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ON STRONG QUASI-CONTINUITY OF
FUNCTIONS OF TWO VARIABLES

Abstract

Some properties describing the strong quasicontinuity of functions
of one and two variables are considered.

Preliminaries

Let R be the set of all reals and let E denote R or R × R. For x ∈ E and
for r > 0 let K(x, r) = {t ∈ X : |t − x| < r}. Moreover, let µe (µ) be outer
Lebesgue measure (Lebesgue measure) in E.

Denote by

du(A, x) = lim sup
h→0

µe(A ∩K(x, h))/µ(K(x, h)),

(dl(A, x) = lim inf
h→0

µe(A ∩K(x, h))/µ(K(x, h)))

the upper (lower) outer density of A ⊂ E at x. A x ∈ E is called a density
point of A ⊂ E if there exists a measurable (in the sense of Lebesgue) set
B ⊂ A such that dl(B, x) = 1. The family Td = {A ⊂ E; A is measurable and
every x ∈ A is a density point of A} is a topology called the density topology
[2, 1, 7]. Moreover, let Te denote the Euclidean topology in E.

1 Definitions and General Properties

A function f : E → R has property A(x) at a x ∈ E (abbreviated f ∈ A(x)) if
there is an open set U such that du(U, x) > 0 and the restriction f |(U ∪{x}) is
continuous at x. A function f has property B(x) at x (abbreviated f ∈ B(x))

Key Words: strong quasicontinuity, strong quasi-equicontinuity, strong cliquishness,
density topology, functions of two variables

Mathematical Reviews subject classification: Primary: 26A15, 26B05, 54C08, 54C30
Received by the editors January 23, 1995

236



Strong Quasi-Continuity of Functions 237

if for every η > 0 we have du(int ({t : |f(t)−f(x)| < η}), x) > 0, where int (X)
denotes the Euclidean interior of X.

A function f is strongly quasicontinuous at x (abbreviated f is s.q.c. at x)
(is strongly cliquish at x (abbreviated f is s.c.q. at x)) if for every η > 0 and
for every U ∈ Td such that x ∈ U there is a nonempty open set V such that
V ∩ U 6= ∅ and |f(t) − f(x)| < η for all t ∈ U ∩ V (osc f < η on the set
U ∩ V ) [3].

A function f has the Denjoy-Clarkson property (abbreviated f ∈ DCP ) if
it is measurable and for all open sets I ⊂ R, J ⊂ E such that J ∩ f−1(I) 6= ∅
we have µe(J ∩ f−1(I)) > 0.

Moreover, denote by C(f) the set of all continuity points of f , by Qs(f) the
set of all x ∈ E, at which f is s.q.c., by A(f) the set {x ∈ E; f ∈ A(x)} and by
B(f) the set {x ∈ E; f ∈ B(x)}. Obviously, C(f) ⊂ A(f) ⊂ B(f) ⊂ Qs(f).

Example 1 Let C ⊂ E be a closed, nowhere dense set with µ(C) > 0. There
is an isolated set B ⊂ E \ C such that the closure cl (B) ⊃ C. If f is the
characteristic function of the set B, then f is s.q.c. at every point x ∈ E \B,
but f doesn’t have property B(x) at any x ∈ C which is a density point of the
set C.

Remark 1 There is an everywhere s.q.c. function f : R → R which is con-
tinuous at every x 6= 0, and such that f 6∈ A(0).

Proof. Let {Ik,n : k, n ∈ N} (N denotes the set of all positive integers) be a
family of pairwise disjoint closed intervals such that

• 0 6∈ Ik,n for k, n ∈ N ,

• dl
(⋃

k∈N Ik,n, 0
)

= 2−n for n ∈ N .

• if xi ∈ Iki,ni
for i ∈ N , (ki, ni) 6= (kj , nj) for i 6= j, i, j ∈ N , and

limi→∞ xi = x, then x = 0.

Such intervals Ik,n exist, since in every interval (1/(k + 1), 1/k), k ∈ N , we
can find disjoint closed intervals Jk,i, i ≤ n, such that µ(Jk,i) = 2−i/k(k + 1)
for i ≤ n. Then every sequence (Ik,n)n∈N of all intervals Jk,n and all intervals
−Jk,n, n ≤ k and k ∈ N, satisfies all required conditions.

Let

f(x) =


1/n for x ∈ Ik,n, k, n ∈ N
0 for x = 0

linear otherwise.
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Then f is continuous at every x 6= 0. Fix η > 0 and A ∈ Td such that
0 ∈ A. Let n ∈ N be such that 1/n < η. Then A ∩

⋃
k∈N Ik,n 6= ∅ and

there is k such that A ∩ int (Ik,n) 6= ∅ and |f(t)− f(0)| = f(t) = 1/n < η for
t ∈ A ∩ int (Ik,n). So, f is s.q.c. at 0.

Assume, to the contrary, that f ∈ A(0). Then there is an open set U such
that a = du(U, 0) > 0 and f |(U ∪ {0}) is continuous at 0. Fix n0 such that
2−n0 < a/2. Then du

(⋃
n≤n0;k∈N Ik,n, 0

)
≥ 1−a/2 and consequently, for every

open set V with 0 ∈ V we have V ∩U ∩
⋃

k∈N;n≤n0
Ik,n 6= ∅. Since f(t) ≥ 1/n0

for each t ∈
⋃

k∈N;n≤n0
Ik,n and f(0) = 0, the restricted function f |(U ∪ 0) is

not continuous at 0. So f 6∈ A(0). �

Remark 2 Observe that for the function f from the proof of Remark 1 we
have A(f) 6= B(f), since f ∈ B(0).

Theorem 1 Let f ∈ DCP . If f is s.q.c. at x ∈ E, then f ∈ B(x).

Proof. Assume, to the contrary, that f 6∈ B(x). Then there is a η > 0
such that du(int ({t : |f(t) − f(x)| < η}), x) = 0. Consequently, dl(cl ({t :
|f(t) − f(x)| ≥ η}), x) = 1, where cl (X) denotes the closure of X. Let A ⊂
cl ({t : |f(t)−f(x)| ≥ η}) belong to Td with dl(A, x) = 1. There is a countable
set B ⊂ {t : |f(t) − f(x)| ≥ η} such that A ⊂ cl (B). Since f ∈ DCP , there
is H ⊂ {t : |f(t) − f(x)| ≥ η/2} belonging to Td such that B ⊂ cl (H). Then
A ⊂ cl (B) ⊂ cl (cl (H)) = cl (H) and F = A ∪H ∪ {x} ∈ Td. Since f is s.q.c.
at x, there is an open set U such that U ∩ F 6= ∅ and |f(t)− f(x)| < η/2 for
every t ∈ U ∩ F , contrary to U ∩H 6= ∅ and H ⊂ {t : |f(t)− f(x)| ≥ η/2}. �

Corollary 1 If Qs(f) = E, then B(f) = E.

Remark 3 The property DCP is well known in differentiation theory [7] and
it can be considered also for nonmeasurable functions. Theorem 1 is true if
measurability of f is omitted.

Theorem 2 Let f : E → R and let A ⊂ E satisfy µ(A \ B(f)) = 0. Then
µ(A \ C(f)) = 0.

Proof. Assume, to the contrary, that µe(A \ C(f)) > 0. Then there is an
η > 0 such that G = {t ∈ A∩B(f) : osc f(t) ≥ η} is of positive outer measure.
By the Lebesgue Density Theorem, H = {t : du(G, t) = 1} is measurable and
H ∈ Td. Fix x ∈ H ∩G. Since f ∈ B(x), we have

du(int ({t : |f(t)− f(x)| < η/3}), x) > 0.
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So G ∩ int ({t : |f(t)− f(x)| < η/3}) 6= ∅. Let u ∈ G ∩ int ({t : |f(t)− f(x)| <
η/3}). Since u ∈ int ({t : |f(t)−f(x)| < η/3}, we obtain that osc f(u) ≤ 2η/3,
contrary to u ∈ G and osc f(u) ≥ η. �

Corollary 2 If µ(E \B(f)) = 0, then µ(E \ C(f)) = 0.

Corollary 3 If Qs(f) = E, then µ(E \ C(f)) = 0.

Remark 4 Observe that Qs(f) \ C(f) need not have measure zero (e.g. for
the function f from Example 1).

Remark 5 It is obvious that if the functions fn : E → R, n ∈ N, are s.q.c. at
a point x and if the sequence (fn)n converges uniformly to f , then f is also
s.q.c. at x.

Theorem 3 Let f : E → R be a function such that Qs(f) = E. Then there
is a sequence of functions fn, n ∈ N, which converges uniformly to f and for
which A(fn) = E for n ∈ N.

Proof. We prove that for every η > 0 there is g : E → R such that A(g) = E
and |f(x) − g(x)| < η for all x ∈ R. Fix η > 0. By Corollary 3 f is almost
everywhere continuous. So, V = {y ∈ R : µ(cl (f−1(y))) > 0} is countable.
Consequently, the linear space EQ(V ) over the field Q of all rationals generated
by V is also countable and there is a c > 0 which is not in EQ(V ). Fix n ∈ N
with c < nη/6. Observe that µ(cl (f−1((2k−1)c/n))) = 0 for all integers k and
h(x) = (2k − 1)c/n if (2k − 1)c/n ≤ f(x) < (2k + 1)c/n is almost everywhere
continuous and h(x) ≤ f(x) < h(x) + 2c/n < h(x) + η/3 for every x ∈ E. If
du(int (h−1(h(x))), x) > 0, set g(x) = h(x). If du(int (h−1(h(x))), x) = 0, then
set g(x) = h(x)− 2c/n.

Evidently, |f − g| ≤ |f − h|+ |h− g| ≤ 2c/n+ 2c/n < η/3 + η/3 < η. We
will prove that g ∈ A(x) for every x ∈ E. If (2k− 1)c/n < f(x) < /2k+ 1)c/n
for some integer k, then there is a r > 0 such that

(f(x)− r, f(x) + r) ⊂ ((2k − 1)c/n, (2k + 1)c/n)

and, by Corollary 1, du(int (f−1((f(x) − r, f(x) + r))), x) > 0. Since g(t) =
h(t) = (2k − 1)c/n for all t ∈ int (f−1((f(x) − r, f(x) + r))), we obtain that
g ∈ A(x).

Now, let f(x) = (2k+1)c/n for some integer k. If du(int (h−1(h(x))), x) > 0
then g ∈ A(x), because h is almost everywhere continuous. Assume that
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du(int (h−1(h(x))), x) = 0. From the definition of h, because h is almost ev-
erywhere continuous and since f ∈ B(x), we get

du(int (f−1((f(x)− 2c/n, f(x)))), x) > 0

. Since g(t) = (2k − 1)c/n for all t ∈ int (f−1((f(x) − 2c/n, f(x)))) and for
t = x, we get g ∈ A(x). �

Now for functions f, g : E → R let %(f, g) = min(1, supx∈E |f(x)− g(x)|).
Moreover, denote by A (B) (Qs) the family of all functions f : E → R with
A(f) = E (B(f) = E) (Qs(f) = E).

Observe that B = Qs is a closed subset of the complete metric space
(DCP, %). Moreover, by Theorem 4, the closure cl %(A) of the set A in the
metric % is the same as B.

Remark 6 The set Qs = B is nowhere dense in the space (DCP, %).

Proof. Since Qs is closed, it suffices to prove that for every η > 0 and for
every f ∈ Qs there is a g ∈ DCP \ Qs such that %(f, g) < η. Fix f ∈ Qs

and η > 0. Let F be a nowhere dense nonempty set belonging to Td such
that cl (F ) ⊂ C(f) and let h be the characteristic function of the set F . Then
g = f + ηh/2 ∈ DCP \Qs and %(f, g) = η/2 < η. �

2 Functions of Two Variables

Now let E = R2. There are functions f : E → R such that all sections fx(t) =
f(x, t), fy(t) = f(t, y), t, x, y ∈ R, are continuous and µ(E \ C(f)) > 0 [4].
Observe that such functions f are not in Qs. However, such functions have
the following property H(x, y) at every (x, y) ∈ E.

A function f : E → R has property H(x, y) (K(x, y)) at (x, y) if for every
η > 0 and for all U, V ∈ Td such that x ∈ U and y ∈ V there is an open set W
such that W∩(U×V ) 6= ∅ and |f(u, v)−f(x, y)| < η for all (u, v) ∈W∩(U×V )
(osc f < η on the set W ∩ (U × V )).

Theorem 4 If all sections fx and fy, x, y ∈ R, of f : E → R belong to Qs,
then f has property H(x, y) at every (x, y) ∈ E.

Proof. Fix (x, y) ∈ E, a real η > 0 and U, V ∈ Td such that x ∈ U and
y ∈ V . Since fy ∈ B(x), there is an open interval I such that I ∩ U 6= ∅ and
|f(t, y)− f(x, y)| < η/4 for all t ∈ I. Let F = cl (I ∩ U). Since ft ∈ B(y) for
all t ∈ F , for each t ∈ F there is an open interval J(t) with rational endpoints
such that J(t) ∩ V 6= ∅ and |f(t, v) − f(t, y)| < η/4 for all v ∈ J(t). There is
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an open interval J such that G = {t ∈ F : J(t) = J} is of the second category
in F . Consequently, there is an open interval I1 ⊂ I such that I1 ∩ F 6= ∅
and I1 ∩ G is dense in I1 ∩ F . Evidently, K = (I1 ∩ U) × (J ∩ V ) 6= ∅. Fix
(u, v) ∈ K and assume that |f(u, v)− f(x, y)| > η/2. Since fv ∈ B(u), there
is an open interval I2 ⊂ I1 such that I2 ∩ F 6= ∅ and |f(t, v)− f(x, y)| > η/2
for all t ∈ I2. Let s ∈ I2 ∩G. Then |f(s, v)− f(x, y)| > η/2. But

|f(s, v)− f(x, y)| ≤ |f(s, v)− f(s, y)|+ |f(s, y)− f(x, y)| < η/4 + η/4 = η/2

This contradiction finishes the proof. �
Now, denote by Ps the family of all functions f : E → R which are strongly

cliquish at every x ∈ E.

Theorem 5 If all sections fy of f : E → R belong to Qs and all sections fx
belong to Ps, then f has property K(x, y) at every (x, y) ∈ E.

Proof. Fix (x, y) ∈ E, and U, V ∈ Td such that x ∈ U , y ∈ V and η > 0. For
every t ∈ W = cl (U) there are an open interval I(t) with rational endpoints
and a closed interval J(t) with rational endpoints such that µ(J(t)) < η/2,
I(t) ∩ V 6= ∅ and f(t, v) ∈ J(t) for every v ∈ V ∩ J(t). Since the family of all
pairs of intervals with rational endpoints is countable, there are open intervals
I, L and a closed interval J such that I ∩ U 6= ∅ and

A = {t ∈W : I(t) = L, J(t) = J}

is dense in I ∩ U . Fix (u, v) ∈ (I × L) ∩ (U × V ). If f(u, v) 6∈ J , then since
fv ∈ B(u), we obtain that there is a w ∈ A ∩ U such that f(w, v) 6∈ J ,
contrary to the definition of A and the choice of I(t) and J(t). So, f(u, v) ∈ J
for every (u, v) ∈ (I ×L)∩ (U ×V ) and osc f ≤ η/2 < η on (I ×L)∩ (U ×V ).
�

Problem 1 Suppose that f : E → R has all sections fy ∈ Qs and all sections
fx ∈ Ps. Is f in Ps?

Now, denote by Φ the family of all f : R→ R such that for every nonempty
closed set P of positive measure and for every η > 0 there is an open interval
I such that I ∩ P 6= ∅ and osc f < η on I ∩ P .

Observe that all Baire 1 functions and all almost everywhere continuous
functions are in Φ.

Problem 2 Let f : E → R be such that all sections fx are in Φ and all
sections fy are in Qs. Is f in Ps?
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Now we say that the functions fs : R → R, where s ∈ S and S is a set of
indices, are strongly quasi-equicontinuous (abbreviated s.q.ec.) at x ∈ R if for
every η > 0

du
(
int
(⋂
s∈S

(fs)
−1((fs(x)− η, fs(x) + η))

)
, x
)
> 0.

Theorem 6 If all sections fy of f : E → R are s.q.c. at every x and if the
sections fx, x ∈ R, are s.q.ec. at every y, then f is s.q.c..

Proof. Fix (x, y) ∈ E, η > 0 and U ⊂ E belonging to Td and such that
(x, y) ∈ U . Since fy is s.q.c., we get fy ∈ B(x). Consequently, for the interior
int ((fy)−1((f(x, y)− η/2, f(x, y) + η/2))) = G we have du(G, x) > 0. Let

H = int
(⋂
t∈R

(ft)
−1((f(t, y)− η/2, f(t, y) + η/2))

)
.

Since the sections fx are s.q.ec. at y, we obtain du(H, y) > 0. So G × H is
open, du((G×H), (x, y)) > 0 and (G×H)∩U 6= ∅. Let (u, v) ∈ G×H. Then

|f(u, v)− f(x, y)| ≤ |f(u, v)− f(u, y)|+ |f(u, y)− f(x, y)| < η/2 + η/2 = η

and the proof is complete. �

Theorem 7 There is a function f : E → R having continuous sections fx
and fy, x, y ∈ R, such that µ(E \ C(f)) > 0 and for every η > 0, for every
y ∈ R and for every U ∈ Td containing y there is an open interval I such that
I ∩ U 6= ∅ and |f(x, t)− f(x, y)| < η for all t ∈ U ∩ I and for all x ∈ R.

Proof. Let C ⊂ [0, 1] be a Cantor set of positive measure. There are pairwise
disjoint closed intervals In ⊂ R \ C such that

• if xi ∈ Ini
for i ∈ N, Ini

6= Inj
for i 6= j and limi→∞ = x, then x ∈ C,

• for all x ∈ C we have du
(⋃

n∈N In, x
)

= 0,

• C ⊂ cl
(⋃

n∈N I2n−1
)
∩ cl

(⋃
n∈N I2n

)
.

Let f : E → R be a function such that f(x, y) = 0 if (x, y) 6∈ I2n−1 × I2n,
n ∈ N, f is continuous at every (x, y) 6∈ C × C and f(I2n−1 × I2n) = [0, 1] for
n ∈ N. Then f satisfies all required conditions. �
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Remark 7 Observe that Theorem 7 shows that in Theorem 6 the definition
of strong quasi-equicontinuity of sections fx, x ∈ R, can’t be the following: fx,
x ∈ R, are s.q.ec. at a point y if for every η > 0 and for every U ∈ Td with
y ∈ U there is an open set V such that V ∩U 6= ∅ and |fx(v)− fx(y)| < η for
all v ∈ U ∩ V and x ∈ R. The function f from Theorem 7 is not in Qs, since
µ(E \ C(f)) > 0.

Theorem 8 Let f : E → R be a function such that all sections fx are s.q.ec.
at every y and all sections fy are almost everywhere continuous. Then f ∈ Ps.

Proof. We proceed as in the proof of Theorem 6, but for each U ∈ Td we
find a (x, y) ∈ U such that x is a density point of {t : (t, y) ∈ U} and fy is
continuous at x.
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