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CARDINAL INVARIANTS CONCERNING
EXTENDABLE AND PERIPHERALLY

CONTINUOUS FUNCTIONS

Abstract

Let F be a family of real functions, F ⊆ RR. In the paper we will
examine the following question. For which families F ⊆ RR does there
exist g : R → R such that f + g ∈ F for all f ∈ F? More precisely, we
will study a cardinal function A(F) defined as the smallest cardinality
of a family F ⊆ RR for which there is no such g. We will prove that
A(Ext) = A(PR) = c+ and A(PC) = 2c, where Ext, PR and PC stand
for the classes of extendable functions, functions with perfect road and
peripherally continuous functions from R into R, respectively. In par-
ticular, the equation A(Ext) = c+ immediately implies that every real
function is a sum of two extendable functions. This solves a problem of
Gibson [6].

We will also study the multiplicative analogue M(F) of the function
A(F) and we prove that M(Ext) = M(PR) = 2 and A(PC) = c.

This article is a continuation of papers [10, 3, 12] in which functions
A(F) and M(F) has been studied for the classes of almost continuous,
connectivity and Darboux functions.
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1 Introduction

We will use the following terminology and notation. Functions will be iden-
tified with their graphs. The family of all functions from a set X into Y will
be denoted by Y X . The symbol |X| will stand for the cardinality of a set X.
The cardinality of the set R of real numbers is denoted by c. For a cardinal
number κ we will write cf(κ) for the cofinality of κ. A cardinal number κ is
regular, if κ = cf(κ). For A ⊆ R its characteristic function is denoted by χA.
In particular, χ∅ stands for the zero constant function.

In his study of the class D of Darboux functions (See definition below.)
Fast [5] proved that for every family F ⊆ RR of cardinality at most that of the
continuum there exists g : R→ R such that f + g is Darboux for every f ∈ F .
Natkaniec [10] proved the similar result for the class AC of almost continuous
functions and defined the following two cardinal invariants for every F ⊆ RR.

A(F) = min{|F | : F ⊆ RR & ¬∃ g ∈ RR ∀ f ∈ F f + g ∈ F} ∪ {(2c)+}
= min{|F | : F ⊆ RR & ∀ g ∈ RR ∃ f ∈ F f + g 6∈ F} ∪ {(2c)+}

and

M(F)=min{|F | : F ⊆ RR &¬∃ g ∈ RR \ {χ∅} ∀ f ∈ F f · g ∈ F} ∪ {(2c)+}
=min{|F | : F ⊆ RR &∀ g ∈ RR \ {χ∅} ∃ f ∈ F f · g 6∈ F} ∪ {(2c)+}.

Thus, Fast and Natkaniec effectively showed that A(D) > c and A(AC) > c.
The extra assumption that g 6= χ∅ is added in the definition of M since

otherwise for every family F ⊆ RR containing χ∅ we would have M(F) = (2c)+.
Notice the following basic properties of functions A and M.

Proposition 1.1 Let F ⊆ G ⊆ RR.

(1) A(F) ≤ A(G).

(2) A(F) ≥ 2 if F 6= ∅.
(3) A(F) ≤ 2c if F 6= RR.

Proof. (1) is obvious. To see (2) let h ∈ F and F = {f} for some f ∈ RR.
Then f + g ∈ F for g = h − f . To see (3) note that for F = RR and every
g ∈ RR there is f ∈ F with f + g 6∈ F , namely f = h− g, where h ∈ RR \ F .
�

Proposition 1.2 Let F ⊆ G ⊆ RR.

(1) M(F) ≤ M(G).

(2) M(F) ≥ 2 if χ∅, χR ∈ F .

(3) M(F) ≤ c if rχ{x} 6∈ F for every r, x ∈ R, r 6= 0.
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Proof. (1) is obvious. To see (2) let F = {f} for some f ∈ RR. If there is
x ∈ R such that f(x) = 0 take g = χ{x}. Otherwise, define g(x) = 1/f(x)
for every x ∈ R. Then f · g ∈ {χ∅, χR} ⊆ F . To see (3) note that for
F = {χ{x} : x ∈ R} and every g ∈ RR \ {χ∅} there is f ∈ F with f · g 6∈ F ,
namely f = χ{x}, where x is such that g(x) = r 6= 0. �

Proposition 1.3 Let χ∅ ∈ F ⊆ RR. Then A(F) = 2 if and only if F − F =
{f1 − f2 : f1, f2 ∈ F} 6= RR.

Proof. “⇒” Assume that F − F = RR. We will show that A(F) > 2. So,
pick arbitrary f1, f2 ∈ RR and put F = {f1, f2}. It is enough to find g ∈ RR

such that f1 + g, f2 + g ∈ F . But f1 − f2 ∈ RR = F − F . So, there exist
h1, h2 ∈ F such that f1 − f2 = h1 − h2. Put g = h1 − f1 = h2 − f2. Then
fi + g = fi + (hi − fi) = hi ∈ F for i = 1, 2.

“⇐” By Proposition 1.1(2) we have A(F) ≥ 2. To see that A(F) ≤ 2 let
h ∈ RR \ (F − F), take F = {χ∅, h} and choose an arbitrary g ∈ RR. It is
enough to show that f + g 6∈ F for some f ∈ F . But if g = χ∅ + g ∈ F and
h+ g ∈ F , then h ∈ F − g ⊂ F − F , contradicting the choice of h. �

Now, let X and Y be topological spaces. In what follows we will consider
the following classes of functions from X into Y . (In fact, we will consider
these classes mainly for X = Y = R.)

D(X,Y ) of Darboux functions f : X → Y ; i.e., such that f [C] is connected in
Y for every connected subset C of X.

Conn(X,Y ) of connectivity functions f : X → Y ; i.e., such that the graph of
f restricted to C (that is f ∩ [C × Y ]) is connected in X × Y for every
connected subset C of X.

AC(X,Y ) of almost continuous functions f : X → Y ; i.e., such that every
open subset U of X×Y containing the graph of f , there is a continuous
function g : X → Y with g ⊂ U .

Ext(X,Y ) of extendable functions f : X → Y ; i.e., such that there exists a
connectivity function g : X × [0, 1] → Y with f(x) = g(x, 0) for every
x ∈ X.

PR of functions f : R → R with perfect road (X = Y = R); i.e., such that for
every x ∈ R there exists a perfect set P ⊆ R having x as a bilateral
limit point for which restriction f |P of f to P is continuous at x.

PC(X,Y ) of peripherally continuous functions f : X → Y ; i.e., such that for
every x ∈ X and any pair U ⊆ X and V ∈ Y of open neighborhoods
of x and f(x), respectively, there exists an open neighborhood W of x
with cl(W ) ⊆ U and f [bd(W )] ⊆ V , where cl(W ) and bd(W ) stand for
the closure and the boundary of W , respectively.

We will write D, Conn, AC, Ext, and PC in place of D(X,Y ), Conn(X,Y ),
AC(X,Y ), Ext(X,Y ), and PC(X,Y ) if X = Y = R.
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Note also, that function f : R → R is peripherally continuous (f ∈ PC) if
and only if for every x ∈ R there are sequences an ↗ x and bn ↘ x such that
limn→∞ f(an) = limn→∞ f(bn) = f(x). In particular, if graph of f is dense in
R2, then f is peripherally continuous.

For the classes of functions (from R into R) defined above we have the
following proper inclusions ⊂, marked by arrows −→. (See [2].)

Ext

AC

PR

Conn D

PC

�
�
��

- -
Q
Q
Q
Qs

XXXXXXXXXXz ���
���

���
�:

In what follows we will also use the following theorem due to Hagan [9].

Theorem 1.4 If n ≥ 2, then Conn(Rn,R) = PC(Rn,R).

The functions A and M for the classes AC, Conn and D were studied in
[10, 3, 12]. In particular, the following is known.

Theorem 1.5 [12] M(AC) = M(Conn) = M(D) = cf(c).

Theorem 1.6 [3] c+ ≤ A(AC) = A(Conn) = A(D) ≤ 2c, cf(A(D)) > c and it
is pretty much all that can be shown in ZFC. More precisely, it is consistent
with ZFC that A(D) can be equal to any regular cardinal between c+ and 2c

and that it can be equal to 2c independent of the cofinality of 2c.

The goal of this paper is to prove the following theorem.

Theorem 1.7 (1) M(PC) = c.

(2) M(Ext) = M(PR) = 2.

(3) A(PC) = 2c.

(4) A(Ext) = A(PR) = c+.

This will be proved in the next sections. Notice only that the equation
A(Ext) = c+ and Proposition 1.3 immediately imply the following corollary,
which gives a positive answer to a question of Gibson [6]. (Compare also [13]
and [14].)

Corollary 1.8 Every function f : R → R is the sum of two extendable func-
tions.
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2 Proof of Theorem 1.7(1), (2) and (3)

Proof of M(Ext) = M(PR) = 2. The inequalities 2 ≤ M(Ext) ≤ M(PR)
follow from Proposition 1.2. To see that M(PR) ≤ 2 take F = {χB , χR\B}
where B ⊂ R is a Bernstein set. Then for every g ∈ RR \ {χ∅} we have
f · g 6= PR for some f ∈ F . To see it, take x ∈ R such that g(x) = r 6= 0. If
x ∈ B, then χB · g does not have a perfect road at x, since (χB · g)(x) = r 6= 0
and (χB · g)−1(0)∩P 6= ∅ for every perfect set P ⊆ R. Similarly, χR\B · g does
not have a perfect road at x if x ∈ R \B. �

Proof of M(PC) = c. The inequality M(PC) ≤ c follows from Proposi-
tion 1.2. So, it is enough to show that M(PC) ≥ c.

Let F ⊆ RR be a family of cardinality less than or equal to κ with ω ≤
κ < c. We will find g ∈ RR \ χ∅ such that f · g ∈ PC for every f ∈ F . For
f : R→ R let [f 6= 0] denote {x ∈ R : f(x) 6= 0} and let

Af = {x ∈ R : f(x) 6= 0 & [f 6= 0] is not bilaterally κ+-dense at x},

where set S ⊆ R is said to be bilaterally κ+-dense at x if for every ε > 0
each of the sets S ∩ [x − ε, x] and S ∩ [x, x + ε] have cardinality at least
κ+. Note that |Af | ≤ κ for every f : R → R. This is the case, since for
every x ∈ Af there exists a closed interval J with non-empty interior such
that x ∈ J and |[f 6= 0] ∩ J | ≤ κ. Now, if J is the family of all maximal
intervals J with non-empty interior such that |[f 6= 0]∩ J | ≤ κ, then |J | ≤ ω,
Af ⊆

⋃
J∈J ([f 6= 0] ∩ J) and |Af | ≤ |

⋃
J∈J ([f 6= 0] ∩ J)| ≤ κ.

Let A =
⋃
f∈F Af . Then |A| ≤ κ. Notice that the set [f 6= 0] \ A is

bilaterally κ+-dense at x for every f ∈ F and x from [f 6= 0] \ A. To define
g let 〈〈fα, qα, Iα〉 : α < κ〉 be the sequence of all triples with fα ∈ F , qα ∈ Q
and Iα be an open interval with rational end points. By induction define on
α < κ a one-to-one sequence 〈xα : α < κ〉 by choosing

(i) xα ∈ [fα 6= 0] ∩ (Iα \A) \ {xβ : β < α} if the choice can be made, and

(ii) xα ∈ (Iα \A) \ {xβ : β < α} otherwise.

Now, for x ∈ R we put

g(x) =


qα

fα(x)
if there is α < κ with x = xα and fα(x) 6= 0

1 if there is α < κ with x = xα and fα(x) = 0

0 otherwise.

Then g 6= χ∅ and for each q ∈ Q and f ∈ F the set (g · f)−1(q) is bilaterally
dense at every x from [f 6= 0]\A. Moreover, (g ·f)(x) = 0 outside of [f 6= 0]\A
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and (g · f)−1(0) is bilaterally dense at every x ∈ R. So, g · f ∈ PC for every
f ∈ F . �

To prove A(PC) = 2c we will use the following result.

Theorem 2.1 Let A and B be such that |A| = ω and |B| = c. Then there
exists a family C ⊆ AB of size 2c such that for every one-to-one sequence
〈ga ∈ C : a ∈ A〉 there is b ∈ B with ga(b) = a for every a ∈ A.

Proof. The theorem is proved in [4, Corollary 3.17, p. 77] for A = ω and
B = c. The generalization is obvious. �

From this we will conclude the following lemma.

Lemma 2.2 If B ⊆ R has cardinality c and H ⊆ QB is such that |H| < 2c,
then there is g ∈ QB such that h ∩ g 6= ∅ for every h ∈ H.

Proof. Let C be as in Theorem 2.1 with A = Q. For each h ∈ H there only
finitely many g ∈ C for which h ∩ g = ∅, since any countable infinite subset of
C can be enumerated as {ga ∈ C : a ∈ Q}. So there is g ∈ C such that h∩g 6= ∅
for every h ∈ H. �

Proof of A(PC) = 2c. By Proposition 1.1 to prove A(PC) = 2c it is enough
to show that A(PC) ≥ 2c. So, let F ⊆ RR be such that |F | < 2c. We will find
g : R → R such that f + g ∈ PC for every f ∈ F . Let G be the family of all
triples 〈I, p,m〉 where I is a non-empty open interval with rational end points,
p ∈ Q and m < ω. For each 〈I, p,m〉 ∈ G define a set B〈I,p,m〉 ⊆ I of size c
such that B〈I,p,m〉 ∩B〈J,q,n〉 = ∅ for any distinct 〈I, p,m〉 and 〈J, q, n〉 from G.

Next, fix 〈I, p,m〉 ∈ G and for each f ∈ F choose hf〈I,p,m〉 : B〈I,p,m〉 →
Q such that |p − (f(x) + hf〈I,p,m〉(x))| < 1

m for every x ∈ B〈I,p,m〉. Then,

by Lemma 2.2 used with a set H〈I,p,m〉 = {hf〈I,p,m〉 : f ∈ F}, there exists

g〈I,p,m〉 : B〈I,p,m〉 → Q such that

∀ f ∈ F ∃x ∈ B〈I,p,m〉 hf〈I,p,m〉(x) = g〈I,p,m〉(x).

In particular, if g : R→ Q is a common extension of all functions g〈I,p,m〉, then
for every 〈I, p,m〉 ∈ G and every f ∈ F there exists x ∈ B〈I,p,m〉 ⊆ I such
that

|p− (f(x) + g(x))| < 1

m
.

So, for every f ∈ F the graph of f + g is dense in R2. Thus, f + g ∈ PC. �
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3 Proof of Theorem 1.7(4): A(Ext) = A(PR) = c+

By Proposition 1.1 we have A(Ext) ≤ A(PR). Thus, it is enough to prove two
inequalities: A(PR) ≤ c+ and A(Ext) ≥ c+.

First we will prove A(PR) ≤ c+. For this we need the following lemma.

Lemma 3.1 There is a family F ⊆ RR of size c+ such that for every distinct
f, h ∈ F , every perfect set P and every n < ω there exists an x ∈ P with
|f(x)− h(x)| ≥ n.

Proof. The family F = {fξ : ξ < c+} is constructed by induction using a
standard diagonal argument. If for some ξ < c+ the functions {fζ : ζ < ξ} are
already constructed, we construct fξ as follows. Let 〈〈Pα, hα, nα〉 : α < c〉 be
an enumeration of all triples 〈P, h, n〉 where P ⊆ R is perfect, h = fζ for some
ζ < ξ and n < ω. By induction on α < c choose xα ∈ Pα \ {xβ : β < α} and
define fξ(xα) = hα(xα) + nα. Then any extension of fξ to R will have the
desired properties. �

Proof of A(PR) ≤ c+. Now let F be a family from Lemma 3.1. We will
show that for every g : R → R there exists f ∈ F such that f + g 6∈ PR.
By way of contradiction assume that there exists a function g : R → R such
that f + g ∈ PR for every f ∈ F . Then, for every f ∈ F there exists a
perfect set Pf such that 0 is a bilateral limit point of Pf and (f + g)|Pf is
continuous at 0. Since there are c+-many functions in F and only c-many
perfect sets, there are distinct f, h ∈ F with Pf = Ph. Then the function
((f + g)− (h+ g))|Pf = (f − h)|Pf is continuous at 0 contradicting the choice
of the family F . �

The proof of A(Ext) ≥ c+ is based on the following facts.

Lemma 3.2 For every meager subset M of R there exists a family {hξ ∈
RR : ξ < c} of increasing homeomorphisms such that hζ [M ] ∩ hξ[M ] = ∅ for
every ζ < ξ < c.

Proof. Let {Dζ : ζ < c} be a family of pairwise disjoint c-dense, meager Fσ-
sets. Then by [8, Lemma 4] there are homeomorphisms {hζ : R→ R : ζ < c}
such that hζ [M ] ⊂ Dζ . �

For f ∈ F ⊂ RR we say that a set G ⊆ R is f -negligible for the class F
provided g ∈ F for every g : R→ R such that g|R\G = f |R\G. Thus, G ⊆ R is
f -negligible for F if we can modify f arbitrarily on G remaining in the class F .

Theorem 3.3 There exists a connectivity function f : R2 → R with graph
dense in R3 such that some dense Gδ subset G of R2 is f -negligible for the
class Conn(R2,R).
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The proof of this theorem will be postponed to the end of this section.

Corollary 3.4 There exists an extendable function f̂ : R → R with graph
dense in R2 such that some dense Gδ subset Ĝ of R is f̂ -negligible for the
class Ext.

Proof. Let f : R2 → R and G be as in Theorem 3.3. Then there exists y ∈ R
with Gy = {x : 〈x, y〉 ∈ G} being a dense Gδ subset of R. Clearly the set

Ĝ = Gy and the function f̂ : R→ R defined by f̂(x) = f(x, y) for every x ∈ R
satisfy the requirements. �

The existence of a function as in Corollary 3.4 was first announced by
H. Rosen at the 10th Auburn Miniconference in Real Analysis, April 1995.
However, the construction presented at that time had a gap. This gap was
removed later, as described in [14].

The construction presented in this paper is an independently discovered
repair of the original Rosen’s gap. It is also more general than that of [14],
since [14] does not contain any example similar to that of Theorem 3.3.

Next, we will show how Lemma 3.2 and Corollary 3.4 imply A(Ext) ≥ c+.
The argument is a modification of the proof of Corollary 1.8. (Compare also
[11] and [14].)

Proof of A(Ext) ≥ c+. Let F = {fξ ∈ RR : ξ < c}. We will find g : R → R
such that fξ + g ∈ Ext for every ξ < c. So, let f̂ : R→ R and Ĝ ⊆ R be as in

Corollary 3.4. Put M = R \ Ĝ and take {hξ ∈ RR : ξ < c} as in Lemma 3.2.

For ξ < c define g on hξ[M ] to be (f̂ ◦ h−1ξ − fξ)|hξ[M ] and extend it to R
arbitrarily. To see that fξ + g ∈ Ext note that fξ + g = f̂ ◦h−1ξ on hξ[M ]. But

the set R \ hξ[M ] = hξ[Ĝ] is (f̂ ◦ h−1ξ )-negligible for the class Ext. (See [11]
for an easy proof.) So, each fξ + g is extendable. �

Proof of Theorem 3.3. We will construct a peripherally continuous func-
tion f : R2 → R with dense Gδ subset G of R2 which is f -negligible for the class
PC(R2,R). It is enough since, by Theorem 1.4, Conn(R2,R) = PC(R2,R).
The construction is a modification of that from [7], where a similar example
of a function from [0, 1]× [0, 1] onto [0, 1] was constructed. (Compare also [1].)
The additional difficulty in our construction is to make sure that some se-
quences of points in the range of f (= R) have cluster points, which is obvious
for all sequences in [0, 1]. Also, our basic construction step will be based on a
triangle, while the construction in [7] was based on a square. Triangles work
better, since for three arbitrary non-collinear points in R3 there is precisely
one plane passing through them, while it is certainly false for four points.

Basic Idea: We will construct, by induction on n < ω, a sequence 〈Sn : n < ω〉
of triangular “grids” formed with equilateral triangles of side length 1/2kn , as
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Figure 1: Grid Sn

in Figure 1. The grid Sn will be identified with the points on the edges of
triangles forming it and we will be assuming that Sn ⊆ Sn+1 for all n < ω.
With each grid Sn we will associate a continuous function fn : Sn → R which
is linear on each side of a triangle from Sn. Moreover, each fn+1 will be an
extension of fn. Function f will be defined as an extension of

⋃
n<ω fn.

Terminology: In what follows a triangle will be identified with the set of
points of its interior or its boundary.

For a grid S we say that a triangle T is from S if the interior of T is equal
to a component of R2 \ S.

For an equilateral triangle T , its basic partition will be its division into
seven equilateral triangles, as in Figure 2. The central triangle T̂ of Figure 2
will be referred as the middle quarter of T . Thus, T̂ ∩ bd(T ) = ∅ and the
length of each side of T̂ is equal to 1/4 of the length of a side of T .

If a function F is defined on the three vertices of a triangle T , its basic
extension is defined as the unique function F̂ : T → R extending F whose
graph is a subset of a plane. Notice, that F̂ is linear on each side of the
triangle T and that F̂ extends F even if the function F has already been
defined on some side of T as long as F is linear on this side.

Inductive Construction: We will define inductively three increasing se-
quences 〈Sn : n < ω〉 of triangular grids as in Figure 1, 〈fn ∈ RSn : n < ω〉 of



468 K. Ciesielski and I. Rec law

T
T
T
T
T
T
T
T
T
T
T
T
T�

�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�T

T
T
T
T
T
T

T
T
T�

�
�

Figure 2: Basic partition

continuous functions and 〈kn < ω : n < ω〉 of natural numbers such that the
following inductive conditions are satisfied for every n < ω.

(i) fn : Sn → [−2n, 2n] and is linear on each side of a triangle T from Sn.

(ii) The side length of each triangle from Sn is equal to 1/2kn .

(iii) The variation of fn on each triangle from Sn is ≤ 1/2n.

(iv) If n > 0, then for every triangle T from Sn−1 and every dyadic number
i/2n ∈ [−2n, 2n] with i ∈ Z (−4n ≤ i ≤ 4n) there is a triangle Ti ⊆ T̂
such that bd(Ti) ⊆ Sn and fn(x) = i/2n for every x ∈ bd(Ti).

(v) If n > 0, T is a triangle from Sn−1 and T ′ is a triangle from Sn such
that T ′ ⊆ T and T ′ 6⊆ T̂ , then fn[bd(T ′)] ⊆ [−M,M ], where M =
max{|fn−1(x)| : x ∈ bd(T )}.

To start the induction, take k0 = 0, define grid S0 as in Figure 1 with all
sides of length 1 = 1/20 and choose f0 : S0 → R as constantly equal 0. It is
easy to see that the conditions (i)–(v) are satisfied with such a choice.

Next, assume that for some n > 0 we already have Sn−1, fn−1 and kn−1
satisfying (i)–(v). We will define Sn, find kn and extend fn−1 to fn : Sn → R
such that (i)–(v) will still hold. Put Fn = fn−1.

Step 1. Let T be a triangle from Sn−1 and extend Fn into each vertex of
its middle quarter T̂ by assigning it the value 0. Notice, that Fn is defined on
all vertices of the basic partition of T .

Partition T̂ into a grid S such that the size of each triangle from S is equal

1/2k̂n . The number k̂n < ω is chosen as a minimal number such that there
are 2 · 8n + 1 disjoint triangles {Ti : i ∈ Z,−4n ≤ i ≤ 4n} from S none of
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Figure 3: Some triangles of the grid of T̂

which intersects the boundary of T̂ . (See Figure 3.) Notice that the value of

k̂n does not depend on T . On the vertices of each triangle Ti define Fn to be
equal i/2n. On the remaining undefined vertices of S define Fn to be equal 0.
Notice that Fn is defined on all vertices of each triangle defined so far.

Step 2. Extend Fn into R2, by defining it on every triangle T constructed
so far as the basic extension of Fn|bd(T ).

Notice that if we extend grid Sn−1 to the grid Ŝn with side length of each

triangle from Ŝn equal 1/2k̂n and put f̂n = Fn|Ŝn , then the triple 〈Ŝn, f̂n, k̂n〉
satisfies conditions (i), (ii), (iv) and (v).

Step 3. We have to modify Ŝn, f̂n and k̂n to also get condition (iii), while
keeping the other properties. First notice that for every triangle T from Ŝn
and any interval J inside T the slope of Fn on J does not exceed the number
length of the range of Fn

length of a side of T ≤ 2 2n

2−k̂n
= 2nk̂n+1. So, let kn ≥ nk̂n + n + 1, in which

case
1

2kn
2nk̂n+1 ≤ 1

2n
,

let Sn be a refinement of the grid Ŝn with triangles with side size 1/2kn and
put fn = Fn|Sn . It is easy to see that this gives us (iii) while preserving the
other conditions. This finishes the inductive construction.
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Let S =
⋃
n<ω Sn and define f on S by f =

⋃
n<ω fn. To extend it to

R2 \ S notice that

(?) for every x ∈ R2 \ S there exists a number f(x) ∈ R and a sequence
〈Tk : k < ω〉 of triangles with x being an interior point of each Tk such
that limk→∞ diam(Tk)→ 0 and

f(x) = lim
k→∞

min f [bd(Tk)] = lim
k→∞

max f [bd(Tk)].

The proof of (?) will finish the construction of f .

To see (?) fix x ∈ R2 \ S and let T 0
n be the triangle from Sn such that x

belongs to the interior of T 0
n . Let N = {n < ω : n > 0 & T 0

n ⊆ T̂ 0
n−1}. There

are two cases to consider.

Case 1. The set N is infinite. Then, let 〈nk : k < ω〉 be a one-to-one
enumeration of N and define Tk = T̂ 0

nk−1. It is easy to see that this sequence
satisfies (?) with f(x) = 0.

Case 2. The set N is finite. Let m < ω be such that T 0
n 6⊆ T̂ 0

n−1 for every
n ≥ m and let M = max{|fm−1(x)| : x ∈ bd(T 0

m−1)}. Then, by condition
(v), fn[bd(T 0

n)] ⊆ [−M,M ] for every n ≥ m. So, there exists an increasing
sequence 〈nk ≥ m : k < ω〉 such that L = limk→∞max f [bd(T 0

nk
)] exists. It is

easy to see that the sequence 〈Tk〉 = 〈T 0
nk
〉 satisfies (?) with f(x) = L, since

the variation of f on bd(T 0
nk

) tends to 0 as k →∞.

This finishes the construction of function f . It remains to show that f has
the desired properties.

Clearly (?) implies that f is peripherally continuous at every point x ∈
R2 \S. To see that f is peripherally continuous on S take x ∈ S. Then, there
exists k < ω such that x ∈ Sn for every n ≥ k. For any such n let Tn be the
set of all triangles from Sn to which x belongs. Notice that Tn has at most six
elements and that x belongs to the interior of the polygon Pn =

⋃
Tn. Hence,

the variation on the boundary of Pn is at most 6/2n and the diameter of Pn
is at most 1/2n−1. So, the sequence 〈Pn〉 guarantees that f is peripherally
continuous at x.

To finish the proof it is enough to find a dense Gδ set G which is f -negligible
for PC(R2,R). For any dyadic number d and any k ∈ ω let Fkd denote the
family of all triangles T for which there exists n ≥ k such that T is from Sn
and fn(x) = d for every x ∈ bd(T ). Let Gkd be the union of the interiors of
all triangles T ∈ Fkd . Then, by condition (iv), each set Gkd is open and dense.
Therefore, G =

⋂
{Gkd : k ∈ ω & d is dyadic} is a dense Gδ set. It is easy

to see, that f is peripherally continuous if we redefine it on the set G in an
arbitrary way.

This finishes the proof of Theorem 3.3. �
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4 Compositions of Lebesgue Measurable Functions

We can consider similar problems for compositions of functions. For example,
we know that every function is a composition of Lebesgue measurable functions
[15]. (See also Problem 6378, American Mathematical Monthly, 90, 573.) It
is easy to make every function in RR measurable (in a sense of definition of A)
using composition with just one function. We simply take a composition with
a constant function. So we need to define cardinal invariants in a different
way.

The next definition will represent one of the ways the problem can be
approached. Instead of “forcing the family H to be in F” we will try to
recover all elements of H with one “coding” function f̂ ∈ F and the class F
of all codes. This leads to the following definitions.

Cr(F) = min{|H| : H ⊆ RR & ¬∃ f̂ ∈ F ∀h ∈ H∃ f ∈ F f ◦ f̂ = h} ∪ {(2c)+}

and

Cl(F) = min{|H| : H ⊆ RR & ¬∃ f̂ ∈ F ∀h ∈ H∃ f ∈ F f̂ ◦ f = h} ∪ {(2c)+}.

Let L be the family of all Lebesgue measurable functions from R into R.

Theorem 4.1 Cr(L) = (2c)+ and Cl(L) = c+.

Proof. To see Cr(L) ≥ (2c)+ we will show that the family H = RR of all

functions can be “coded” by one function f̂ ∈ L. Simply, let f̂ be a Borel
isomorphism from R onto the Cantor ternary set C. For any function h ∈ RR

we define fh ∈ L by putting fh ≡ 0 on the complement of C and fh = h ◦ f̂−1
on C. Then h = fh ◦ f̂ .

To see that Cl(L) ≥ c+ let H = {hξ : ξ < c} ⊆ RR and let {Cξ : ξ < c}
be a partition of the Cantor ternary set C into perfect sets. Then for every
ξ < c take a Borel isomorphism fξ : R → Cξ and define f̂(x) = (hξ ◦ f−1ξ )(x)

for x ∈ Cξ and f̂(x) = 0 otherwise. It is easy to see that f̂ ∈ L and f̂ ◦fξ = hξ
for every ξ < c.

To prove Cl(L) ≤ c+ take {hξ : ξ < c+} from Lemma 3.1. Assume that
there exists a sequence {fξ : ξ < c+} of measurable functions and a measurable

function f̂ such that hξ = f̂ ◦ fξ for every ξ < c+. For each ξ < c+ let Pξ be
a perfect set such that fξ|Pξ is continuous. Then, by a cardinality argument,
there are ζ < ξ < c+ such that Pζ = Pξ and fζ |Pζ = fξ|Pξ. So, hζ |Pζ = hξ|Pξ.
Contradiction. �
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