Real Analysis Exch.
RESEARCH WP vk gt

Aleksander Maliszewski, Department of Mathematics, Pedagogical
University, Arciszewskiego 22, 76-200 Stupsk, Poland, e-mail:
wspb05Q@pltumk11.bitnet

ON PRODUCTS OF A.E. CONTINUOUS
DERIVATIVES

Abstract

In this paper I examine products of a.e. continuous derivatives. De-
note by N, the set of all z for which u(x) # 0. First I prove that if
u is a (bounded and/or non-negative) function with N, isolated, then
u can be written as the product of two (bounded and/or non-negative)
a.e. continuous derivatives. Next I show that if u is a.e. continuous and
N, is a union of an isolated set and one with a null closure, then u can
be written as the product of two a.e. continuous derivatives. I construct
an example that we cannot require the factors be bounded in case u is
bounded. Using this example I construct a bounded non-negative a.e.
continuous function, v, such that A/, is the union of two isolated sets
(so v is a Baire one star function and is the product of two bounded
non-negative derivatives) and which cannot be written as the product
of two a.e. continuous derivatives.

It is well-known that the class of derivatives is not closed with respect to
multiplication (cf., e.g., [15] and [5]). So it is a natural problem to character-
ize the family of all products of derivatives. There are several papers devoted
to this problem, e.g., [1], [12], [3], [10] and [8]. (See also survey papers [5]
and [4].) However, no final characterization has been found yet. It is also in-
teresting whether each bounded product of derivatives is a product of bounded
derivatives [11, p. 57].

In this paper I consider analogous problems concerning products of a.e.
continuous derivatives. As in [3], I focus on functions which vanish a.e.

First we need some notation. The real line (—oo,+00) we denote by R,
the set of integers by Z and the set of positive integers by N. We consider
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only functions from R into R. The phrase almost everywhere (a.e.) refers to

Lebesgue measure on R. For every set A C R let cl A be its closure, x4 its

characteristic function and |A| its outer Lebesgue measure. Symbols like ff f

or [ 4 [ will always mean the corresponding Lebesgue integral. If the sets A

and B are non-empty, then we define o(A, B) = inf{|a: —tl:xeA te B}.
Let f be a function. We say that f is:

e a Baire one function, if for each open set U C R, the pre-image f~1(U)
is an F, set;

a Baire one star function, if for each open set U C R, the pre-image
f7HU) is a Gs set;

F(t)-F
a derivative, if there is a function F' such that lim u
t—x t—2x
for each x € R;

= f(x)

e quasi-continuous in the sense of S. Kempisty [7], if for each z € R and
each € > 0 there is a non-empty open set U C (x — €,z + €) such that
|f = f(z)| <eonU.

The symbol Dy stands for the set of points of discontinuity of f.

S. Marcus proved in 1958 [9] that a.e. continuous derivatives are quasi-
continuous. (See also [13].) T. Natkaniec showed in 1990 that a function u
can be factored into a (finite) product of quasi-continuous functions if and
only if it is pointwise discontinuous and each of the sets u™*((—o0,0)), u=*(0)
and u™1((0,00)) is the union of an open set and a nowhere dense set [14].
(It was shown later by J. Borsik [2] that the Natkaniec’s triple condition can
be simplified to the following one. 4 ~1(0) is the union of an open set and a
nowhere dense set.) This condition implies that if a function u is the product
of a.e. continuous derivatives and u = 0 a.e., then the set N, = {z € R :
u(z) # 0} is nowhere dense. So the function ¢ below is not a product of
a.e. continuous derivatives, though it is a bounded Baire one function which
vanishes a.e. (So by Corollary 4.3 of [3], it can be written as the product of
two bounded non-negative derivatives.) and Dy, is countable [6].

Example 1 Arrange all rationals in a sequence, (qy). Define ¥(x) = 0 when-
ever x s trrational and (g,) = 1/n for n € N.

Recall that a set A is isolated, if it contains none of its limit points. Clearly
isolated sets are countable (whence F,), G, nowhere dense sets. So for every
function u, if V,, is a finite union of isolated sets, then u is a Baire one star
function.
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Theorem 1 Suppose N, is isolated. Then there are derivatives f and g such
that w = fg, g is bounded and non-negative, and Dy U Dy C D,. (So in
particular, if u is continuous a.e., then [ and g are continuous a.e.as well)
Moreover, if u is bounded and/or non-negative, then we can require that f be
bounded and/or non-negative also.

PROOF. Arrange all elements of N, in a sequence (finite or not), (a,). Fix
an n. There is a 6, > 0 such that (a, — 0, an+,) NN, = {an}. Let fi, gn be
derivatives such that Dy, = Dy, = {an}, 0 < fr,9n <200 R, frgn = X{a,}
and fn(z) = gn(x) = 0 whenever |z — a,| > 276, / (Ju(an)|+1). (See, e.g.,
Theorem 4.2 of [12].) Let

£ =3 fusgn(uan)) max{y/ula)l. [u(@n)] }, 9 = 3 g min{/Jula,)],1}.

It is clear that u = fg, ¢ is bounded and non-negative, and if u is bounded
and/or non-negative, then f is bounded and/or non-negative, too. As N, is
isolated, we have Dy UDy C clN,,. But N, C D, and z € clN,, \ N, implies
u(x) = f(x) = g(z) = 0 and

limsup|g(t)| < limsup|f(t)| < 2limsup max{\/ lu(t)], |u(t)|}
t—x t—x t—x
So Dy UDy C D,y
Now we will show that f and g are derivatives. Fix an x € R. If = ¢ cl N,
or x € My, then f coincides with f, and g coincides with g, on some neigh-
borhood of z for some n. So assume that = € cl N, \ NV,,. Let k € N. For each
t € R with 0 < [t — 2| < min{|a, — | : n < k}/2 we have

an+on
| 20|, [ LS | o 5 el Reondl utan) 1} 2wt gn)
t—az| |t—= et 6n/2
S Z 23—7L — 23—]6.
n>k
This completes the proof. (I

Theorem 2 Let A be isolated, u be a function, B = N, \ A be non-empty and
ANclB = 0. Suppose moreover that there is a differentiable function, ®, such
that ® = u on cl B. Then there are derivatives f and g such that u = fg, g is
non-negative, and Dy UDy C D, UclB.
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PrOOF. Write U = R\ cl B as the union |, Ix of non-overlapping compact
intervals such that each x € U belongs to the interior of I, UI; for some k,] € N
and

max{| |, sup{|®(y) — ®(2)| : y, = € It} } < [o(Ix, B)]” (%)
for each k € N. Proceeding as in the proof of Theorem 1 construct derivatives
fo and go such that uxy = fogo, Ps, UDg, C Dy, fo = go =0 on cl B and for
each k € N the set {z € Iy : fo(x) = go(z) = 0} contains an interval. For each
k € N construct continuous functions f and g such that fx does not change
its sign, gx is non-negative, fi = g = 0 outside of Iy, frgo = frgx = fogr =0
on Iy, flk fr = ®(b) — ®(ay) and flk g = |Ix|, where [a, bi] = I;. Define

f=fo+ ) fe+®xap and  g=go+ Y _ g;+ XaB-
keN jeN

Clearly g is non-negative and Dy UD, C D, Ucl B. Moreover
fg=fogo+ > frgo+®'goxan + > fogi+ YD frgi+ Y P gixcn

kEN JEN keEN jeN JEN
+ foxa B + Z fexas + @' XxaB = uxu + uxa s = u.
keEN

Now we will show that f and g are derivatives. Let

F(ac):q)(ak)—i—/ T G(x):ak—i—/. gk, ifx € I, k €N,
ak

ak
F(z) = ®(x), G(x) =z, if z € clB.
We will show that F' = f — fg and G’ = g — go on R.

Fix an z € R. If z € I, for some k € N. Then clearly F'(x) = fi(z) and
G'(z) = gr(x). So assume that x € clB. For each t € R, if ¢t € ¢l B, then
F(t) — F(z) = ®(t) — ®(z) and G(t) — G(z) = ¢t — x, and if ¢t € I}, for some
k € N, then by (x),

‘ (F(t) - F(z)) — (2(t) — ®()) ’ _ Jo el + |@(2) — ®(ax))|
t—x - [t — |

< 28Up{|®(y) —®(2)]:y,z € Ik}
- o(Ix,cl B)

< o(Ig,clB) < |t —z

and

_ —1
’M—1\<Lk'g’“ e I apy <l

t—ux ~ |Jt—=z] T o(x,clB)
This completes the proof. O
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Remark 1 In the above theorem, if the function u is a.e. continuous and
the closure of the set B has Lebesgue measure zero (e.g., if B is finite), then
the derivatives f and g are a.e. continuous. The example below shows that
we cannot require that they are bounded if u is bounded, even in case B is a
singleton.

Example 2 There is a bounded non-negative function u and an isolated set A
such that D, = N, = AU {0}, and [ is unbounded whenever f and g are
derivatives, f is a.e. continuous and u = fg.

CONSTRUCTION. Set I,, = [1/(n +1),1/n] for n € N. Fix an n € N. Let
F,, C I, be a nowhere dense closed set of measure (1 — 1/n)|I,| such that
both end points of I,, belong to F,,. Let A, = {x,: k€ N} C I, \ F,, be an
isolated set with F,, C cl A,,. Let A = UneN A,, and define

1/(n+k) ifx=x,% nkeN,
u(z) =<1 if =0,

0 otherwise.

Evidently the set A is isolated and D, = N, = AU {0}. Moreover u is
bounded and non-negative. Suppose that there exist derivatives f and g such
that f is bounded and a.e. continuous, and v = fg. Observe first that f is
equal to 0 a.e. on cl A.

Indeed, otherwise there would be a point x € cl A at which f is non-zero
and continuous. So f is non-zero in some neighborhood U of z, and since u is
equal to 0 a.e., g is equal to 0 a.e. in U. As g is a derivative, it must be equal
to 0 everywhere in U. So u also equals 0 everywhere in U. But z € cl A and
u(t) # 0 for t € A, a contradiction.

Since f(0) # 0 (because u(0) = f(0)g(0) = 1), we may assume that f(0) =
1. Find a § > 0 such that [h=! [ f — 1| < 1/2 for h € (0,8). Set M =
sup{|f(z)| : z € R} and take an m > max{2M,1/6}. Then 1/m € (0,6) and

1/m 1/m
’m/ f—l’Zl—m/ |f|21—mM~‘(0,1/m)\clA’
0 0
=1-mM Y |\ F,|=1-mM Y |L|/n

n>m n>m
>1-M Y |L|=1-M-|0,1/m)| =1- M/m>1/2.
n>m

We obtained a contradiction with the previous inequality. ]
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Example 3 There is a bounded non-negative function v such that D, = N, is
the union of two isolated sets, and f is not a.e. continuous whenever f and g
are derivatives and v = fg.

CONSTRUCTION. Let K be a nowhere dense perfect set of positive measure
and let {(xn — Oy Ty +0p) 1 E N} be the family of all bounded components
of R\ K. Let u be the function defined in Example 2. Define the function v
by

u((x—xn)/én)/n if | — zp| < 0p, n €N,
v(z) = .
0 otherwise.

Then D, = N, is the union of two isolated sets: B = {z,, : n € N} and NV, \ B.
Suppose that there are derivatives f and g such that f is a.e. continuous and
v = fg. By the properties of the function u, f is unbounded on every interval
(®n, — 0p, n +6,) (n € N). But this implies that Dy D K and |Dy| > |K| > 0,
a contradiction. O

Remark 2 Similarly to the proof of Theorem 2 it can be proved that both the
function v of Example 2 and the function v of Example 3 can be written as the
product of two bounded non-negative a.e. continuous Darbouz quasi-continuous
functions.
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