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A CONCEPT OF GENERALIZED
ABSOLUTE CONTINUITY FOR THE

F-INTEGRAL

Abstract

We define a concept of generalized absolute continuity for additive
functions of figures. This makes it possible to give a descriptive defini-
tion of the F-integral introduced in [6]. Finally, we discuss a possible
extension to additive functions of sets of bounded variation.

Two definitions of multidimensional generalized Riemann integral were in-
troduced in [6] and [5], mainly in order to integrate the divergence of vector
fields with singularities. We will call these integrals the F-integral and BV-
integral respectively. Their definitions are closely related. In fact, they differ
only by the class of domains allowed: for the F-integral this is the class of
all figures in RN (i.e. finite unions of nondegenerate intervals), while the BV-
integral integrates functions defined on sets of bounded variation in De Giorgi’s
sense.

In order to provide descriptive definitions for both integrals, a concept of
derivability of continuous additive functions of the domains (shortly: charges)
was introduced. Together with a notion of “good behavior on sets of measure
zero”, the derivability almost everywhere ensures that a charge is an indefinite
integral (see [6, Theorem 12.3.4] for the F-integral and [3, Theorem 2.6] for
the BV-integral).

The question we address in this paper is that of finding a unifying property
of “absolute continuity” equivalent to that of being an indefinite integral. We
give an answer in the case of F-integration and discuss the technical difficul-
ties arising from the extension to BV-integration (see [3, Question 2.7] and
[1, Question 2.6]).
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1 Preliminaries

An interval in R is a set of the type [a, b] := {x ∈ R : a ≤ x ≤ b} where
a, b ∈ R; it is called nondegenerate whenever a < b. An interval in RN is
a cartesian product of intervals in R:

∏N
i=1[ai, bi]; it is called nondegenerate

whenever each [ai, bi] is nondegenerate. A figure in RN is a finite union of
nondegenerate intervals. The family of all figures in RN is denoted F(RN ),
while if A ∈ F(RN ) we set F(A) := {B ∈ F(RN ) : B ⊂ A}. Two figures
A,B ∈ F(RN ) are termed nonoverlapping whenever int (A) ∩ int (B) = ∅.
Given A,B ∈ F(RN ), A ∪B ∈ F(RN ); we also define

A�B := cl (int (A) ∩ int (B)) and A	B := cl (A \B) .

A charge in A ∈ F(RN ) is a function F : F(A) −→ R such that F (B ∪ C) =
F (B) + F (C) whenever B and C are nonoverlapping subfigures of A.

Given x = (x1, . . . , xN ) ∈ RN , we put |x| := max{|x1|, . . . , |xN |}. When
E ⊂ RN , we let d(E) := sup{|x − y| : x, y ∈ E} and we denote |E| the
Lebesgue measure of E. We let HN−1 be the (N − 1)-dimensional Hausdorff
measure in RN and put ‖A‖ := HN−1(∂A) whenever A ∈ F(RN ). A set is
thin if it is the union of countably many sets with finite HN−1 measure.

The regularity of a figure A ∈ F(RN ), r(A), is defined as follows:

r(A) :=

{
|A|

‖A‖d(A) if ‖A‖d(A) > 0

0 otherwise.

It is related to the usual notion of regularity by the formula (2Nr(A))N ≤
|A|

d(A)N
. Unless specified otherwise, in the rest of this paper A will be a fixed

figure in RN . A partition in A is a collection (possibly empty) {(A1, x1), . . . ,
(Ap, xp)} where the Ai’s are nonoverlapping subfigures of A and xi ∈ Ai for
i ∈ {1, . . . , p}. A gage in A is a function δ : A −→ R+ such that its null set
Nδ := {x ∈ R+ : δ(x) = 0} is thin. A caliber is a sequence (ηj)j∈N∗ ⊂ R+\{0}.

Let ε > 0, η ≡ (ηj)j∈N∗ a caliber, δ a gage in A and E ⊂ A an arbitrary
set. We say that a partition {(A1, x1), . . . , (Ap, xp)} in A is:

(i) ε-regular if r(Ai) ≥ ε for all i ∈ {1, . . . , p};

(ii) δ-fine if d(Ai) ≤ δ(xi) for all i ∈ {1, . . . , p};

(iii) (ε, η)-approximating if A	∪pi=1Ai is the union of finitely many nonover-
lapping figures B1, . . . , Bk with ‖Bj‖ ≤ 1

ε and |Bj | ≤ ηj for all j ∈
{1, . . . , k};

(iv) E-tagged if xi ∈ E for all i ∈ {1, . . . , p}.
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Let f : A −→ R. We say that f is F-integrable in A if there is a real
number I (called its F-integral and also denoted

∫
A
f) with the following

property: given ε > 0, one can find a gage δ in A and a caliber η such that∣∣∣∣∣
p∑
i=1

f(xi)|Ai| − I

∣∣∣∣∣ ≤ ε
for every δ-fine, ε-regular, (ε, η)-approximating partition {(A1, x1), . . . ,
(Ap, xp)} in A. If f is F-integrable in A and B ∈ F(A), then f is also
F-integrable in B; moreover its indefinite integral F , defined by F (B) :=

∫
B
f

whenever B ∈ F(A), is a charge.
Let F : F(A) −→ R be an arbitrary charge and x ∈ A. We define the lower

derivative (resp. upper derivative) of F at x, denoted F?(x) (resp. F ?(x)) as
follows:

F?(x) := inf
η>0

sup
δ>0

inf

{
F (X)

|X|
: X ∈ F(A), x ∈ X, d(X) ≤ δ, r(X) ≥ η

}
,

F ?(x) := sup
η>0

inf
δ>0

sup

{
F (X)

|X|
: X ∈ F(A), x ∈ X, d(X) ≤ δ, r(X) ≥ η

}
.

These are extended real numbers. It is easily seen that F? and F ? are measur-
able functions and that F?(x) ≤ F ?(x) (in [−∞,+∞]) whenever x ∈ int (A).
We say that F is derivable at x if F?(x) = F ?(x) ∈ R and in this case, the
common value of the derivatives is denoted F ′(x).

A charge F : F(A) −→ R is called continuous in A if for every ε > 0 there
exists η > 0 such that |F (B)| ≤ ε whenever B ∈ F(A) with |B| ≤ η and
‖B‖ ≤ 1

ε .
A charge F : F(A) −→ R is called FAC∗ in A if it is continuous in

A and, given E ⊂ A with |E| = 0 and ε > 0, there is a gage δ in A
such that

∑p
i=1 |F (Ai)| ≤ ε for each ε-regular, δ-fine, E-tagged partition

{(A1, x1), . . . , (Ap, xp)} in A.
The following result can be found in [6, Theorem 12.3.4]:

Let F : F(A) −→ R be a charge. F is the indefinite integral of some F-
integrable function if and only if it is FAC∗ in A and derivable almost every-
where in A. In this case, F (B) =

∫
B
F ′ for each B ∈ F(A).

We point out the fact that this Theorem implies that each F-integrable
function is measurable.

2 Generalized Absolute Continuity

We will define a concept of generalized absolute continuity which differs slightly
from that of [1] but resembles the one introduced in [2].
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Definition 2.1 Let F : F(A) −→ R be a charge and X ⊂ A. We say that F is
F−AC∇(X) if it enjoys the following property: given ε > 0, we can find a gage
δ in A and a positive real number η > 0 such that for every δ-fine, ε-regular,
X-tagged partitions in A {(A1, x1), . . . , (Ap, xp)} and {(B1, y1), . . . , (Bq, yq)},
if ∣∣(∪pi=1Ai)4

(
∪qj=1Bj

)∣∣ ≤ η
then ∣∣∣∣∣∣

p∑
i=1

F (Ai)−
q∑
j=1

F (Bj)

∣∣∣∣∣∣ ≤ ε .
Definition 2.2 Let F : F(A) −→ R be a charge. By saying that F is F −
ACG∇(A), we mean that there is a sequence (Xn)n∈N of measurable subsets
of A such that A = ∪n∈NXn and F is F −AC∇(Xn) for every n ∈ N.

From definition 2.1 we infer that F is F − AC∇(Y ) whenever it is F −
AC∇(X) and Y ⊂ X. In particular, it is not a restriction to assume that the
sets Xn arising from definition 2.2 are pairwise disjoint.

The following lemma is just a reformulation of [2, Theorem 2.9].

Lemma 2.1 Let f : A −→ R be F-integrable in A and F its indefinite inte-
gral. Then F is F −ACG∇(A).

Proof. Since f is measurable, the sets

Xn := {x ∈ A : |f(x)| ≤ n}

are measurable. Fix n ∈ N: we need to show that F is F − AC∇(Xn). We
consider the function f̃ : A −→ R defined as follows:

f̃(x) :=

{
f(x) if x ∈ Xn

0 otherwise.

Being Lebesgue-integrable in A, f̃ is F-integrable in A ([5, Proposition 3.1]).
We denote F̃ its indefinite integral. Let ε > 0, using Henstock’s lemma
([6, Theorem 12.3.2]) we can find a gage δ in A such that

p∑
i=1

|f(xi)|Ai| − F (Ai)| ≤
ε

8

and
p∑
i=1

|f̃(xi)|Ai| − F̃ (Ai)| ≤
ε

8
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for each δ-fine, ε
8 -regular partition in A {(A1, x1), . . . , (Ap, xp)}. Since F̃ is

absolutely continuous with respect to Lebesgue’s measure, there is η > 0 such
that |F̃ (E)| ≤ ε

2 for every measurable set E ⊂ A with |E| ≤ η. Now assume
that {(A1, x1), . . . , (Ap, xp)} and {(B1, y1), . . . , (Bq, yq)} are δ-fine, ε-regular,

Xn-tagged partitions in A (being Xn-tagged implies that f(xi) = f̃(xi) and
f(yj) = f̃(yj) for all i and j) and that |(∪pi=1Ai)4(∪qj=1Bj)| ≤ η:∣∣∣∣∣

p∑
i=1

F (Ai)−
q∑
j=1

F (Bj)

∣∣∣∣∣ ≤
p∑
i=1

|F (Ai)− f(xi)|Ai||+
p∑
i=1

|f̃(xi)|Ai| − F̃ (Ai)|

+
∣∣∣F̃ ((∪pi=1Ai)4

(
∪qj=1Bj

))∣∣∣ q∑
j=1

|F̃ (Bj)− f̃(yj)|Bj ||

+

q∑
j=1

|f(yj)|Bj | − F (Bj)| ≤
ε

8
+
ε

8
+
ε

2
+
ε

8
+
ε

8
≤ ε . �

The aim of the three following results is to prove that a charge F is derivable
almost everywhere in X provided it is F −AC∇(X).

Lemma 2.2 Let C ⊂ int (A) be compact, 0 < ε ≤ 1
2N and γ : C −→ R+ \{0}.

There is an ε-regular, γ-fine, C-tagged partition in A {(C1, x1), . . . , (Cm, xm)}
such that C ⊂ ∪mi=1Ci.

Proof. Let P be any dyadic cube containing C. We define a positive function
δ : P −→ R+ \ {0} as follows:

δ(x) :=

{
min

{
γ(x), 12dist (x, ∂A)

}
if x ∈ C

1
2dist (x,C) if x 6∈ C.

Let {(C1, x1), . . . , (Cl, xl)} be any δ-fine partition of A such that the Ci’s are
dyadic cubes. It is easily seen that the family {(Ci, xi) : xi ∈ C} satisfies the
required conditions. �

Proposition 2.1 Let F : F(A) −→ R be a charge, E ⊂ int (A) a measurable
set and assume that F is F − AC∇(E). Given 0 < ε ≤ 1

2N , θ > 0, α ∈ R,
β ∈ R and a gage δ in A, one can find an ε-regular, δ-fine, E-tagged partition
in A {(C1, x1), . . . , (Cm, xm)} such that | ∪mi=1 Ci| ≤ |E|+ θ and satisfying the
two following conditions:

(1) if E ⊂ {x ∈ A : F ?(x) ≥ β} then F (∪mi=1Ci) + ε ≥ β|E|;
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(2) if E ⊂ {x ∈ A : F?(x) ≤ α} then F (∪mi=1Ci)− ε ≤ α|E|.

Proof. First, we use the continuity of the map

R× R −→ R : (x, y) 7−→ x · y

at the points (α, |E|) and (β, |E|) to find some η1 > 0 sufficiently small for the
following to be true: if max{|x− α|, |y − |E||} ≤ η1 then

|xy − α|E|| ≤ ε

2
,

and if max{|x− β|, |y − |E||} ≤ η1 then

|xy − β|E|| ≤ ε

2
.

To simplify the notations, put A?β := {x ∈ A : F ?(x) ≥ β} and Aα? := {x ∈
A : F?(x) ≤ α}.

If E ⊂ A?β then to each j ∈ N∗ we associate a set

E?j :=
{
x ∈ E : (∀δ > 0)(∃X ∈ F(A)) such that x ∈ X, d(X) ≤ δ,

r(X) ≥ 1

j
and F (X) ≥ (β − η1)|X|

}
.

It is easily observed that

E?j = E ∩
(
∩k∈N∗E?j,k

)
where we have put

E?j,k :=
⋃{

X ∈ F(A) : d(X) ≤ 1

k
, r(X) ≥ 1

j
and F (X) ≥ (β − η1)|X|

}
for k ∈ N∗. Since the E?j,k’s are measurable (see [7, Ch. IV, Lemma 4.1]), so
are also the E?j ’s. Moreover, the relation E ⊂ A?β implies that ∪j∈N∗E?j = E.

If E 6⊂ A?β , we let E?j := E for all j ∈ N∗.
If E ⊂ Aα? then to each j ∈ N∗ we associate a set

Ej? :=
{
x ∈ E : (∀δ > 0)(∃X ∈ F(A)) such that x ∈ X, d(X) ≤ δ,

r(X) ≥ 1

j
and F (X) ≤ (α+ η1)|X|

}
.

We also infer that the Ej?’s are measurable and that ∪j∈N∗Ej? = E.
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If E 6⊂ Aα? , we let Ej? := E for all j ∈ N∗.
Now, put Ej := E?j ∩E

j
?. This defines an increasing sequence of measurable

sets such that ∪j∈N∗Ej = E. Hence there is a j0 ∈ N∗ with the property

|E \ Ej0 | ≤
η1
3
. (1)

Let η2 := min{ ε2 ,
1
j0
}. Since F is F − AC∇(E), there is a gage δ0 in A

and a η3 > 0 such that for every δ0-fine, η2-regular, E-tagged partitions in A
{(A1, x1), . . . , (Ap, xp)} and {(B1, y1), . . . , (Bq, yq)}, the relation∣∣(∪pi=1Ai)4

(
∪qj=1Bj

)∣∣ ≤ η3
implies ∣∣∣∣∣∣

p∑
i=1

F (Ai)−
q∑
j=1

F (Bj)

∣∣∣∣∣∣ ≤ η2.
Since Ej0 is measurable, there is an open set V and a closed set C with

the following properties:

C ⊂ Ej0 \ (Nδ0 ∪Nδ) and |Ej0 \ C| ≤
η3
4
, (2)

Ej0 ⊂ V and |V \ Ej0 | ≤ min
{
θ,
η1
3
,
η3
4

}
, (3)

(recall that |Nδ0 ∪Nδ| = 0).

We can now define a function γ : C −→ R+ \{0} by means of the following
formula:

γ(x) := min

{
δ(x), δ0(x),

1

2
dist(x, ∂V )

}
.

Apply Lemma 2.2 to C, γ and ε to find a partition in A {(C1, x1), . . . ,
(Cm, xm)} ε-regular (also η2-regular since η2 ≤ ε

2 ), γ-fine (also δ- and δ0-fine),
C-tagged (also E-tagged); moreover,

C ⊂ ∪mi=1Ci ⊂ V . (4)

We claim that this partition enjoys all the required properties. First, from (4)
and (3) we deduce that

| ∪mi=1 Ci| ≤ |V | = |Ej0 |+ |V \ Ej0 | ≤ |E|+ θ .



Absolute Continuity for the F-integral 357

We now want to show that {(C1, x1), . . . , (Cm, xm)} satisfies condition (1)
of the thesis. We consider the family

C :=
{

(X,x) : X ∈ F(A), x ∈ E?j0 , x ∈ X, r(X) ≥ 1

j0
,

d(X) ≤ min

{
δ0(x),

1

2
dist (x, ∂V )

}
, F (X) ≥ (β − η1)|X|

}
.

Since we assume E ⊂ A?β , it is clear that {X : (X,x) ∈ C for some x} is a
Vitali cover of Ej0 in the sense of [7, Ch. IV ’3] and consequently there is a
countable subfamily {(Xi, xi) : i ∈ N∗} ⊂ C such that the Xi’s are pairwise
disjoint and

|Ej0 \ ∪i∈N∗Xi| = 0. (5)

We choose an index k ∈ N∗ sufficiently large for

|(∪i∈N∗Xi) \ (∪ki=1Xi)| ≤ min
{η1

3
,
η3
4

}
. (6)

We observe that {(X1, x1), . . . , (Xk, xk)} is a δ0-fine, η4-regular (because η4 ≤
1
j0

), E-tagged partition in A and that

∪ki=1Xi ⊂ ∪i∈N∗Xi ⊂ V . (7)

On the other hand, relations (4), (5), (6) and (3) imply that

|(∪mi=1Ci) \ (∪ki=1Xi)| ≤ |V \ (∪ki=1Xi)|
≤ |Ej0 \ (∪ki=1Xi)|+ |V \ Ej0 |

≤ |Ej0 \ (∪i∈N∗Xi)|+ |(∪i∈N∗Xi) \ (∪ki=1Xi)|+ |V \ Ej0 | ≤
η3
2
,

and relations (7), (4), (2) and (3) imply that

|(∪ki=1Xi) \ (∪mi=1Ci)| ≤ |V \ C| = |V \ Ej0 |+ |Ej0 \ C| ≤
η3
2
.

Put these estimations together to obtain

|(∪mi=1Ci)4(∪ki=1Xi)| ≤ η3 .

Hence, from the choice of η3 and δ0 we infer that∣∣∣∣∣
k∑
i=1

F (Xi)−
m∑
i=1

F (Ci)

∣∣∣∣∣ ≤ ε

2
.
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Furthermore, from the properties of the Xi’s we deduce that

F (∪mi=1Ci) +
ε

2
≥

k∑
i=1

F (Xi) ≥ (β − η1)| ∪ki=1 Xi| (8)

Next, we want to show that

||E| − | ∪ki=1 Xi|| ≤ η1 (9)

First check that

|Ej0 | − | ∪i∈N∗ Xi| ≤ |Ej0 \ (∪i∈N∗Xi)| = 0 ,

next, using (7) and (3),

| ∪i∈N∗ Xi| − |Ej0 | ≤ |V | − |Ej0 | ≤
η1
3

so that

||Ej0 | − | ∪i∈N∗ Xi| ≤
η1
3
. (10)

Then we obtain (9) in the following way, using (1),(10) and (6):

||E| − | ∪ki=1 Xi|| ≤ ||E| − |Ej0 ||+ ||Ej0 | − | ∪i∈N∗ Xi||
+ || ∪i∈N∗ Xi| − | ∪ki=1 Xi|| ≤ η1 .

From (9) and the choice of η1 we get

(β − η1)| ∪ki=1 Xi| ≥ β|E| −
ε

2

which, together with (8), implies that

F (∪mi=1Ci) + ε ≥ β|E|.

This completes the proof of the first part of Proposition 2.1.
In order to prove that {(C1, x1), . . . , (Cm, xm)} satisfies condition (2) of

the thesis, we should construct another partition {(Y1, y1), . . . , (Yl, yl)} with,
among many other ones, the property that F (Yj) ≤ (α + η1)|Yj |. Since the
construction is analogous to the first one, we omit the details. �

Lemma 2.3 Let E ⊂ RN be a measurable set and α > 0. If |E| > 0, then
there exists a measurable set Ẽ ⊂ E such that 0 < |Ẽ| ≤ α.
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Proof. We may assume E is bounded. Given t ∈ R, define Tt := {x ∈ RN :
x1 < t}. Observe that the map ϕ(t) := |E ∩ Tt| is lipschitz-continuous and
limt→∞ ϕ(t) = |E| > 0, limt→−∞ ϕ(t) = 0. Hence, there is some t0 ∈ R such
that ϕ(t0) = min{α, |E|}. The set Ẽ := E ∩ Tt0 satisfies the thesis. �

Proposition 2.2 Let F : F(A) −→ R be a charge, X ⊂ A a measurable set
and assume that F is F−AC∇(X). Then F is derivable at almost every point
of X.

Proof. Let E be the set of points in X ∩ int (A) where F is not derivable.
We define

E− := {x ∈ X ∩ int (A) : F?(x) = −∞}
E+ := {x ∈ X ∩ int (A) : F ?(x) = +∞}
Eα,β := {x ∈ X ∩ int (A) : F?(x) ≤ α < β ≤ F ?(x)}

so that
E = E− ∪ E+ ∪ (∪α,β∈QEα,β) .

First, we want to prove that |E−| = 0. In order to get a contradiction,
suppose |E−| > 0. Using the fact that F is F − AC∇(X), choose any gage
δ in A and η > 0 in order that for each 1

4N -regular, δ-fine partitions in A
{(A1, x1), . . . , (Ap, xp)} and {(B1, y1), . . . , (Bq, yq)}, if |(∪pi=1Ai)4(∪qj=1Bj)|
≤ η then |

∑p
i=1 F (Ai) −

∑q
j=1 F (Bj)| ≤ 1

4N . Apply Lemma 2.3 to E− and

α = η
2 to find a measurable set Ẽ− ⊂ E− such that 0 < |Ẽ−| ≤ η

2 . Next apply

Proposition 2.1 to F , ε = 1
4N , θ = |Ẽ−|, α = − 1

N |Ẽ| and the gage δ we kept

from the fact that F is F −AC∇(X). We get a 1
4N -regular, δ-fine, X-tagged

partition in A {(C1, x1), . . . , (Cm, xm)} such that | ∪mi=1 Ci| ≤ 2|Ẽ−| ≤ η and
hence, from the choice of δ and η,

|F (∪mi=1Ci)| ≤
1

4N
. (11)

On the other hand, from Proposition 2.1 (2), this partition satisfies also

F (∪mi=1Ci) ≤ α|Ẽ−|+ ε = − 3

4N
.

This is in contradiction with (11). The proof that |E+| = 0 is very similar
and we omit the details.

Finally, fix α, β ∈ Q such that α < β. We need to prove that |Eα,β | = 0.
Given any 1

4N ≥ ε > 0, we find through Proposition 2.1 a figure ∪mi=1Ci in A
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such that

F (∪mi=1Ci)− ε ≤ α|Eα,β | ≤ β|Eα,β | ≤ F (∪mi=1Ci) + ε.

Hence,

|α− β|.|Eα,β | ≤ 2ε

since ε > 0 is arbitrary small and α 6= β, we get |Eα,β | = 0. �

The following is just a reformulation of [1, Lemma 2.2]. We omit the proof.

Lemma 2.4 Let F : F(A) −→ R be a continuous charge. If F is F −
ACG∇(A), then F is FAC? in A.

Theorem 2.1 Let F : F(A) −→ R be a charge. The following conditions are
equivalent:

(1) F is continuous and F −ACG∇(A);

(2) F is FAC? in A and almost everywhere derivable in A;

(3) F is the indefinite integral of some F-integrable function in A.

Proof. (1) implies (2) in view of Proposition 2.2 and Lemma 2.4. (2)
was already known to be equivalent to (3). Finally, (3) implies (1) from
Lemma 2.1. �

Question 2.1 Here we define generalized absolute continuity as in [1]. Let
F : F(A) −→ R be a charge and X ⊂ A. We say that F is F − AC?(X)
if given ε > 0, one can find a gage δ in A and η > 0 such that for each
ε-regular, δ-fine, X-tagged partition in A {(A1, x1), . . . , (Ap, xP )} satisfying
| ∪pi=1 Ai| ≤ η one has

p∑
i=1

|F (Ai)| ≤ ε.

Moreover, we say that F is F − ACG?(A) if there is a sequence (Xn)n∈N of
measurable subsets of A such that A = ∪n∈NXn and A is F −AC?(Xn).

Obviously, if F is F −ACG∇(A), then it is also F −ACG?(A). From [1],
it turns out that these two concepts are equivalent in case N = 1. What about
the case N ≥ 2?
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Remark 2.1 Extension to BV-integration. In the rest of this paper, the word
“integrable” should be understood in the sense defined in [5], A ⊂ RN will be
a fixed BV-set and a “charge” will mean an additive function F : BVA −→ R
as defined in [5].

We may define the derivatives of a charge as in [3]. For instance,

F?(x) := inf
η>0

sup
δ>0

inf

{
F (X)

|X|
: X ∈ BVA, x ∈ cl eX, d(X) ≤ δ, r(X) ≥ η

}
.

This gives rise to a good concept of derivability for extending the Theorem 2.1
(see [3, Theorem 2.6]). However, it is not suitable for proving an analogous
version of Proposition 2.1. Indeed, in the proof of this proposition, we used
Vitali’s covering theorem, assuming that the sets “X”, taken into account in
the definition of F? and F ?, are closed.
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