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ON STRONG QUASI-CONTINUITY OF
FUNCTIONS OF TWO VARIABLES

Abstract

Some properties describing the strong quasicontinuity of functions
of one and two variables are considered.

Preliminaries

Let R be the set of all reals and let E denote R or R x R. For z € F and
for r > 0let K(z,7) ={t € X : |t — x| < r}. Moreover, let . (1) be outer
Lebesgue measure (Lebesgue measure) in E.

Denote by

du(4,z) = ligljblpue(fl NK(z,h))/u(K(z,h)),

(dh (A, ) = i inf e (A 0 K G, ) /(S (1, 1)

the upper (lower) outer density of A C F at z. A x € FE is called a density
point of A C E if there exists a measurable (in the sense of Lebesgue) set
B C A such that d;(B,z) = 1. The family Ty = {A C E; A is measurable and
every x € A is a density point of A} is a topology called the density topology
[2, 1, 7]. Moreover, let 7, denote the Euclidean topology in E.

1 Definitions and General Properties

A function f : E — R has property A(x) at a x € E (abbreviated f € A(z)) if
there is an open set U such that d, (U, z) > 0 and the restriction f|(UU{z}) is
continuous at z. A function f has property B(x) at = (abbreviated f € B(x))
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if for every 1 > 0 we have d,,(int ({¢ : | f(¢t) — f(z)] < n}),z) > 0, where int (X)
denotes the Euclidean interior of X.

A function f is strongly quasicontinuous at x (abbreviated f is s.q.c. at )
(is strongly cliquish at = (abbreviated f is s.c.q. at z)) if for every n > 0 and
for every U € Ty such that z € U there is a nonempty open set V' such that
VNU # 0 and |f(t) — f(z)] <pforallt € UNV (oscf < n on the set
unv)[3].

A function f has the Denjoy-Clarkson property (abbreviated f € DCP) if
it is measurable and for all open sets I C R, J C E such that J N f=1(I) # ()
we have pe(J N f~1(I)) > 0.

Moreover, denote by C(f) the set of all continuity points of f, by Q4(f) the
set of all z € E, at which f is s.q.c., by A(f) the set {z € E; f € A(z)} and by
B(f) the set {z € E; f € B(x)}. Obviously, C(f) C A(f) € B(f) C Qs(f).

Example 1 Let C C E be a closed, nowhere dense set with u(C) > 0. There
is an isolated set B C E\ C such that the closure c1(B) D C. If f is the
characteristic function of the set B, then f is s.q.c. at every point x € E \ B,
but f doesn’t have property B(x) at any x € C which is a density point of the
set C'.

Remark 1 There is an everywhere s.q.c. function f : R — R which is con-
tinuous at every x # 0, and such that f & A(0).

PRrROOF. Let {Ij, : k,n € N} (N denotes the set of all positive integers) be a
family of pairwise disjoint closed intervals such that

e 0& Iy, for k,n e N,
b dl(UkeN Ik,nao) =2""forn € N.

o if & € Iy, n, for i € N, (ki,n;) # (kj,n;) for i # j, i,j € N, and
lim; ,o x; = x, then x = 0.

Such intervals I, exist, since in every interval (1/(k + 1),1/k), k € N, we
can find disjoint closed intervals Jy ;, @ < n, such that p(Jg ;) = 27" /k(k + 1)
for ¢ < n. Then every sequence (I ,)nen of all intervals Jy , and all intervals
—Jkn, n <k and k € N, satisfies all required conditions.
Let
1/n forx € I, k,neN
fz)=<X0 forz =0
linear otherwise.
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Then f is continuous at every x # 0. Fix n > 0 and A € Ty such that
0 € A, Let n € N be such that 1/n < 7. Then AN ey e # 0 and
there is k such that A Nint (I ,,) # 0 and |f(¢) — f(0)] = f(t) = 1/n < n for
te Anint (I,). So, fiss.q.c. at 0.

Assume, to the contrary, that f € A(0). Then there is an open set U such
that a = d,(U,0) > 0 and f|(U U {0}) is continuous at 0. Fix ng such that
27" < /2. Then d,, (Un<n0;k:€N Iy, 0) > 1—a/2 and consequently, for every
open set V with 0 € V' we have VN U NUyen.pan, Thn 7 0- Since f(t) > 1/no
for each ¢ € Uyeninen, Ien and f(0) = 0, the restricted function f[(U U0) is
not continuous at 0. So f ¢ A(0). O

Remark 2 Observe that for the function f from the proof of Remark 1 we
have A(f) # B(f), since f € B(0).

Theorem 1 Let f € DCP. If f is s.q.c. at x € E, then f € B(x).

PROOF. Assume, to the contrary, that f ¢ B(z). Then there is a n > 0
such that d,(int ({¢t : |f(¢) — f(z)] < n}),z) = 0. Consequently, d;(cl({t :
|f(t) = f(z)| > n}),x) = 1, where cl (X) denotes the closure of X. Let A C
cl({t:|f(t)— f(x)] > n}) belong to Ty with d;(A,z) = 1. There is a countable
set B C {t:|f(t) — f(z)| > n} such that A C cl(B). Since f € DCP, there
is HC {t:|f(t)— f(x)] > n/2} belonging to T such that B C cl(H). Then
Acc(B)ccl(cd(H))=cl(H)and F=AUHU{x} € Ty. Since f is s.q.c.
at x, there is an open set U such that UNF # () and |f(t) — f(z)| < n/2 for
every t € UNF, contrary to UNH # (0 and H C {t:|f(t) — f(z)| > n/2}. O

Corollary 1 If Qs(f) = E, then B(f) =E.

Remark 3 The property DCP is well known in differentiation theory [7] and
it can be considered also for nonmeasurable functions. Theorem 1 is true if
measurability of f is omitted.

Theorem 2 Let f: E — R and let A C E satisfy u(A\ B(f)) = 0. Then
p(AN\C(f)) = 0.

PROOF. Assume, to the contrary, that p.(A\ C(f)) > 0. Then there is an
1 > 0 such that G = {t € ANB(f) : osc f(t) > n} is of positive outer measure.
By the Lebesgue Density Theorem, H = {t : d,,(G,t) = 1} is measurable and
H e Ty Fixxe HNG. Since f € B(x), we have

du(int ({t < [f(£) = f(2)] <n/3}),2) > 0.
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So G Nint ({t: [f(t) — f(z)] <n/3}) # 0. Let u € GNint ({t: [f(t) — f(2)] <
n/3}). Since u € int ({t : | f(t) — f(z)| < n/3}, we obtain that osc f(u) < 2n/3,
contrary to u € G and osc f(u) > n. O

Corollary 2 If u(E \ B(f)) =0, then u(E\ C(f)) =0.
Corollary 3 If Qs(f) = E, then u(E\ C(f)) =0.

Remark 4 Observe that Qs(f) \ C(f) need not have measure zero (e.g. for
the function f from Example 1).

Remark 5 It is obvious that if the functions f,, : E — R, n € N, are s.q.c. at
a point x and if the sequence (fy), converges uniformly to f, then f is also
s.q.c. at x.

Theorem 3 Let f: E — R be a function such that Qs(f) = E. Then there
is a sequence of functions f,, n € N, which converges uniformly to f and for
which A(f,) = E forn € N.

PRrROOF. We prove that for every n > 0 there is g : E — R such that A(g) = E
and |f(x) — g(x)| < n for all x € R. Fix n > 0. By Corollary 3 f is almost
everywhere continuous. So, V = {y € R : u(cl(f~'(y))) > 0} is countable.
Consequently, the linear space Eq (V') over the field Q of all rationals generated
by V is also countable and there is a ¢ > 0 which is not in Eg(V). Fixn € N
with ¢ < nn/6. Observe that p(cl (f~1((2k—1)c/n))) = 0 for all integers k and
h(z) = (2k — 1)e/n if (2k — 1)e/n < f(x) < (2k + 1)¢/n is almost everywhere
continuous and h(z) < f(x) < h(z) 4+ 2¢/n < h(z) + n/3 for every x € E. If
dy(int (h"1(h(x))),x) > 0, set g(z) = h(zx). If d,(int (b= (h(z))),z) = 0, then
set g(x) = h(z) — 2¢/n.

Evidently, |f —g| <|f —h|+|h—g] <2¢/n+2c¢/n<n/3+n/3<n We
will prove that g € A(z) for every z € E. If (2k—1)¢/n < f(z) < /2k+1)c/n
for some integer k, then there is a r > 0 such that

(f(@) =7, f(x) +7) C (2k = 1)e/n, (2k + 1)c/n)

and, by Corollary 1, d,(int (f~1((f(z) — r, f(z) + r))),z) > 0. Since g(t) =
h(t) = (2k — 1)c/n for all t € int (f~1((f(z) — r, f(z) + 7))), we obtain that
g € A(x).

Now, let f(x) = (2k+1)c/n for some integer k. If d,, (int (h=1(h(z))),x) > 0
then g € A(z), because h is almost everywhere continuous. Assume that
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dy(int (h=1(h(x))),z) = 0. From the definition of h, because h is almost ev-
erywhere continuous and since f € B(x), we get

du(int (7 ((f(x) = 2¢/n, f(2)))),2) > 0

. Since g(t) = (2k — 1)c/n for all t € int (f~1((f(z) — 2¢/n, f(x)))) and for
t=ux, we get g € A(x). O

Now for functions f,g: E — R let o(f, g) = min(1,sup,cg |f(z) — g(z)|).
Moreover, denote by A (B) (Qs) the family of all functions f : E — R with
A(f) = E (B(f) = B) (Qu(f) = B).

Observe that B = @, is a closed subset of the complete metric space
(DCP, p). Moreover, by Theorem 4, the closure cl,(A) of the set A in the
metric g is the same as B.

Remark 6 The set Qs = B is nowhere dense in the space (DCP, ).

PROOF. Since Qs is closed, it suffices to prove that for every n > 0 and for
every f € Qs there is a ¢ € DCP \ Qs such that o(f,g) < n. Fix f € Qs
and n > 0. Let F be a nowhere dense nonempty set belonging to 7y such
that cl (F') C C(f) and let h be the characteristic function of the set F. Then
g=f+nh/2€ DOP\ Qs and o(f,g) =n/2 <. O

2 Functions of Two Variables

Now let E = R2. There are functions f : E — R such that all sections f,(t) =
flz,t), fU(t) = f(t,y), t,z,y € R, are continuous and p(E \ C(f)) > 0 [4].
Observe that such functions f are not in Q;. However, such functions have
the following property H(x,y) at every (z,y) € E.

A function f : E — R has property H(z,y) (K(z,y)) at (z,y) if for every
1 > 0 and for all U, V € T4 such that € U and y € V there is an open set W
such that WN(Ux V) # 0 and | f(u,v)— f(z,y)| < nfor all (u,v) € WN(UXV)
(osc f < n on the set W N (U x V)).

Theorem 4 If all sections f, and fY, z,y € R, of f: E — R belong to Qs,
then f has property H(x,y) at every (z,y) € E.

Proor. Fix (z,y) € E, areal n > 0 and U, V € T3 such that z € U and
y € V. Since fY € B(x), there is an open interval I such that I NU # @ and
|f(t,y) — f(z,y)] <n/d forallt € I. Let F =cl(INU). Since f; € B(y) for
all t € F, for each t € F there is an open interval J(t) with rational endpoints
such that J(¢) NV # 0 and |f(¢,v) — f(t,y)] < n/4 for all v € J(t). There is
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an open interval J such that G = {t € F': J(t) = J} is of the second category
in F. Consequently, there is an open interval Iy C I such that I; N F # ()
and I; NG is dense in I; N F. Evidently, K = (I; NU) x (JNV) # 0. Fix
(u,v) € K and assume that |f(u,v) — f(z,y)| > n/2. Since f* € B(u), there
is an open interval Iy C I such that Io N F # () and |f(¢,v) — f(z,y)| > n/2
for all t € I. Let s € I, N G. Then |f(s,v) — f(z,y)| > n/2. But

|f(s,v)—f(x,y)| < |f(5,v)—f(S,y)|+|f(8,y)—f(x,y)| <77/4+77/4:77/2

This contradiction finishes the proof. O
Now, denote by P the family of all functions f : £ — R which are strongly
cliquish at every z € F.

Theorem 5 If all sections fY of f: E — R belong to Qs and all sections f,
belong to Ps, then f has property K(x,y) at every (z,y) € E.

PRrOOF. Fix (z,y) € E, and U, V € Ty such that x € U, y € V and n > 0. For
every t € W = cl(U) there are an open interval I(¢) with rational endpoints
and a closed interval J(t) with rational endpoints such that u(J(t)) < n/2,
I(t)NV # 0 and f(t,v) € J(t) for every v € V N J(¢). Since the family of all
pairs of intervals with rational endpoints is countable, there are open intervals
I, L and a closed interval J such that I N U # () and

A={teW  I(t)=L,J(t)=J}

is dense in INU. Fix (u,v) € I x L)N (U x V). If f(u,v) & J, then since
fY € B(u), we obtain that there is a w € ANU such that f(w,v) & J,
contrary to the definition of A and the choice of I(¢) and J(t). So, f(u,v) € J
for every (u,v) € (Ix L)N({U xV)andosc f <n/2 <non (I xL)N({U xV).
]

Problem 1 Suppose that f : E — R has all sections fY € Qs and all sections
Je € Ps. Is f in Ps?

Now, denote by ® the family of all f : R — R such that for every nonempty
closed set P of positive measure and for every 7 > 0 there is an open interval
I such that TN P # () and osc f <non INP.

Observe that all Baire 1 functions and all almost everywhere continuous
functions are in ®.

Problem 2 Let f : E — R be such that all sections f, are in ® and all
sections fY are in Qs. Is f in Ps?
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Now we say that the functions fs : R — R, where s € S and S is a set of
indices, are strongly quasi-equicontinuous (abbreviated s.q.ec.) at z € R if for
every n >0

du (it () (fs) 7 (fs(@) =1, fs(2) + 1)), ) > 0.

seSs

Theorem 6 If all sections fY of f : E — R are s.q.c. at every x and if the
sections f., v € R, are s.q.ec. at every y, then f is s.q.c..

ProoF. Fix (z,y) € E, n > 0 and U C E belonging to 74 and such that
(z,y) € U. Since fY is s.q.c., we get f¥ € B(x). Consequently, for the interior
int ((fV) "' ((f(z,y) = n/2, f(z,y) +1/2))) = G we have d,(G,z) > 0. Let

H =int () (f) " ((f(t.y) = n/2, f(t.9) +n/2)).

teR

Since the sections f, are s.q.ec. at y, we obtain d,(H,y) > 0. So G x H is
open, d,((G x H),(x,y)) > 0and (G x H)NU # (. Let (u,v) € G x H. Then

|f(u,v) = flz, )| < [f(u,v) = flu,9)| + [ f(w,y) = fl@,y)| <n/2+n/2=n

and the proof is complete. ([

Theorem 7 There is a function f : E — R having continuous sections [,
and fY, x,y € R, such that n(E\ C(f)) > 0 and for every n > 0, for every
y € R and for every U € Ty containing y there is an open interval I such that
INU #0 and |f(x,t) — f(z,y)| <n for allt €e UNI and for all x € R.

PROOF. Let C C [0, 1] be a Cantor set of positive measure. There are pairwise
disjoint closed intervals I, C R\ C such that

o ifw; €I, fori €N, I, # I, for i # j and lim; , =, then z € C,

e for all z € C we have du(U [n,x) =0,

neN

e CCucl (UnEN I2n—1) Nel (UnEN Ign)

Let f : E — R be a function such that f(x,y) = 0 if (2,y) & Ian—1 X Iap,
n € N, f is continuous at every (z,y) ¢ C x C and f(Ian—1 X I2,) = [0, 1] for
n € N. Then f satisfies all required conditions. ]
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Remark 7 Observe that Theorem 7 shows that in Theorem 6 the definition
of strong quasi-equicontinuity of sections f,, © € R, can’t be the following: f.,
z € R, are s.q.ec. at a point y if for every n > 0 and for every U € Ty with
y € U there is an open set V such that VNU # 0 and |f,(v) — fo(y)| <7 for
allv e UNV and z € R. The function f from Theorem 7 is not in Qs, since

u(E\C(f)) > 0.

Theorem 8 Let f: E — R be a function such that all sections f, are s.q.ec.
at every y and all sections fY are almost everywhere continuous. Then f € Ps.

PROOF. We proceed as in the proof of Theorem 6, but for each U € T4 we
find a (z,y) € U such that z is a density point of {t : (¢t,y) € U} and f¥ is
continuous at x.
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