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ON THE GENERALIZED CONVERGENCE
THEOREMS FOR THOMSON’S

B-INTEGRAL ON Rm

1 Introduction

Thomson [T] defined the B-integral using the derivation basis B and gave
a pointwise convergence theorem (or the so-called equiintegrability theorem).
The B-integral is a generalization of the Henstock integral. Chew and Lee [CL]
gave a controlled convergence theorem for the B-integral involving UACG∗∗

which is an extension of the term UACG∗∗B for the Henstock integral (cf. [L2]).
Kurzweil and Jarńık [KJ] introduced an axiomatic concept of the Z-integral,
which is a generalization of the Henstock integral on multi-dimensional Eu-
clidean space, and proved the equivalence of the equiintegrability theorem
and the controlled convergence theorem using UZ −ACG∇. Lu and Lee [LL]
characterized the Henstock integral by the GSRS property and established a
convergence theorem for the Henstock integral using UGSRS. In this paper,
we extend the B-integral on R to one on Rm. After proving a weaker version of
the equiintegrability theorem, the equivalence of five generalized convergence
theorems will be established, which include the equiintegrability theorem, two
versions of the generalized controlled convergence theorem which are based on
UACG∇ and UACG∗∗B respectively, the generalized variational convergence
theorem and the uniformly MGSRSB (modified GSRS with respect to B)
convergence theorem.
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2 Preliminaries

We will assume the reader is familiar with the Henstock integral and the AP -
integral. The terminology used in this paper follows mainly Thomson’s papers
[T].

We denote by R the set of all real numbers. Let m be a fixed positive
integer and let Rm denote m-dimensional Euclidean space. Assume that a
norm of Rm has been defined, for example, ‖x‖ = max{|ξi| : i = 1, 2, . . . ,m}
where x = (ξ1, ξ2, . . . , ξm) ∈ Rm. The open sphere with center x and radius
r is S(x, r) = {y : ‖x − y‖ < r}. An interval I is a nondegenerate compact
rectangle in Rm; that is, the set I =

∏m
i=1[ai, bi] where ai, bi ∈ R and ai <

bi, i = 1, 2, . . . ,m.
Let I0 ⊂ Rm be a fixed closed interval. Let Ψ be the class of all subintervals

of I0. An element (I, x) ∈ Ψ× I is called an interval-point pair. The point x
is called the associated point of the interval I. A derivation basis B of I0 is a
nonempty collection of subset β of Ψ× I0. Let β ∈ B and E ⊂ I0. We write

β[E] = {(I, x) ∈ β;x ∈ E}, β(E) = {(I, x) ∈ β; I ⊂ E},
B[E] = {β[E];β ∈ B}, B(E) = {β(E);β ∈ B}.

Obviously, β[I0] = β(I0) = β and B[I0] = B(I0) = B.

Definition 2.1 Let B be a derivation basis, β ∈ B and E ⊂ I0. Let P =
{(I, x)} ⊂ β.

(i) P is said to be a partial β-partition of I0, denoted by P ∈ P ′(β), if
{I : (I, x) ∈ P} is a finite set of nonoverlapping subintervals of I0.

(ii) P is said to be a E-tagged β-partition of I0, denoted by P ∈ P ′(β[E]), if
P ∈ P ′(β) and x ∈ E provided (I, x) ∈ P .

(iii) P is said to be a β-partition of I0, denoted by P ∈ P(β), if P ∈ P ′(β)
and

⋃
(I,x)∈P I = I0.

(iv) Let P ′, P ′′ ∈ P ′(β[E]). Then P ′′ is said to be finer than P ′, denoted by
P ′′ ≤ P ′, if for each (I, x) ∈ P ′′, there is (J, y) ∈ P ′ such that I ⊂ J .

If P ∈ P ′(β[E]), E′ ⊂ E, then we write P [E′] = {(I, x) ∈ P ;x ∈ E′}.

Throughout this paper, we always assume that the derivation basis B sat-
isfies the following axioms:

Axiom 2.1

(1) B ignores no point, i.e. for any x ∈ I0 and any β ∈ B, β[{x}] 6= ∅.
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(2) B has partitioning property, i.e. for every β ∈ B and every I ∈ Ψ there
is P ∈ P(β(I)).

(3) B is filtering down, i.e. for every β′, β′′ ∈ B, there is β ∈ B such that
β ⊂ β′ ∩ β′′.

(4) B has δ-fine property, i.e. for every δ : I0 → (0, 1), there exists β ∈ B
which is δ-fine, that is, I ⊂ S(x, δ(x)) provided (I, x) ∈ β.

(5) B has σ-local property, i.e. for any sequence of pairwise disjoint sets
{Xn} and any sequence {βn} ⊂ B there is β ∈ B for which β[Xn] ⊂ βn
for all n.

Example 2.1

(1) All of the basis ZP , ZQ, ZR, ZS in [K, Example 2.2], or ∆i,∆
∗
i (i = 1, 2)

in [O, Section 2.2] satisfy Axiom 2.2.

(2) On the real line, most of the derivation basis in [T] satisfy Axiom 2.1.

The functions f : I0 → R, F : Ψ → R and h : Ψ × I0 → R are called
respectively a point function, a interval function, and a interval-point function.
An interval function F is said to be additive if F (I ∪J) = F (I)+F (J) for any
pair of nonoverlapping intervals I and J with I ∪ J being an interval. In this
paper, all point functions involved are always assumed to be measurable, all
interval functions are additive, and all point sets involved are always assumed
to be measurable and we denote the measure of a set E ⊂ Rm by |E|. In what
follows we consider the product f(x)|I| and interval function F as special cases
of interval-point functions by agreeing that f(I, x) = f(x)|I| and F (I, x) =
F (I).

Let β ∈ B, h : Ψ× I0 → R and P = {(I, x)} a β-partial partition of I0 be
given. We write

σ(h, P ) = (P )
∑

h(I, x),

σ(|h|, P ) = (P )
∑
|h(I, x)|,

where (P )
∑

denotes the sum over P . If we set ∪(I,x)∈P I = U(P ), then we
may write

σ(P ) = |U(P )|,
σ(P ′ \ P ′′) = |U(P ′)− \U(P ′′)|,
σ(P ′∇P ′′) = |U(P ′)∇U(P ′′)|,
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where the symbol “∇” denotes the symmetric difference of two sets. Further-
more, let β ∈ B and E ⊂ I0. The variation of h over β[E] is

V (h, β[E]) = sup{σ(|h|, P ) : P ∈ P ′(β[E])}

and the variation of h over B[E] is

V (h,B[E]) = inf{V (h, β[E]);β ∈ B}.

We can easily prove the following lemma.

Lemma 2.1 Let h and h′ be interval-point functions and let β, β′ ∈ B. Then

(1) 0 ≤ V (h, β) ≤ +∞,

(2) if β ⊂ β′, then V (h, β) ≤ V (h, β′),

(3) for any real number c 6= 0, V (ch, β) = |c|V (h, β),

(4) if |h| ≤ |h′|, then V (h, β) ≤ V (h′, β),

(5) V (h+ h′, β) ≤ V (h, β) + V (h′, β),

(6) for any sequence of set E,E1, E2, . . . with E ⊂
⋃∞

i=1Ei,

V (h, β[E]) ≤
∞∑
i=1

V (h, β[Ei]).

Definition 2.2 A function f : I0 → R is said to be B-integrable on I0, if there
exists a real number A such that for every ε > 0 there exists β ∈ B, such that
|σ(f, P )−A| < ε whenever P ∈ P(β). In this case, we write A = (B)

∫
I0
f.

Remark 2.1 Since B is filtering down, we can easily check that such a number
A is unique.

Lemma 2.2 (The fundamental lemma of the B-integral) Let f : I0 → R.
Then the following are equivalent.

(a) f is B-integrable on I0.

(b) There exists an additive interval function F : Ψ→ R such that for every
ε > 0 there exists β ∈ B such that V (f − F, β) < ε in which case,
F (I) = (B)

∫
I
f for every I ∈ Ψ and we called F a primitive of f .

Proof. The proof is similar to that for the B-integral in [T, Chapter III,
Lemma 4.4, p. 152]. �
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Lemma 2.3 (Cauchy criterion) A function f : I0 → R is B-integrable on I0
iff for every ε > 0 there exists β ∈ B such that |σ(f, P ′) − σ(f, P ′′)| < ε
whenever P ′, P ′′ ∈ P(β).

The proof is elementary.

3 Convergence Theorem.

Definition 3.1 A sequence of measurable functions fn : I0→R, n = 1, 2, . . . ,
is said to be B-equiintegrable on I0, if there exists a sequence of additive in-
terval functions {Fn}, such that for every ε > 0 there exists β ∈ B such that
V (fn − Fn, β) < ε for all n, or more precise, |σ(fn − Fn, P )| < ε for all n
whenever P ∈ P(β).

Definition 3.2 A sequence of additive interval functions {Fn} is said to sat-
isfy the uniformly B-strong Lusin condition in I0, {Fn} ∈ USLB, if for any
Z ⊂ I0 of measure zero and for every ε > 0 there exists β ∈ B such that
V (Fn, β[Z]) < ε for all n

If we only consider a function F in the above definition, then we say that
F satisfies the B-strong Lusin condition, denoted by F ∈ SLB.

We remark that the SLB condition is a modification of the Strong Lusin
condition (SL), which appears in [L4], [G1] and [LV]. Another variant of (SL)
is in [KJ], where the authors use the term “well behaved on sets of measure
zero”.

Lemma 3.1 Let {fn} be a sequence of point functions which is pointwise
bounded on I0. Then for any Z ⊂ I0 of measure zero and for any ε > 0 there
is β ∈ B such that V (fn, β[Z]) < ε for all n.

Proof. Suppose that Z ⊂ I0 is of measure zero. For each positive integer i
set

Zi = {x ∈ Z; i− 1 ≤ sup
n
{|fn(x)|) < i}.

For every ε > 0, choose an open set Oi so that Zi ⊂ Oi and |Oi| < ε2−ii−1.
Take δ : I0 → (0, 1) such that S(x, δ(x)) ⊂ Oi, when x ∈ Zi for each i. Since
B is δ-fine, we can choose β ∈ B which is δ-fine, and then for all n

V (fn, β[Z]) ≤
∑
i

V (fn, β[Zi]) ≤
∑
1

i|Oi| < ε.

�
We remark that the proofs of Lemmas 3.1 and 3.4 below use some tech-

niques employed by Gordon in [G2].
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Lemma 3.2 Let {fn} be pointwise bounded on I0. If {fn} is B-equiintegrable
on I0 with primitives {Fn}, then {Fn} ∈ USLB.

Proof. Suppose that Z ⊂ I0 is of measure zero. For any ε > 0, by Lemma 3.1,
there exists β′ ∈ B such that V (fn, β

′[Z]) < ε/2 for all n. By the assumption,
there is β′′ ∈ B such that V (fn − Fn, β

′′) < ε/2 for all n. Since B is filtering
down, there is β ∈ B such that β ⊂ β′ ∩ β′. So we have

V (Fn, β[Z]) ≤ V (fn − Fn, β[Z]) + V (fn, β[Z])

≤ V (fn − Fn, β
′′) + V (fn, β

′[Z]) < ε

for all n, i.e., {Fn} ∈ USLB. �

Theorem 3.1 (Weak equiintegrability theorem) Let

(1) fn(x)→ f(x) a.e. on I0,

(2) {fn} is pointwise bounded on I0,

(3) {fn} is B-equiintegrable on I0.

Then f is B-integrable on I0 and (B)
∫
I0
f = limn→∞(B)

∫
I0
fn.

Proof. Let Z have measure zero such that {fn} converges to f everywhere
on I0 \ Z. Set

gn(x) =

{
fn(x) for x ∈ I0 \ Z
0 otherwise

and g(x) =

{
f(x) for x ∈ I0 \ Z
0 otherwise.

For any ε > 0, since (2) holds, by Lemma 3.1, there exists β′ ∈ B such that
V (fn, β

′[Z]) < ε for all n and that V (f, β′[Z]) < ε. Since (3) holds, there
exists β′′ ∈ B such that V (fn−Fn, β

′′) < ε for all n, where Fn is the primitive
of fn. Since B is filtering down, there is β ∈ B such that β ⊂ β′ ∩ β′′. Now
taking P ′, P ′′ ∈ P(β), we have

|σ(fn, P
′)− σ(fn, P

′′)| ≤ |σ(fn − Fn, P
′)|+ |σ(fn − Fn, P

′′)|
≤ 2V (fn − Fn, β) ≤ 2V (fn − Fn, β

′′) < 2ε

for all n. Hence we have

|σ(gn, P
′)− σ(gn, P

′′)| ≤|σ(fn, P
′)− σ(fn, P

′′)

+ |σ(fn, P
′[Z])|+ |σ(fn, P

′′[Z])|
≤2ε+ 2V (fn, β

′[Z]) < 4ε
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for all n. Letting n → ∞, we obtain |σ(g, P ′) − σ(g, P ′′)| ≤ 4ε. By Lemma
2.3, we have that g is B-integrable on I0, and so is f . Since B is filtering
down, we may assume that for the same β, V (f − F, β) < ε where F denotes
the primitive of f . Since the number of x in P [I0 \ Z] is finite, we can find a
positive integer N such that |fn(x) − f(x)| < ε/|I0| for all (I, x) ∈ P [I0 \ Z]
whenever n ≥ N . Hence

|Fn(I0)− F (I0)| ≤|σ(fn − Fn, P )|+ |σ(f − F, P )|
+ σ(|fn − f |, P [I0 \ Z]) + σ(|fn|, P [Z]) + σ(|f |, P [Z])

≤V (fn − Fn, β) + V (f − F, β) + σ(P [I0 \ Z]) · ε/|I0|
+ V (fn, β[Z]) + V (f, β[Z]) ≤ 5ε

for n ≥ N . That is, Fn(I0)→ F (I0) as n→∞. �
We remark that in Theorem 3.1, if we replace the condition (1) by

(1′) fn(x)→ f(x) everywhere on I0,

then condition (2) can be omitted and the conclusion still holds, because we
can prove that (1′) implies (2).

Definition 3.3

(1) Let X ⊂ I0. A sequence of additive interval functions {Fn} is said to be
uniformly AC∇B (X), {Fn} ∈ UAC∇B (X), if for every ε > 0 there exists
β ∈ B and η > 0 such that |σ(Fn, P

′ − P ′′)| < ε whenever P ′, P ′′ ∈
P ′(β[X]) with |U(P ′)∇U(P ′′)| < η, where σ(Fn, P

′−P ′′) = σ(Fn, P
′)−

σ(Fn, P
′′).

(2) {Fn} is said to be UACG∇B on I0, {Fn} ∈ UACG∇B , if there exists
a sequence of measurable sets Xk ⊂ I0 such that ∪∞k=1Xk = I0 and
{Fn} ∈ UAC∇B (Xk) for each k.

If we consider P ′ ≤ P ′′ (or P ′′ = ∅) in Definition 3.3 (1), then we say that
{Fn} is UACC∗∗B (X) (or UAC∗B(X)). Analogously, we can also define UAG∗∗B
and UACG∗B respectively.

Definition 3.4

(1) A sequence of additive interval functions {Fn} is said to be B-variational
convergent on X ⊂ I0, {Fn} ∈ V CB(X), if for every ε > 0 there exists
β ∈ B and a positive integer N such that V (F` − Fn, β) < ε for all
`, n ≥ N .
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(2) {Fn} is said to be generalized B-variational convergent on I0, {Fn} ∈
GV CB, if there exists a sequence of measurable sets Xk ⊂ I0 such that
∪∞k=1Xk = I0 and {Fn} ∈ V C(Xk) for each k.

Definition 3.5 A sequence of measurable functions {fn} is said to have uni-
formly modified GSRSB property on I0, {fn} ∈ UMGSRSB, if for every ε > 0
there exists a measurable set E ⊂ I0 and β ∈ B such that {fn} is uniformly
bounded on E and |σ(fn, P [I0 \ E])| < ε for all n whenever P ∈ P(β).

If we only consider one function f instead of {fn}, then f is said to have
MGSRSB property on I0.

We remark that the concepts of GSRS (globally small Riemann sum, see
[L1]) and FSRS (functional small Riemann sums, see [LL]) were first defined
by S. P. Lu in an attempt to characterize the Henstock integral and establish
a convergence theorem. Here MGSRSB is an extension of GSRS and FSRS.

Lemma 3.3 Let {fn} be a sequence of measurable functions. If

(1) {fn} converges a.e. on I0 and

(2) {fn} is bounded uniformly on I0,

then {fn} is McShane equiintegrable on I0 ([LY], Theorem 1). In other words,
for any ε > 0 there exists δ : I0 → (0, 1) such that for every δ-fine McShane
partition P = {(I, x)} of I0, we have |σ(fn − Fn, P )| < ε for all n, where Fn

is the primitive of fn. Furthermore, {fn} is also B-equiintegrable on I0.

Recall that a partition P = {(I, x)} is said to be a δ-fine McShane partition
if I0 is the union of intervals I, I ⊂ S(x, δ(x)) and x may not belong to I.
Proof. Let

f(x) =

{
limn→∞ fn(x) when it exists at x ∈ I0
0 otherwise

and let |fn(x)| ≤ K for all x ∈ I0 and all n, where K is a certain positive
constant. Then f is also measurable and bounded by K on I0. Hence fn and
f are all McShane integrable. By the Lebesgue Dominated Convergence The-
orem we have Fn(I0 → F (I0) as n→∞, where Fn and F are the primitives of
fn and f respectively. It follows that for any ε > 0 there exists δ : I0 → (0, 1)
and a positive integer N such that |σ(f − F, P )| < ε whenever P is a δ-fine
McShane partition of I0 and |Fn(I0)− F (I0)| < ε for all n ≥ N . By Egoroff’s
theorem we can choose an open set O ⊂ I0 with |O| < ε/K and a positive
integer N ′ such that |fn(x)− f(x)| < ε/|I0| for all n ≥ N ′ and all x ∈ I0 \O.
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Diminish δ if necessary such that S(x, δ(x)) ⊂ O for x ∈ O. For any δ-fine
McShane partition P = {(I, x)} of I0, we have

|σ(fn − Fn, P )| ≤σ(|fn|, P [O]) + σ(|f |, P [O]) + σ(|fn − f |, P [I0 \O])

+ |σ(f − F, P )|+ |F (I0)− Fn(I0)|
<Kσ(P [O]) +Kσ(P [O]) + σ(P [I0 \O])ε/|I0|+ ε+ ε < 5ε

for all n ≥ max(N,N ′). Since the numbers n < max(N,N ′) are finite, we can
diminish δ again so that |σ(fn−Fn, P )| < 5ε for all n < max(N,N ′) whenever
P is a δ-find McShane partition. Hence the first conclusion holds.

Since B has δ-fine property, the second conclusion follows. �

Lemma 3.4 Let {fn} be a pointwise bounded sequence of B-integrable func-
tions on I0, and suppose that Fn is the primitive of fn, n = 1, 2, . . . . If
{Fn} ∈ GV CB, then {Fn} ∈ USLB.

Proof. Suppose that Z ⊂ I0 is of measure zero and let ε > 0. Put Z = ∪iZi

where {Zi} are pairwise disjoint and {Fn} ∈ V CB(Zi) for each i. Fix i and
let εi = ε2−i3−1. By the definition of {Fn} ∈ V CB(Zi) and Lemma 3.1, there
exists β′i ∈ B and a positive integer N(i) such that V (F` − Fn, β

′
i[Zi]) < ε for

all `, n > N(i) and V (fn, β
′
i[Zi]) < ε for all n. Since fn (n = 1, 2, . . . , N(i))

are B-integrable to Fn on I0, there exists β′′i ∈ B so that V (fn − Fn, β
′′
i ) < εi

for n = 1, 2, . . . , N(i). By the fact that B is filtering down, there exists β ∈ B
such that β[Zi] ⊂ β′i ∩ β′′i for all i. For n = 1, 2, . . . , N(i), we have

V (Fn, β[Zi] ≤ V (Fn − fn, β[Zi]) + V (fn, β[Zi])

≤ V (Fn − fn, β′′i ) + V (fn, β
′
i[Zi]) < 2εi

and for n > N(i), we have V (Fn, β[Zi]) ≤ V (Fn−FN(i), β[Zi])+V (FN(i), β[Zi])
< 3εi. Hence, V (Fn, β[Z]) ≤

∑
i V (Fn, β[Zi]) <

∑
i 3εi < ε for all n, and we

obtain {Fn} ∈ USLB. �

Lemma 3.5 (Lu’s lemma of [LL]) If f is B-integrable on I0 then there is a
sequence of measurable sets {Xk} with Xk ⊂ Xk+1 for k, I0 =

⋃
kXk, such

that f is bounded on each Xk and (L)
∫
Xk

f = (B)
∫
I0
f for all k, where (L)

∫
denotes the Lebesgue integral.

Proof. This follows from the proof of Lemma 2 of [LL] if the Henstock
integral is replaced by the B-integral. �

The following theorem is the main result in this section.

Theorem 3.2 Let fn be B-integrable on I0 with the primitive Fn, n=1, 2, . . . ,
let {fn} be pointwise bounded on I0 and suppose that {fn} converges a.e. on
I0. Then the following conditions are equivalent.
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I: {fn} is B-equiintegrable on I0.

II: {Fn} ∈ UACG∇B .

III: {Fn} ∈ UACG∗∗B .

IV: {Fn} ∈ GV CB.

V: {fn} ∈ UMGSRSB.

And consequently, any one of I, II, III, IV, V implies that the limit function
f of {fn} is B-integrable on I0 and that (B)

∫
I0
f = limn→∞(B)

∫
I0
fn.

Proof. I implies II: For all positive integer i let

Xi = {x ∈ I0; {fn(x)} converges and |fn(x)| ≤ i for all n}

and let Z = I0 \ ∪iXi. Then |Z| = 0. Since {Fn} ∈ USLB by Lemma 3.2, we
get {Fn} ∈ UAC∇B (Z). It remains to show that {Fn} ∈ UAC∇B (Xi) for each
i.

Fix i and write, for convenience, X = Xi. Put

fX,n(x) =

{
fn(x) for x ∈ X,
0 otherwise.

Then {fX,n} is bounded uniformly on I0. Let ε > 0. Since {fn} is B-
equiintegrable on I0 and so is {fX,n}, by Lemma 3.3, there exists β ∈ B
such that V (Fn − fn, β) < ε and V (FX,n − fX,n, β) < ε, where FX,n denotes
the primitive of fX,n. It follows from fn(x) = fX,n(x) when x ∈ X that
σ(Fn, P

′ \P ′′)| ≤ 4ε+ |σ(FX,n, P
′ \P ′′)|, whenever P ′, P ′′ ∈ P ′(β[X]). On the

other hand, since {fX,n} is also McShane equiintegrable on I0, so {FX,n} is
uniform absolutely continuous, UAC on I0 ([LY]), Theorem 3), there is η > 0
such that whenever σ(P ′∇P ′′) < η, we have

|σ(FX,n, P
′ \ P ′′)| ≤

∑
I∈U(P ′)\U(P ′′)

|FX,n(I)|+
∑

I∈U(P ′′)\U(P ′)

|FX,n(I)| < ε.

The last two estimates give {Fn} ∈ UAC∇B (X). It follows that {Fn} ∈
UACG∇B .

II implies III is direct.
III implies IV: Clearly, we have

|I0 \
∞⋃
k=1

{x ∈ I0 : |fn(x)| ≤ k for all n}| = 0.
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Hence, for each positive integer i there exists Ei ⊂ I0 and some positive integer
ki such that |fn(x)| ≤ ki on Ei for all n, and that |I0 \Ei| < 1/2i. Since each
Ei is measurable, by Egoroff’s Theorem, there is a closed set Hi ⊂ Ei with
|Ei \ Hi| < 1/2i, such that {fn} converges uniformly on Hi. It follows that
|I0 \

⋃
iHi| = 0. On the other hand, by III we can choose a sequence of closed

sets {Kj} such that {Fn} ∈ UAC∗∗B (Kj) for each j with |I0 \
⋃

j Kj | = 0. For
positive integers i and j let Xij = Hi ∩Kj . Then each Xij is a closed set and
|Z| = 0 where Z = I0 \ ∪i,jXij .

By {Fn} ∈ UACG∗∗B , let Z = ∪kZk where {Zk} are pairwise disjoint
and {Fn} ∈ UAC∗∗(Zk) for each k. Let ε > 0 and let εk = ε2−k−2. For
each k there exists ηk > 0 and βk ∈ B such that |σ(Fn, P )| < εk for all n
whenever P ∈ P ′(βk[Zk]) with σ(P ) < ηk. Choose an open set Ok such that
Zk ⊂ Ok and |Ok| < ηk. Take δ : I0 → (0, 1) such that S(x, δ(x)) ⊂ Ok when
x ∈ Zk for each k. Since B has the δ-fine property and σ-local character,
there exists β ∈ B which is δ-fine such that β[Zk] ⊂ βk for each k. Suppose
that P ∈ P ′(β[Z]). Since σ(P [Zk]) ≤ |Ok| < ηk for each k, we have, for any
positive integers `, n,

|σ(F` − Fn, P )| ≤|σ(F`, P )|+ |σ(Fn, P )| <
∑
k

|σ(F`, P [Zk])|

+
∑
k

|σ(Fn, P ([Zk])| < 2
∑
k

εk ≤ ε/2,

and hence σ(|F` − Fn|, P ) < ε. It follows that, for all positive integers `, n,
V (Fm − Fn, β[Z]) ≤ ε, and we obtain {Fn} ∈ V CB(Z). It remains to show
that {Fn} ∈ V CB(Xij) for each i, j.

Now fix i, j and write, for convenience, X = Xij . For given ε > 0, since
{Fn} ∈ UAC∗∗B (X), there exist β′ ∈ B and η > 0, both independent of n,
such that the remaining conditions for UAC∗∗B (X) hold. Choose an open set
O such that X ⊂ O and with |O \X| < η. Next, take δ : I0 → (0, 1) such that
S(x, δ(x)) ⊂ O when x ∈ X and S(x, δ(x)) ⊂ I0 \X otherwise. Define

fX,n(x) =

{
fn(x) for x ∈ X
0 otherwise

for all n. It follows from Lemma 3.3 that {fX,n} is B-equiintegrable on I0.
In other word, there exists β′′ ∈ B such that V (FX,n − fX,n, β

′′) < ε for all
n, where FX,n is the primitive of fX,n. Since B is filtering down, there is
β ∈ B such that β ⊂ β′ ∩ β′′. For each n, there exists βn ∈ B with βn ⊂ β
and βn is δ-fine, such that V (Fn − fn, βn) < ε. Suppose that P ∈ P ′(β[X]).
Take a βn-partition of each I in P and denote the total partition by P ′. Then
P ′ ∈ P ′(βn) with σ(P ′) = σ(P ). Note that P ′[X] and P ∈ P ′(β[X]) with
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P ′[X] ≤ P and that

σ(P \ P ′[X]) = σ(P ′[O \X]) ≤ |O \X| < η

by P ′[O \X] ∈ P(β(O ∩ (I0 \X))), we have, for all n,

|σ(Fn − FX,n, P )| =|σ(Fn − FX,n, P
′)| ≤ |σ(Fn − fn, P ′[X])|

+ |σ(Fn, P
′[O \X])|+ |σ(FX,n − fX,n, P

′)|
≤V (Fn − fn, βn) + |σ(Fn, P \ P ′[X])|

+ V (FX,n − fX,n, β)

<ε+ ε+ ε = 3ε

By the processes described above, we have V (Fn − FX,n, β[X]) ≤ 6ε for all n.
Since {fn} converges uniformly on X, there is a positive integer N such that
|fn(x)− f`(x)| < ε/|I0| for all x ∈ X whenever `, n ≥ N . Hence

V (F` − Fn, β[X]) <V (F` − FX,`, β[X])

+ V (FX,` − fX,`, β[X]) + V (f` − fn, β[X])

+ V (FX,n − fX,n, β[X]) + V (Fn − FX,n, β[X])

<6ε+ ε+ ε+ ε+ 6ε

for all m,n ≥ N . Therefore {Fn} ∈ V CB(X).
IV implies I: Let {Fn} ∈ GV CB. Then there is a sequence of measurable

sets {Ei} such that I0 =
⋃

iEi and that {Fn} ∈ V CB(Ei) for each i. Use
Egoroff’s theorem to write I0 =

⋃
j Cj ∪Z where each Cj is measurable, {fn}

converges uniformly on each Cj , and |Z| = 0. By reducing a doubly indexed
sequence to a sequence, I0 =

⋃
kXk ∪ Z where {fn} converges uniformly on

each Xk and {Fn} ∈ V CB(Xk) for each k and we may assume that {Xk}∪{Z}
are pairwise disjoint.

For a given ε > 0 and for each k, let εk = ε2−k. By the definition of Xk

there is β′k ∈ B and a positive integer N(k) such that for all `, n ≥ N(k), we
have V (F` − Fn, β

′
k[Xk]) < εk and |fn(x) − f`(x)| < ε/|I0| for all x ∈ Xk.

For n = 1, 2, . . . , N(k), there exists β′′k ∈ B such that V (fn − Fn, β
′′
k ) < εk.

By Lemmas 3.4 and 3.1, there exists β0 ∈ B such that V (Fn, β0[Z]) < ε and
V (fn, β0[Z]) < ε. By the fact that B has σ-local character and is filtering
down, we can choose β ∈ B so that β[Xk] ⊂ β′k ∩ β′′k and β[Z] ⊂ β0. Fix k. If
n ≤ N(k), we have V (fn−Fn, β[Xn]) ≤ V (fn−Fn, β

′′
k ) < εk and if n > N(k),

we have

V (fn − Fn, β[Xn]) ≤V (fn − fN(k), β[Xk])

+ V (fN(k) − FN(k), β[Xk]) + V (FN(k) − Fn, β[Xk])

<εk + εk + εk.
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Hence, for all n,

V (fn − Fn, β) ≤
∑
k

V (fn − Fn, β[Xk]) + V (Fn, β[Z]) + V (fn, β[Z])

≤
∑
k

3εk + ε+ ε ≤ 5ε.

Therefore {fn} is B-equiintegrable on I0.
I implies V: Let f be the limit function of {fn}. Since I holds, by Theorem

3.1, we have that f is B-integrable on I0. By Lu’s Lemma, there exists a
measurable set X such that f is bounded on X and (L)

∫
X
f = (B)

∫
I0
f. Let

Y be the subset of X on which {fn} converges everywhere. Thus |X \ Y | = 0
and (L)

∫
x
f = (L)

∫
Y
f. Put

fY (x) =

{
f(x) for x ∈ Y
0 otherwise

and fY,n(x) =

{
fn(x) for x ∈ Y
0 otherwise.

Then {fY,n} converges to fY everywhere on I0, and hence bounded uniformly
on I0. By Lemma 3.4, {fY,n} is B-equiintegrable on I0. So, there is β ∈ B such
that |σ(fn, P ) − Fn(I0)| < ε and |σ(fY,n, P ) − FY,n(I0)| < ε whenever P ∈
P(β). Furthermore, there is a positive integer N such that |Fn(I0)−F (I0)| < ε
and |FY,n(I0)− FY (I0)| < ε for all n ≥ N , where F , FY,n and FY denote the
primitives of f, fY,n and fY , respectively.

Let P ∈ P(β) and n ≥ N . Note that

F (I0) = (B)

∫
I0

f = (L)

∫
Y

f = (L)

∫
I0

fY = FY (I0).

We have

|σ(fn, P [I0 \ Y ])| =|σ(fn, P )− σ(fY,n, P )|
≤|σ(fn, P )− Fn(I0)|+ |Fn(I0)− F (I0)|

+ |FY (I0)− FY,n(I0)|+ |FY,n(I0)− σ(fY,n, P )| < 4ε.

That is, {fn} ∈ UMGSRSB.
V implies I: By V, for every ε > 0 there exist a measurable set X ⊂ Ik, a

positive integer N and β ∈ B such that {fn} is bounded uniformly on X and
that |σ(fn, P [I0 \X])| < ε for all n ≥ N whenever P ∈ P(β). Let Y ⊂ X on
which {fn} converges everywhere. Put

fY,n(x) =

{
fn(x) for x ∈ Y
0 otherwise
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for n ≥ N . Then {fY,n}n≥N is B-equiintegrable on I0 by Lemma 3.3. Hence,
since B is filtering down, we may assume for the some β ∈ B, we have
|FY,n(I0) − σ(fY,n, P )| < ε for all n ≥ N whenever P ∈ P(β), where FY,n

stands for the primitive of fY,n. Choose an open set O such that X \ Y ⊂ O
and that |O| < ε/K, where K is the uniform bound of {fn}n≥N on X. Take
δ : I0 → (0, 1) such that S(x, δ(x)) ⊂ O when x ∈ X \ Y . Since B has δ-fine
property, we may assume β is δ-fine.

Further, for each n ≥ N , we have |Fn(I0) − FY,n(I0)| < 4ε. Indeed, since
fY,n, fn are B-integrable on I0, there is βn ∈ B with βn ⊂ β such that
|σ(fn, P )− Fn(I0)| < ε and |σ(fY,n, P )− FY,n(I0)| < ε whenever P ∈ P(βn),
it follows that

|Fn(I0)− FY,n(I0)| ≤|Fn(I0)− σ(fn, P )|+ |σ(fn, P [I0 \X])|
+ |σ(fn, P [X \ Y ])|+ |σ(fY,n, P )− FY,n(I0)|

<ε+ ε+K|O|+ ε = 4ε.

Now take any P ∈ P(β). For each n ≥ N , we have

|σ(fn, P )− Fn(I0)| ≤|σ(fn, P [I0 \X] + |σ(fn, P [X \ Y ]|
+ |σ(fY,n, P )− FY,n(I0)|+ |FY,n(I0)− Fn(I0)|

<ε+K|O|+ ε+ 4ε < 7ε.

Furthermore, since the number of n < N is finite, by the fact that B is
filtering down, we an assume for the same β we have |σ(fn, P )−Fn(I0)| < 7ε
for all n ∈ N whenever P ∈ P(β). �

Corollary 3.1 Let fn be B-integrable on I0 with the primitive Fn, n=1, 2, . . . ,
and suppose that {fn} converges to a function f a.e. on I0. Then any one of
II, III, IV, V implies that f is B-integrable on I0 and that

(B)

∫
I0

f = lim
n→∞

(B)

∫
I0

fn.

Proof. We can redefine {fn} on Z = {x; fn(x) doesn’t convergent to f(x)}
so that {fn} is pointwise bounded on Z. And the primitives {Fn} of them are
still invariant. It follows from Theorem 3.2 that the conclusion holds. �

Remark 3.1 It is interesting to point out that we can’t prove Theorem 3.2
with UACC∗∗B replaced by UACC∗B. However in [L3] we proved such a result
when B is an approximate derivation basis on the real line (cf. [T], p.103).
Note that in the last case, the Lebesgue density theorem has been used.

Acknowledgments: The author is indebted to Professor P. S. Bullen and
Professor Shi-Pan Lu for their help during the preparation of this paper, and
to the referee for several valuable suggestions.



Generalized Convergence Theorems 379

References

[CL] T. S. Chew and P. Y. Lee, Nonabsolute integration using Vitali covers,
to appear, 1992.
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