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ON PRODUCTS OF A.E. CONTINUOUS
DERIVATIVES

Abstract

In this paper I examine products of a.e. continuous derivatives. De-
note by Nu the set of all x for which u(x) 6= 0. First I prove that if
u is a (bounded and/or non-negative) function with Nu isolated, then
u can be written as the product of two (bounded and/or non-negative)
a.e. continuous derivatives. Next I show that if u is a.e. continuous and
Nu is a union of an isolated set and one with a null closure, then u can
be written as the product of two a.e. continuous derivatives. I construct
an example that we cannot require the factors be bounded in case u is
bounded. Using this example I construct a bounded non-negative a.e.
continuous function, v, such that Nv is the union of two isolated sets
(so v is a Baire one star function and is the product of two bounded
non-negative derivatives) and which cannot be written as the product
of two a.e. continuous derivatives.

It is well-known that the class of derivatives is not closed with respect to
multiplication (cf., e.g., [15] and [5]). So it is a natural problem to character-
ize the family of all products of derivatives. There are several papers devoted
to this problem, e.g., [1], [12], [3], [10] and [8]. (See also survey papers [5]
and [4].) However, no final characterization has been found yet. It is also in-
teresting whether each bounded product of derivatives is a product of bounded
derivatives [11, p. 57].

In this paper I consider analogous problems concerning products of a.e.
continuous derivatives. As in [3], I focus on functions which vanish a.e.

First we need some notation. The real line (−∞,+∞) we denote by R,
the set of integers by Z and the set of positive integers by N. We consider
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only functions from R into R. The phrase almost everywhere (a.e.) refers to
Lebesgue measure on R. For every set A ⊂ R let clA be its closure, χA its

characteristic function and |A| its outer Lebesgue measure. Symbols like
∫ b
a
f

or
∫
A
f will always mean the corresponding Lebesgue integral. If the sets A

and B are non-empty, then we define %(A,B) = inf
{
|x− t| : x ∈ A, t ∈ B

}
.

Let f be a function. We say that f is:

• a Baire one function, if for each open set U ⊂ R, the pre-image f−1(U)
is an Fσ set;

• a Baire one star function, if for each open set U ⊂ R, the pre-image
f−1(U) is a Gδ set;

• a derivative, if there is a function F such that lim
t→x

F (t)− F (x)

t− x
= f(x)

for each x ∈ R;

• quasi-continuous in the sense of S. Kempisty [7], if for each x ∈ R and
each ε > 0 there is a non-empty open set U ⊂ (x − ε, x + ε) such that∣∣f − f(x)

∣∣ < ε on U .

The symbol Df stands for the set of points of discontinuity of f .
S. Marcus proved in 1958 [9] that a.e. continuous derivatives are quasi-

continuous. (See also [13].) T. Natkaniec showed in 1990 that a function u
can be factored into a (finite) product of quasi-continuous functions if and
only if it is pointwise discontinuous and each of the sets u−1

(
(−∞, 0)

)
, u−1(0)

and u−1
(
(0,∞)

)
is the union of an open set and a nowhere dense set [14].

(It was shown later by J. Borśık [2] that the Natkaniec’s triple condition can
be simplified to the following one. u−1(0) is the union of an open set and a
nowhere dense set.) This condition implies that if a function u is the product
of a.e. continuous derivatives and u = 0 a.e., then the set Nu = {x ∈ R :
u(x) 6= 0} is nowhere dense. So the function ψ below is not a product of
a.e. continuous derivatives, though it is a bounded Baire one function which
vanishes a.e. (So by Corollary 4.3 of [3], it can be written as the product of
two bounded non-negative derivatives.) and DψNψ is countable [6].

Example 1 Arrange all rationals in a sequence, (qn). Define ψ(x) = 0 when-
ever x is irrational and ψ(qn) = 1/n for n ∈ N.

Recall that a set A is isolated, if it contains none of its limit points. Clearly
isolated sets are countable (whence Fσ), Gδ, nowhere dense sets. So for every
function u, if Nu is a finite union of isolated sets, then u is a Baire one star
function.
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Theorem 1 Suppose Nu is isolated. Then there are derivatives f and g such
that u = fg, g is bounded and non-negative, and Df ∪ Dg ⊂ Du. (So in
particular, if u is continuous a.e., then f and g are continuous a.e.as well)
Moreover, if u is bounded and/or non-negative, then we can require that f be
bounded and/or non-negative also.

Proof. Arrange all elements of Nu in a sequence (finite or not), (an). Fix
an n. There is a δn > 0 such that (an−δn, an+δn)∩Nu = {an}. Let fn, gn be
derivatives such that Dfn = Dgn = {an}, 0 ≤ fn, gn < 2 on R, fngn = χ{an}
and fn(x) = gn(x) = 0 whenever |x− an| > 2−nδn

/ (
|u(an)|+ 1

)
. (See, e.g.,

Theorem 4.2 of [12].) Let

f =
∑
n

fn sgn
(
u(an)

)
max

{√
|u(an)|, |u(an)|

}
, g =

∑
n

gn min
{√
|u(an)|, 1

}
.

It is clear that u = fg, g is bounded and non-negative, and if u is bounded
and/or non-negative, then f is bounded and/or non-negative, too. As Nu is
isolated, we have Df ∪Dg ⊂ clNu. But Nu ⊂ Du, and x ∈ clNu \ Nu implies
u(x) = f(x) = g(x) = 0 and

lim sup
t→x

∣∣g(t)
∣∣ ≤ lim sup

t→x

∣∣f(t)
∣∣ ≤ 2 lim sup

t→x
max

{√
|u(t)|, |u(t)|

}
.

So Df ∪ Dg ⊂ Du.

Now we will show that f and g are derivatives. Fix an x ∈ R. If x /∈ clNu
or x ∈ Nu, then f coincides with fn and g coincides with gn on some neigh-
borhood of x for some n. So assume that x ∈ clNu \Nu. Let k ∈ N. For each
t ∈ R with 0 < |t− x| < min

{
|an − x| : n ≤ k

}/
2 we have

max

{∣∣∣∣
∫ t
x
g

t− x

∣∣∣∣, ∣∣∣∣
∫ t
x
f

t− x

∣∣∣∣} ≤∑
n>k

max
{√
|u(an)|, |u(an)|

} ∫ an+δn
an−δn max{fn, gn}

δn/2

≤
∑
n>k

23−n = 23−k.

This completes the proof. �

Theorem 2 Let A be isolated, u be a function, B = Nu \A be non-empty and
A∩ clB = ∅. Suppose moreover that there is a differentiable function, Φ, such
that Φ′ = u on clB. Then there are derivatives f and g such that u = fg, g is
non-negative, and Df ∪ Dg ⊂ Du ∪ clB.
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Proof. Write U = R \ clB as the union
⋃
k∈N Ik of non-overlapping compact

intervals such that each x ∈ U belongs to the interior of Ik∪Il for some k, l ∈ N
and

max
{
|Ik|, sup{|Φ(y)− Φ(z)| : y, z ∈ Ik}

}
≤
[
%(Ik, B)

]2
(∗)

for each k ∈ N. Proceeding as in the proof of Theorem 1 construct derivatives
f0 and g0 such that uχU = f0g0, Df0 ∪Dg0 ⊂ Du, f0 = g0 = 0 on clB and for
each k ∈ N the set

{
x ∈ Ik : f0(x) = g0(x) = 0

}
contains an interval. For each

k ∈ N construct continuous functions fk and gk such that fk does not change
its sign, gk is non-negative, fk = gk = 0 outside of Ik, fkg0 = fkgk = f0gk = 0
on Ik,

∫
Ik
fk = Φ(bk)− Φ(ak) and

∫
Ik
gk = |Ik|, where [ak, bk] = Ik. Define

f = f0 +
∑
k∈N

fk + Φ′χclB and g = g0 +
∑
j∈N

gj + χclB .

Clearly g is non-negative and Df ∪ Dg ⊂ Du ∪ clB. Moreover

fg = f0g0 +
∑
k∈N

fkg0 + Φ′g0χclB +
∑
j∈N

f0gj +
∑
k∈N

∑
j∈N

fkgj +
∑
j∈N

Φ′gjχclB

+ f0χclB +
∑
k∈N

fkχclB + Φ′χclB = uχU + uχclB = u.

Now we will show that f and g are derivatives. Let

F (x) = Φ(ak) +

∫ x

ak

fk, G(x) = ak +

∫ x

ak

gk, if x ∈ Ik, k ∈ N,

F (x) = Φ(x), G(x) = x, if x ∈ clB.

We will show that F ′ = f − f0 and G′ = g − g0 on R.
Fix an x ∈ R. If x ∈ Ik for some k ∈ N. Then clearly F ′(x) = fk(x) and

G′(x) = gk(x). So assume that x ∈ clB. For each t ∈ R, if t ∈ clB, then
F (t) − F (x) = Φ(t) − Φ(x) and G(t) − G(x) = t − x, and if t ∈ Ik for some
k ∈ N, then by (∗),∣∣∣∣
(
F (t)− F (x)

)
−
(
Φ(t)− Φ(x)

)
t− x

∣∣∣∣ ≤
∫
Ik
|fk|+

∣∣Φ(t)− Φ(ak)
∣∣

|t− x|

≤
2 sup

{
|Φ(y)− Φ(z)| : y, z ∈ Ik

}
%(Ik, clB)

≤ %(Ik, clB) ≤ |t− x|

and ∣∣∣∣G(t)−G(x)

t− x
− 1

∣∣∣∣ ≤
∫
Ik
|gk − 1|
|t− x|

≤ |Ik|
%(Ik, clB)

≤ %(Ik, clB) ≤ |t− x|.

This completes the proof. �
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Remark 1 In the above theorem, if the function u is a.e. continuous and
the closure of the set B has Lebesgue measure zero (e.g., if B is finite), then
the derivatives f and g are a.e. continuous. The example below shows that
we cannot require that they are bounded if u is bounded, even in case B is a
singleton.

Example 2 There is a bounded non-negative function u and an isolated set A
such that Du = Nu = A ∪ {0}, and f is unbounded whenever f and g are
derivatives, f is a.e. continuous and u = fg.

Construction. Set In =
[
1/(n + 1), 1/n

]
for n ∈ N. Fix an n ∈ N. Let

Fn ⊂ In be a nowhere dense closed set of measure (1 − 1/n)|In| such that
both end points of In belong to Fn. Let An = {xn,k : k ∈ N} ⊂ In \ Fn be an
isolated set with Fn ⊂ clAn. Let A =

⋃
n∈NAn and define

u(x) =


1/(n+ k) if x = xn,k, n, k ∈ N,

1 if x = 0,

0 otherwise.

Evidently the set A is isolated and Du = Nu = A ∪ {0}. Moreover u is
bounded and non-negative. Suppose that there exist derivatives f and g such
that f is bounded and a.e. continuous, and u = fg. Observe first that f is
equal to 0 a.e. on clA.

Indeed, otherwise there would be a point x ∈ clA at which f is non-zero
and continuous. So f is non-zero in some neighborhood U of x, and since u is
equal to 0 a.e., g is equal to 0 a.e. in U . As g is a derivative, it must be equal
to 0 everywhere in U . So u also equals 0 everywhere in U . But x ∈ clA and
u(t) 6= 0 for t ∈ A, a contradiction.

Since f(0) 6= 0 (because u(0) = f(0)g(0) = 1), we may assume that f(0) =

1. Find a δ > 0 such that
∣∣h−1 ∫ h

0
f − 1

∣∣ < 1/2 for h ∈ (0, δ). Set M =

sup
{
|f(x)| : x ∈ R

}
and take an m > max{2M, 1/δ}. Then 1/m ∈ (0, δ) and∣∣∣∣m ∫ 1/m

0

f − 1

∣∣∣∣ ≥ 1−m
∫ 1/m

0

|f | ≥ 1−mM ·
∣∣(0, 1/m) \ clA

∣∣
= 1−mM

∑
n≥m

|In \ Fn| = 1−mM
∑
n≥m

|In|/n

> 1−M
∑
n≥m

|In| = 1−M ·
∣∣(0, 1/m)

∣∣ = 1−M/m > 1/2.

We obtained a contradiction with the previous inequality. �
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Example 3 There is a bounded non-negative function v such that Dv = Nv is
the union of two isolated sets, and f is not a.e. continuous whenever f and g
are derivatives and v = fg.

Construction. Let K be a nowhere dense perfect set of positive measure
and let

{
(xn − δn, xn + δn) : n ∈ N

}
be the family of all bounded components

of R \K. Let u be the function defined in Example 2. Define the function v
by

v(x) =

{
u
(
(x− xn)/δn

)/
n if |x− xn| < δn, n ∈ N,

0 otherwise.

Then Dv = Nv is the union of two isolated sets: B = {xn : n ∈ N} and Nv \B.
Suppose that there are derivatives f and g such that f is a.e. continuous and
v = fg. By the properties of the function u, f is unbounded on every interval
(xn− δn, xn+ δn) (n ∈ N). But this implies that Df ⊃ K and |Df | ≥ |K| > 0,
a contradiction. �

Remark 2 Similarly to the proof of Theorem 2 it can be proved that both the
function u of Example 2 and the function v of Example 3 can be written as the
product of two bounded non-negative a.e. continuous Darboux quasi-continuous
functions.
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