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CHAOTIC MAPS IN HYPERSPACES

Abstract
The dynamical system (F(X),T') which arises from an iterated func-
tion system (X; w1, ..., wn), where X is a compact metric space identi-

fied with the attractor of the system and the w;’s are contractive invert-
ible maps, is chaotic provided that the iterated function system satisfies
the open set condition. The map T on the hyperspace F(X) of the
closed subsets of X is defined for a closed subset E as

T(E)=w; (E)U...Uw," (E).

This extends results about the shift dynamical system for the non-
overlapping case [1].

1 Notation

Let (X;w1,...,wn) be an iterated function system. X denotes a compact
metric space with some metric d. The w; for ¢ = 1,...,m are invertible
contractive maps w; : X — X such that d(w;(z),w;(y)) < rid(z,y) for all
z,y € X and some 0 < r; < 1 with i =1,...,m. Note that wi_l cwi(X) = X
is a continuous map for all . For simplicity we assume that X is also the
attractor of the given iterated function system which means

X =wi(X)Uwe(X)U...Uwy,(X).

We always assume that w;(X) N w;(X) = 0 for i # j, i,j = 1,...,m. This
implies that X is totally disconnected. If this property holds, a map T : X —
X can be uniquely defined by

T(z) = w; ' () provided that = € w;(X).
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The dynamical system (X,T) is called the shift dynamical system associated
with a totally disconnected hyperbolic IFS. It can be proved that it is chaotic;
that is

1. (X, T) is sensitive to initial conditions; i.e. there exists some ¢ > 0 such
that for any « € X and any ball B(x,¢) with radius € > 0 there is some
y € B(x,¢) and an integer n > 0 such that d(T"(z),T"(y)) > ;

2. (X,T) is transitive, i.e. if, whenever U and V are open subsets of X,
there exists an integer n such that U N T"™(V) # 0;

3. the set of periodic points of T is dense in X.

If the subsets w;(X) overlap, T cannot be defined in this way. It may
happen that more than one w; L can be applied to z. In [1] the construction
of a so called lifted IFS is recommended. This ensures that the lifted map T
can again be defined in a unique way. To this end, let ¥ = [[2,{1,...,m}

and
- |wn — o
do(wo) =3 Ln=nl
n=1 <m+ 1)

The space (X, d¢) is called the code space on the m symbols {1,...,m}. The
following is well-known [1]. For each 0 € ¥,n € N, and z € X let

¢(Uan7$) = Wgy O Wgy O+ * 0 Wgq, (.’17)

Then the limit ¢(c) = lim,, o ¢(0, n, ) exists, belongs to the attractor of the
IFS, and is independent of x € X. ¢ : ¥ — X is a continuous function from
the code space onto the attractor X of the IFS. An address of z € X is any
member of the set

o Hz) = {we T p(w) =z}

The lifted IFS associated with an IFS (X;ws,...,wy,) is the IFS (X x
Y1, ..., W) where w;(z,0) = (w;(x),i0) for all (z,0) € X x ¥ and all
i=1,...,m. Its attractor becomes totally disconnected and T' can be uniquely
defined in the same way as T before.

The IFS is said to be totally disconnected if each point of X possesses
a unique address. The IFS is said to be just touching if it is not totally
disconnected yet X contains an open set O such that

(i) wi(0) A, (0) = 0 for i # j,

(i) UL, wi(0) € 0.

An TFS whose attractor obeys (i) and (ii) is said to obey the open set
condition. For the open set O we have X = O [2]. The IFS is said to be
overlapping if it is neither just touching nor disconnected.
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2 The Main Result

We give a sequence of lemmas.

Lemma 1 If the open set condition is satisfied with the open set O and

A, = F‘j (U{walo...owan(0)|01,...,0n6{1,...,m}}),

then A, is a dense subset of X which consists of points with a unique address.

ProOF. This follows immediately by Baire’s Category Theorem and the prop-
erties of the open set O. O

Example 1 Let a € [0,1] and define wi(z) = ax and we(z) = ax + (1 — a)
on R. Then the attractor X of the IFS {R; w1, ws} is equal to [0,1] for a >
and equal to some Cantor set for a < % If A, denotes the set of points with
a unique address, then A, = X whenever a < %, but A, = {0,1} for a > %
At a = 1 we obtain that A, =[0,1]\ {k/2" |1 < k <2",n € N}.

We extend the definition of the map T to the hyperspace (F(X),dy) as
follows:

This definition includes the totally disconnected, just touching case as well the
overlapping case of an IFS. Remember that F(X) is the set of all non-empty
compact subsets of X and dy is the Hausdorff metric, which is defined as

du(E,F) =inf{e > 0; E C U.(F) and F C U.(E)}

for E,F' € F(X), where U.(F) stands for the parallel body of E at distance
€. The e-parallel body will be defined with the help of the distance function
of the set E d(z, E) = inf{d(z,y) | y € E}. Then U.(E) = {z | d(z, E) < ¢}.

Lemma 2 The extended map T : F(X) — F(X) is sensitive with respect to
initial conditions provided that the IFS (X;w1,...,wy) satisfies the open set
condition.

We need some further lemmas. For this purpose we use d(FE) as the nota-
tion for the diameter of the set E C X, i.e. d(E) = sup{d(z,y) | #,y € E}.
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Lemma 3 Let Y be a dense subset of X. For oll E € F(X)

sup di ({y}, E) > 7d(X).

1

yey 4

PROOF. First assume that d(E) > 3d(X). Let B(z,r) be a ball such that

E C B(xz,r). This implies d(E) < 2r. Hence r > 1d(X). AsY = X we can

conclude that the desired inequality holds.

But if d(E) < 1d(X), we can choose a,b € X such that d(a,b) = d(X) by

the compactness of X. For arbitrary u,v € E the triangle inequality and the
above assumption implies 2d(X) < d(a,u) + d(v,b). This gives

%d(X) < d(a, X) +d(b, E).

Hence for at least one of these points a or b we have, say d(a, X) > $d(X).
This proves the inequality of the lemma for the second case. ([

We also use the following Blaschke’s selection theorem.

Lemma 4 (F(X),dy) is a compact metric space provided that (X,d) is a
compact metric space; i.e. every sequence of compact sets contains a
dg-convergent subsequence.

We now give the proof of Lemma 2.

PROOF. Let 0 = td(X) and E, = T~ "(E) for an arbitrary E € F(X).
According to Lemma 4 we can assume that E,, — K w.r.t. the metric dg and
some K € F(X). Take any y in a set O, which fulfills the open set condition,
such that dg ({y}, K) > $d(X). Now for a given ¢ > 0 we define a finite set F
and n > 0 such that dg(E, F) < ¢, but d(T™(E), T"(F)) > 0.

Since for any address 0 = 0103 ... we get d(wy, 0 Wsy © ... 0 Wy, (X)) 10
provided that n — oo, we can find some n. € N such that for n > n. n € N
we get d(wy, 0 Wy, ©...0w,, (X)) < e for any choice of the o1,...,0, for a
fixed n and, secondly dy(T"(E),K) < 5d(X). Now we define the finite set
F by

F={wso0...0w,,(y) | wo, 0...0w,, (X)NE#0}

where o1,09,...,0, run through all choices up to the fixed n > n.. This
implies that F' C U.(E) as well as E C U.(F). Hence dg(E,F') <.
Note that for arbitrary n

da({y}, K) < du({y}, T"(F)) + du(T"(F), T"(E)) + du(T"(E), K).
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The first term on the right hand side of the last inequality vanishes as n is
chosen as in the definition of F' since T"(F) = {y}. To see this note that for
ye O

Wey O Wgy O ... 0 Wy, (Y) = Wy 0 Wy, O...0 Wy, (Y)

implies 7 = 01. Moreover since the last term of the right hand side is smaller
than $5d(X), the inequality dy (T"(F),T"(E)) > 4 follows. O

Lemma 5 If (X;ws,...,w,) satisfies the open set condition, then the dynam-
ical system (F(X),T) is transitive.

PROOF. Since dy generates the Vietoris topology on F(X), we can restrict
our attention to open sets

U={EeF(X)|ECU,U...uU, ENU; #0fori=1,...,1}
and
V={EeF(X)|ECVIiU...UV,, ENV;#0fori=1,...,k},

where the U; and V; are given non-empty open subsets of X. If U is the
open set which belongs to the open set condition, we fix some z; € U NU; for

i =1,...,l and some n sufficiently large such that for all pairs z; and V;, where
i=1,...,land j =1,...,k, there is a finite sequence o1, ...,0, € {1,...,m}
such that

Yij = Woy O Wy, O...0 Wy, (z;) € V.
Define then F' = {y;;|i =1,...,1, j =1,...,k}. It follows that F € V and
T"(F) €U. Hence U NT™(U) # 0. O

The last step is now to consider the periodic points of T'.

Lemma 6 If the IFS (X;wn,...,wy,) satisfies the open set condition, then
the set of periodic points of T is dense in F(X) w.r.t. to the Hausdorff metric
(or Vietoris topology).

PrOOF. Let 01,...,0, € {1,...,m}. The map f,, -, = fo, 0...0 f5, is
contractive and let z,, . ,, be its unique fix point within X. We define

.....

I = {xah-n,on | o1, .00 €41, .. 7m}}

and F = |J,, e Fn- Then F = X. To see this let 2 € X and € > 0. We may
choose n. € N such that for n > n. d(fs,,. 0, (X)) <e, the diameter of the
set foy,...o, 1S less than e. We may find o1,...,0, € {1,...,m} such that z €
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foron(X). Alsosince zo,,....0, € for,....0,(X), we obtain d(X, 2o, ,...0,) <&,
which proves the density of F' within X. Let U be the open set of the open set
condition. We set &, = Po(U N F,,) the non-empty (finite) subsets of U N F,
and & = J,,cn En- We show that

a) & consists of periodic points of the map T

b) & is dense in (F(X),dn).

a) Take any E € &,. Since for z € E we always have a unique preimage
for n steps, it follows that T"(E) = E.

b) For an arbitrary closed F' C X and € > 0 we select some E € £ such that
dy(F, E) < e. First, we cover F by a finite number of closed balls B(z,e/2)
for k =1,...,1 such that B(zy,e/2)NU # @ since U is dense in X. Because U
is open, we can find a common n such that for some finite sequence o4, ...,0,

fa’l,...,an(X) - B(xk7€/2) NnU.

Hence for the fix point z,,, . ., of the map f,, . .. we have

n n

Loy,..0n c B(Z‘k,f/Q) nu.

This implies F' C |J B(Zoy,....0,,- €)- If we now take as F all the points z, .. o,
we clearly have dy(F, F) < ¢ and E is also a periodic point of T'. O

Hence, we have proved the following assertion.

Theorem 1 (F(X),T) is a chaotic dynamical system provided that for the
initial IFS the open set condition is satisfied.

Finally, we discuss the overlapping case of Example 1. We have that
wi'(z) = £ and wy '(z) = £ 4+ “1 with the domains [0,a] and [1 — a,1].
To verify sensitivity with respect to initial conditions it seems to be the best
to start with £ = [0, 1] since for all n, we have T"(E) = E. Is it possible
to find some § > 0 such that for all € > 0 there is some n € N and some
F € F([0,1]) such that dy(T™(E), T™(F)) = dg(E,T™(F)) > 6 7 The first
idea is now to use a finite set F' of equidistant points

F:{Z;i:(),l,...,m}
m

for some n € N. The image T'(F) consists of points of the kind ﬁ or ﬁqt “T_l
If for some integer i the condition i = a — 1 is satisfied, then the minimal
distance between points in T'(F) is at least —--. Hence

du (B, T(F)) = édH(E,F).
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All points of T(F) have then the form - again. If we would iterate this
idea, some times we obtain a sequence (iy)ren of integers such that % =
a*~1(a — 1). We conclude that i (i; +m)*~! = 0(mod(m*~1). Since i; < m,
this is impossible for £ > 3. Hence, we can increase the distance between F
and T™(F') only twice by the factor % This motivates the following question.

Question s it true that the dynamical system (F([0,1]),Ty,) arising from
Ezample 1 for a > % is mever chaotic?
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