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SCATTERED SETS AND GAUGES

Abstract

An elementary and natural method for demonstrating that certain
exceptional sets are scattered is presented.

In this note we wish to present a simple technique that can be used to
establish that certain exceptional sets are scattered.

Recall that a set of real numbers is scattered if every nonempty subset has
an isolated point. One sided versions have been considered in the past: a set
is right [left] scattered if every nonempty subset has a point isolated on the
right [left]; any such set is called semi-scattered. A set is splattered if every
nonempty subset has a point isolated on one side at least. A splattered set
may be expressed as the union of a right scattered set and a left scattered set.
Scattered sets may, similarly, be viewed as the intersection of a right scattered
set and a left scattered set.

The first explicit use of such ideas is in Cantor [1] where he uses the term
separierte Mengen for a set that contains no subset dense-in-itself. In the first
decades of this century, G. C. Young and W. H. Young made considerable
use of scattered sets including left and right versions but employed no termi-
nology. Denjoy introduced the term clairsemé into French language accounts
and Hausdorff employed zerstreute Mengen in his writing. Hobson [7] in his
account of the period used the notions but failed to employ any terminology
(even avoiding the French term which, by then, was well known). Viola [10]
(a student of Denjoy) is perhaps the first to study extensively the one sided

Key Words: scattered set
Mathematical Reviews subject classification: Primary: 26A21, 26A24
Received by the editors September 8, 1994
∗Research supported in part by a grant from NSF.
†Research supported in part by a grant from NSERC.

700



Scattered Sets and Gauges 701

versions, under the terminology clairsemé à droit/gauche. We do not know
when the English language term scattered first appeared. The language semi-
scattered as well as the new notion of splattered were introduced in [5]; in
addition that article contains a number of games characterizing all of these
concepts.

We show that every gauge function (that is a map δ : R → R+) is natu-
rally associated with a pair of left and right scattered sets and that these sets
frequently play a key role in the classification of exceptional sets. The com-
panion article [6] that appears also in this issue of the Exchange explores the
scattered sets within a broader context of chains of open sets giving a better
sense of the exact structure of these sets. For most purposes and applications,
however, the reader will find that the following proposition suffices.

Proposition 1 Let δ be a gauge defined on all of R except possibly for some
countable set. Then, except for a right [left] scattered set, every point x is the
limit from the right [left] of some sequence {xi} for which δ(xi) is bounded
above zero.

Proof. We suppose that δ(x) is defined and positive at every point excepting
for x in a countable set N = {z1, z2, z3, . . . }. Let Sr = {x : limy→x+ δ(y) = 0}.
We show that Sr is right scattered. Let A be an arbitrary nonempty subset
of Sr. Choose x1 ∈ A. If x1 is isolated from A on the right, then we are
done. Otherwise choose y1 > x1 so that z1 6∈ (x1, y1) and so that, for all
x ∈ (x1, y1) \ N , δ(x) < 1. Suppose that (xn, yn) has been chosen so that
xn ∈ A with (xn, yn)∩{z1, z2, . . . , zn} = ∅ and so that, for all x ∈ (xn, yn)\N ,
δ(x) < n−1. If xn is isolated from A on the right, then we are done. Otherwise
we can continue choosing xn+1 ∈ (xn, yn)∩A and then yn+1 ∈ (xn+1, yn) such
that

(xn+1, yn+1) ∩ {z1, z2, . . . , zn+1} = ∅
and, for all x in (xn+1, yn+1) \ N , δ(x) < (n + 1)−1. This process cannot
continue forever since, otherwise, there is a point z0 in

⋂∞
i=1(xi, yi) so that

z0 6∈ N and hence δ(z0) < i−1 for all i which is impossible. �
Davies and Galvin [3] have characterized scattered sets of real numbers

as countable Gδ–sets. This characterization can clarify Proposition 1 further.
From the elementary theory of cluster sets one knows that the set

S = {x : lim
y→x

δ(y) = 0} (1)

must be countable for any gauge δ. But then writing

S =

∞⋂
n=1

{x : ∃ε > 0, 0 < |y − x| < ε⇒ δ(y) < 1/n} (2)



702 C. Freiling and B. Thomson

exhibits this set as of type Gδ. This gives a different perspective on the gauge
proposition.

To see this interplay between gauges and scattered sets let us show how
Proposition 1 can be used to give an elementary proof of the fact that countable
Gδ–sets of reals are scattered. (Topologists know that this holds in any Baire
space.)

Proposition 2 A countable Gδ–set of real numbers is scattered.

Proof. Let S be a countable Gδ–set. Then S =
⋂∞
i=1Gi where {Gi} is a

sequence of open sets, which we may assume to be decreasing. Define the
gauge δ(x) = max {1/n : x 6∈ Gn} at each point not in the countable set S.
Proposition 1 implies that

lim
x→s, x 6∈S

δ(x) = 0

only for s in a scattered set. But each s ∈ S has this property and so S itself
is scattered as required. �

The remainder of this article is devoted to further applications of Propo-
sition 1 showing how it provides a basic tool for establishing that many ex-
ceptional sets are scattered or semi-scattered. Our first application is to a
characterization from Viola [10] of semiscattered sets.

Theorem 3 (Viola) Let I be a collection of open intervals with the property
that for each x ∈ R, with perhaps countably many exceptions, x belongs to
finitely many of the elements of I. Then the set of right endpoints of the
intervals of I is left scattered and set of left endpoints of the intervals of I is
right scattered.

Proof. Let N be the countable set of exceptions in the statement of the
theorem. Define the gauge

δ(x) = min{1, x− a : x ∈ (a, b), (a, b) ∈ I}

for each point x not in N . Let c be the left endpoint of an interval (c, d) ∈ I.
Then limx→c+, x 6∈N δ(x) = 0. Hence, by Proposition 1, the set of such left
endpoints is right scattered as required. �

Our second example is a simple semiscattered property of real functions.
This may be found in various forms elsewhere. For example, if we let g denote
the oscillation function of f , then it includes Viola’s [10] observation that a
function f with a left hand derivative must be continuous off a right scattered
set; Charzyński [2] employs a similar argument in a different context.
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Lemma 4 Let g be a nonnegative function and N a countable set. Suppose
that lim supt→0+ t

−1g(x− t) <∞ for every x ∈ R \N . Then {x : g(x) > 0} is
right scattered.

Proof. For each x 6∈ N there is a δ > 0 and an M such that g(x− t) < Mt
for all 0 < t < δ. By shrinking δ if necessary we can obtain that g(x− t) < t/δ
for all 0 < t < δ. Thus

δ(x) = sup

{
δ : g(x− t) < t

δ
for all 0 < t < δ

}
defines a gauge on R \ N . Then x − δ(x) < y < x implies that g(y) <
(x− y)/δ(x). We apply Proposition 1 to obtain a right scattered set S so that
if y 6∈ S, then some sequence xi ↘ y can be found with δ(xi) ≥ ε > 0. Hence
for such a y, g(y) < (xi−y)/ε. It follows that, except for y in a right scattered
set, g(y) = 0. �

Left scattered, scattered and splattered versions of the lemma are, of
course, easily formulated and just as easily proved.

The next theorem is from [5] where the scattered part of the proof is
obtained by a game argument similar to Proposition 1. Later Humke and
Laczkovich [8], in this Exchange, provided a category proof of this same result.
Note that in the statement here the condition (3) is redundant and can be
deduced from assertions (1) and (2); see [5] or [9] for this.

Theorem 5 Let C be a collection of closed intervals with the following prop-
erties:

(1) if [a, b], [b, c] ∈ C, then [a, c] ∈ C.

(2) for each x there is a δ(x) > 0 so that [x− t, x+ t] ∈ C for all 0 < t < δ(x).

(3) there is a countable set N so that if a, b 6∈ N then [a, b] ∈ C.

Then there is a right scattered set Sr and a left scattered set S` so that if
x < y, x 6∈ Sr and y 6∈ S`, then [x, y] ∈ C.

Proof. Let Z = { 12 (x + y) : x, y ∈ N}. Restrict the domain of the gauge δ
to exclude all points in Z. Let Sr and S` be the right and left scattered sets
from Proposition 1. Suppose that x < y with x 6∈ Sr and y 6∈ S`. We shall
find points x′, y′ not in the set N such that x ≤ x′ < y′ ≤ y and such that
x = x′ or [x, x′] ∈ C and y = y′ or [y′, y] ∈ C. ¿From the existence of these
points we see that (1) and (3) imply that [x, y] ∈ C and the theorem is proved.

If x 6∈ N let x′ = x. Otherwise, since x 6∈ Sr we can find w 6∈ Z such that
w − δ(w) < x < w < 2w − x < 1

2 (x+ y). Let then x′ = 2w − x. Since w 6∈ Z
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and x ∈ N we get that x′ 6∈ N . Also (2) implies that [x, x′] ∈ C. The choice
for y′ is similar. �

The remaining theorems arise from considerations involving symmetric
derivatives of real functions. If, at every point x,

0 < lim inf
t→0

f(x+ t)− f(x− t)
2t

≤ lim sup
t→0

f(x+ t)− f(x− t)
2t

< +∞

then it may be proved that f is increasing off a scattered set. One shows that
such a function is increasing on the set of its points of continuity (eg. [11,
p. 184]) and then invokes a theorem of Charzyński [2] asserting that a function
with this property is continuous off a scattered set. The article [5] contains
another approach. Here we show that once the countable exceptional set is
granted (see [5] or [9] for an elementary proof) Proposition 1 easily gives the
rest of the proof.

Theorem 6 Let f be a real function and N a countable set. Suppose that f
is [strictly] monotone on R \N and that

−∞ < lim inf
t→0

f(x+ t)− f(x− t)
2t

≤ lim sup
t→0

f(x+ t)− f(x− t)
2t

< +∞ (3)

at every point x ∈ R \N . Then f is [strictly] monotone off a scattered set.

Proof. Let us just show the nondecreasing version. Let Z denote the set of
points of the form (x + y)/2 for x, y ∈ N . For each x ∈ R \ Z we use the
following natural gauge

δ(x) = sup

{
δ :

∣∣∣∣f(x+ h)− f(x− h)

2h

∣∣∣∣ < 1

δ
for all 0 < h < δ ≤ 1

}
.

If x−δ(x) < y < x, then |f(2x− y)− f(y)| < 2(x−y)/δ(x). By Proposition 1,
except for y in a right scattered set Sr there is a sequence xi ↘ y with δ(xi)
bounded away from zero. Consequently f(2xi − y) → f(y). If, in addition,
y ∈ N , then 2xi − y cannot be in N since each point xi is not in the set Z.
Hence, for y ∈ N \ Sr, we have

f(y) = lim
x→y+, x 6∈N

f(x). (4)

A dual argument would give a left scattered set S` such that, for y ∈ N \ S`,

f(y) = lim
x→y−, x 6∈N

f(x). (5)
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Hence f cannot decrease on the set

(R \N) ∪ (N \ Sr) ∪ (N \ S`) = (R \ (Sr ∩ S`))

without already decreasing on (R \N). �
If in the previous theorem we know only that

lim sup
t→0

f(x+ t)− f(x− t)
2t

< +∞

in place of (3), then the limit in (4) would become f(y) ≥ limx→y+, x 6∈N f(x).for
y ∈ N \ Sr and the limit in (5) would become f(y) ≤ limx→y−, x 6∈N f(x).and
f(y1) > f(y2) it must be the case that y1 ∈ S` or y2 ∈ Sr. We therefore have
the following theorem (see [5] for a closely related monotonicity theorem).

Theorem 7 Let f be a real function and N a countable set. Suppose that f
is increasing [nondecreasing] on R \N and that

lim sup
t→0

f(x+ t)− f(x− t)
2t

< +∞

at every point x ∈ R \ N . Then there is a right scattered set Sr and a left
scattered set S` so that if x < y, x 6∈ S` and y 6∈ Sr, then f(x) < f(y)
[f(x) ≤ f(y)]. In particular f is increasing [nondecreasing] off a splattered
set.

Before leaving this discussion of Theorem 6 we should indicate that it
provides another proof of a well-known theorem of Charzyński [2]. Sierpiński
derivates is continuous except on a countable set. Charzyński showed that the
exceptional set is scattered. Using the proof of Theorem 6 and assuming that
the set of discontinuity points is in fact countable we get quickly that this set
is scattered. Charzyński’s original proof uses an argument based on Lemma 4.

Evans and Larson [4] obtained a closely related theorem: if f is measurable
and f(x+h)+f(x−h)−2f(x) = O(h) (as h→ 0) everywhere, then again the
set of discontinuities of f is scattered. Our methods will prove this too once
the countability of the set of discontinuities is established. For a more detailed
account of Charzyński’s theorem and the theorem of Evans and Larson
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[2] Z. Charzyński. Sur les fonctions dont la derivée symetrique est partout
finie. Fund. Math., 21:214–225, 1931.

[3] R. O. Davies and F. Galvin. Solution to query 5. Real Anal. Exchange,
2:74–75, 1976.

[4] M. J. Evans and L. Larson. The continuity of symmetric and smooth
functions. Acta. Math. Hungar., 43:251–257, 1984.

[5] C. Freiling. Symmetric derivates, scattered and semi-scattered sets. Trans.
American Math. Soc., 318:705–720, 1990.

[6] C. Freiling and B. S. Thomson. Scattered Sets, Chains and the Baire
Category Theorem. Real Anal. Exchange, (this issue).

[7] E. W. Hobson. The theory of functions of a real variable (2nd ed.) I,II,
Cambridge (1926).

[8] P. D. Humke and M. Laczkovich. An elementary proof of Freiling’s sym-
metric covering lemma. Real Anal. Exchange, 16:549–551, 1990/91.

[9] D. Preiss and B. S. Thomson. A symmetric covering theorem. Real Anal.
Exchange, 14 no. 1:253–254, 1988/89.
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