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IDEAL EXHAUSTIVENESS, WEAK
CONVERGENCE AND WEAK

COMPACTNESS IN BANACH SPACES

Abstract

Some types of compactness in the ideal context are defined and re-
lations between ideal exhaustiveness and equicontinuity of measures are
investigated. As applications, some versions of limit theorems involv-
ing ideal pointwise convergence of measure sequences and some weak
compactness results related to integral functionals are presented.

1 Introduction.

Convergence with respect to ideals was introduced in [31] and further investi-
gated in (see [6, 16, 17, 18, 19, 20, 21, 22, 30, 32]). It has been deeply studied
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in the literature particularly in convergence of functions (see [4, 8, 13, 28, 31])
and convergence of measures and integrals (see [7, 8, 9, 10, 11, 12]). Note that,
in general, ideal convergence is strictly weaker than ordinary convergence (see
[30, 31]).

In this paper we firstly introduce compactness in the context of ideals and
we present some comparison results about several new features of compactness
in metric spaces.

Successively we focus our attention on limit theorems for measures with
respect to the ideal convergence. Under suitable hypotheses it is possible
to prove some versions of limit theorems even if we require the simple ideal
setwise convergence of the involved measure sequence (see e.g. [9, 10, 11,
12]). Within this framework new results are established and some classical
results in the literature are reproved under strictly weaker hypotheses. The
main tools are the notions of ideal (α)-convergence and ideal exhaustiveness
previously introduced and studied for function sequences in [13] (see also [27,
29]). Recently, some other versions of limit theorems for measures were proved
in [3, 9, 10, 11, 12] with respect to this kind of convergence.

Weak convergence in measure spaces is characterized and some fundamen-
tal properties of various kinds of ideal compactness for suitable sets of measures
are investigated. As an application we study the convergence in L∞(λ), for λ
being a regular measure.

Our thanks to the referee for his/her valuable and helpful comments and
suggestions.

2 Preliminaries.

We begin with introducing the fundamental properties of ideals (see also [16,
17, 18, 22, 30, 31, 32]).

Definitions 2.1.

(a) Let Y 6= ∅ be any set. A family I ⊂ P(Y ) is called an ideal of Y iff
A ∪B ∈ I whenever A,B ∈ I and for each A ∈ I and B ⊂ A we get B ∈ I.

(b) An ideal I of Y is said to be non-trivial iff I 6= ∅ and Y /∈ I. A
non-trivial ideal I is called admissible iff it contains all singletons.

(c) An admissible ideal I of N is said to be a P -ideal iff for any sequence
(Aj)j in I there are sets Bj ⊂ N, j ∈ N, such that the symmetric difference

Aj∆Bj is finite for all j ∈ N and
∞⋃
j=1

Bj ∈ I.

Several properties of P -ideals are investigated, for instance, in [26].
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From now on we denote by X a Banach space, I an admissible ideal of N
and F = F(I) = {N \A : A ∈ I} its dual filter.

We now recall the norm and weak ideal convergence in the context of
Banach spaces. For recent developments and studies about these concepts,
see also [5, 14, 15, 34].

Definitions 2.2.
(a) A sequence (xn)n in X is called norm I-convergent to x ∈ X iff for all

ε > 0, {n ∈ N: ‖xn − x‖ > ε} ∈ I, where ‖ · ‖ denotes the norm of X. We
then write I − lim

n
xn = x.

(b) A sequence (xn)n in X is called norm I-Cauchy iff for each ε > 0 there
exists q ∈ N such that {n ∈ N: ‖xn − xq‖ > ε} ∈ I.

(c) A sequence (xn)n is called weakly-I-convergent iff the sequence (x∗(xn))n
is I-convergent for every x∗ ∈ X∗ (the dual space of X). A sequence (xn)n is
said to be weakly-I-Cauchy iff the sequence (x∗(xn))n is I-Cauchy for every
x∗ ∈ X∗.

(d) If (xj)j is any sequence in X, then we define I−
∞∑
j=1

xj = I− lim
n

n∑
j=1

xj ,

provided the limit on the right hand side exists.

Note that, since X is complete, a sequence is norm (weakly-)I-convergent
iff it is norm (weakly-)I-Cauchy (see also [16, 17, 18, 22]).

Examples 2.3. (i) If Ifin = {A ⊂ N : A finite}, then Ifin is a P -ideal
of N and Ifin-convergence coincides with the ordinary convergence (see also
[13, 31]).

(ii) Let A ⊂ N. The asymptotic density of A is defined as

d(A) := lim
n

card(A ∩ {1, . . . , n})
n

(provided that this limit exists), where card denotes the cardinality of the set
in brackets. If Id = {A ⊂ N : d(A) = 0}, then Id is a P -ideal of N (see
[13, 30, 31]).

We now recall another kind of convergence in the context of ideals and
some fundamental properties (see [30, 31, 32]).

Definition 2.4. A sequence (xn)n in X I∗-converges to x ∈ X iff there exists
A ∈ F(I) with lim

n∈A
xn = x.

Proposition 2.5. The following results hold (see for instance [9, 10, 11, 12,
30, 31]).
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(a) If lim
n
xn = x then I − lim

n
xn = x. Moreover, if X = R and (xn)n is a

monotone sequence in R, then the converse is also true.
(b) If (xn)n is a sequence in R with I − lim

n
xn = x ∈ R, then there exists

a subsequence (xnq )q of (xn)n, such that lim
q
xnq = x.

(c) The I∗-convergence of sequences implies always the I-convergence to
the same limit. Moreover, if (xn)n is a sequence in X, I-convergent to x ∈ X,
and I is a P -ideal, then (xn)n I∗-converges to x.

(d) Let (xi,j)i,j be a double sequence in X, I be any P -ideal, F = F(I) be
its dual filter, and let us suppose that I − lim

i
xi,j = xj for every j ∈ N. Then

there exists B0 ∈ F such that lim
h∈B0

xh,j = xj for all j ∈ N.

3 Compactness notions in the ideal context.

We now introduce the concept of sequential closure and some kinds of compact-
ness. We will say that P -ideals have good properties, since many situations in
the context of P -ideals are very similar to the corresponding classical ones.

Definitions 3.1.
(a) For F ⊂ X and u ∈ X, we say that u is in the I-closure of F iff there

is a sequence (xn)n of points of F such that I − lim
n
xn = u. We denote the

I-closure of F by F
I
.

(b) A point u ∈ X is called an I-limit point of F ⊂ X iff there is a sequence
(xn)n in F \ {u} such that I − lim

n
xn = u.

(c) A subset F ⊂ X is said to be I-sequentially compact iff every sequence
(xn)n in F contains an I-convergent subsequence (xnk)k with I − limk xnk ∈
F .

(d) A set F ⊂ X is called I-Fréchet compact iff every infinite subset of F
has an I-limit point.

We now prove the equivalence between ideal and classical sequential com-
pactness.

Proposition 3.2. Given a subset F of X, we get that F is I-sequentially
compact if and only if it is sequentially compact.

Proof. If F is I-sequentially compact, then from every sequence (xn)n in F
it is possible to extract a subsequence (xnk)k such that the limit I − lim

k
xnk

exists in X, say x. By Proposition 2.5 (b) there exists a sub-subsequence
(xnkq )q of (xnk)k such that x = lim

q
xnkq . Hence F is sequentially compact.

The converse implication is straightforward.
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We now give the following compactness results.

Proposition 3.3. Any I-closed subset of an I-sequentially compact subset of
X is I-sequentially compact.

Proof. Let K be an I-sequentially compact set and A ⊂ K be I-closed.
Let (xn)n be any sequence in A. Then it is also in K and it admits an I-
convergent subsequence (yk)k := (xnk)k with I − lim

k
yk ∈ K. But since A is

I-closed, so I− lim
k
yk must be in A

I
= A. This shows that A is I-sequentially

compact.

Proposition 3.4. For a P -ideal I, any I-sequentially compact subset K ⊂ X
is I-closed.

Proof. Let K be I-sequentially compact. Let u ∈ K
I
. Then there is a

sequence (xn)n in K, which is I-convergent to u. Since I is a P -ideal, it
is also I∗-convergent to u, namely there is a subsequence (yk)k := (xnk)k
with limk yk = u. Note that consequently I − limk yk = u. By I-sequential
compactness of K there exists a subsequence (zj)j := (ykj )j of (yk)k which is
I-convergent to u1 ∈ K. But, as (zj)j is a subsequence of (yk)k, so lim

j
zj = u,

and thus I − lim
j
zj = u. Hence we must have u = u1 and so u ∈ K. Thus

K = K
I

and K is I-closed.

Corollary 3.5. If I is a P -ideal, then any I-sequentially compact subset of
X is closed in X.

Proposition 3.6. Let I be a P -ideal. A subset K of X is I-sequentially
compact iff it is I-Fréchet compact.

Proof. “⇒” Let K be I-sequentially compact and let A be an infinite subset
of K. Choose a sequence (xn)n of distinct points from A. This sequence has
an I-convergent subsequence (yk)k := (xnk)k with u := I − lim

k
yk ∈ K.

Moreover, since I is a P -ideal, then (yk)k is also I∗-convergent, and so it has
a subsequence (zj)j := (ykj )j with lim

j
zj = u. Note that I − lim

j
zj = u too,

and hence u is an I-limit point of A. Thus K is I-Fréchet compact.
“⇐” Conversely, let us suppose that K is I-Fréchet compact. Let (xn)n

be a sequence in K. Note that, if there exists x ∈ K such that xn = x
for infinitely many n’s, then clearly x forms a constant subsequence, which
is obviously I-convergent. So without loss of generality we can assume that
(xn)n consists of distinct points only (the proof is the same if infinitely many
distinct terms are each repeated only finitely many times).
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Let now B := {xn : n ∈ N}. Then, since B is an infinite subset of K, it
has an I-limit point u ∈ K. Consequently there exists a sequence in B \ {u},
say (yk)k, such that I − lim

k
yk = u. Since I is a P -ideal, so I∗ − lim

k
yk = u

and evidently u ∈ B, the ordinary closure of B. Since X is Hausdorff, then

u ∈ Bn
I

and so u ∈ Bn for every n, where Bn := {xk : k ≥ n}. Thus

u ∈
⋂
n

Bn. We can now easily construct a subsequence (zk)k of (xn)n which

is I-convergent to u.

We now recall the Eberlein-Šmulian theorem (see also [33]).

Theorem 3.7. Let A be a subset of a normed space. Then the following are
equivalent:

a) A is relatively weakly compact;
b) A is relatively weakly sequentially compact;
c) A is relatively weakly Fréchet compact;
d) A is relatively weakly countably compact.

We now give a sufficient condition to get ideal uniform convergence of
function sequences on all compact sets of a metric space (Z, d), which will be
useful in the sequel (see also [2]). We recall the notions of equicontinuity and
ideal exhaustiveness for sequences of functions (see also [2, 13]).

Definitions 3.8.
(a) Let (Z, d) be a metric space. We say that a sequence of functions

fn : Z → R, n ∈ N, is equicontinuous on Z iff for every z ∈ Z and ε > 0
there exists a δ > 0 with |fn(y)− fn(z)| < ε whenever n ∈ N and y ∈ Z with
d(y, z) < δ.

(b) A function sequence fn : Z → R, n ∈ N, is said to be I-exhaustive
on Z iff for every z ∈ Z and ε > 0 there are a δ > 0 and a set C ∈ I with
|fn(y)− fn(z)| < ε whenever n ∈ N \ C and y ∈ Z with d(y, z) < δ.

Remark 3.9. It is easy to see that every equicontinuous function sequence
(fn)n is I-exhaustive too. Note that it is an essential generalization. Indeed,
let I be any fixed admissible ideal, choose H ∈ I, H 6= ∅, and let us define
fn : R → R by setting fn(0) = 0 for all n ∈ N, fn(x) = 0 for any x ∈ R and
n ∈ N \ H, fn(x) = 1 for every x 6= 0 and n ∈ H. Obviously, for each y,
z ∈ R and n 6∈ H we get fn(y)− fn(z) = 0 and thus (fn)n is I-exhaustive on
R. However (fn)n is not equicontinuous on R, since for z = 0 and ε = 1 we
have that for every δ > 0 there are y ∈ R with 0 < |y| < δ and n ∈ N with
fn(y) = 1 = ε: of course, it is enough to take any y 6= 0 and any n ∈ H.
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The next result holds for any admissible ideal and extends [4, Proposition
5].

Proposition 3.10. Let (Z, d) be a metric space, fn : Z → R, n ∈ N, be
I-exhaustive on Z and I-pointwise convergent to a function f : Z → R. Then
f is continuous and (fn)n I-converges uniformly to f on every compact subset
of Z.

Proof. We proceed similarly as in the proof of [4, Proposition 5]. We begin
with proving continuity of f . Pick z ∈ Z and ε > 0, and let δ > 0 and
C ∈ I satisfy condition of I-exhaustiveness. Choose arbitrarily y ∈ Z with
d(y, z) < δ. Then, by I-exhaustiveness, |fn(y)−fn(z)| < ε/3 for all n ∈ N\C.
Moreover, thanks to I-pointwise convergence, there is a set C0 ∈ I with
max{|fn(y)− f(y)|, |fn(z)− f(z)|} < ε/3 whenever n ∈ N \C0. Observe that
C ∪ C0 6= N, since I is admissible. Let n ∈ N \ (C ∪ C0). We get:

|f(y)− f(z)| ≤ |f(y)− fn(y)|+ |fn(y)− fn(z)|+ |fn(z)− f(z)| < ε,

that is continuity of f at z. The continuity of f follows by arbitrariness of
z ∈ Z.

We now prove uniform I-convergence on compact subsets of Z. Let K ⊂ Z
be any compact set, and choose arbitrarily ε > 0 and x ∈ K. Since (fn)n is
I-exhaustive on Z and f is continuous at x, in correspondence with ε and x
there exist Nx ∈ I and an open ball Bx ⊂ Z centered at x, with

|fn(z)− fn(x)| < ε/3 and |f(z)− f(x)| < ε/3 (1)

for each n ∈ N \ Nx and z ∈ Bx. Let us consider the family {Bx : x ∈ K}.
Since K is compact, there is a finite subfamily {Bx1

, Bx2
, . . ., Bxp}, covering

K. Since (fn)n I-converges pointwise to f , then in correspondence with ε and
x1, x2, . . ., xp there exists N0 ∈ I with

|fn(xj)− f(xj)| < ε/3, j = 1, . . . , p (2)

whenever n ∈ N \N0. If N := N0 ∪
( p⋃
j=1

Nxj

)
, then N ∈ I.

Pick arbitrarily z ∈ K: there is j ∈ {1, 2, . . . , p} with z ∈ Bxj . Then, from
(1) and (2), for each n ∈ N \N we get

|fn(z)− f(z)| ≤ |fn(z)− fn(xj)|+ |fn(xj)− f(xj)|+ |f(xj)− f(z)| < ε.

This ends the proof.
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4 Exhaustiveness in measure spaces and applications.

We introduce the main properties of measure spaces. We begin with the
notions of s-boundedness and σ-additivity. For a related literature see also
[10, 11, 12, 24, 25, 23, 35, 36].

Definitions 4.1. Let G be any infinite set and Σ ⊂ P(G) be a σ-algebra.
(a) A finitely additive measure µ : Σ → R is called I − s−bounded iff for

every disjoint sequence (Hn)n in Σ we have I − lim
n

(‖µ‖(Hn)) = 0, where ‖µ‖
denotes the variation of µ (see [25]). The finitely additive measures µj : Σ→
R, j ∈ N, are called uniformly I − s−bounded iff I − lim

n
[sup
j

(‖µj‖(Hn))] = 0,

for every disjoint sequence (Hn)n in Σ.
(b) A finitely additive measure µ : Σ→ R is called I-σ-additive iff for every

disjoint sequence (Hn)n in Σ we get: I − lim
n

[
‖µ‖

( ∞⋃
l=n

Hl

)]
= 0. The finitely

additive measures µj : Σ→ R, j ∈ N, are called uniformly I-σ-additive iff for

every disjoint sequence (Hn)n in Σ we get: I − lim
n

[
sup
j

(
‖µj‖

( ∞⋃
l=n

Hl

))]
= 0.

We denote by ba(Σ) the space of all real-valued finitely additive measures
on Σ, and by ca(Σ) the space consisting of all real-valued σ-additive measures
on Σ endowed with the variation norm.

Observe that, if I = Ifin, then the given definitions coincide with the well
known ones of (uniform) s-boundedness and (uniform) σ-additivity respec-
tively.

Note that, in all next definitions and results, λ is a fixed non-negative
finitely additive measure.

For A,B ∈ Σ the (pseudo)-λ-distance between A and B is defined by
dλ(A,B) := λ(A∆B), where ∆ denotes the symmetric difference.

We now give the concepts of equicontinuity and ideal exhaustiveness of
measures, which are close related each other, and introduce the regular mea-
sures.

Definitions 4.2. (a) A measure µ ∈ ba(Σ) is called λ-continuous at E ∈ Σ
iff it is continuous at E on (Σ, dλ). We say that µ is λ-continuous on Σ iff µ
is λ-continuous at every E ∈ Σ.

Observe that µ is λ-absolutely continuous iff µ is λ-continuous at ∅.
(b) A family A ⊂ ba(Σ) is called equi-λ-continuous at E ∈ Σ iff for each

ε > 0 there is a δ > 0 such that if F ∈ Σ and dλ(E,F ) < δ we have:
|µ(E) − µ(F )| < ε, for each µ ∈ A. The family A is called equi-λ-continuous
on Σ iff it is equi-λ-continuous at each E ∈ Σ.
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Note that A is uniformly λ-absolutely continuous iff it is equi-λ-continuous
at ∅.

(c) We say that a sequence (µn)n in ba(Σ) is I-exhaustive at E ∈ Σ iff for
each ε > 0 there are a δ > 0 and a set A ∈ I such that for every F ∈ Σ with
dλ(E,F ) < δ and for all n ∈ N \ A, we have: |µn(E) − µn(F )| < ε. We say
that (µn)n is I-exhaustive on Σ iff it is I-exhaustive at E, for every E ∈ Σ.

(d) We say that a sequence (µn)n in ba(Σ) is uniformly-I-exhaustive on Σ
iff for each ε > 0 there exist a δ > 0 and a set A ∈ I such that for every E,
F ∈ Σ with dλ(E,F ) < δ and for all n ∈ N \A, we have |µn(E)− µn(F )| < ε.

If I = Ifin, then the (uniformly)-Ifin-exhaustive measure sequences are
simply called (uniformly) exhaustive.

(e) If G is a topological space and Σ is the σ-algebra of all its Borel sets,
then a measure λ : Σ → R is said to be regular on Σ iff for all B ∈ Σ and
ε > 0 there exists a compact set Q ⊂ B such that ‖λ‖(B \Q) < ε (where the
symbol ‖ · ‖ denotes the variation).

We now define continuous convergence of a measure sequence in the ideal
context, which will be useful in the sequel (see also [13, 27, 29]).

Definition 4.3. We say that (µn)n (Iα)-converges to µ at H ∈ Σ iff for every
sequence (Hn)n in Σ with I−lim

n
dλ(Hn, H) = 0 we get I−lim

n
µn(Hn) = µ(H).

We say that (µn)n (Iα)-converges to µ on Σ iff it (Iα)-converges to µ at every
H ∈ Σ.

If I = Ifin, then (Ifinα)-convergence of (µn)n to µ is simply called (α)-
convergence of (µn)n to µ.

We now give a result about weak compactness and boundedness properties
for subsets of countably additive measures in the context of ideal convergence,
when we deal with a P -ideal. Using Proposition 3.2, Theorem 3.7, Proposition
2.5 (which yields the equivalence between (uniform) σ-additivity and (uniform)
I − σ−additivity) and [23, Theorem VII.13], we get:

Theorem 4.4. Let K be a subset of ca(Σ). Then the following are equivalent:
a) K is relatively weakly compact.
b) K is relatively weakly I-sequentially compact.
c) K is bounded and uniformly σ-additive.
d) K is bounded and uniformly I − σ−additive.
e) K is bounded and there is a non-negative measure λ ∈ ca(Σ) such that

K is equi-λ-continuous.

Our next step is to prove, in the ideal setting, some convergence theorems,
concerning in particular some results of existence and some good properties
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of the limit measure. To prove this, we deal with the tool of (uniform) ideal
exhaustiveness, which allows us to assume that our involved ideal is simply
a P -ideal. Some other kinds of limit theorems, like Nikodým convergence
of Schur-type theorems were proved in [10] in some context different from
ideal exhaustiveness, but requiring as hypothesis some additional properties
of the limit measure and some further properties of filters (or dually of the
corresponding ideals).

In general the simple I-pointwise convergence of a sequence of σ-additive
measures (even non-negative) is not sufficient to get uniform s-boundedness
(and a fortiori uniform σ-additivity). Indeed, as soon as I is an admissible
ideal different from Ifin, we have the following:

Example 4.5. Let I 6= Ifin be any admissible ideal, H := {h1 < . . . < hs <
hs+1 < . . .} be an infinite set belonging to I and such that N \H is infinite.
Since I 6= Ifin, then H does exist. For every i 6∈ H and E ⊂ N, set mi(E) = 0.
For any s ∈ N and E ⊂ N, set mhs(E) = 1 if s ∈ E and 0 otherwise. Observe
that m0(E) := I − lim

i
mi(E) = 0 for each E ⊂ N. Moreover, it is readily

seen that the mi’s are σ-additive positive bounded measures. Indeed, given
i ∈ N and any disjoint sequence (Cj)j of subsets of N, the entity mi(Cj) can
be different from zero (and in this case is equal to 1) at most for one index j,
because for all s ∈ N we get that mi({s}) 6= 0 if and only if i = hs. For every
j ∈ N set Cj := {j}. Then we get 1 ≥ sup

i∈N
mi(Cj) ≥ mhj (Cj) = 1 (see also

[11, Remark 2.7]).

We now prove a result about the existence of the limit measure on a whole
σ-algebra under the hypotheses of its existence on a suitable subclass and
uniform ideal exhaustiveness.

Lemma 4.6. Assume that there exists a countable dense subset B = {Fj : j ∈
N} of (Σ, dλ). Let (µn)n be a sequence in ba(Σ) with I − lim

n
µn(Fj) =: µ(Fj),

for all j ∈ N, for some set function µ : B → R, and let the family (µn)n be
uniformly I-exhaustive. Then µ admits an extension µ0 ∈ ba(Σ) with

I − lim
n
µn(E) = µ0(E) for all E ∈ Σ. (3)

Proof. Fix arbitrarily ε > 0. From uniform I-exhaustiveness we can find a
δ > 0 and a C ∈ I such that

dλ(E,F ) < δ =⇒ |µn(E)− µn(F )| ≤ ε

4
(4)

for every E,F ∈ Σ and n ∈ N \ C.
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Let E ∈ Σ and choose Fj ∈ B such that dλ(E,Fj) < δ. By virtue of the
Cauchy condition (see also [16, 17, 18, 22]), in correspondence with ε and Fj
there is a set C∗j ∈ I with

|µk(Fj)− µn(Fj)| ≤
ε

2
(5)

whenever k, n ∈ N \ C∗j . From (4) and (5) we get

|µk(E)− µn(E)| ≤ |µk(E)− µk(Fj)|+
+ |µk(Fj)− µn(Fj)|+ |µn(Fj)− µn(E)| ≤

≤ ε

4
+ |µk(Fj)− µn(Fj)|+

ε

4
≤ ε

for any k, n ∈ N \ (C ∪C∗j ). Thanks to the Cauchy criterion, this proves that
the map µ0 in (3) is well-defined. It is easy to check that µ0 ∈ ba(Σ).

We now prove the following technical lemma.

Lemma 4.7. Let I − lim
n
µn(Fj) = µ(Fj) for each j ∈ N, where µn, µ, Fj’s

are as in Lemma 4.6. Then there exists an element M ∈ F = F(I), such that
lim
n∈M

µn(Fj) = µ(Fj) for all j ∈ N, provided that I is a P -ideal.

Proof. By assumption, for each j ∈ N we get I−limn µn(Fj) = µ(Fj). Since
I is a P -ideal, by Proposition 2.5 (c), we have I∗− lim

n
µn(Fj) = µ(Fj). Thus

for every j ∈ N there exists M ′j ∈ F such that lim
n∈M ′

j

µn(Fj) = µ(Fj). Now,

as I is a P -ideal, in correspondence with the sequence (M ′j)j there exists a
sequence (Mj)j of subsets of N such that the set Mj∆M

′
j is finite for all j ∈ N

and ∩jMj ∈ F . Set M := ∩jMj . Note that M \M ′j ⊂ Mj \M ′j is finite for
every j ∈ N. Now it is easy to see that lim

n∈M
µn(Fj) = µ(Fj) for all j ∈ N,

getting the assertion.

This result is a sufficient condition for σ-additivity of the limit measure.

Lemma 4.8. Let (Σ, dλ) be separable, and B = {Fj : j ∈ N} be as in
Lemma 4.6. If (µn)n is a uniformly I-exhaustive sequence in ca(Σ) and
I − lim

n
µn(Fj) = µ(Fj) for all j ∈ N, then there are a set L ⊂ N, L ∈ F =

F(I), and an extension µ0 of µ, defined on Σ, such that lim
n∈L

µn(E) = µ0(E)

for all E ∈ Σ, provided that I is a P -ideal. Moreover, µ0 ∈ ca(Σ).
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Proof. Let F be the dual filter associated with I. By uniform
I-exhaustiveness, for all j ∈ N there are a δj > 0 and a set N ′j ∈ F such
that |µn(E) − µn(F )| ≤ 1/j for every E, F ∈ Σ with dλ(E,F ) < δj and
for all n ∈ N ′j . Since I is a P -ideal, in correspondence with the sequence
(N ′j)j there is a sequence (Nj)j of subsets of N such that the set Nj∆N

′
j is

finite for all j ∈ N and ∩j Nj ∈ F . Put N := ∩j Nj and Wj := N \ N ′j
for all j: observe that Wj ⊂ Nj \ N ′j is finite for every j ∈ N. So, the set
N has the property that: for all j ∈ N there are a δj > 0 and a finite set
Wj ⊂ N with |µn(E)− µn(F )| ≤ 1/j for every E, F ∈ Σ with dλ(E,F ) < δj
and for all n ∈ N \Wj . This means that the sequence (µn)n∈N is uniformly
Ifin-exhaustive.

Let now B = {Fj : j ∈ N} be as in the hypothesis, M be as in the proof of
Lemma 4.7 and set L := M ∩ N . Note that L ∈ F , the sequence (µn)n∈L is
uniformly Ifin-exhaustive, and limn∈L µn(Fj) = µ(Fj) for all j ∈ N, by virtue
of Lemma 4.7. So, the first part of the assertion follows from this and Lemma
4.6 used with (µn)n∈L and I = Ifin. From the first part and the classical
Nikodým convergence theorem for measures (see [25, 23]) it follows that µ0 ∈
ca(Σ).

The following result is a characterization of weak convergence of countably
additive measures and weak convergence in L1 in terms of pointwise conver-
gence under the hypothesis of ideal exhaustiveness, and extends [23, Theorem
VII.11 and Corollary].

Theorem 4.9. Let (Σ, dλ) be separable. If a sequence (µn)n in ca(Σ) weakly-
I-converges to µ ∈ ca(Σ), then for each E ∈ Σ, µ(E) = I − lim

n
µn(E).

Conversely, if (µn)n is a sequence in ca(Σ) such that there is a set function
µ : Σ → R such that µ(E) = I − lim

n
µn(E) for all E ∈ Σ, I is a P -ideal

and the sequence (µn)n is uniformly I-exhaustive, then µ ∈ ca(Σ) and (µn)n
weakly-I-converges to µ in ca(Σ).

Moreover, if η ∈ ca (Σ) and fn : G→ R, n ∈ N, is a sequence of functions

in L1(η) with the property that the measure sequence µn(E) :=

∫
E

fn dη, n ∈

N, E ∈ Σ, is uniformly I-exhaustive, then (fn)n weakly-I-converges to f in

L1(η) if and only if

∫
E

f dη = I − lim
n
µn(E) for every E ∈ Σ.

Proof. Since the functional ν 7→ ν(E) belongs to ca(Σ)∗ (the dual of ca(Σ))
for every E ∈ Σ, then the first part is straightforward.

Suppose now that (µn)n is a sequence in ca(Σ) such that µ(E) = I −
lim
n
µn(E) exists in R for each E ∈ Σ. Then by Lemma 4.8, since the sequence



Ideal exhaustiveness... 401

(µn)n is uniformly I-exhaustive, µ ∈ ca(Σ) and there is an element M ∈ F(I)
such that lim

n∈M
µn(E) = µ(E) for all E ∈ Σ. Write the set (µn)n∈M as (νk)k∈N.

Then we have lim
k
νk(E) = µ(E) for all E ∈ Σ. Now, by the classical Nikodým

boundedness theorem, the νk’s are uniformly bounded, and so sup
k
‖νk‖(G) <

+∞, where the symbol ‖·‖ denotes the variation. Hence the series

∞∑
k=1

‖νk‖(·)
2k

is absolutely convergent in the Banach space ca(Σ) with η as its sum. Then,
by the Radon-Nikodým theorem, for each k ∈ N there is a function fk ∈ L1(η)
such that

νk(E) =

∫
E

fk dη

(see also [23]). Similarly, we get the existence of f ∈ L1(η) such that

µ(E) =

∫
E

f dη. (6)

Now, proceeding analogously as in [23, Theorem VII.11], one can show that
(fk)k weakly converges to f in L1(η), which in turn implies that (νk)k weakly
converges to µ in ca(Σ). But this implies that the sequence (µn)n weakly-
I∗-converges and so weakly-I-converges to µ in ca(Σ). Thus the first part is
proved.

To get the sufficient part of the last statement of the theorem, proceeding
similarly as above, we obtain the existence of an element M ∈ F(I) with
limn∈M µn(E) = µ(E) in the usual sense for each E ∈ Σ, and hence the weak
convergence in L1(η) in the ordinary sense of the subsequence (fn)n∈M to f .
Thus the sequence (fn)n∈N weakly-I-converges to f in L1(η). The necessary
part of the last statement is straightforward.

Remark 4.10. Theorem 4.9 is a sufficient condition for countable additiv-
ity of the I-limit measure of a sequence of σ-additive measures, under the
hypothesis of ideal pointwise convergence and the further condition of ideal
exhaustiveness. In [11, Theorems 2.5 and 2.6], σ-additivity of the limit mea-
sure was used as an hypothesis, in order to prove some limit theorems for an
I-pointwise convergent sequence of positive measures. Note that, as Example
4.5 shows, in general the ideal setwise convergence of a sequence of σ-additive
measures is not enough to get uniform σ-additivity.

As a consequence of Theorem 4.9, we prove the following result, which
extends [23, Theorem VII.12].



402 A. Boccuto, X. Dimitriou, N. Papanastassiou

Corollary 4.11. Under the same notations as in Theorem 4.9, let (Σ, dλ) be
separable, (µn)n be a uniformly I-exhaustive family and I be a P -ideal. Then
a sequence (µn)n is weakly-I-Cauchy in ca(Σ) if and only if it is weakly-I-
convergent in ca(Σ).

Moreover, if η ∈ ca(Σ) is positive, fn : G → R, n ∈ N, is a function

sequence in L1(η) and the sequence µn(E) :=

∫
E

fn dη, n ∈ N, E ∈ Σ, is

uniformly I-exhaustive, then (fn)n is weakly-I-Cauchy in L1(η) if and only if
it is weakly-I-convergent in L1(η).

Proof. Let (µn)n be a weakly-I-Cauchy sequence in ca(Σ). Since each el-
ement E ∈ Σ determines the member ν 7→ ν(E) of ca(Σ)∗, the sequence
(µn(E))n is I-Cauchy in R for each E ∈ Σ. Then (see also [16, 17, 18, 22]) for
every E ∈ Σ, (µn(E))n is I-convergent to a real number, say µ(E). So, a set
function µ : Σ→ R is defined. By Lemma 4.8, µ ∈ ca(Σ). Thus, the sequence
(µn)n is weakly-I-convergent in ca(Σ). The converse implication of the first
part is obvious.

The last assertion is a consequence of the first, by setting µn(E) :=

∫
E

fn dη,

n ∈ N, E ∈ Σ, taking into account the Radon-Nikodým theorem (see also (6))
and since L1(η) is a closed subspace of ca(Σ) for every positive measure η ∈
ca(Σ) (see also [23]).

We now give a result on the existence of the ideal limit measure without
requiring ideal exhaustiveness.

Theorem 4.12. Let A be an algebra of sets generating Σ and suppose that
(µn)n is a uniformly σ-additive sequence with the property that I − lim

n
µn(E)

exists for each E ∈ A. Then I − lim
n
µn(E) exists for all E ∈ Σ.

Proof. Let Λ := {E ∈ Σ : I− lim
n
µn(E) exists in R}. By hypothesis, A ⊂ Λ.

If we show that Λ is a monotone class, then we will get Λ = A, and the result
will be proved.

Let (Em)m be a monotone sequence of elements of Λ with lim
m
Em = E

in the set-theoretic sense. Since (µn)n is uniformly σ-additive, then µn(E) =
lim
m
µn(Em) uniformly in n.

Let now ε > 0 be given. Then an integer m can be found, such that

|µn(Em)− µn(E)| < ε/3 (7)
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for all n ∈ N. Since I − lim
n
µn(Em) exists, so the sequence (µn(Em))n is

I-Cauchy, and thus there exists an element C ∈ I such that

|µp(Em)− µq(Em)| < ε/3 (8)

whenever p, q 6∈ C. From (7) and (8) it follows that for all p, q 6∈ C we get:

|µp(E)− µq(E)| ≤ |µp(E)− µp(Em)|+ |µp(Em)− µq(Em)|+

+ |µq(Em)− µq(E)| < 2ε

3
+
ε

3
= ε.

So the sequence (µn(E))n is I-Cauchy, and thus I-convergent. This ends the
proof.

Finally we turn to a limit theorem, which yields continuity of the limit of
a setwise ideal convergent sequence of measures. Note that this result holds
for any admissible ideal.

Theorem 4.13. Assume that µn : Σ → R, n ∈ N, is pointwise I-convergent
to µ : Σ→ R. If (µn)n is I-exhaustive at H0, then µ is λ-continuous at H0.

Proof. Choose arbitrarily ε > 0. Then there exist δ > 0 and A1 ∈ I with

|µn(H)− µn(H0)| < ε/3 (9)

for any H ∈ Σ, with dλ(H,H0) < δ and for every n ∈ N \A1.
Fix now H ∈ Σ, with dλ(H,H0) < δ. There exists A2 ∈ I with

|µn(H0)− µ(H0)| < ε/3, |µn(H)− µ(H)| < ε/3 (10)

for every n ∈ N \ A2. Note that A1 ∪ A2 6= N, because I is admissible. Pick
n ∈ N \ (A1 ∪A2). Then by (9) and (10) we get:

|µ(H)− µ(H0)| ≤ |µ(H)− µn(H)|+ |µn(H)− µn(H0)|+ |µn(H0)− µ(H0)|
< ε.

From this the assertion follows.

We now give some further results related with I-exhaustiveness of mea-
sures, in connection with ideal (α)-convergence.

Theorem 4.14. Under the same notations as above, let H0 ∈ Σ, and µ, µn :
Σ → R, n ∈ N. If I − lim

n
µn(H0) = µ(H0) and (µn)n is I-exhaustive at H0,

then (µn)n (Iα)-converges to µ at H0.
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Proof. Assume that I − lim
n
µn(H0) = µ(H0). Choose arbitrarily ε > 0. By

I-exhaustiveness of (µn)n at H0, there are δ > 0 and N1 ∈ I with the property
that

|µn(H)− µn(H0)| < ε/2 (11)

whenever n ∈ N\N1 and |λ(H)−λ(H0)| < δ, where λ is the measure associated
with I-exhaustiveness.

By I-convergence of (µn(H0))n to µ(H0) there exists an element N2 ∈ I
such that

|µn(H0)− µ(H0)| < ε/2 (12)

for any n ∈ N \ N2. As I − lim
n
dλ(Hn, H0) = 0, there is an element N3 ∈ I

with dλ(Hn, H0) < δ whenever n ∈ N \N3. From this, (11) and (12) it follows
that for each n ∈ N \ (N1 ∪N2 ∪N3) we get:

|µn(Hn)− µ(H0)| ≤ |µn(Hn)− µn(H0)|+ |µn(H0)− µ(H0)| < ε.

One can ask whether the converse of Theorem 4.14 holds. To this aim,

suppose that there exists a partition of the type N =

∞⋃
k=1

∆k, with the property

that

I = {A ⊂ N : A intersects at most a finite number of ∆k’s}. (13)

Remarks 4.15.
(a) Note that the ideal Ifin satisfies condition (13): indeed it is enough to

take ∆k = {k} for all k ∈ N. Moreover, if for every k ∈ N the set ∆k in (13) is
infinite, then the ideal I associated to the ∆k’s is not a P -ideal (see also [31,
Example 3.1 (g)]).

(b) Let I be as in (13), and (Aj)j be any sequence of subsets of N, with
Aj 6∈ I for all j ∈ N. We claim that there exists a disjoint sequence (Bj)j

in I, with Bj ⊂ Aj for every j ∈ N and

∞⋃
j=1

Bj 6∈ I. Indeed, first of all ob-

serve that there exists an infinite subset P1 ⊂ N with A1 =
⋃
k∈P1

(A1 ∩∆k).

There is a nonempty finite set Q1 ⊂ P1, with the property that the set

B1 =
⋃
k∈Q1

(A1 ∩∆k) belongs to I.
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Let P2 ⊂ N be such that A2 =
⋃
k∈P2

(A2 ∩∆k): since A2 6∈ I, we get that P2

is infinite. There exists a nonempty finite set Q2 ⊂ P2 \Q1, such that the set

B2 =
⋃
k∈Q2

(A2 ∩∆k) belongs to I. At the j-th step, we consider Pj ⊂ N with

Aj =
⋃
k∈Pj

(Aj ∩∆k). There exists a nonempty finite set Qj ⊂ Pj \
(j−1⋃
s=1

Qs

)
,

with the property that Bj =
⋃
k∈Qj

(Aj ∩∆k) ∈ I. Since the Qj ’s, by construc-

tion, are nonempty and pairwise disjoint and

∞⋃
j=1

Qj is infinite, we get that the

Bj ’s are pairwise disjoint and

∞⋃
j=1

Bj 6∈ I.

We now prove the converse of Theorem 4.14 under the hypothesis that the
ideal involved satisfies (13).

Theorem 4.16. Let I be as in (13), H0 ∈ Σ, and µ, µn : Σ→ R, n ∈ N. If
(µn)n (Iα)-converges to µ at H0, then I − lim

n
µn(H0) = µ(H0) and (µn)n is

I-exhaustive at H0.

Proof. First of all, note that (Iα)-convergence of (µn)n to µ at H0 implies
that I − lim

n
µn(H0) = µ(H0): indeed, in the definition of (Iα)-convergence,

it is enough to consider the sequence (Hn)n, defined by setting Hn := H0 for
each n ∈ N.

Now we prove that (µn)n is I-exhaustive at H0. For each k ∈ N, set

Vk := {H ∈ Σ : |λ(H)− λ(H0)| < 1/k} = {H ∈ Σ : dλ(H,H0) < 1/k}.

If (µn)n is not I-exhaustive at H0, then there is ε > 0 such that to every k ∈ N
and A ∈ I there correspond an element H ∈ Vk and an integer n ∈ N \A with
|µn(H) − µn(H0)| ≥ ε. Let us consider A = ∅: so there are nk0 ∈ N = N \ A
and Hk

0 ∈ Vk with |µnk0 (Hk
0 )− µnk0 (H0)| ≥ ε.

We now proceed by transfinite induction. Fix k ∈ N. Suppose to have
chosen nkβ and Hk

β for every β < α, where α is a countable ordinal, and that

Akα := {nkβ : β ≤ α} ∈ I. Then an integer nkα+1 6∈ Akα and a set Hk
α+1 ∈ Vk

can be found, with

|µnkα+1
(Hk

α+1)− µnkα+1
(H0)| ≥ ε.



406 A. Boccuto, X. Dimitriou, N. Papanastassiou

In this case, set Akα+1 := Akα ∪ {nkα+1}. When α is a limit ordinal, if we have

chosen nkβ and Hk
β for β < α, define Akα := ∪β<αAkβ . This procedure ends

at some countable limit ordinal αk since otherwise we would obtain a strictly
increasing sequence {Akα : α < ω1} of subsets of N. Consequently, Akαk 6∈ I.

Set Pk := Akαk for each k ∈ N. By virtue of Remarks 4.15 (b) there is a disjoint

sequence (Bk)k in I with Bk ⊂ Pk for all k ∈ N and

∞⋃
k=1

Bk 6∈ I.

Now for n ∈ N set Hn := H0 if n 6∈
∞⋃
k=1

Bk and Hn = Hk
β if n ∈ Bk and

n = nkβ (note that the integer k is uniquely determined, since the Bk’s are

disjoint and β is unique, because the nkβ ’s are different for different choices of
β: so, the Hn’s are well-defined).

We get that I − lim
n
|λ(Hn)−λ(H0)| = I − lim

n
dλ(Hn, H0) = 0. Indeed, for

every neighborhood U of H0, say U := {H ∈ Σ : |λ(H) − λ(H0)| ≤ η}, with

η > 0, there exist k0 ∈ N with {n : Hn 6∈ U} ⊂
k0⋃
k=1

Bk and

k0⋃
k=1

Bk ∈ I.

Since I − lim
n
µn(H0) = µ(H0), we have

B := {n ∈ N : |µn(H0)− µ(H0)| ≥ ε/2} ∈ I.

As L := {n ∈ N : |µn(Hn)−µn(H0)| ≥ ε} ⊃
⋃∞
k=1 Bk, then L does not belong

to I, and so {n ∈ N : |µn(Hn)− µ(H0)| ≥ ε/2} does not belong to I, getting
to a contradiction with (Iα)-convergence to µ at H0. Thus the theorem is
completely proved.

In Lemma 4.6 we dealt with some convergence results, related with weak
Cauchy conditions. In this setting, as an application of ideal exhaustive-
ness, we will give a result involving integral-type operators, which extends [1,
Lemma 2.3] to the ideal setting with respect to any admissible ideal.

Proposition 4.17. Let (G,Σ, λ) be a measure space, assume that λ is regular
and (G, d) is a complete metric space. Let (µl)l be a uniformly I-exhaustive
sequence of countably additive λ-continuous measures. Suppose that there exist
a set C0 ∈ I and a positive constant M ′ with ‖µl‖(G) ≤M ′ for all l ∈ N \C0,
and that the sequence (µl(A))l is weakly I-Cauchy for all A ∈ Σ. Let g ∈
L∞(λ) and assume that (sn)n is a sequence of simple functions, I-exhaustive
on G and I-convergent pointwise to g on G.

Then the sequence
(∫

G

g dµl

)
l

is I-Cauchy.
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Proof. Fix arbitrarily ε > 0. As the sequence (µl)l is uniformly I-exhaustive,
there are a δ > 0 and a set C ∈ I such that, if λ(A) < δ and l ∈ N \ C, then
‖µl‖(A) < ε. Without loss of generality we can suppose that C ⊃ C0.

By regularity of λ, there is a set A ∈ Σ such that G \ A is compact and
λ(A) < δ. By Proposition 3.10, the sequence (sn)n I-converges uniformly to

g on G \ A, and so there exists a set Ĉ ∈ I with |sn(t) − g(t)| ≤ ε whenever

t ∈ G\A and n 6∈ Ĉ. Let n0 = min(N\ Ĉ). Since (µl(A))l is weakly I-Cauchy
for all A ∈ Σ, there is C∗ ∈ I, without loss of generality C∗ ⊃ C, such that
for all i, j ∈ N \ C∗ we get

∣∣∣∫
G

sn0
d(µi − µj)

∣∣∣ ≤ ε,
and hence

0 ≤
∣∣∣ ∫
G

g dµi −
∫
G

g dµj

∣∣∣≤∣∣∣ ∫
G

(sn0
− g) dµi

∣∣∣+
+

∣∣∣ ∫
G

sn0
d(µi − µj)

∣∣∣+∣∣∣ ∫
G

(sn0
− g) dµj

∣∣∣
≤

∣∣∣ ∫
G\A

(sn0 − g) dµi

∣∣∣+∣∣∣ ∫
A

(sn0 − g) dµi

∣∣∣+
+

∣∣∣ ∫
G\A

(sn0 − g) dµj

∣∣∣+∣∣∣ ∫
A

(sn0 − g) dµj

∣∣∣+ε
≤ ε‖µi‖(G) + ε‖µj‖(G) + 6ε‖g‖∞ + ε.

From this the assertion follows.

Remark 4.18. Observe that the thesis of Proposition 4.17 can be interpreted
as a weak I-Cauchy-type condition in the space L∞(λ): indeed we know from
the classical literature that, by virtue of the Riesz representation theorem, the
dual of L∞(λ) is isomorphic to the space of all countable additive λ-continuous
measures, and the integral is a functional which realizes such an isomorphism
(see [1, 24, 25, 23, 35, 36]). The topics and the tools about Proposition 4.17
are related also with some properties of precompactness of sets of measures
and uniform integrability (see also [1, 24, 25, 23, 35, 36]).

Open Problem: Find analogues of Theorem 4.16 for other classes of ideals
or more generally for any admissible ideal I.
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