ and fix an n ∈ N. Let C

(k)
n ⊂ Gk \

⋃n−1
i=0 C

(k)
i

be a Cantor set such that µ(C
(k)
n ) = r/2n and let I(k)n be the family of all

components of the set (k, k+ 1) \C(k)
n . For each I

(k)
n = (a, b) ∈ I(k)n define the
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function β
I
(k)
n

: cl I
(k)
n → [0, ε/2n] as follows:

β
I
(k)
n

(x) =


0 if x ∈ bd I

(k)
n ,

ε/2n if x = (a+ b)/2,

linear in intervals [a, (a+ b)/2] and [(a+ b)/2, b].

Now define the function α
(k)
n : [k, k + 1]→ [0, ε/2n] by the formula:

α(k)
n (x) =

{
0 if x ∈ C(k)

n ∪ bd[k, k + 1],

β
I
(k)
n

(x) if x ∈ cl I
(k)
n , I

(k)
n ∈ I(k)n .

Observe that α
(k)
n is continuous on [k, k + 1] \ C(k)

n and discontinuous on the

Cantor set C
(k)
n . Put α(k) =

∑
n∈N αn

(k) and C(k) =
⋃
n∈N C

(k)
n . Observe that

C(k) ⊂ Gk and α(k) : [k, k + 1] → [0, ε] is quasi-continuous. Moreover α(k) is
continuous on [k, k + 1] \ C(k), discontinuous on C(k), and µ(Gk \ C(k)) = 0.
Finally, put C =

⋃
k∈Z C

(k), α =
⋃
k∈Z α

(k) and g = f + α. Then clearly
|f − g| < ε on R, the function g is quasi-continuous and discontinuous on the
set C ∪ (R \ C(f)) = R \ C(g) of full Lebesgue measure.

An immediate consequence of Theorems 4.2 and 4.3 is the following corol-
lary.

Corollary 4.4. The set of all bounded internally quasi-continuous functions
is dense and boundary in the space of all bounded quasi-continuous functions
with the metric of uniform convergence.

Now we characterize the uniform closure of the family of internally strong
Świa̧tkowski functions.

Theorem 4.5. Assume that f ∈ U is an internally quasi-continuous function
and η > 0. Then there are an internally strong Świa̧tkowski function g and a
continuous function α such that f = g + α and |α| ≤ η on R.

Proof. Let K = R \ int C(f). Since f is an internally quasi-continuous func-
tion, f is quasi-continuous and K is nowhere dense closed set. Moreover f is
continuous on R \K, hence f locally bounded on this set. So, by Lemma 3.8
there is a nowhere dense closed set F and a continuous function α′ such that
α′ = 0 on K, |α′| ≤ η on R, and

[lim
t→x

f(t), lim
t→x

f(t)] ⊂ (f + α′)[I ∩ F \K]
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for every x ∈ K and every open interval I 3 x. Observe that

F \K = F ∩ (R \K) = F ∩ int C(f) ⊂ int C(f).

Let α = −α′. Clearly α = 0 on K and |α| ≤ η on R, too. Define g = f − α.
Then f = g + α. We can easily see that C(f) = C(g), and for each x ∈ K

lim
t→x

g(t) = lim
t→x

f(t) and lim
t→x

g(t) = lim
t→x

f(t).

Consequently, for every x /∈ int C(g) and every open interval I 3 x we obtain

[lim
t→x

g(t), lim
t→x

g(t)] ⊂ (f − α)[I ∩ F \K] ⊂ g[I ∩ int C(g)].

Moreover g ∈ U (see [1]). So, using Lemma 3.9 we have g ∈ Śsi.

Corollary 4.6. A quasi-continuous function f belongs to U if and only if
there is a sequence (fn) of internally strong Świa̧tkowski functions such that
f is the uniform limit of (fn).

Proof. First assume that there is a sequence (fn) of internally strong Świa̧t-
kowski functions such that f is the uniform limit of (fn). Since Śsi ⊂ Śs,
by [5, Corollary 5] the function f is quasi-continuous and f ∈ U .

On the other hand let f ∈ U be quasi-continuous. Fix an ε > 0. By
Theorem 4.2 there is an internally quasi-continuous function g ∈ U such
that |f − g| < ε/2. Moreover, by Theorem 4.5 there is an internally strong
Świa̧tkowski function h such that |g − h| < ε/2. So, |f − h| < ε, which proves
that f is the uniform limit of the sequence of internally strong Świa̧tkowski
functions.

In 2002 P. Szczuka [10] showed that Ma(Śs) = Mm(Śs) = Mmax(Śs) =
Const. In the similar way we will prove three analogous theorems for the
family Śsi.

Theorem 4.7. Ma(Śsi) = Const.

Proof. We can easily see that Const ⊂Ma(Śsi). So, we need to prove only
the opposite inclusion. Let f /∈ Const. We will show that f /∈Ma(Śsi).

If f /∈ Śsi, then χ∅ ∈ Śsi and f = f + χ∅ /∈ Śsi. Therefore f /∈ Ma(Śsi),
and we can assume that f ∈ Śsi.

Since f ∈ Śsi \ Const, there is an open interval J = (a, b) ⊂ C(f) such that
f is nonconstant on J and f(a) 6= f(b). We may assume that f(a) < f(b).
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(The case f(a) > f(b) is analogous.) Since the set f [A(f)] is at most countable
(see e.g. [10, Lemma 2.4]), we can take an x0 ∈ J \ A(f) such that

f(x) < f(x0) for each x ∈ [a, x0). (4)

Choose a sequence (xn) ⊂ (x0, b) such that xn → x+0 and f(xn) > f(x0) for
each n ∈ N. Then xn+1 < xn for every n ∈ N. Define

g(x) =

{
0 if x ∈ (−∞, x0] ∪ [x1,∞),

gn(x) if x ∈ [xn+1, xn], n ∈ N,

where

gn(x) = max
{

2
(
f(x0)− f(x)

)
, 1− 2|x− (xn+1 + xn)/2|

xn − xn+1

}
.

Observe that gn(xn+1) = 0 = gn+1(xn+1) for each n ∈ N. So, the function g
is well defined. Since x0 is the only point of discontinuity of g and g(xn) = 0
for each n ∈ N, by Lemma 3.6, g ∈ Śsi. Now we will show that f + g /∈ Śsi.

Put α = a and β = x1. Notice that, by (4), (f + g)(x) = f(x) < f(x0) for
each x ∈ [α, x0). Now fix an x ∈ (x0, β). If f(x) < f(x0), then

(f + g)(x) ≥ f(x) + 2f(x0)− 2f(x) > f(x0).

In the other case if x = xn+1 for some n ∈ N, then (f + g)(x) = f(xn+1) >
f(x0) and if x 6= xn+1 for each n ∈ N, then

(f + g)(x) ≥ f(x) + 1− 2|x− (xn+1 + xn)/2|
xn − xn+1

> f(x) ≥ f(x0).

Consequently (f + g)(x) > f(x0) for each x ∈ (x0, β). Hence in particular
f(x0) ∈

(
(f + g)(α), (f + g)(β)

)
. Finally observe that

lim
x→x+

0

(f + g)(x) ≥ f(x0) + 1 > f(x0) = (f + g)(x0),

which implies x0 /∈ C(f + g). So, (f + g)(x) 6= f(x0) for each x ∈ (α, β) ∩
int C(f + g). This proves that f + g /∈ Śsi, hence f /∈Ma(Śsi).

Theorem 4.8. Mm(Śsi) = Const.

Proof. It is easy to show that Const ⊂Mm(Śsi). So, we need to prove only
the opposite inclusion. Let f /∈ Const. We will show that f /∈Mm(Śsi).
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If f /∈ Śsi, then χR ∈ Śsi and f = f · χR /∈ Śsi. Therefore f /∈ Mm(Śsi),
and we can assume that f ∈ Śsi.

Since f ∈ Śsi \ Const, there is an open interval J ⊂ C(f) such that f is
nonconstant on J . Without loss of generality we may assume that f is positive
on clJ . By Theorem 4.7 there is a function ḡ : cl J → R such that ḡ ∈ Śsi
and ln ◦f + ḡ /∈ Śsi on cl J . Let J = (a, b). Define

g(x) =


(exp ◦ḡ)(x) if x ∈ cl J ,

(exp ◦ḡ)(a) if x ∈ (−∞, a),

(exp ◦ḡ)(b) if x ∈ (b,∞).

By Lemma 3.7, exp ◦ḡ ∈ Śsi on cl J , hence clearly g ∈ Śsi. But on the interval
J we have

ln ◦(fg) = ln ◦
(
f · (exp ◦ḡ)

)
= ln ◦f + ḡ /∈ Śsi.

If fg ∈ Śsi on J , then by Lemma 3.7, ln ◦(fg) ∈ Śsi on J , a contradiction. So,
fg /∈ Śsi, which proves that f /∈Mm(Śsi).

Theorem 4.9. Mmax(Śsi) = Const.

Proof. We can easily see that Const ⊂Mmax(Śsi). So, we need to prove only
the opposite inclusion. Let f /∈ Const. We will show that f /∈Mmax(Śsi).

If f /∈ Śsi, then there are α < β and y ∈ I(f(α), f(β)) such that f(x) 6= y
for each x ∈ (α, β) ∩ int C(f). Put g = min{f(α), f(β)} and h = max{f, g}.
Then clearly g ∈ Const ⊂ Śsi. Since y ∈ I(h(α), h(β)) and h(x) 6= y for each
x ∈ (α, β) ∩ int C(h), we obtain that h /∈ Śsi. Therefore f /∈ Mmax(Śsi), and
we may assume that f ∈ Śsi.

Since f ∈ Śsi\Const, there is an open interval J = (a, b) ⊂ C(f) such that f
is nonconstant on J and f(a) 6= f(b). We may assume that f(a) < f(b). (The
case f(a) > f(b) is analogous.) Since the set f [A(f)] is at most countable, we
can take an x0 ∈ J \ A(f) such that

f(x) < f(x0) for each x ∈ [a, x0). (5)

Choose a sequence (xn) ⊂ (x0, b) such that xn → x+0 and f(xn) > f(x0) for
each n ∈ N. Since (xn) ⊂ C(f), for each n ∈ N, there is a δn > 0 such that
f(x) > f(x0) for every x ∈ (xn − δn, xn + δn). Without loss of generality we
can assume that xn+1 + δn+1 < xn − δn for each n ∈ N. Define

g(x) =


f(x) if x ∈ (−∞, x0],

f(x0)− 1 if x ∈ {xn : n ∈ N} ∪ [x1,∞),

f(x0) + 1 if x ∈
⋃∞
n=1[xn+1 + δn+1, xn − δn],

linear in intervals [xn+1, xn+1 + δn+1] and [xn − δn, xn], n ∈ N.
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Then x0 is the only point of discontinuity of g. Since

g(x0) = f(x0) ∈ g
[
[x0, t] ∩ int C(g)

]
= [f(x0)− 1, f(x0) + 1]

for each t ∈ (x0, x1), by Lemma 3.6, g ∈ Śsi. To complete the proof we must
show that h = max{f, g} /∈ Śsi.

Put α = a and β = x1 − δ1. Note that by (5), h(x) < f(x0) for each
x ∈ [α, x0) Now fix an x ∈ (x0, β]. Then h(x) > f(x0). Indeed, if there
is an n ∈ N such that x ∈ [xn+1, xn+1 + δn+1) or x ∈ (xn − δn, xn), then
h(x) ≥ f(x) > f(x0), and if x ∈ [xn+1 + δn+1, xn − δn] for some n ∈ N, then
h(x) ≥ g(x) = f(x0) + 1 > f(x0). Hence in particular f(x0) ∈ (h(α), h(β)).
Finally

lim
x→x+

0

h(x) ≥ lim
x→x+

0

g(x) = f(x0) + 1 > f(x0) = h(x0).

It follows that x0 /∈ C(h), hence h(x) 6= f(x0) for each x ∈ (α, β) ∩ int C(h).
Consequently h /∈ Śsi, which proves that f /∈Mmax(Śsi).

Finally we present the following theorem.

Theorem 4.10. For every function f the following conditions are equivalent :

a) there are functions g1, g2 ∈ Śsi with f = g1 + g2,

b) there are functions g1, g2 ∈ Qi with f = g1 + g2,

c) the set int C(f) is dense in R.

Proof. The implication a)⇒b) is evident.

b)⇒ c). Assume that there are internally quasi-continuous functions g1
and g2 such that f = g1 + g2. Then clearly int C(g1) ∩ int C(g2) ⊂ int C(f).
Since sets int C(g1) and int C(g2) are dense in R, the set int C(f) is dense in R,
too.

c)⇒ a). If the function f is continuous we can set g1 = 0 and g2 = f . Then
clearly f = g1 + g2 and g1, g2 ∈ Śsi. In the opposite case write int C(f) as the
union of a family I consisting of nonoverlapping compact intervals, such that
for each x ∈ int C(f), there are I1, I2 ∈ I with x ∈ int(I1 ∪ I2). Fix an I ∈ I
and let I = [x1, x2]. Define

rI = dist(I,R \ int C(f)).
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Observe that rI > 0. Choose elements x1 < c1 < d1 < c < d2 < c2 < x2. For
i ∈ {1, 2} define the function ϕi : I[xi, c]→ R as follows:

ϕi(x) =


1/rI if x = ci,

−1/rI if x = di,

f(x)/2 if x ∈ {xi, c},
linear in intervals I[xi, ci], I[ci, di], and I[di, c].

Now for i ∈ {1, 2} define the function gI,i : I → R by the formula:

gI,i(x) =

{
ϕi if x ∈ I[xi, c],

(f − ϕ3−i) if x ∈ I[c, x3−i].

Note that functions gI,1 and gI,2 are continuous, and f�I = gI,1+gI,2. Finally,
for i ∈ {1, 2} define

gi(x) =

{
gI,i(x) if x ∈ I, I ∈ I,

f(x)/2 if x /∈ int C(f).

Then f = g1 + g2. Moreover int C(f) ⊂ int C(g1)∩ int C(g2). Fix an i ∈ {1, 2}.
To complete the proof we must show that gi ∈ Śsi.

Let α < β and y ∈ I(gi(α), gi(β)). We can assume that gi(α) < gi(β). (The
case gi(α) > gi(β) is analogous.) If [α, β] ⊂ int C(f), then [α, β] ⊂ int C(gi),
hence there is an x0 ∈ (α, β)∩ int C(gi) such that gi(x0) = y. So, assume that
[α, β] \ int C(f) 6= ∅. Put γ = max

{
[α, β] \ int C(f)

}
. Then γ /∈ int C(f). Since

the set int C(f) is dense in R, for each n ∈ N there is an In ∈ I such that
In ⊂ (γ − 1/n, γ + 1/n) ∩ (α, β). Moreover, since limn→∞

∣∣ 1
rIn

∣∣ = ∞, there

is an In0
⊂ (γ − 1/n0, γ + 1/n0) ∩ (α, β) with y ∈ gi[In0

]. So, there is an
x0 ∈ In0

∩ int C(f) ⊂ (α, β) ∩ int C(gi) such that gi(x0) = y. It follows that
gi ∈ Śsi.
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