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WHEN IS A FAMILY OF GENERALIZED
MEANS A SCALE?

Abstract

For a family {kα |α ∈ I} of real C2 functions defined on U (I, U –
open intervals) and satisfying some mild regularity conditions, we prove
that the mapping I 3 α 7→ k−1

α

(∑n
i=1 wikα(ai)

)
is a continuous bijection

between I and (min a, max a), for every fixed non-constant sequence a =(
ai
)n
i=1

with values in U and every set, of the same cardinality, of positive

weights w =
(
wi
)n
i=1

. In such a situation one says that the family of
functions {kα} generates a scale on U . The precise assumptions in our
result read (all indicated derivatives are with respect to x ∈ U)

(i) k′α vanishes nowhere in U for every α ∈ I,

(ii) I 3 α 7→ k′′α(x)

k′α(x)
is increasing, 1–1 on a dense subset of U and onto

the image R for every x ∈ U .

This result makes possible three things: 1) a new and extremely short
proof of the classical fact that power means generate a scale on (0,+∞),
2) a short proof of a fact, which is in a direct relation to two results
established by Kolesárová in 2001, that, for every strictly increasing
convex and C2 function k : (0, 1) → (0, +∞), the class {Mkα}α∈(0,+∞)

of quasi-arithmetic means (see Introduction for the definition) generated
by functions kα, kα(x) = k(xα), α ∈ (0, +∞), generates a scale on (0, 1)
between the geometric mean and maximum (meaning that, for every a,
w, if s ∈

(∏n
i=1 a

wi
i , max(a)

)
then there exists exactly one α such that

Mkα(a,w) = s).
3) a brief proof of one of the classical results of the Italian statistics’

school from the 1910-20s that the so-called radical means generate a
scale on (0, +∞).
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1 Introduction

One of the most popular families of means encountered in the literature con-
sists of quasi-arithmetic means (Q-A for short). That mean is defined for any
continuous strictly monotone function f : U → R, U – an open interval. When
a = (a1, . . . , an) is a sequence of points in U and w = (w1, . . . , wn) is a se-
quence of weights (wi > 0, w1 + · · ·+wn = 1), then the mean M = Mf (a, w)
is well-defined by the equality

f(M) =

n∑
i=1

wif(ai) .

According to [13, pp. 158–159], this family of means was dealt with for the
first time in the papers [11, 15, 17], just a couple of years before the coming
out of that benchmark contribution [13]. Among the names of independent,
if simultaneous, contributors there is that of Kolmogorov. He had explained
in [15] the naturality of the above construction. In fact, a very short list of
his most natural postulates to be satisfied by a mean forces the existence of a
continuous function governing that mean, exactly as in the definition above.
The issue is also discussed in the by-now-classical encyclopaedic publications
[6] and [7], and it is underlined there that one thus naturally generalizes the
Power Means. Indeed, the latter family, containing the most popular means:
arithmetic, geometric, quadratic, harmonic, is encompassed by this approach
upon taking the functions

kα(x) =

{
xα if α 6= 0

lnx if α = 0
,

for x ∈ U = (0, +∞), α ∈ I = R.

We pass now to the notion of scale in the theory of means. If a non-constant
vector a ∈ Un and weights w are fixed then the mapping f 7→Mf (a, w) takes
continuous monotone functions f : U → R to the interval (min a,max a). One
is interested in finding such families of functions {kα : U → R}α∈I , where I is
an interval, that for every non-constant vector a with values in U and arbitrary
fixed corresponding weights w, the mapping I 3 α 7→Mkα(a, w) be a bijection
onto (min a, max a). Every such a family of means Mkα is called scale on U .

The problem of finding conditions, for a family of means, equivalent to
its being a scale has been discussed for various families. For instance, a set
of conditions pertinent for Gini means was presented in [1]. Many results
concerning means may be expressed in a compact way in terms of scales.
Probably the most famous is the fact that the family of power means is a scale



When is a Family of Generalized Means a Scale? 195

on (0, +∞). It was proved for the first time (for arbitrary weights) in [2].
More about the underlying history, as well as another proof, was given in [6,
p. 203]. In the last section of the present note we will present a new, extremely
short proof of this classical fact.

2 Comparison of means

Dealing with means, we would like to know whether (a) one mean is not smaller
than the other, whenever both are defined on the same interval and computed
on same, but arbitrary, set of arguments. And, when (a) holds true, whether
(b) the two means, evaluated on arguments, are equal only when all compo-
nents in an input a are the same: a1 = a2 = · · · = an. With (a) and (b)
holding true, we would say that the first mean is greater than the second.

As long as quasi-arithmetic means are concerned, the comparability of Mf

and Mg as such turns out to be intimately related to the convexity of the
function f ◦ g−1; see items (ii) and (iii) in Proposition 2 below.

Unfortunately, however, when it comes to scales, the family of objects to
handle becomes uncountable. Hence one is forced to use another tool, allowing
to tell something about uncountable families of means. Its concept goes back
to a seminal paper [16]. A key operator from [16] (recalled below), denoted
in this paper either by A or simply by bold font, is used in item (i) in our
technically crucial Proposition 2.

In fact, let U be an interval and C26=(U) be the class of functions from
C2(U) with the first derivative vanishing nowhere in U (if a boundary point
belongs to U , as will happen in Section 3, then we will assume the existence
of a corresponding one-sided, second derivative and nonzero, one-sided, first
derivative at that point). Within this class one defines A : C26=(U)→ C(U) by
the formula

A(f) :=
f ′′

f ′
.

However, the operator A will be used so often that it is reasonable to adopt the
convention that, for a, b, c, · · · ∈ C2 6=(U), aaa, bbb, ccc, . . . stand for A(a), A(b),
A(c), . . . , respectively. Due to [16], this operator has wide applications in the
comparison of means – see Proposition 2. In fact, it will enable us to compare
means in huge families, not only in pairs. Precisely this kind of comparison
was being advanced by Polish mathematicians in the late 1940s.

One of the most important facts was discovered by Mikusiński, who pub-
lished his result, [16, (5)], in the first post-war issue of ”Studia Mathematica”1.

1the flagship journal of the pre-war Lvov Mathematical School, established by
H. Steinhaus and S. Banach.
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It is quite surprising that such a useful result has not been included in the
referential book [6].

We present both necessary and sufficient conditions, for a family of func-
tions {kα}α∈I defined on a common interval U , to generate a scale on U . The
key conditions in our Theorems 1 and 2 are given in terms of the operator A.
Reiterating, it is handy to compare means with its help. We begin with

Theorem 1. Let U be an interval, I = (a, b) – an open interval, (kα)α∈I – a
family of functions on U , kα ∈ C26=(U) for all α.

If I 3 α 7→ A(kα)(x) ∈ R is increasing and 1–1 on a dense subset of U ,
and is onto for all x ∈ U , then (Mkα)α∈I is an increasing scale on U .

A proof of this theorem is given in Section 4. As a matter of fact, we will
need a wider version of the above theorem. Namely, we extend the setup as
follows.

In the definition of a scale (see Introduction) one may replace min a and
max a by arbitrary bounds L(a, w) and H(a, w) respectively, with some func-
tions L and H.2 Then such a modified family of means is called a scale between
L and H. Such generalization is very natural and is frequently used, e. g. in
[6, pp. 323, 364].

Bounds in a scale, in most cases, are either quasi-arithmetic means or min,
or max. In order to make the notation more homogeneous, we introduce two
extra symbols ⊥ and >, and write henceforth, purely formally, M⊥ = min and
M> = max. We also adopt the convention that A(⊥) = −∞ and A(>) = +∞.

Attention. In some papers scales may as well be decreasing. In fact,
we do not lose generality if we assume that all scales are increasing, because
whenever a family {kα}α∈I generates a decreasing scale and ϕ : J → I is
continuous, decreasing, 1–1 and onto, then the family {kϕ(α)}α∈J generates
an increasing scale (see, e. g., Proposition 9 in Section 5).

Corollary 1 (Bounded Scale). Let U be an interval, I = (a, b) – an open
interval. Let l, h ∈ C2 6=(U) ∪ {⊥, >} and (kα)α∈I be a family of functions,
kα ∈ C26=(U) for all α ∈ I.

If I 3 α 7→ A(kα)(x) ∈ R is increasing (decreasing) and 1–1 on a dense
subset of U , and is onto (A(l)(x), A(h)(x)) for all x ∈ U , then (Mkα)α∈I is
an increasing (decreasing) scale between Ml and Mh.

The proof is just a specification of the proof of Theorem 1.

2We slightly abuse the notation here, as most of the researchers active in the field of
means do, e. g., in [6, p. 61].
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Remark. If, in the above corollary, l, h ∈ C2 6=(U), then it would be enough
to assume that the mapping α 7→ A(kα)(x) be onto for almost all x ∈ U .
(Because, then, by Corollary 3, one gets the convergence in L1(U).)

The strength of Theorem 1 is visible in the following example (or exercise).

Example 1. Let U = ( 1
e , +∞) and kα(x) = xαx for α ∈ R \ {0}.

Find such a function k0 that the completed family (kα)α∈R generates a scale
on U .

By the definition of the operator A, for α 6= 0 there holds

kαkαkα(x) =
1

x(lnx+ 1)
+ α(lnx+ 1) .

In view of Theorem 1 we will be done, provided α 7→ kαkαkα(x) is increasing, 1–1
and onto R for all x ∈ U . But

R \ {0} 3 α 7→ kαkαkα(x) ∈ R \
{

1

x(lnx+ 1)

}
for all x ∈ U .

Hence it is natural to take k0 = A−1
(

1
x(ln x+1)

)
. Then the pattern A−1(fff) =∫

e
∫
fff gives automatically k0(x) = x lnx.

Therefore, an increasing scale on ( 1
e ,+∞) is generated by the family

kα =

{
x 7→ xαx if α 6= 0 ,

x 7→ x lnx if α = 0 .

Moreover, it is now immediate to note that, in turn, the same family of func-
tions generates a decreasing scale on (0, 1

e ).

How about a possible reversing of Theorem 1 ? This point is rather fine;
the existence of a scale implies a somehow weaker set of properties than the
one assumed in Theorem 1. To the best of author’s knowledge, the problem
of finding a set of conditions exactly equivalent to generating a scale is still
(and, most likely, widely) open.

Theorem 2. Let U be an interval, I = (a, b) an open interval, (kα)α∈I ,
kα ∈ C26=(U) for all α.

If (Mkα)α∈I is an increasing scale then there exists a dense subset X ⊂ U
such that the mapping I 3 α 7→ A(kα)(x) ∈ R is increasing, 1–1 and onto for
all x ∈ X.

A proof of this theorem is given in Section 4, immediately after the proof
of Theorem 1.
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3 Properties and uses of A

In what follows we will extensively use the operator A. Here we recall, af-
ter [16], some of its key properties. We also rephrase in the terms of A an
important result from [10].

All this will be instrumental in showing that many nontrivial families of
functions do generate scales. We will also deduce about the limit properties
of our quasi-arithmetic means, stating a new result (Proposition 8) inspired,
to some extent, by the paper [14].

Regarding scales as such, many examples of them were furnished in [6,
p. 269]. Scales were also used by the old Italian school of statisticians; see,
e. g., [3, 4, 5, 12, 18, 19]. One of significant results from that last group of
works will be presented, with a new and compact proof, in Proposition 9. That
new approach will, we hope, show how quickly one can nowadays prove old
results.

Remark 1. Let U be an interval and f, g ∈ C26=(U). Then the following
conditions are equivalent:

(i) A(f)(x) = A(g)(x) for all x ∈ U ,

(ii) f = αg + β for some α, β ∈ R, α 6= 0 ,

(iii) Mf (a, w) = Mg(a, w) for all vectors a ∈ Un and arbitrary corresponding
weights w

(see, for instance, [13, p. 66], [16]).

Let f ∈ C1(U) be a strictly monotone function such that f ′(x) 6= 0 for all
x ∈ U . Then there either holds f ′(x) < 0 for all x ∈ U , or else f ′(x) > 0
for all x ∈ U . So we define the sign sgn(f ′) of the first derivative of f to be
sgn(f ′)(x), where x is any point in U . The key tool in our approach is

Proposition 2 (Basic comparison). Let U be an interval, f, g ∈ C26=(U).
Then the following conditions are equivalent:

(i) A(f) > A(g) on a dense set in U ,

(ii) (sgnf ′) · (f ◦ g−1) is strictly convex ,

(iii) Mf (a, w) ≥ Mg(a, w) for all vectors a ∈ Un and weights w, with both
sides equal only when a is a constant vector.
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For the equivalence of (i) and (iii), see [16, p. 95] (this characterization of
comparability of means had, in the same time, been obtained independently
by S.  Lojasiewicz – see footnote 2 in [16]). For the equivalence of (ii) and (iii),
see, for instance, [9, p. 1053].

In the course of comparing means, one needs to majorate the difference
between two means. If the interval U is unbounded then, of course, the differ-
ence between any given two means can be unbounded (for example such is the
difference between the arithmetic and geometric mean). In order to eliminate
this drawback, we will henceforth suppose that the means are always defined
on a compact interval. It will be with no loss of generality, because it is easy
to check that a family of means defined on U is a scale on U if and only if
those means form a scale on D, when treated as functions D → R, for every
closed subinterval D ⊂ U . Indeed, if a is a vector with values in U , then a is
also a vector with values in D for some closed subinterval D of U .

So, from now on, we have U – a compact interval, g ∈ C2 6=(U) increas-
ing, and, clearly, ggg ∈ L1(U). The following theorem is of utmost technical
importance.

Theorem 3. Let U be a closed, bounded interval and f, g ∈ C26=(U). Then

|Mf (a,w)−Mg(a,w)| ≤ (max a−min a) exp(2 ‖A(f)‖1) sinh 2 ‖A(g)−A(f)‖1

for all a and w (‖·‖1 is taken in the space L1(U)).

Proof. Solving a simple differential equation, in view of Remark 1, it is
possible to assume, for function f , that

f(x) =

∫ x

min a

exp

(∫ s

min a

fff(t)dt

)
ds, x ∈ U. (1)

Moreover, let us make the same simplification for g. Then f(min a) = g(min a) =
0 and both functions are positive and increasing on (min a,max a).

Much like in [10, pp. 215–216], we have

Mf (a,w)−Mg(a,w) = (f−1)′(α)
∑

1≤i<j≤n

wiwj

(
g(ai)−g(aj)

)(
θ(zi)−θ(zj)

)
,

where θ = (f ◦g−1)′, for certain α ∈ [min a,max a] and zi ∈ g(U), i = 1, . . . , n.
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The vector w denotes, as usual, weights so
∑

1≤i<j≤n wiwj <
1
2 . Hence

|Mf (a,w)−Mg(a,w)| =

∣∣∣∣∣∣(f−1)′(α)
∑

1≤i<j≤n

wiwj

(
g(ai)− g(aj)

)(
θ(zi)− θ(zj)

)∣∣∣∣∣∣
≤
∥∥(f−1)′

∥∥
∞

2
g(max a) sup

z,v∈g(U)

|θ(z)− θ(v)|

Putting ε := ‖fff − ggg‖1, we assuredly have

f ′

g′
= e

∫
fff−ggg ∈ (e−ε, eε) .

Thus θ(z) = (f ◦ g−1)′(z) = f ′◦g−1(z)
g′◦g−1(z) ∈ (e−ε, eε). What is more,

g(max a) =

∫ max a

min a

g′(s) ds ≤
∫ max a

min a

eεf ′(s) ds = eεf(max a) .

Hence, estimating further,

|Mf (a,w)−Mg(a,w)| ≤
∥∥(f−1)′

∥∥
∞

2
g(max a) sup

z,v∈g(U)

|θ(z)− θ(v)|

≤
∥∥(f−1)′

∥∥
∞ eε

2
f(max a)

(
eε − e−ε

)
=
f(max a)

inf f ′
· e

2ε − 1

2

≤ f(max a)

inf f ′
sinh 2ε .

But, by (1), we also know that

f(max a) =

∫ max a

min a

exp(

∫ s

min a

fff)

≤ (max a−min a) exp(‖fff‖L1(min a,max a))

≤ (max a−min a) exp(‖fff‖1) (2)

and

inf f ′ = inf
s∈U

exp(

∫ s

min a

fff) ≥ exp(−‖fff‖1). (3)
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So, prolonging the previous chain of estimations and using (2) and (3),

|Mf (a,w)−Mg(a,w)| ≤ (max a−min a) exp(2 ‖fff‖1) sinh 2 ‖ggg − fff‖1 .

Remark. Theorem 3 would remain true if ‖·‖1 denote the standard norm in
the space L1(min a,max a).

One immediately gets the following

Corollary 3. Let U be a closed, bounded interval and f ∈ C26=(U). Moreover,
let (fn)n∈N be a sequence of functions from C26=(U) satisfying fnfnfn → fff in
L1(U). Then Mfn ⇒ Mf uniformly with respect to a and w.

Heading towards the main results of the note, we state now

Proposition 4. Let U be a closed bounded interval, I = (a, b) – an open
interval, (kα)α∈I – a family of functions from C26=(U).
(A) If (Mkα)α∈I is an increasing scale then (A(kα))α∈I satisfies all the con-
ditions (a) through (d) listed below.

(a) if αi → α , then A(kαi) → A(kα) on a dense subset of U (independent
of α and (αi)),

(b) if α < β, then A(kα) < A(kβ) on a dense subset of U (independent of α
and β),

(c) if α→ a+, then A(kα)(x)→ −∞ on a dense subset of U (independent of
the sequence α),

(d) if β → b−, then A(kβ)(x)→ +∞ on a dense subset of U (independent of
the sequence β).

(B) Strengthening conditions (a), (c) and (d) to

(e) if αi → α , then A(kαi)→ A(kα),

(f) (α → a+ ⇒ A(kα)(x) → −∞) and (β → b− ⇒ A(kβ)(x) → +∞)
for all x ∈ U

suffices to reverse the implication: (b), (e), and (f) imply (Mkα)α∈I being an
increasing scale.

Proof. To simplify the notation, having a and w fixed, we write shortly

F (α) = Mkα(a, w),

F : I → (min a, max a). And then one simply checks step by step:
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(a) With no loss of generality one may consider αi → α+.

Suppose the converse – that there exists an open subset V ⊂ U , that
A(kαi) 6→ A(kα) on V . Then there exists m ∈ C26=(V ) such that A(kαi) <
A(m) < A(kα). Hence for all i and non-constant vector a with correspond-
ing weights w, Mkαi

<Mm <Mkα .

One need to prove that such a dense set may not depend on α. Let

X(a) :=
{
x : for an arbitrary α, if αi → α, then kαikαikαi(x)→ kαkαkα(x)

}
.

Purely formally

X(a) =
{
x : ∀α ∈ I, ∀ε > 0, ∃δ > 0, ∀β ∈ B(α, δ), |kαkαkα(x)− kβkβkβ(x)| < ε

}
,

equivalently (using the monotonicity of the mapping α 7→ kαkαkα(x) for all
x ∈ U) one obtain

X(a) =
{
x : ∀α ∈ I, ∀ε > 0, ∃δ > 0, |kα−δkα−δkα−δ(x)− kα+δkα+δkα+δ(x)| < ε

}
=
{
x : ∀α ∈ I ∩Q, ∀ε ∈ Q+, ∃δ > 0, |kα−δkα−δkα−δ(x)− kα+δkα+δkα+δ(x)| < ε

}
=

⋂
α∈I∩Q
ε∈Q+

{
x : ∃δ > 0, |kα−δkα−δkα−δ(x)− kα+δkα+δkα+δ(x)| < ε

}
.

But, as αi → α, kαikαikαi → kαkαkα on a dense subset of U . Thus

{x : ∃δ > 0, |kα−δkα−δkα−δ(x)− kα+δkα+δkα+δ(x)| < ε}

is dense and open for all ε > 0 and α ∈ I. Lastly X(a) is a dense Gδ-set.

(b) if α < β, we have F (α) ≤ F (β) and the equality holds if and only if a is
constant. So by Proposition 2 we have kαkαkα < kβkβkβ on a dense set.
Let

X(b) :=
{
x ∈ U : ∀α, ∀β 6= α, kαkαkα(x) 6= kβkβkβ(x)

}
,

Eα,β :=
{
x ∈ U : kαkαkα(x) 6= kβkβkβ(x)

}
.

We have that if [α′, β′] ⊂ [α, β] then Eα,β ⊂ Eα′, β′ , and Eα,β is an open,
dense set. Thus

X(b) =
⋂
α,β∈I
α 6=β

Eα,β =
⋂

α,β∈I∩Q
α6=β

Eα,β

is a dense Gδ-set.
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(c) The proof is completely similar to that of (d) given below.

(d) Let
X(d) = {x : lim

β→b−
kβkβkβ(x)→ +∞}.

If X(d) were not a dense set, then there would exist a closed interval C
such that dist(X(d), C) > 0. Let

M := sup
x∈C

lim
β→b−

kβkβkβ(x) .

Clearly M < +∞, and

Mkβ (v, q) ≤MeMx(v, q) < max v

for all β and v, q such that v ∈ Cn is a non-constant vector. Hence, the
family {kβ} would not generate a scale on U . So X(d) is a dense set.

To prove part (B) one needs to show that, under (e) and (f), (Mkα)α∈I is
a scale on U . By Proposition 2 we know that F is 1–1. Additionally, when
arguing to this side, we know that if α↗ α0 then kαkαkα ↗ kα0

kα0kα0
. So kαkαkα ⇒ kα0

kα0kα0
on

[min a, max a]. Therefore, by Corollary 3, we have Mkα ⇒ Mkα0
with respect

to a and w. Thus F is continuous and 1–1.
To complete the proof, it is sufficient to show that

lim
α→a+

F (α) = min a , lim
β→b−

F (β) = max a .

We know that kβkβkβ → +∞ on the closed interval U . So kβkβkβ ⇒ +∞ on U .
Therefore, for any M ∈ R there exists βM ∈ I such that

F (β) ≥MeMx(a,w), for all β > βM .

Now, letting M → +∞, and knowing that {etx : t 6= 0}∪{x} generates a scale
on R (a folk-type theorem proved in [8]; see also Remark 2 below) we get

F (β) −−−−→
β→b−

max a .

One may similarly prove that

F (α) −−−−→
α→a+

min a .

So F is a continuous bijection between I and (min a, max a). Hence (Mkα)α∈I
is a scale on U .
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Remark 2. To prove that the family {etx : t 6= 0}∪{x} generates a scale on R
it is enough, having data a, w, to consider the all-positive-components-vector
v = (ea1 , . . . , ean). And then to use the fact that the family of power means
evaluated on v with weights w is a scale on R+.

Corollary 5 (strengthening of Proposition 4). Let U be an interval, I = (a, b)
– an open interval, (kα)α∈I– a family of functions, kα ∈ C26=(U) for all α.
(A) If (Mkα)α∈I is an increasing scale then there exists a dense set X ⊂ U
such that

(a) if αi → α, then A(kαi)→ A(kα) on X,

(b) if α < β , then A(kα) < A(kβ) on X,

(c) if α→ a+, then A(kα)(x)→ −∞ on X,

(d) if β → b−, then A(kβ)(x)→ +∞ on X.

(B) Under the stronger condition

(e) if αi → α, then A(kαi)→ A(kα),

(f) (α → a+ ⇒ A(kα)(x) → −∞) and (β → b− ⇒ A(kβ)(x) → +∞)
for all x ∈ U

the entire implication of the corollary can be reversed: (b), (e), and (f) imply
(Mkα)α∈I being an increasing scale.

This corollary says that, in Proposition 4, one can have a single common
subset (X ) of U on which the conditions (a) through (d) hold.

Proof. The (B) parts in Proposition 4 and Corollary 5 are the same except
the notion of X given to the dense set in (B) in Proposition 4. We are going
to show the implication (A).

We might assume that U is a closed interval (compare the comment in the
third paragraph below Proposition 2).

Let us denote a dense sets appearing in (a) through (d) in the Proposition 4
by X(a), . . . , X(d). Our aim is to prove that each of these sets is a dense Gδ-
set. By [the proof of] Proposition 4, X(a) and X(b) are declared to be dense
Gδ-sets. By definition

X(d) = {x ∈ U : lim
β→b−

kβkβkβ(x)→ +∞}.

Due to Proposition 4 we know that X(d) is dense. Let

Ys := {x ∈ U : lim
β→b−

kβkβkβ(x) > s}.
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Observe that Ys is dense (because Ys ⊃ X(d)). Moreover, for all x0 ∈ Ys there
holds kβ0

kβ0kβ0(x0) > s + δ for some β0 ∈ I and δ > 0. Hence one may take an
open neighborhood P 3 x0 satisfying kβ0

kβ0kβ0
(x) > s+ 1

2δ for all x ∈ P , implying
P ⊂ Ys. So Ys is open. But the mapping β 7→ kβkβkβ(x) is nondecreasing for all
x ∈ U . Hence X(d) =

⋂∞
s=1 Ys is a dense Gδ-set. So is the set X(c).

Now one may take X := X(a)∩X(b)∩X(c)∩X(d). X is clearly dense being
a countable intersection of open dense sets.

4 Proofs of Theorems 1 and 2

Proof of Theorem 1. Let U be an interval, I = (a, b) – an open interval,
and X be that dense subset of U upon witch the mapping given in the word-
ing of theorem is increasing and 1–1. We work with the family of functions
(kα)α∈I , kα ∈ C26=(U) for all α.

Let us take an arbitrary x0 ∈ X. We know that I 3 α 7→ kαkαkα(x0) is
increasing, 1–1, and onto R. Next, let us specify the function Φ : R→ I such
that kΦ(α)kΦ(α)kΦ(α)(x0) = α. This function is increasing as well.

Then for α < β we have kΦ(α)kΦ(α)kΦ(α) < kΦ(β)kΦ(β)kΦ(β) on X. But, due to the fact that
I 3 α 7→ kαkαkα(x) ∈ R is onto, we have

lim
α→a

kΦ(α)kΦ(α)kΦ(α)(x) = −∞ and lim
β→b

kΦ(β)kΦ(β)kΦ(β)(x) = +∞

everywhere on U . So one is in a position to use the part (B) of Corollary 5.
Thus the family of means (Mkα)α∈I is an increasing scale on U .

Proof of Theorem 2. Let us take X from Corollary 5. Let then fix any
x0 ∈ X. Let {sp}p∈R be the reparameterized family {kα}α∈I , with restriction

sp = kα , where p = kαkαkα(x0).

Then we know that the mapping

R 3 p 7→ spspsp(x) ∈ R

is 1–1 and onto for all x ∈ X, and, if p > q,

spspsp(x) > sqsqsq(x).

Moreover, due to the fact that spspsp(x0) is onto, we have for all x0

lim
p→−∞

spspsp(x0) = −∞ and lim
p→+∞

spspsp(x0) = +∞ .

So p 7→ spspsp(x) is increasing, 1–1, and onto R for all x ∈ X.
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5 Applications

Proposition 6 (power means do generate a scale). Let U = R+ and (kα)α∈R,
given by

kα(x) =

{
xα α 6= 0

lnx α = 0
,

be the family of power functions. Then the family (kα) generates a scale on
R+.

Proof. We compute kαkαkα,

kαkαkα(x) =
α− 1

x
,

and see that the mapping α 7→ kαkαkα(x) is increasing, 1–1 and onto for all x ∈ R+.
So the assumptions in Theorem 1 hold, implying that the family (kα) generates
an increasing scale on R+.

Before giving our second application we reproduce a 10 years old’ result.

Proposition 7 ([14]). Let k : [0, 1] → R be a continuous monotone function.
Writing kα(x) := k(xα) for any α > 0, there hold:

(i) if there exists the one side, nonzero derivative k′(0+) then

lim
α→+∞

Mkα = max ,

(ii) if there exists the one side, nonzero derivative k′(1−) then

lim
α→0+

Mkα = Mln x .

We prove a somehow similar, yet not so close, result.

Proposition 8. Let k ∈ C26=[0, 1] → (0, +∞) and kα(x) := k(xα), α ∈
(0, +∞). Then

lim
α→0+

Mkα = Mln x and lim
α→+∞

Mkα = max . (4)

If, in addition, k is convex,3 then (kα)α∈(0,+∞) generates a scale between the
geometric mean and max.

3in this situation we can just assume that k ∈ C2[0, 1] and k is strictly monotone, instead
of assuming k ∈ C2 6=[0, 1]
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Proof. We have to prove that the mapping (0, +∞) 3 α 7→ kαkαkα(x) ∈ R is 1–1
and onto for all x ∈ (0, 1). Let us fix an arbitrary x ∈ (0, 1). Then we have

kαkαkα(x) = αxα−1kkk(xα) +
α− 1

x
.

When α→ 0+, then

k0k0k0(x) := lim
α→0+

kαkαkα(x) =
−1

x
.

In turn, when α→ +∞, there holds

kαkαkα(x) = αxα−1 k
′′(0)

k′(0)︸ ︷︷ ︸
>−∞

+
α− 1

x
→ +∞ .

The proof of formulas (4) is now completed.

When, additionally, g is convex, then kkk ≥ 0 and, by Corollary 1, the family
{kα}α∈R+ generates a scale on (0, 1) between the geometric mean and max.

Now we would like to present one classical result of the Italian school of
statisticians from 1910-20s. That result has been reported in [6, p. 269]. We
now give it a new short proof based on Corollary 1.

Proposition 9 (Radical Means). Let U = R+ and (kα)α∈R+
, kα(x) = α1/x

for α 6= 1, completed by k1(x) = 1/x, be the family of radical functions. Then
this family generates a decreasing scale on R+.

Proof. The proof appears to be quite close to the proof of Proposition 6.
Indeed, we quickly compute

kαkαkα(x) = −2x+ lnα

x2
,

finding that the mapping α 7→ kαkαkα(x) is decreasing, 1–1 and onto for all x ∈
R+. So the assumptions in Corollary 1 hold, and hence the family (kα)α∈R+

generates a decreasing scale on R+.

Open problem. How to unify Theorem 1 and Theorem 2 so as to get a
set of conditions that would simultaneously be necessary and sufficient?
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[14] A. Kolesárová, Limit properties of quasi-arithmetic means, Fuzzy Sets
and Systems, 124 (2001), 65–71.

[15] A. Kolmogoroff, Sur la notion de la moyenne, Rend. Accad. dei Lincei, 6
(1930), 388–391.



When is a Family of Generalized Means a Scale? 209

[16] J. G. Mikusiński, Sur les moyennes de la forme ψ−1 [
∑
qψ(x)], Studia

Math., 10 (1948), 90–96.

[17] M. Nagumo, Uber eine Klasse der Mittelwerte, Jap. Journ. of Math., 7
(1930), 71–79.

[18] E. Pizzetti, Osservazione sulle medie esponenziali e baso-esponenziali,
Metron, 13, No. 4 (1939), 3–15

[19] U. Ricci, Confronti fra medie, Giorn. Econ. Rev. Statist., 3 (36), No. 11
(1915), 38–66.



210 Pawe l Pasteczka


