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ON HENSTOCK INTEGRABILITY IN
EUCLIDEAN SPACES

Abstract

In this paper, we give a necessary and sufficient condition in terms
of Lebesgue integrable functions for Henstock integrability in Euclidean
space.

By means of the Cauchy and Harnack extension theorems for the one-
dimensional Henstock integral, Liu [5] proved that

Theorem 1 If f is Henstock integrable on [a,b], then there is a sequence { X} }
o)

of closed subsets of [a,b] such that Xy, C Xpyq1 for all k, |J Xk = [a,b], [ is
k=1
Lebesgue integrable on each Xy and

k—o0

lim (L)/Xm[ Syd= ) /xf(t)dt

uniformly on [a, b].

Liu’s proof is real-line dependent, and so it is difficult to generalize Theo-
rem 1 to higher dimensions. In this note, we shall give a direct proof of the
multidimensional version of Liu’s result. Consequently, we deduce a neces-
sary and sufficient condition for Henstock integrability in higher dimensions
(Theorem 7).

First, we give some preliminaries (see [3]).

Let R and R™ denote the real line and the positive real line respec-
tively, m a fixed positive integer and R™ the m-dimensional euclidean space.
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Unless otherwise stated, an interval will always be a compact nondegener-
ate interval of the form [s,t] = [[i~,[s;,t;] where s = (s1,82,...,5,) and
t=(t1,tos ... tm).

Also, E = [[:*,[a;, b;] will denote a fixed interval in R™, and B(z,d)
denotes an open ball in R™ with center x and radius §. A finite collection of
intervals whose interiors are disjoint is called a nonoverlapping collection. A
partial division D = {(I,&)} of E is a finite collection of interval-point pairs
such that the collection of intervals are non-overlapping. If; in addition, the
union of I from D gives E, we say that D is a division of E. Let § : E — R
be given. A partial division D = {(I,£)} is said to be J-fine if for each
(I,€) € D with & being a vertex of I, we have I C B(&,6(€)).

In this note, all functions will be assumed to be real-valued, and often the
same letter is used to denote a function on E as well as its restriction to a set
Z C E. A function f : E — R is said to be Henstock integrable to a real
number A on E if for every € > 0, there exists  : E — R™ such that for any
0-fine division D = {(I,&)} of E, we have

(DY r©11 - 4| <=

We write A = (H) [, f. If g is Lebesgue integrable on E, we write the
Lebesgue integral of g over E as (L) f g - It is known that if g is Lebesgue in-
tegrable on F, then g is Henstock integrable there with the same integral value.
For a proof, see [6, Proposition 4, Remark 6]. The words “measure”, “measur-
able” and “almost everywhere” always refer to the m-dimensional Lebesgue
measure. If X is measurable, we shall write | X| as the m-dimensional Lebesgue
measure of X. We next give Henstock’s lemma.

Theorem 2 If f is Henstock integrable on E, then for every € > 0, there
erists § : E — R™T such that for any §-fine partial division D = {(I,€)} of
FE, we have

(D) ’f(&) 1| - (H)/If’ <e.

As a consequence of Henstock’s lemma, we shall prove the following two
lemmas.

Lemma 3 If f is Henstock integrable on E, then for every € > 0, there exists
§: E — R™* such that for every 6-fine partial division D = {(I,£)} of E, we
have

)3 | €0 il - ) [

for every subinterval Ey of E.

f‘<s

NEy
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PROOF. By Theorem 2, for € > 0, there exists § : E — R™ such that for any
0-fine partial division D = {(I,£)} of E, we have

(D) ‘f(f) . (H)/If‘ < g 1)
Let Ey be a subinterval of E. We let

Do = {(INEy,€): |INEy|>0and (I,§) € D}.

, we want to show that

Witing S = (D) Y| £(§) 111 Bol = (H) [0, f
S < e. Note that

S(D)Z‘f(f) IIﬂEo(H)/mEof‘
— )Y ‘f(é“) rnE) - ) [ o f‘
=00 3 |1 10 5l - 1) / o f\
(Do) E;O F(6) 111 Eol — (H) / o f‘
< g + 00 @ 0Bl - ) [ ]

E¢Eo

as {(INEy,¢&) : & € Eygand (1,£) € D} is a 0-fine partial division of E. Hence
we have

f(f)\mEol—(H)/

INEg

S < g + (Do) Y f‘. (2

¢ Eo

It remain to prove that the second term in (2) is less than 5. Note that

when & & Fy, the interval I N Ey does not contain & and therefore (I N Ey, &)
is no longer é-fine.

Let D1 = {(INEy,§) € Do : £ ¢ Ep and (I,€) € D} = {(I; N Eo, &)},
and for each subinterval FE; of E, we put

(LN EnLE) = F(&) 1N B | — <H>/ / 3)

IjﬁEl

foreach j =1,2,...,p.
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We recall that if = (z1,22,...,2m) and y = (y1,Y2,.--,Ym) are two
distinct vertices of an interval I, z and y are said to be opposite if z; # y; for
all i = 1,2,...,m. We shall denote an interval with £, = as opposite vertices
by < &, >. Then for each j =1,2,...,p,

|f(€j)|fjﬂEo|—(H)/I f| = 1G;(I; N Ey, ;)| by (3)

iNEo ‘
2”77.

S Z ’Gj(< fja’y(l’j) >7£j)
=1

om

D ()MEDG (< g5, > )

=1

(fy%l’j), *ygl’j), . ,fy,(,l{j)) represents a vertex of I; N Ey
= Hgl[agj),ﬁgj)] and n(l,j) is the cardinality of the set {7 : ’yi(m) = az(-])}.

Hence, for j =1,2,...,p,

where ~07) =

om

(L N Bo,&)] < Y |Gi(< §:909) >,8)) ()
=1

Consequently, by (4),

P
g ) 11 1 Byl — (H /E Z\G S0 Eo )]
p 2™ 2m
<3N [Gi< 64 >8] = Gj(< &,7%) >, ¢5)
j=11=1 I=1j=1

Recall that Dy = {(I N Ey,§) : [INEy| > 0 and (I,§) € D} and Dy =
{INEy&) € Dy : € ¢ Ey and (1,€) € D} = {(I; N Ep, &)}, By our
definition of Dy and Dy, we see that {(< &;, v >, §j)};—, is a 0-fine partial
division of E for each [ = 1,2,...,2™. We have

>

Jj=1

fe) el - [ s

gm
€
< Z i1 by Theorem 2
=1

<
2

By (2), we get the required inequality. The proof is complete. O
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Lemma 4 Suppose [ is Henstock integrable on E, and f is Lebesgue integrable
on some closed subset Y of E. Then given € > 0, there exists § : Y — RT
such that for any §-fine partial division D = {(I,&)} with £ € Y, we have

o], -,

for every subinterval Ey of E.

Proor. By Lemma 3, there exists §; : E — R™ such that for any d;-fine
partial division D = {(I,£)} of E, we have

oY |rlnel - [ <] )
INE,
for every subinterval Fy of F.

Since f is Lebesgue integrable on Y, fyx, is Henstock integrable on E,
where x, denotes the characteristic function of Y. So there exists dy : £ —
R™* such that for any do-fine partial division D = {(I,€)} of F with £ € Y/,

we have

<

(6)

DN ™

O |rex@irnal-w [

NEy

for every subinterval Ey of E.

Define 6 : Y — R* as follows: §(§) = min{d;(£),d2(£)}. Then for any
0-fine partial division D = {(I,£)} of E with £ € Y, it is both §;-fine and
do-fine. Thus

(D) Z ‘(L) /IﬂYﬂEo f a (H) /IﬂEo f‘
< (D))
+(D))

<, by (5) and (6).

(L) / e fQIUNE

) 11N Ey| - <H>/

INE,

d

The proof is complete. O

The next theorem due to Kurzweil and Jarnik [2, Theorem 2.10] is also an
important tool. For convenience, in what follows, we shall write X, T F to

mean Xy, C Xjyqq for all k and |J X, = E.
k=1
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Theorem 5 Let f be Henstock integrable on E. Then there exists a sequence
{Yi} of closed sets with Y, T E and f is Lebesgue integrable on each Y.

We shall now state and prove the multidimensional version of Liu’s result.

Theorem 6 If f is Henstock integrable on the interval E, then there exists a
sequence { X1} of closed subsets of E such that Xy, T E, f is Lebesgue integrable

on each X, and
sl [ pean [

for each k, and the above supremum is over all subintervals E1 of E.

1
< =
k

PROOF. In view of Theorem 5, there exists a sequence {Yj} of closed sets
with Y, 1 F and f is Lebesgue integrable on each Y. By Lemma 4, for every
positive integer n and for each k there exists d;, : Y3, — RT such that for any
O-fine partial division D = {(I,£)} of E with & € Y}, we have

D)y \(L) J () ! ™

INYrNEy INEy ‘ %
for every subinterval Fy of E. Next we want to choose {X,,} from {Y;} so that
the required inequality holds. By our assumption, Y} is closed, so dist(&,Yx)
> 0 if and only if £ ¢ Y), where dist(&, Yy) denotes the distance between £ and
Y}. Define § : E — R™* as follows :

(&), ifeYy
5(§) =
min{dx(§), dist(&,Yr—1)}, if € €Yy —Yr_1 foreach k > n.

Since a d-fine division of F exists, see for example [3, p. 128], we may fix
a d-fine division Dy = {(I,€)} of E. For simplicity, we put P, = Y, and
P, =Y, — Y1 for k > n. Next, we put

X, =J{InY;:(1,§) € Dy with ¢ € P;} (8)

j=n

The above union is a finite one because Dy only has finitely many terms. Thus
X, is closed as each Y is closed.
Define
k(n) =max{j: (I,§) € Dy and { € P} +1 9)

Since Y3 T E, we have
Yitn) 2 Xn (10)



388 LEE TUuO-YEONG, CHEW TUAN-SENG AND LEE PENG-YEE

By the definition of § and the compactness of Y, any d-fine division D =
{(I,£)} must cover Y,,. Hence

Y, C X (11)
By (10) and (11), we have
Y, € X, € Yim)- (12)

By (12), we note that f is Lebesgue integrable on X,,.

Claim. ‘(L) Je,nx, [ = (H) [, f‘ < L for every closed subinterval E;
of E.

Observe that if (I,€) € Dy with £ € P, for some positive integer I, then
by (8),
INX,=1INY,. (13)

Note that Dy may have its associated points belonging to P,, only. Without
loss of generality, we may suppose Dy has its associated points belonging to

P, P,,..., P

for some positive integers s; < so < -+ < s; with s; = n. Now, we have for
all closed subintervals F; of E,

() /Ean =) /El /1< (Do) Z ’(L) /E]ﬂIan f=H) /Eml f‘

< Z(DO) Z ‘(L) /Eman f-H) /Elﬂlf’

i=1 ¢ep.,
L —(H by (13
()/Emmyiif ( >/Mf| y (13)

It is easy to see from (12) that there exists a subsequence of {X,,}, denoted
again by { X, }, such that X,, 1 E. The proof is complete. O

We remark that Theorem 6 is indeed a generalization of Liu’s result. Fur-
thermore, Theorem 7 below is also an improvement of the results in Liu [5]
and Lee [4].
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Theorem 7 A function f is Henstock integrable on E if and only if there
exists a sequence { Xy} of closed subsets of E such that X T E, f is Lebesgue
integrable on each Xy, and the following condition holds: for every e > 0 there
exists an integer N such that if k > N then there exists 6, : E — R such
that for every d-fine division D = {(I,€)} of E we have

(D) > FOUNE ] <e
EE Xy

for every subinterval E1 of E.

PROOF. The proof follows easily as in Bartle [1], by taking note that
(D) Y. =(D)> . —(D) >,
£4X), EEXy,

and using Theorem 6. O

References

[1] R. G. Bartle, A convergence theorem for generalized Riemann integrals,
Real Analysis Exchange, 20 (1994-95), 119-124.

[2] J. Kurzweil and J. Jarnik, Equiintegrability and Controlled Convergence of
Perron-type integrable functions, Real Analysis Exchange, 17 (1991-92),
110-139.

[3] L. Peng-Yee, Lanzhou lectures on Henstock integration, World Scientific,
1989.

[4] L. Peng-Yee, Measurability and the Henstock integral, Proc. Internat.
Math. Conf., 1994, Kaohsiung , World Scientific, 1995.

[5] Liu Gengian, On necessary conditions for Henstock integrability, Real
Analysis Exchange, 18 (1992-93), 522-531.

[6) W. F. Pfeffer, A note on the generalized Riemann integral, Proc. American
Math Soc., 103 (1988), 1161-1166.



