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ON HENSTOCK INTEGRABILITY IN
EUCLIDEAN SPACES

Abstract

In this paper, we give a necessary and sufficient condition in terms
of Lebesgue integrable functions for Henstock integrability in Euclidean
space.

By means of the Cauchy and Harnack extension theorems for the one-
dimensional Henstock integral, Liu [5] proved that

Theorem 1 If f is Henstock integrable on [a, b], then there is a sequence {Xk}
of closed subsets of [a, b] such that Xk ⊂ Xk+1 for all k,

∞⋃
k=1

Xk = [a, b], f is

Lebesgue integrable on each Xk and

lim
k→∞

(L)

∫
Xk∩[a,x]

f(t) dt = (H)

∫ x

a

f(t) dt

uniformly on [a, b].

Liu’s proof is real-line dependent, and so it is difficult to generalize Theo-
rem 1 to higher dimensions. In this note, we shall give a direct proof of the
multidimensional version of Liu’s result. Consequently, we deduce a neces-
sary and sufficient condition for Henstock integrability in higher dimensions
(Theorem 7).

First, we give some preliminaries (see [3]).
Let R and R+ denote the real line and the positive real line respec-

tively, m a fixed positive integer and Rm the m-dimensional euclidean space.
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Unless otherwise stated, an interval will always be a compact nondegener-
ate interval of the form [s, t] =

∏m
i=1[si, ti] where s = (s1, s2, . . . , sm) and

t = (t1, t2, . . . , tm).
Also, E =

∏m
i=1[ai, bi] will denote a fixed interval in Rm, and B(x, δ)

denotes an open ball in Rm with center x and radius δ. A finite collection of
intervals whose interiors are disjoint is called a nonoverlapping collection. A
partial division D = {(I, ξ)} of E is a finite collection of interval-point pairs
such that the collection of intervals are non-overlapping. If, in addition, the
union of I from D gives E, we say that D is a division of E. Let δ : E −→ R+

be given. A partial division D = {(I, ξ)} is said to be δ-fine if for each
(I, ξ) ∈ D with ξ being a vertex of I, we have I ⊂ B(ξ, δ(ξ)).

In this note, all functions will be assumed to be real-valued, and often the
same letter is used to denote a function on E as well as its restriction to a set
Z ⊂ E. A function f : E −→ R is said to be Henstock integrable to a real
number A on E if for every ε > 0, there exists δ : E −→ R+ such that for any
δ-fine division D = {(I, ξ)} of E, we have∣∣∣(D)

∑
f(ξ) |I| −A

∣∣∣ < ε.

We write A = (H)
∫
E
f . If g is Lebesgue integrable on E, we write the

Lebesgue integral of g over E as (L)
∫
E
g. It is known that if g is Lebesgue in-

tegrable on E, then g is Henstock integrable there with the same integral value.
For a proof, see [6, Proposition 4, Remark 6]. The words “measure”, “measur-
able” and “almost everywhere” always refer to the m-dimensional Lebesgue
measure. If X is measurable, we shall write |X| as the m-dimensional Lebesgue
measure of X. We next give Henstock’s lemma.

Theorem 2 If f is Henstock integrable on E, then for every ε > 0, there
exists δ : E −→ R+ such that for any δ-fine partial division D = {(I, ξ)} of
E, we have

(D)
∑∣∣∣∣f(ξ) |I| − (H)

∫
I

f

∣∣∣∣ < ε.

As a consequence of Henstock’s lemma, we shall prove the following two
lemmas.

Lemma 3 If f is Henstock integrable on E, then for every ε > 0, there exists
δ : E −→ R+ such that for every δ-fine partial division D = {(I, ξ)} of E, we
have

(D)
∑∣∣∣∣f(ξ)|I ∩ E0| − (H)

∫
I∩E0

f

∣∣∣∣ < ε

for every subinterval E0 of E.
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Proof. By Theorem 2, for ε > 0, there exists δ : E −→ R+ such that for any
δ-fine partial division D = {(I, ξ)} of E, we have

(D)
∑∣∣∣∣f(ξ) |I| − (H)

∫
I

f

∣∣∣∣ < ε

2m+1
. (1)

Let E0 be a subinterval of E. We let

D0 = {(I ∩ E0, ξ) : |I ∩ E0| > 0 and (I, ξ) ∈ D} .

Writing S = (D)
∑∣∣∣f(ξ) |I ∩ E0| − (H)

∫
I∩E0

f
∣∣∣, we want to show that

S < ε. Note that

S = (D)
∑∣∣∣∣f(ξ) |I ∩ E0| − (H)

∫
I∩E0

f

∣∣∣∣
= (D0)

∑∣∣∣∣f(ξ) |I ∩ E0| − (H)

∫
I∩E0

f

∣∣∣∣
= (D0)

∑
ξ∈E0

∣∣∣∣f(ξ) |I ∩ E0| − (H)

∫
I∩E0

f

∣∣∣∣
+ (D0)

∑
ξ 6∈E0

∣∣∣∣f(ξ) |I ∩ E0| − (H)

∫
I∩E0

f

∣∣∣∣
<

ε

2m+1
+ (D0)

∑
ξ 6∈E0

∣∣∣∣f(ξ) |I ∩ E0| − (H)

∫
I∩E0

f

∣∣∣∣
as {(I ∩E0, ξ) : ξ ∈ E0 and (I, ξ) ∈ D} is a δ-fine partial division of E. Hence
we have

S <
ε

2m+1
+ (D0)

∑
ξ 6∈E0

∣∣∣∣f(ξ) |I ∩ E0| − (H)

∫
I∩E0

f

∣∣∣∣ . (2)

It remain to prove that the second term in (2) is less than ε
2 . Note that

when ξ 6∈ E0, the interval I ∩ E0 does not contain ξ and therefore (I ∩ E0, ξ)
is no longer δ-fine.

Let D1 = {(I ∩ E0, ξ) ∈ D0 : ξ 6∈ E0 and (I, ξ) ∈ D} = {(Ij ∩ E0, ξj)}pj=1

and for each subinterval E1 of E, we put

Gj(Ij ∩ E1, ξj) = f(ξj) |Ij ∩ E1| − (H)

∫
Ij∩E1

f (3)

for each j = 1, 2, . . . , p.
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We recall that if x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) are two
distinct vertices of an interval I, x and y are said to be opposite if xi 6= yi for
all i = 1, 2, . . . ,m. We shall denote an interval with ξ, x as opposite vertices
by < ξ, x >. Then for each j = 1, 2, . . . , p,∣∣∣∣∣f(ξj) |Ij ∩ E0| − (H)

∫
Ij∩E0

f

∣∣∣∣∣ = |Gj(Ij ∩ E0, ξj)| by (3)

=

∣∣∣∣∣
2m∑
l=1

(−1)n(l,j)Gj(< ξj , γ
(l,j) >, ξj)

∣∣∣∣∣ ≤
2m∑
l=1

∣∣∣Gj(< ξj , γ
(l,j) >, ξj)

∣∣∣
where γ(l,j) = (γ

(l,j)
1 , γ

(l,j)
2 , . . . , γ

(l,j)
m ) represents a vertex of Ij ∩ E0

=
∏m
i=1[α

(j)
i , β

(j)
i ] and n(l, j) is the cardinality of the set {i : γ

(l,j)
i = α

(j)
i }.

Hence, for j = 1, 2, . . . , p,

|Gj(Ij ∩ E0, ξj)| ≤
2m∑
l=1

∣∣∣Gj(< ξj , γ
(l,j) >, ξj)

∣∣∣ (4)

Consequently, by (4),

p∑
j=1

∣∣∣∣∣f(ξj) |Ij ∩ E0| − (H)

∫
Ij∩E0

f

∣∣∣∣∣ =

p∑
j=1

|Gj(Ij ∩ E0, ξj)|

≤
p∑
j=1

2m∑
l=1

∣∣∣Gj(< ξj , γ
(l,j) >, ξj)

∣∣∣ =

2m∑
l=1

p∑
j=1

∣∣∣Gj(< ξj , γ
(l,j) >, ξj)

∣∣∣
Recall that D0 = {(I ∩ E0, ξ) : |I ∩ E0| > 0 and (I, ξ) ∈ D} and D1 =

{(I ∩ E0, ξ) ∈ D0 : ξ 6∈ E0 and (I, ξ) ∈ D} = {(Ij ∩ E0, ξj)}pj=1. By our

definition of D0 and D1, we see that {(< ξj , γ
(l,j) >, ξj)}pj=1 is a δ-fine partial

division of E for each l = 1, 2, . . . , 2m. We have

p∑
j=1

∣∣∣∣∣f(ξj) |Ij ∩ E0| − (H)

∫
Ij∩E0

f

∣∣∣∣∣ ≤
2m∑
l=1

p∑
j=1

∣∣∣Gj(< ξj , γ
(l,j) >, ξj)

∣∣∣
<

2m∑
l=1

ε

2m+1
by Theorem 2

=
ε

2

By (2), we get the required inequality. The proof is complete. �
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Lemma 4 Suppose f is Henstock integrable on E, and f is Lebesgue integrable
on some closed subset Y of E. Then given ε > 0, there exists δ : Y −→ R+

such that for any δ-fine partial division D = {(I, ξ)} with ξ ∈ Y , we have

(D)
∑∣∣∣∣(L)

∫
I∩Y ∩E0

f − (H)

∫
I∩E0

f

∣∣∣∣ < ε

for every subinterval E0 of E.

Proof. By Lemma 3, there exists δ1 : E −→ R+ such that for any δ1-fine
partial division D = {(I, ξ)} of E, we have

(D)
∑∣∣∣∣f(ξ) |I ∩ E0| − (H)

∫
I∩E0

f

∣∣∣∣ < ε

2
(5)

for every subinterval E0 of E.
Since f is Lebesgue integrable on Y , fχ

Y
is Henstock integrable on E,

where χ
Y

denotes the characteristic function of Y . So there exists δ2 : E −→
R+ such that for any δ2-fine partial division D = {(I, ξ)} of E with ξ ∈ Y ,
we have

(D)
∑∣∣∣∣f(ξ)χ

Y
(ξ) |I ∩ E0| − (L)

∫
I∩E0

fχ
Y

∣∣∣∣ < ε

2
(6)

for every subinterval E0 of E.
Define δ : Y −→ R+ as follows: δ(ξ) = min{δ1(ξ), δ2(ξ)}. Then for any

δ-fine partial division D = {(I, ξ)} of E with ξ ∈ Y , it is both δ1-fine and
δ2-fine. Thus

(D)
∑∣∣∣∣(L)

∫
I∩Y ∩E0

f − (H)

∫
I∩E0

f

∣∣∣∣
≤ (D)

∑∣∣∣∣(L)

∫
I∩E0

fχ
Y
− f(ξ) |I ∩ E0|

∣∣∣∣
+ (D)

∑∣∣∣∣f(ξ) |I ∩ E0| − (H)

∫
I∩E0

f

∣∣∣∣
< ε, by (5) and (6).

The proof is complete. �

The next theorem due to Kurzweil and Jarnik [2, Theorem 2.10] is also an
important tool. For convenience, in what follows, we shall write Xk ↑ E to

mean Xk ⊂ Xk+1 for all k and
∞⋃
k=1

Xk = E.
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Theorem 5 Let f be Henstock integrable on E. Then there exists a sequence
{Yk} of closed sets with Yk ↑ E and f is Lebesgue integrable on each Yk.

We shall now state and prove the multidimensional version of Liu’s result.

Theorem 6 If f is Henstock integrable on the interval E, then there exists a
sequence {Xk} of closed subsets of E such that Xk ↑ E, f is Lebesgue integrable
on each Xk and

sup

∣∣∣∣(L)

∫
Xk∩E1

f − (H)

∫
E1

f

∣∣∣∣ ≤ 1

k

for each k, and the above supremum is over all subintervals E1 of E.

Proof. In view of Theorem 5, there exists a sequence {Yk} of closed sets
with Yk ↑ E and f is Lebesgue integrable on each Yk. By Lemma 4, for every
positive integer n and for each k there exists δk : Yk −→ R+ such that for any
δk-fine partial division D = {(I, ξ)} of E with ξ ∈ Yk, we have

(D)
∑∣∣∣∣(L)

∫
I∩Yk∩E0

f − (H)

∫
I∩E0

f

∣∣∣∣ < 1

2kn
(7)

for every subinterval E0 of E. Next we want to choose {Xn} from {Yk} so that
the required inequality holds. By our assumption, Yk is closed, so dist(ξ,Yk)
> 0 if and only if ξ 6∈ Yk where dist(ξ, Yk) denotes the distance between ξ and
Yk. Define δ : E −→ R+ as follows :

δ(ξ) =

 δn(ξ), if ξ ∈ Yn

min{δk(ξ), dist(ξ, Yk−1)}, if ξ ∈ Yk − Yk−1 for each k > n.

Since a δ-fine division of E exists, see for example [3, p. 128], we may fix
a δ-fine division D0 = {(I, ξ)} of E. For simplicity, we put Pn = Yn and
Pk = Yk − Yk−1 for k > n. Next, we put

Xn =
∞⋃
j=n

{
I ∩ Yj : (I, ξ) ∈ D0 with ξ ∈ Pj

}
(8)

The above union is a finite one because D0 only has finitely many terms. Thus
Xn is closed as each Yj is closed.

Define
k(n) = max

{
j : (I, ξ) ∈ D0 and ξ ∈ Pj

}
+ 1 (9)

Since Yk ↑ E, we have
Yk(n) ⊇ Xn (10)
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By the definition of δ and the compactness of Yn, any δ-fine division D =
{(I, ξ)} must cover Yn. Hence

Yn ⊆ Xn. (11)

By (10) and (11), we have

Yn ⊆ Xn ⊆ Yk(n). (12)

By (12), we note that f is Lebesgue integrable on Xn.

Claim.
∣∣∣(L)

∫
E1∩Xn

f − (H)
∫
E1
f
∣∣∣ ≤ 1

n for every closed subinterval E1

of E.

Observe that if (I, ξ) ∈ D0 with ξ ∈ Pl for some positive integer l, then
by (8),

I ∩Xn = I ∩ Yl. (13)

Note that D0 may have its associated points belonging to Pn only. Without
loss of generality, we may suppose D0 has its associated points belonging to

Ps1 , Ps2 , . . . , Psl

for some positive integers s1 < s2 < · · · < sl with s1 = n. Now, we have for
all closed subintervals E1 of E,∣∣∣∣∣(L)

∫
E1∩Xn

f − (H)

∫
E1

f

∣∣∣∣∣ ≤ (D0)
∑∣∣∣∣(L)

∫
E1∩I∩Xn

f − (H)

∫
E1∩I

f

∣∣∣∣
≤

l∑
i=1

(D0)
∑
ξ∈Psi

∣∣∣∣(L)

∫
E1∩I∩Xn

f − (H)

∫
E1∩I

f

∣∣∣∣
=

l∑
i=1

(D0)
∑
ξ∈Psi

∣∣∣∣∣(L)

∫
E1∩I∩Ysi

f − (H)

∫
E1∩I

f

∣∣∣∣∣ by (13)

<
1

n
by (7) .

It is easy to see from (12) that there exists a subsequence of {Xn}, denoted
again by {Xn}, such that Xn ↑ E. The proof is complete. �

We remark that Theorem 6 is indeed a generalization of Liu’s result. Fur-
thermore, Theorem 7 below is also an improvement of the results in Liu [5]
and Lee [4].
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Theorem 7 A function f is Henstock integrable on E if and only if there
exists a sequence {Xk} of closed subsets of E such that Xk ↑ E, f is Lebesgue
integrable on each Xk and the following condition holds: for every ε > 0 there
exists an integer N such that if k ≥ N then there exists δk : E −→ R+ such
that for every δk-fine division D = {(I, ξ)} of E we have∣∣∣∣∣∣(D)

∑
ξ 6∈Xk

f(ξ)|I ∩ E1|

∣∣∣∣∣∣ < ε

for every subinterval E1 of E.

Proof. The proof follows easily as in Bartle [1], by taking note that

(D)
∑
ξ 6∈Xk

= (D)
∑
−(D)

∑
ξ∈Xk

,

and using Theorem 6. �
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