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A NEW VARIANT OF BLUMBERG’S
THEOREM

Abstract
We prove that for every real function f defined on a separable, com-
plete and dense in itself metric space X there exists a c-dense set W C X
such that f[W is super quasi-continuous.

Our terminology is standard. We shall consider only real-valued functions
defined on topological spaces. No distinction is made between a function and
its graph. Symbol card (X) will stand for the cardinality of a set X. The
cardinality of R is denoted by 2. For a cardinal number s we will write cf(x)
for the cofinality of k. For a metric space X, x € X and € > 0 we denote by
B(xz,¢) the open ball in X centered at z and with the radius €. The set of
all points at which a function f: X — R is continuous (discontinuous) will be
denoted by Cy (Dy). The class of all continuous functions defined on X will
be denoted by C(X).

Recall also the following definitions (X is a topological space):

o f: X — R is a pointwise discontinuous (shortly, f € PWD(X)) if the
set Cy in dense in X;

o f: X — R is cliquish (shortly, f € CLIQ(X)) if for each zp € X, e >0
and a neighborhood W of x( there is a non-empty open set Wy, C W
such that oscf [Wy < €;

e f: X — R is quasi-continuous (shortly, f € QC(X)) if for each 2y € X,
€ > 0 and a neighborhood W of xg there is a non-empty open set Wy C
W such that |f(zo) — f(z)| < € for € Wp;
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e f: X — R is super quasi-continuous (shortly, f € QC*(X)) if f[Cy is
dense in f.

The relationships between those classes are well-known. (See, e.g., [6].) In
particular, for a topological space the following inclusions hold:

QC(xX)
C(X) — QC*(X) / N CLIQ(X)

\ PWD(X) /

Generally, all those inclusions are proper. Nevertheless, for a complete
metric space X we have the following relations:

C(X) — QC*(X) =QC(X) = CLIQ(X) = PWD(X).
In 1922 H. Blumberg proved the following theorem:

Theorem 1 [1] If X is a complete metric space, then for every f: X — IR
there exists a dense set D C X such that f|D € C(D).

This theorem was extended in many directions and by many authors. (See
[3] or [4] for the history of this study.) For example, it is known that the
set D in Blumberg’s construction is countable, and, generally, one cannot
increase the size of this set. (See [9].) In 1971 J. Brown proved the following
strengthened form of Blumberg’s theorem.

Theorem 2 [2] If X is a complete metric dense in itself space, then for every
f: X — IR there exists a c-dense set Xo C X such that f [ X, € PWD(Xp).

Brown’s theorem yields to the following result.

Corollary 1 If X is a complete metric dense in itself space, then for every
f: X — IR there exists a c-dense set Xg C X such that f|Xg is cliquish.

Following Brown, in this note we improve his result in the class of separable
metric spaces by showing that for every f: X — R there exists a c-dense set
Xo C X such that f[ Xy € QC*(Xop).

Suppose that M is a subset of a metric space X and « is a cardinal number.
We say that M is a k-Lusin set if M has no nowhere dense subsets of cardinality
k. Usually, wi-Lusin sets and 2¥-Lusin sets are called Lusin sets and c-Lusin
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sets, respectively. It is well known that each Lusin set is of the second category.
(See e.g., [7] or [5].) Every Lusin set is also ¢-Lusin. Moreover, if Continuum
Hypothesis (CH) holds, then every ¢-Lusin set is also a Lusin set. However, it
is consistent that these notions are not equivalent. Indeed, e.g., under Martin’s
Axiom (MA) and the failure of CH there are ¢-Lusins sets on R which are not
Lusin [5]. Then, for each cardinal x < 2% with cf(k) > w there are k-Lusin
sets in R which are not Lusin. (Indeed, under MA every set of reals with
cardinality less than 2 is meager [8], so it is enough to take a subset Lo of L
with card (Lg) = k.)
Moreover, recall some topological notions, which were introduced in [2].

e M is of a first k-type iff M is the union of a first category set and a
k-Lusin set;

e M is of a second k-type if M is not of a first k-type;

e if G is an open subset of X, then the statement that M is k-typically
dense in G means that if T is a non-empty open subset of G, then TN M
is of a second k-type;

o M is k-typically dense at a point o € X iff M NU is of a second k-type
for every neighborhood U of xy.

o M is k-typically dense in itselfiff M is s-typically dense at every z € M.*

Lemma 1 Assume that k is a cardinal number with uncountable cofinality.
Then the family of all sets of a first k-type forms a o-ideal. O

Lemma 2 Assume that k is a cardinal number such that w < cf(k) < k < 2%,
X is a separable metric space which is k-typically dense in itself, N C X 1is
k-typically dense in X and f: X — IR. Then there exists a k-typically dense
in X set Ng C N which satisfies the following condition:

(*) for every open set W C IR the set No N f~1 (W) is k-typically dense in
itself.

PROOF. Let (B,),—; and (R,),>, be countable bases of X and IR, respec-
tively. For each positive integers n and k put D, = N N B, N f~1(Ry). Let
D be the union of such D,, ; that are of a first k-type. By Lemma 1, D is also
of a first k-type. Set Ny = N \ D. Then Ny is k-typically dense in X and it
satisfies the condition (). g

INote that the empty set is always x-typically dense in itself.
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Lemma 3 Assume that a < b, k is a cardinal number with w < cf(k) < k <
2¥ f is a real valued function a domain of which is a k-typically dense subset
M of an open subset G of a separable metric space X and f(x) € (a,b) for
each x € M. Then there is a subset N of M such that N satisfies the condition
(x) (therefore N is k-typically dense in G) and f[|N is continuous at some
element of N.

PROOF. In the same way as in the proof of Lemma 8 in [2] we can prove that
there exists a subset N of M such that N is x-typically dense in G and f [N
is continuous at some zg € N. By Lemma 2 we may assume that N satisfies
the condition (x). g

Lemma 4 [2, Lemma 1] Assume that ® is a property and every open subset
of a metric space X has an open subset with property ®. Then there exists a
collection G of pairwise disjoint open subsets of X such that |JG is dense in
X and every set in G has property .

Theorem 3 Assume that k is a cardinal number such that w < cf(k) < k <
2% and X is a separable metric space which is k-typically dense in itself. Then
for every function f: X — IR there exists a k-dense subset W of X such that
fIW is super quasi-continuous. Therefore, f|W is quasi-continuous.

PROOF. Let R be a countable base of IR. By Lemma 4, there exists a family Gy
of pairwise disjoint open subsets of X such that | JG; is dense in X and for each
G € Gy there is an Rg € R such that diam (Rg) < 1 and Mg = f~Y(Rg)NG
is k-typically dense in G. Now we define inductively an infinite sequence of
steps such that each step involves four stages:

Step A1l. Let G be the collection described above and for each G € Gy let
Rqa and Mg be as described above.

Step B1. For each G € Gy, let Ng be a subset of Mg described in Lemma, 3,
which satisfies the condition (x) from Lemma 2 and let z¢ € NgﬁC'f 'Ng

Step C1. For G € Gy, let Hg be a nowhere dense subset of Ng such that
xq € Hg, card (Hg) > k and let Kg be a collection of open balls such
that
(i) diam (B) < 1 for each B € Kg;

(ii) sets in K are pointwise disjoint;
(iii) UK¢ € G\ Hg and |J K is dense in Gj



810 A. KATAFIASZ AND T. NATKANIEC

(iv) for each B € Kg there exists R € R such that Rg C Rg,
diam (Rp) < % and the set BN Ng N f~*(Rp) is r-typically dense
in B;

(v) for every x € Hg and for each open neighborhood W C X x R of
(x, f(x)) there exists a B € K¢ such that B x Rg C W.

The construction of K. Let U be a countable base of X and let
(Un, X Rp)n be a sequence of all products U x R where U € U, R€ R
and (f[Hg) N (U x R) # (. Inductively choose a ball B,, such that
cl(Bn) C U\ (cl(Hg) UU, e € (Bm)) and f~'(R,) N B, N Ng is k-
typically dense in B,,. (It is possible because Ng N f~1(R,,) is non-empty
and, by (%), k-typically dense in itself, and U, \ (cl (Hg)UU,),,, ¢l (Bm))
is an open neighborhood of some x € Ng N f~1(R,,).)

Let K'¢ = {B,: n € N} and Rgp = R, for B = B,,. Then the con-
ditions (i)—(iv) are evident except the statement |JK'¢ is dense in G.
By Lemma 4 this family can be extended to a family K what satisfies
statements (i)—(iv). Now we shall verify (v). Fix « € Hg and an open
set W C X x R such that (z, f(z)) € W. Then there exists n € IN such
that (z, f(z)) € U, X R, CW. Thus B,, X R,, C W. O

Step D1. For G € G; and for each B € Kg, put Mg = Ne N BN f~Y(Rp).
Now, for each n > 1, steps An, Bn, Cn and Dn are defined as follows:

Step An. Let G, =J{K¢: G€G1}.

Step Bn. The same as step B1, except “G,,” replaces “G,”.

Step Cn. The same as step C1, except “G,” replaces “G;” and“
“177.

17 replaces

Step Dn. The same as step D1, except “G,” replaces “G;”.

Now, set W = ;2 Ugeg, He and C = {zg: G € Up_; Gn}. As in [2]
we can observe that W is k-dense in X and C is dense in X. Indeed, for zy € X
and € > 0 let n be a positive integer such that % < §. Since [JG, is dense
in X, there exists G € G,, such that G N B(zo, L) # (. Since diam (G) < 1,
G C B(zg,¢) and Hg is a subset of WNB(xg, €) with card(Hg) > k. Moreover,
xg € CN B(xg,€).

Now, suppose that z € C. There exist n € IN and G € G, such that
x =2xg. Then WNG C Ng NG and f|Ng is continuous at x¢g, so f[W is
continuous at z.
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To verify that f[C is dense in f|W, fix xg € W and € > 0. There exists
n € IN and G € G, such that zy € Hg. By the statement (v) of Step Cn,
there is B € Kg such that B C B(xg,¢) and f(Ng) C (f(xo) — ¢, f(xo) + €).
Then g € C N B(xg,¢) and f(zp) € (f(xo) — &, f(x0) + €), which completes
the proof. O

Because any complete metric space which is dense in itself is 2¥-typically
dense in itself [2, Corollary] and cf(2¥) > w, we have the following:

Corollary 2 If X is a separable, complete, dense in itself metric space, then
for every function f: X — IR there exists a c-dense set W C X such that
fIW is super quasi-continuous.

Now we shall consider metric spaces for which Corollary 2 does not hold,
even in a weaker form.

Lemma 5 Assume that cf(k) > w, L C X is a k-Lusin set and f: L — IR is
cliquish. Then the set Dy has cardinality less than k.

PROOF. Recall that Dy = J,—; Dy,,, where Dy, = {z € L: oscf(z) > 1}.
Because every set Dy, is closed in L, so either Dy, is nowhere dense and
card(Dy,) < k or inty,(Dy,) # (. The second case is impossible, because f
is cliquish. Thus card(Dy ) < & for each n, so card (Dy) < k. O

Theorem 4 Let X be a separable metric space. If X is not 2% -typically dense
in itself, then there exists a function f: X — IR such that f[W is cliquish for
no 2¥-dense in X set W.

PROOF. We can assume that every open subset of X has cardinality at
least 2¢.

Let G be a non-empty open subset of X such that G is of first 2“-type.
Then there are: a 2¥-Lusin set L and a family of pairwise disjoint nowhere
dense sets {M;}; such that LN J, M; = 0 and G = LU Y, M;. As in the
proof of Theorem 2 in [2] we consider two cases: if G is of the first category
(or L has cardinality less than 2¢), and if there exists an open subset T of G
such that L is dense in 7. In both those cases we define f in the same way
as in [2]. In the last part of the proof of the second case we use Lemma 5 to
observe that the supposition that f is cliquish implies the continuity of f on
a set of size 2“, which is impossible. (I

Corollary 3 Assume that X is a separable dense in itself metric space. Then
for k = 2% the following conditions are equivalent:
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(1) for each function f: X — IR there exists a k-dense set W C X such that
fIW € QCH(W);

(ii) for each function f: X — IR there exists a k-dense set W C X such that
fIW e PWD(W);

(iii) for each function f: X — IR there exists a k-dense set W C X such that
FIW € QC(W);

(iv) for each function f: X — IR there exists a k-dense set W C X such that
FIW € CLIQ(W);

(v) X is k-typically dense in itself.
Questions.

1. Does there exist a metric space X and a cardinal k for which the condi-
tions (i)—(iv) are not equivalent?

2. Assume that X is a separable dense in itself metric space. Are the
conditions (i)—(v) equivalent for x € (w,2%)?

Obviously, if CH is true then the notions of typically dense and c-typically
dense are the same. So one can suppose that if X is k-typically dense in itself
for some uncountable cardinal x then X is c-typically dense in itself. The next
proposition shows that this hypothesis is not true.

Proposition 1 Assume that MA is true and CH fails. Then there exists
a subspace X C IR that is k-typically dense in itself for each vk < 2“ with
cf(k) > w, but not 2¥-typically dense.

PROOF. Let X be a c-Lusin set that is c-dense in R. (See, e.g., [5].) Then X
is not 2“-typically dense. We shall verify that it is k-typically dense for a fixed
Kk < 2¥ with uncountable cofinality. Suppose that there exists a non-empty
open in X set G that is a first x-type set in X. So, in X there are a x-Lusin
set L and a meager set A such that G = L U A. Then L is a c-Lusin set
and A is meager in R. Thus card (A) < 2* and consequently, card (L) = 2¢.
Since X is c-dense in itself, every meager in R subset B of L is also meager
in X. Therefore every set B C L with card (B) = k is meager in X (cf., [8]),
contrary to the definition of k-Lusin set. O

Corollary 4 Assuming MA + —-CH and 2 is not the successor of k with
cf(k) = w, there exists a subspace X C IR such that:
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1. for each k < 2% and f: X — IR there exists a k-dense in X set W, such

that f W, € QC*(W,);

2. there is f: X — IR such that f|W € CLIQ(W) for no c-dense in X

set W.
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