Zbigniew Grande, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland

ON STRONG QUASI-CONTINUITY OF FUNCTIONS OF TWO VARIABLES

Abstract

Some properties describing the strong quasicontinuity of functions of one and two variables are considered.

Preliminaries

Let \mathbb{R} be the set of all reals and let E denote \mathbb{R} or $\mathbb{R} \times \mathbb{R}$. For $x \in E$ and for r > 0 let $K(x,r) = \{t \in X : |t-x| < r\}$. Moreover, let μ_e (μ) be outer Lebesgue measure (Lebesgue measure) in E.

Denote by

$$d_u(A, x) = \limsup_{h \to 0} \mu_e(A \cap K(x, h)) / \mu(K(x, h)),$$

$$(d_l(A, x) = \liminf_{h \to 0} \mu_e(A \cap K(x, h)) / \mu(K(x, h)))$$

the upper (lower) outer density of $A \subset E$ at x. A $x \in E$ is called a density point of $A \subset E$ if there exists a measurable (in the sense of Lebesgue) set $B \subset A$ such that $d_l(B, x) = 1$. The family $\mathcal{T}_d = \{A \subset E; A \text{ is measurable and every } x \in A \text{ is a density point of } A\}$ is a topology called the density topology [2, 1, 7]. Moreover, let \mathcal{T}_e denote the Euclidean topology in E.

1 Definitions and General Properties

A function $f: E \to \mathbb{R}$ has property A(x) at a $x \in E$ (abbreviated $f \in A(x)$) if there is an open set U such that $d_u(U, x) > 0$ and the restriction $f|(U \cup \{x\})$ is continuous at x. A function f has property B(x) at x (abbreviated $f \in B(x)$)

Key Words: strong quasicontinuity, strong quasi-equicontinuity, strong cliquishness, density topology, functions of two variables

Mathematical Reviews subject classification: Primary: 26A15, 26B05, 54C08, 54C30 Received by the editors January 23, 1995

if for every $\eta > 0$ we have $d_u(\text{int}(\{t : |f(t) - f(x)| < \eta\}), x) > 0$, where int (X) denotes the Euclidean interior of X.

A function f is strongly quasicontinuous at x (abbreviated f is s.q.c. at x) (is strongly cliquish at x (abbreviated f is s.c.q. at x)) if for every $\eta > 0$ and for every $U \in \mathcal{T}_d$ such that $x \in U$ there is a nonempty open set V such that $V \cap U \neq \emptyset$ and $|f(t) - f(x)| < \eta$ for all $t \in U \cap V$ (osc $f < \eta$ on the set $U \cap V$) [3].

A function f has the Denjoy-Clarkson property (abbreviated $f \in DCP$) if it is measurable and for all open sets $I \subset \mathcal{R}$, $J \subset E$ such that $J \cap f^{-1}(I) \neq \emptyset$ we have $\mu_e(J \cap f^{-1}(I)) > 0$.

Moreover, denote by C(f) the set of all continuity points of f, by $Q_s(f)$ the set of all $x \in E$, at which f is s.q.c., by A(f) the set $\{x \in E; f \in A(x)\}$ and by B(f) the set $\{x \in E; f \in B(x)\}$. Obviously, $C(f) \subset A(f) \subset B(f) \subset Q_s(f)$.

Example 1 Let $C \subset E$ be a closed, nowhere dense set with $\mu(C) > 0$. There is an isolated set $B \subset E \setminus C$ such that the closure $\operatorname{cl}(B) \supset C$. If f is the characteristic function of the set B, then f is s.q.c. at every point $x \in E \setminus B$, but f doesn't have property B(x) at any $x \in C$ which is a density point of the set C.

Remark 1 There is an everywhere s.q.c. function $f : \mathbb{R} \to \mathbb{R}$ which is continuous at every $x \neq 0$, and such that $f \notin A(0)$.

PROOF. Let $\{I_{k,n}: k, n \in N\}$ (N denotes the set of all positive integers) be a family of pairwise disjoint closed intervals such that

- $0 \notin I_{k,n}$ for $k, n \in N$,
- $d_l(\bigcup_{k \in N} I_{k,n}, 0) = 2^{-n}$ for $n \in N$.
- if $x_i \in I_{k_i,n_i}$ for $i \in N$, $(k_i,n_i) \neq (k_j,n_j)$ for $i \neq j$, $i,j \in N$, and $\lim_{i\to\infty} x_i = x$, then x = 0.

Such intervals $I_{k,n}$ exist, since in every interval $(1/(k+1), 1/k), k \in N$, we can find disjoint closed intervals $J_{k,i}, i \leq n$, such that $\mu(J_{k,i}) = 2^{-i}/k(k+1)$ for $i \leq n$. Then every sequence $(I_{k,n})_{n \in \mathbb{N}}$ of all intervals $J_{k,n}$ and all intervals $-J_{k,n}, n \leq k$ and $k \in \mathbb{N}$, satisfies all required conditions.

Let

$$f(x) = \begin{cases} 1/n & \text{for } x \in I_{k,n}, \ k, n \in \mathbb{N} \\ 0 & \text{for } x = 0 \\ \text{linear} & \text{otherwise.} \end{cases}$$

Then f is continuous at every $x \neq 0$. Fix $\eta > 0$ and $A \in \mathcal{T}_d$ such that $0 \in A$. Let $n \in \mathbb{N}$ be such that $1/n < \eta$. Then $A \cap \bigcup_{k \in \mathbb{N}} I_{k,n} \neq \emptyset$ and there is k such that $A \cap \operatorname{int}(I_{k,n}) \neq \emptyset$ and $|f(t) - f(0)| = f(t) = 1/n < \eta$ for $t \in A \cap \operatorname{int}(I_{k,n})$. So, f is s.q.c. at 0.

Assume, to the contrary, that $f \in A(0)$. Then there is an open set U such that $a = d_u(U,0) > 0$ and $f|(U \cup \{0\})$ is continuous at 0. Fix n_0 such that $2^{-n_0} < a/2$. Then $d_u(\bigcup_{n \le n_0; k \in \mathbb{N}} I_{k,n}, 0) \ge 1 - a/2$ and consequently, for every open set V with $0 \in V$ we have $V \cap U \cap \bigcup_{k \in \mathbb{N}; n \le n_0} I_{k,n} \ne \emptyset$. Since $f(t) \ge 1/n_0$ for each $t \in \bigcup_{k \in \mathbb{N}; n \le n_0} I_{k,n}$ and f(0) = 0, the restricted function $f|(U \cup 0)$ is not continuous at 0. So $f \notin A(0)$.

Remark 2 Observe that for the function f from the proof of Remark 1 we have $A(f) \neq B(f)$, since $f \in B(0)$.

Theorem 1 Let $f \in DCP$. If f is s.q.c. at $x \in E$, then $f \in B(x)$.

PROOF. Assume, to the contrary, that $f \notin B(x)$. Then there is a $\eta > 0$ such that $d_u(\operatorname{int}(\{t:|f(t)-f(x)|<\eta\}),x)=0$. Consequently, $d_l(\operatorname{cl}(\{t:|f(t)-f(x)|\geq\eta\}),x)=1$, where $\operatorname{cl}(X)$ denotes the closure of X. Let $A\subset\operatorname{cl}(\{t:|f(t)-f(x)|\geq\eta\})$ belong to \mathcal{T}_d with $d_l(A,x)=1$. There is a countable set $B\subset\{t:|f(t)-f(x)|\geq\eta\}$ such that $A\subset\operatorname{cl}(B)$. Since $f\in DCP$, there is $H\subset\{t:|f(t)-f(x)|\geq\eta/2\}$ belonging to \mathcal{T}_d such that $B\subset\operatorname{cl}(H)$. Then $A\subset\operatorname{cl}(B)\subset\operatorname{cl}(\operatorname{cl}(H))=\operatorname{cl}(H)$ and $F=A\cup H\cup\{x\}\in\mathcal{T}_d$. Since f is s.q.c. at x, there is an open set U such that $U\cap F\neq\emptyset$ and $|f(t)-f(x)|<\eta/2$ for every $t\in U\cap F$, contrary to $U\cap H\neq\emptyset$ and $H\subset\{t:|f(t)-f(x)|\geq\eta/2\}$. \square

Corollary 1 If $Q_s(f) = E$, then B(f) = E.

Remark 3 The property DCP is well known in differentiation theory [7] and it can be considered also for nonmeasurable functions. Theorem 1 is true if measurability of f is omitted.

Theorem 2 Let $f: E \to \mathbb{R}$ and let $A \subset E$ satisfy $\mu(A \setminus B(f)) = 0$. Then $\mu(A \setminus C(f)) = 0$.

PROOF. Assume, to the contrary, that $\mu_e(A \setminus C(f)) > 0$. Then there is an $\eta > 0$ such that $G = \{t \in A \cap B(f) : \operatorname{osc} f(t) \geq \eta\}$ is of positive outer measure. By the Lebesgue Density Theorem, $H = \{t : d_u(G, t) = 1\}$ is measurable and $H \in \mathcal{T}_d$. Fix $x \in H \cap G$. Since $f \in B(x)$, we have

$$d_u(\text{int}(\{t: |f(t) - f(x)| < \eta/3\}), x) > 0.$$

So $G \cap \operatorname{int} (\{t : |f(t) - f(x)| < \eta/3\}) \neq \emptyset$. Let $u \in G \cap \operatorname{int} (\{t : |f(t) - f(x)| < \eta/3\})$. Since $u \in \operatorname{int} (\{t : |f(t) - f(x)| < \eta/3\})$, we obtain that $\operatorname{osc} f(u) \leq 2\eta/3$, contrary to $u \in G$ and $\operatorname{osc} f(u) \geq \eta$.

Corollary 2 If $\mu(E \setminus B(f)) = 0$, then $\mu(E \setminus C(f)) = 0$.

Corollary 3 If $Q_s(f) = E$, then $\mu(E \setminus C(f)) = 0$.

Remark 4 Observe that $Q_s(f) \setminus C(f)$ need not have measure zero (e.g. for the function f from Example 1).

Remark 5 It is obvious that if the functions $f_n : E \to \mathbb{R}$, $n \in \mathbb{N}$, are s.q.c. at a point x and if the sequence $(f_n)_n$ converges uniformly to f, then f is also s.q.c. at x.

Theorem 3 Let $f: E \to \mathbb{R}$ be a function such that $Q_s(f) = E$. Then there is a sequence of functions f_n , $n \in \mathbb{N}$, which converges uniformly to f and for which $A(f_n) = E$ for $n \in \mathbb{N}$.

PROOF. We prove that for every $\eta>0$ there is $g:E\to\mathbb{R}$ such that A(g)=E and $|f(x)-g(x)|<\eta$ for all $x\in\mathbb{R}$. Fix $\eta>0$. By Corollary 3 f is almost everywhere continuous. So, $V=\{y\in\mathbb{R}:\mu(\operatorname{cl}(f^{-1}(y)))>0\}$ is countable. Consequently, the linear space $E_Q(V)$ over the field \mathbb{Q} of all rationals generated by V is also countable and there is a c>0 which is not in $E_Q(V)$. Fix $n\in\mathbb{N}$ with $c<\eta\eta/6$. Observe that $\mu(\operatorname{cl}(f^{-1}((2k-1)c/n)))=0$ for all integers k and h(x)=(2k-1)c/n if $(2k-1)c/n\le f(x)<(2k+1)c/n$ is almost everywhere continuous and $h(x)\le f(x)< h(x)+2c/n< h(x)+\eta/3$ for every $x\in E$. If $d_u(\operatorname{int}(h^{-1}(h(x))),x)>0$, set g(x)=h(x). If $d_u(\operatorname{int}(h^{-1}(h(x))),x)=0$, then set g(x)=h(x)-2c/n.

Evidently, $|f-g| \le |f-h| + |h-g| \le 2c/n + 2c/n < \eta/3 + \eta/3 < \eta$. We will prove that $g \in A(x)$ for every $x \in E$. If (2k-1)c/n < f(x) < /2k+1)c/n for some integer k, then there is a r > 0 such that

$$(f(x) - r, f(x) + r) \subset ((2k - 1)c/n, (2k + 1)c/n)$$

and, by Corollary 1, $d_u(\inf(f^{-1}((f(x) - r, f(x) + r))), x) > 0$. Since g(t) = h(t) = (2k - 1)c/n for all $t \in \inf(f^{-1}((f(x) - r, f(x) + r)))$, we obtain that $g \in A(x)$.

Now, let f(x) = (2k+1)c/n for some integer k. If $d_u(\inf(h^{-1}(h(x))), x) > 0$ then $g \in A(x)$, because h is almost everywhere continuous. Assume that

 $d_u(\operatorname{int}(h^{-1}(h(x))), x) = 0$. From the definition of h, because h is almost everywhere continuous and since $f \in B(x)$, we get

$$d_u(\text{int}(f^{-1}((f(x)-2c/n,f(x)))),x)>0$$

. Since g(t) = (2k-1)c/n for all $t \in \text{int} (f^{-1}((f(x)-2c/n,f(x))))$ and for t=x, we get $g \in A(x)$.

Now for functions $f, g: E \to \mathbb{R}$ let $\varrho(f, g) = \min(1, \sup_{x \in E} |f(x) - g(x)|)$. Moreover, denote by \mathcal{A} (\mathcal{B}) (Q_s) the family of all functions $f: E \to \mathbb{R}$ with A(f) = E (B(f) = E) ($Q_s(f) = E$).

Observe that $\mathcal{B} = Q_s$ is a closed subset of the complete metric space (DCP, ϱ) . Moreover, by Theorem 4, the closure $\operatorname{cl}_{\varrho}(\mathcal{A})$ of the set \mathcal{A} in the metric ϱ is the same as \mathcal{B} .

Remark 6 The set $Q_s = \mathcal{B}$ is nowhere dense in the space (DCP, ϱ) .

PROOF. Since Q_s is closed, it suffices to prove that for every $\eta > 0$ and for every $f \in Q_s$ there is a $g \in DCP \setminus Q_s$ such that $\varrho(f,g) < \eta$. Fix $f \in Q_s$ and $\eta > 0$. Let F be a nowhere dense nonempty set belonging to \mathcal{T}_d such that $\operatorname{cl}(F) \subset C(f)$ and let h be the characteristic function of the set F. Then $g = f + \eta h/2 \in DCP \setminus Q_s$ and $\varrho(f,g) = \eta/2 < \eta$.

2 Functions of Two Variables

Now let $E = \mathbb{R}^2$. There are functions $f: E \to \mathbb{R}$ such that all sections $f_x(t) = f(x,t)$, $f^y(t) = f(t,y)$, $t, x, y \in \mathbb{R}$, are continuous and $\mu(E \setminus C(f)) > 0$ [4]. Observe that such functions f are not in Q_s . However, such functions have the following property H(x,y) at every $(x,y) \in E$.

A function $f: E \to \mathbb{R}$ has property H(x,y) (K(x,y)) at (x,y) if for every $\eta > 0$ and for all $U, V \in \mathcal{T}_d$ such that $x \in U$ and $y \in V$ there is an open set W such that $W \cap (U \times V) \neq \emptyset$ and $|f(u,v) - f(x,y)| < \eta$ for all $(u,v) \in W \cap (U \times V)$ (osc $f < \eta$ on the set $W \cap (U \times V)$).

Theorem 4 If all sections f_x and f^y , $x, y \in \mathbb{R}$, of $f : E \to \mathbb{R}$ belong to Q_s , then f has property H(x, y) at every $(x, y) \in E$.

PROOF. Fix $(x,y) \in E$, a real $\eta > 0$ and $U, V \in \mathcal{T}_d$ such that $x \in U$ and $y \in V$. Since $f^y \in B(x)$, there is an open interval I such that $I \cap U \neq \emptyset$ and $|f(t,y) - f(x,y)| < \eta/4$ for all $t \in I$. Let $F = \operatorname{cl}(I \cap U)$. Since $f_t \in B(y)$ for all $t \in F$, for each $t \in F$ there is an open interval J(t) with rational endpoints such that $J(t) \cap V \neq \emptyset$ and $|f(t,v) - f(t,y)| < \eta/4$ for all $v \in J(t)$. There is

an open interval J such that $G = \{t \in F : J(t) = J\}$ is of the second category in F. Consequently, there is an open interval $I_1 \subset I$ such that $I_1 \cap F \neq \emptyset$ and $I_1 \cap G$ is dense in $I_1 \cap F$. Evidently, $K = (I_1 \cap U) \times (J \cap V) \neq \emptyset$. Fix $(u,v) \in K$ and assume that $|f(u,v) - f(x,y)| > \eta/2$. Since $f^v \in B(u)$, there is an open interval $I_2 \subset I_1$ such that $I_2 \cap F \neq \emptyset$ and $|f(t,v) - f(x,y)| > \eta/2$ for all $t \in I_2$. Let $s \in I_2 \cap G$. Then $|f(s,v) - f(x,y)| > \eta/2$. But

$$|f(s,v) - f(x,y)| \le |f(s,v) - f(s,y)| + |f(s,y) - f(x,y)| < \eta/4 + \eta/4 = \eta/2$$

This contradiction finishes the proof.

Now, denote by P_s the family of all functions $f: E \to \mathbb{R}$ which are strongly cliquish at every $x \in E$.

Theorem 5 If all sections f^y of $f: E \to \mathbb{R}$ belong to Q_s and all sections f_x belong to P_s , then f has property K(x,y) at every $(x,y) \in E$.

PROOF. Fix $(x,y) \in E$, and $U, V \in \mathcal{T}_d$ such that $x \in U, y \in V$ and $\eta > 0$. For every $t \in W = \operatorname{cl}(U)$ there are an open interval I(t) with rational endpoints and a closed interval J(t) with rational endpoints such that $\mu(J(t)) < \eta/2$, $I(t) \cap V \neq \emptyset$ and $f(t,v) \in J(t)$ for every $v \in V \cap J(t)$. Since the family of all pairs of intervals with rational endpoints is countable, there are open intervals I, L and a closed interval J such that $I \cap U \neq \emptyset$ and

$$A = \{t \in W : I(t) = L, J(t) = J\}$$

is dense in $I \cap U$. Fix $(u,v) \in (I \times L) \cap (U \times V)$. If $f(u,v) \notin J$, then since $f^v \in B(u)$, we obtain that there is a $w \in A \cap U$ such that $f(w,v) \notin J$, contrary to the definition of A and the choice of I(t) and J(t). So, $f(u,v) \in J$ for every $(u,v) \in (I \times L) \cap (U \times V)$ and osc $f \leq \eta/2 < \eta$ on $(I \times L) \cap (U \times V)$. \square

Problem 1 Suppose that $f: E \to \mathbb{R}$ has all sections $f^y \in Q_s$ and all sections $f_x \in P_s$. Is f in P_s ?

Now, denote by Φ the family of all $f: \mathbb{R} \to \mathbb{R}$ such that for every nonempty closed set P of positive measure and for every $\eta > 0$ there is an open interval I such that $I \cap P \neq \emptyset$ and $\operatorname{osc} f < \eta$ on $I \cap P$.

Observe that all Baire 1 functions and all almost everywhere continuous functions are in Φ .

Problem 2 Let $f: E \to \mathbb{R}$ be such that all sections f_x are in Φ and all sections f^y are in Q_s . Is f in P_s ?

Now we say that the functions $f_s : \mathbb{R} \to \mathbb{R}$, where $s \in S$ and S is a set of indices, are strongly quasi-equicontinuous (abbreviated s.q.ec.) at $x \in \mathbb{R}$ if for every $\eta > 0$

$$d_u \left(\inf \left(\bigcap_{s \in S} (f_s)^{-1} ((f_s(x) - \eta, f_s(x) + \eta)) \right), x \right) > 0.$$

Theorem 6 If all sections f^y of $f: E \to \mathbb{R}$ are s.q.c. at every x and if the sections f_x , $x \in \mathbb{R}$, are s.q.ec. at every y, then f is s.q.c..

PROOF. Fix $(x,y) \in E$, $\eta > 0$ and $U \subset E$ belonging to \mathcal{T}_d and such that $(x,y) \in U$. Since f^y is s.q.c., we get $f^y \in B(x)$. Consequently, for the interior int $((f^y)^{-1}((f(x,y) - \eta/2, f(x,y) + \eta/2))) = G$ we have $d_u(G,x) > 0$. Let

$$H = \inf \Big(\bigcap_{t \in \mathcal{R}} (f_t)^{-1} ((f(t, y) - \eta/2, f(t, y) + \eta/2)) \Big).$$

Since the sections f_x are s.q.ec. at y, we obtain $d_u(H,y) > 0$. So $G \times H$ is open, $d_u((G \times H), (x,y)) > 0$ and $(G \times H) \cap U \neq \emptyset$. Let $(u,v) \in G \times H$. Then

$$|f(u,v) - f(x,y)| \le |f(u,v) - f(u,y)| + |f(u,y) - f(x,y)| < \eta/2 + \eta/2 = \eta$$

and the proof is complete.

Theorem 7 There is a function $f: E \to \mathbb{R}$ having continuous sections f_x and f^y , $x, y \in \mathbb{R}$, such that $\mu(E \setminus C(f)) > 0$ and for every $\eta > 0$, for every $y \in \mathbb{R}$ and for every $U \in \mathcal{T}_d$ containing y there is an open interval I such that $I \cap U \neq \emptyset$ and $|f(x,t) - f(x,y)| < \eta$ for all $t \in U \cap I$ and for all $x \in \mathbb{R}$.

PROOF. Let $C \subset [0,1]$ be a Cantor set of positive measure. There are pairwise disjoint closed intervals $I_n \subset \mathbb{R} \setminus C$ such that

- if $x_i \in I_{n_i}$ for $i \in \mathbb{N}$, $I_{n_i} \neq I_{n_j}$ for $i \neq j$ and $\lim_{i \to \infty} = x$, then $x \in C$,
- for all $x \in C$ we have $d_u(\bigcup_{n \in \mathbb{N}} I_n, x) = 0$,
- $C \subset \operatorname{cl}\left(\bigcup_{n \in \mathbb{N}} I_{2n-1}\right) \cap \operatorname{cl}\left(\bigcup_{n \in \mathbb{N}} I_{2n}\right)$.

Let $f: E \to \mathbb{R}$ be a function such that f(x,y) = 0 if $(x,y) \notin I_{2n-1} \times I_{2n}$, $n \in \mathbb{N}$, f is continuous at every $(x,y) \notin C \times C$ and $f(I_{2n-1} \times I_{2n}) = [0,1]$ for $n \in \mathbb{N}$. Then f satisfies all required conditions.

Remark 7 Observe that Theorem 7 shows that in Theorem 6 the definition of strong quasi-equicontinuity of sections f_x , $x \in \mathbb{R}$, can't be the following: f_x , $x \in \mathbb{R}$, are s.q.ec. at a point y if for every $\eta > 0$ and for every $U \in \mathcal{T}_d$ with $y \in U$ there is an open set V such that $V \cap U \neq \emptyset$ and $|f_x(v) - f_x(y)| < \eta$ for all $v \in U \cap V$ and $x \in \mathbb{R}$. The function f from Theorem 7 is not in Q_s , since $\mu(E \setminus C(f)) > 0$.

Theorem 8 Let $f: E \to \mathbb{R}$ be a function such that all sections f_x are s.q.ec. at every y and all sections f^y are almost everywhere continuous. Then $f \in P_s$.

PROOF. We proceed as in the proof of Theorem 6, but for each $U \in \mathcal{T}_d$ we find a $(x,y) \in U$ such that x is a density point of $\{t : (t,y) \in U\}$ and f^y is continuous at x.

References

- [1] A. M. Bruckner, *Differentiation of real functions*, Lectures Notes in Math. **659** (1978), Springer-Verlag.
- [2] A. M. Bruckner, *Differentiation of Integrals*, Amer. Math. Monthly, **78** Part II (1971), 1–51.
- [3] C. Goffman, C. J. Neugebauer and T. Nishiura, *Density topology and approximate continuity*, Duke Math. J. **28** (1961), 497–506.
- [4] Z. Grande, Measurability, quasicontinuity and cliquishness of functions of two variables, Real Analysis Exchange 20 (1994–95), 744–752.
- [5] R. Kershner, The continuity of functions of many variables, Trans. Amer. Math. Soc. 53 (1943), 83–100.
- [6] T. Neubrunn, Quasi-continuity, Real Analysis Exch. 14 (1988–89), 259–306.
- [7] S. Saks, Theory of the integral, Warsaw, 1937.