Aleksandra Katafiasz, Department of Mathematics, Pedagogical University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland email: wspb04@@cc.uni.torun.pl Tomasz Natkaniec, Department of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland email: mattn@@ksinet.univ.gda.pl

A NEW VARIANT OF BLUMBERG'S THEOREM

Abstract

We prove that for every real function f defined on a separable, complete and dense in itself metric space X there exists a c-dense set $W \subset X$ such that $f \upharpoonright W$ is super quasi-continuous.

Our terminology is standard. We shall consider only real-valued functions defined on topological spaces. No distinction is made between a function and its graph. Symbol card (X) will stand for the cardinality of a set X. The cardinality of \mathbb{R} is denoted by 2^{ω} . For a cardinal number κ we will write $cf(\kappa)$ for the cofinality of κ . For a metric space $X, x \in X$ and $\varepsilon > 0$ we denote by $B(x,\varepsilon)$ the open ball in X centered at x and with the radius ε . The set of all points at which a function $f: X \to \mathbb{R}$ is continuous (discontinuous) will be denoted by $C_f(D_f)$. The class of all continuous functions defined on X will be denoted by C(X).

Recall also the following definitions (X is a topological space):

- $f: X \to \mathbb{R}$ is a pointwise discontinuous (shortly, $f \in PWD(X)$) if the set C_f in dense in X;
- $f: X \to \mathbb{R}$ is cliquish (shortly, $f \in \operatorname{CLIQ}(X)$) if for each $x_0 \in X$, $\varepsilon > 0$ and a neighborhood W of x_0 there is a non-empty open set $W_0 \subset W$ such that $\operatorname{osc} f \upharpoonright W_0 < \varepsilon$;
- $f: X \to \mathbb{R}$ is quasi-continuous (shortly, $f \in QC(X)$) if for each $x_0 \in X$, $\varepsilon > 0$ and a neighborhood W of x_0 there is a non-empty open set $W_0 \subset W$ such that $|f(x_0) - f(x)| < \varepsilon$ for $x \in W_0$;

Key Words: continuous function, quasi-continuous function, super quasi-continuous function, cliquish function, pointwise discontinuous function, κ -Lusin set

Mathematical Reviews subject classification: Primary: 26A15 Secondary: 54C30 Received by the editors June 12, 1996

⁸⁰⁶

• $f: X \to \mathbb{R}$ is super quasi-continuous (shortly, $f \in \mathrm{QC}^*(X)$) if $f \upharpoonright C_f$ is dense in f.

The relationships between those classes are well-known. (See, e.g., [6].) In particular, for a topological space the following inclusions hold:

$$C(X) \longrightarrow QC^{*}(X)$$
 $QC^{*}(X)$ $QC^{*}(X)$ $PWD(X)$ $CLIQ(X)$

Generally, all those inclusions are proper. Nevertheless, for a complete metric space X we have the following relations:

$$C(X) \to QC^*(X) = QC(X) \to CLIQ(X) = PWD(X).$$

In 1922 H. Blumberg proved the following theorem:

Theorem 1 [1] If X is a complete metric space, then for every $f: X \to \mathbb{R}$ there exists a dense set $D \subset X$ such that $f \upharpoonright D \in C(D)$.

This theorem was extended in many directions and by many authors. (See [3] or [4] for the history of this study.) For example, it is known that the set D in Blumberg's construction is countable, and, generally, one cannot increase the size of this set. (See [9].) In 1971 J. Brown proved the following strengthened form of Blumberg's theorem.

Theorem 2 [2] If X is a complete metric dense in itself space, then for every $f: X \to \mathbb{R}$ there exists a c-dense set $X_0 \subset X$ such that $f \upharpoonright X_0 \in \text{PWD}(X_0)$.

Brown's theorem yields to the following result.

Corollary 1 If X is a complete metric dense in itself space, then for every $f: X \to \mathbb{R}$ there exists a c-dense set $X_0 \subset X$ such that $f \upharpoonright X_0$ is cliquish.

Following Brown, in this note we improve his result in the class of separable metric spaces by showing that for every $f: X \to \mathbb{R}$ there exists a c-dense set $X_0 \subset X$ such that $f \upharpoonright X_0 \in \mathrm{QC}^*(X_0)$.

Suppose that M is a subset of a metric space X and κ is a cardinal number. We say that M is a κ -Lusin set if M has no nowhere dense subsets of cardinality κ . Usually, ω_1 -Lusin sets and 2^{ω} -Lusin sets are called Lusin sets and c-Lusin sets, respectively. It is well known that each Lusin set is of the second category. (See e.g., [7] or [5].) Every Lusin set is also *c*-Lusin. Moreover, if Continuum Hypothesis (CH) holds, then every *c*-Lusin set is also a Lusin set. However, it is consistent that these notions are not equivalent. Indeed, e.g., under Martin's Axiom (MA) and the failure of CH there are *c*-Lusins sets on \mathbb{R} which are not Lusin [5]. Then, for each cardinal $\kappa \leq 2^{\omega}$ with $cf(\kappa) > \omega$ there are κ -Lusin sets in \mathbb{R} which are not Lusin. (Indeed, under MA every set of reals with cardinality less than 2^{ω} is meager [8], so it is enough to take a subset L_0 of L with card $(L_0) = \kappa$.)

Moreover, recall some topological notions, which were introduced in [2].

- *M* is of a *first* κ -*type* iff *M* is the union of a first category set and a κ -Lusin set;
- *M* is of a second κ -type if *M* is not of a first κ -type;
- if G is an open subset of X, then the statement that M is κ -typically dense in G means that if T is a non-empty open subset of G, then $T \cap M$ is of a second κ -type;
- *M* is κ -typically dense at a point $x_0 \in X$ iff $M \cap U$ is of a second κ -type for every neighborhood *U* of x_0 .
- M is κ -typically dense in itself iff M is κ -typically dense at every $x \in M$.¹

Lemma 1 Assume that κ is a cardinal number with uncountable cofinality. Then the family of all sets of a first κ -type forms a σ -ideal.

Lemma 2 Assume that κ is a cardinal number such that $\omega < \operatorname{cf}(\kappa) \le \kappa \le 2^{\omega}$, X is a separable metric space which is κ -typically dense in itself, $N \subset X$ is κ -typically dense in X and $f: X \to \operatorname{IR}$. Then there exists a κ -typically dense in X set $N_0 \subset N$ which satisfies the following condition:

(*) for every open set $W \subset \mathbb{R}$ the set $N_0 \cap f^{-1}(W)$ is κ -typically dense in itself.

PROOF. Let $(B_n)_{n=1}^{\infty}$ and $(R_n)_{n=1}^{\infty}$ be countable bases of X and \mathbb{R} , respectively. For each positive integers n and k put $D_{n,k} = N \cap B_n \cap f^{-1}(R_k)$. Let D be the union of such $D_{n,k}$ that are of a first κ -type. By Lemma 1, D is also of a first κ -type. Set $N_0 = N \setminus D$. Then N_0 is κ -typically dense in X and it satisfies the condition (*).

¹Note that the empty set is always κ -typically dense in itself.

Lemma 3 Assume that a < b, κ is a cardinal number with $\omega < \operatorname{cf}(\kappa) \le \kappa \le 2^{\omega}$, f is a real valued function a domain of which is a κ -typically dense subset M of an open subset G of a separable metric space X and $f(x) \in (a,b)$ for each $x \in M$. Then there is a subset N of M such that N satisfies the condition (*) (therefore N is κ -typically dense in G) and $f \upharpoonright N$ is continuous at some element of N.

PROOF. In the same way as in the proof of Lemma 8 in [2] we can prove that there exists a subset N of M such that N is κ -typically dense in G and $f \upharpoonright N$ is continuous at some $x_0 \in N$. By Lemma 2 we may assume that N satisfies the condition (*).

Lemma 4 [2, Lemma 1] Assume that Φ is a property and every open subset of a metric space X has an open subset with property Φ . Then there exists a collection \mathcal{G} of pairwise disjoint open subsets of X such that $\bigcup \mathcal{G}$ is dense in X and every set in \mathcal{G} has property Φ .

Theorem 3 Assume that κ is a cardinal number such that $\omega < \operatorname{cf}(\kappa) \leq \kappa \leq 2^{\omega}$ and X is a separable metric space which is κ -typically dense in itself. Then for every function $f: X \to \operatorname{IR}$ there exists a κ -dense subset W of X such that $f \upharpoonright W$ is super quasi-continuous. Therefore, $f \upharpoonright W$ is quasi-continuous.

PROOF. Let \mathcal{R} be a countable base of \mathbb{R} . By Lemma 4, there exists a family \mathcal{G}_1 of pairwise disjoint open subsets of X such that $\bigcup \mathcal{G}_1$ is dense in X and for each $G \in \mathcal{G}_1$ there is an $R_G \in \mathcal{R}$ such that diam $(R_G) < 1$ and $M_G = f^{-1}(R_G) \cap G$ is κ -typically dense in G. Now we define inductively an infinite sequence of steps such that each step involves four stages:

- **Step A1.** Let \mathcal{G}_1 be the collection described above and for each $G \in \mathcal{G}_1$ let R_G and M_G be as described above.
- **Step B1.** For each $G \in \mathcal{G}_1$, let N_G be a subset of M_G described in Lemma 3, which satisfies the condition (*) from Lemma 2 and let $x_G \in N_G \cap C_{f \upharpoonright N_G}$.
- **Step C1.** For $G \in \mathcal{G}_1$, let H_G be a nowhere dense subset of N_G such that $x_G \in H_G$, card $(H_G) \geq \kappa$ and let \mathcal{K}_G be a collection of open balls such that

(i) diam (B) < 1 for each $B \in \mathcal{K}_G$;

- (ii) sets in \mathcal{K}_G are pointwise disjoint;
- (iii) $\bigcup \mathcal{K}_G \subset G \setminus H_G$ and $\bigcup \mathcal{K}_G$ is dense in G;

- (iv) for each $B \in \mathcal{K}_G$ there exists $R_B \in \mathcal{R}$ such that $R_B \subset R_G$, diam $(R_B) < \frac{1}{2}$ and the set $B \cap N_G \cap f^{-1}(R_B)$ is κ -typically dense in B;
- (v) for every $x \in H_G$ and for each open neighborhood $W \subset X \times \mathbb{R}$ of (x, f(x)) there exists a $B \in \mathcal{K}_G$ such that $B \times R_B \subset W$.

The construction of \mathcal{K}_G . Let \mathcal{U} be a countable base of X and let $(U_n \times R_n)_n$ be a sequence of all products $U \times R$ where $U \in \mathcal{U}, R \in \mathcal{R}$ and $(f \upharpoonright H_G) \cap (U \times R) \neq \emptyset$. Inductively choose a ball B_n such that $\operatorname{cl}(B_n) \subset U_n \setminus (\operatorname{cl}(H_G) \cup \bigcup_{m < n} \operatorname{cl}(B_m))$ and $f^{-1}(R_n) \cap B_n \cap N_G$ is κ -typically dense in B_n . (It is possible because $N_G \cap f^{-1}(R_n)$ is non-empty and, by $(*), \kappa$ -typically dense in itself, and $U_n \setminus (\operatorname{cl}(H_G) \cup \bigcup_{m < n} \operatorname{cl}(B_m))$ is an open neighborhood of some $x \in N_G \cap f^{-1}(R_n)$.)

Let $\mathcal{K}'_G = \{B_n : n \in \mathbb{N}\}$ and $R_B = R_n$ for $B = B_n$. Then the conditions (i)–(iv) are evident except the statement $\bigcup \mathcal{K}'_G$ is dense in G. By Lemma 4 this family can be extended to a family \mathcal{K}_G what satisfies statements (i)–(iv). Now we shall verify (v). Fix $x \in H_G$ and an open set $W \subset X \times \mathbb{R}$ such that $(x, f(x)) \in W$. Then there exists $n \in \mathbb{N}$ such that $(x, f(x)) \in U_n \times R_n \subset W$. Thus $B_n \times R_n \subset W$.

Step D1. For $G \in \mathcal{G}_1$ and for each $B \in \mathcal{K}_G$, put $M_B = N_G \cap B \cap f^{-1}(R_B)$.

Now, for each n > 1, steps An, Bn, Cn and Dn are defined as follows:

Step An. Let $\mathcal{G}_n = \bigcup \{ \mathcal{K}_G : G \in \mathcal{G}_{n-1} \}.$

- **Step Bn.** The same as step B1, except " \mathcal{G}_n " replaces " \mathcal{G}_1 ".
- **Step Cn.** The same as step C1, except " \mathcal{G}_n " replaces " \mathcal{G}_1 " and " $\frac{1}{n}$ " replaces "1".

Step Dn. The same as step D1, except " \mathcal{G}_n " replaces " \mathcal{G}_1 ".

Now, set $W = \bigcup_{n=1}^{\infty} \bigcup_{G \in \mathcal{G}_n} H_G$ and $C = \{x_G \colon G \in \bigcup_{n=1}^{\infty} \mathcal{G}_n\}$. As in [2] we can observe that W is κ -dense in X and C is dense in X. Indeed, for $x_0 \in X$ and $\varepsilon > 0$ let n be a positive integer such that $\frac{1}{n} < \frac{\varepsilon}{3}$. Since $\bigcup \mathcal{G}_n$ is dense in X, there exists $G \in \mathcal{G}_n$ such that $G \cap B(x_0, \frac{1}{n}) \neq \emptyset$. Since diam $(G) < \frac{1}{n}$, $G \subset B(x_0, \varepsilon)$ and H_G is a subset of $W \cap B(x_0, \varepsilon)$ with $\operatorname{card}(H_G) \ge \kappa$. Moreover, $x_G \in C \cap B(x_0, \varepsilon)$.

Now, suppose that $x \in C$. There exist $n \in \mathbb{N}$ and $G \in \mathcal{G}_n$ such that $x = x_G$. Then $W \cap G \subset N_G \cap G$ and $f \upharpoonright N_G$ is continuous at x_G , so $f \upharpoonright W$ is continuous at x.

To verify that $f \upharpoonright C$ is dense in $f \upharpoonright W$, fix $x_0 \in W$ and $\varepsilon > 0$. There exists $n \in \mathbb{N}$ and $G \in \mathcal{G}_n$ such that $x_0 \in H_G$. By the statement (v) of Step Cn, there is $B \in \mathcal{K}_G$ such that $B \subset B(x_0, \varepsilon)$ and $f(N_B) \subset (f(x_0) - \varepsilon, f(x_0) + \varepsilon)$. Then $x_B \in C \cap B(x_0, \varepsilon)$ and $f(x_B) \in (f(x_0) - \varepsilon, f(x_0) + \varepsilon)$, which completes the proof. \Box

Because any complete metric space which is dense in itself is 2^{ω} -typically dense in itself [2, Corollary] and $cf(2^{\omega}) > \omega$, we have the following:

Corollary 2 If X is a separable, complete, dense in itself metric space, then for every function $f: X \to \mathbb{R}$ there exists a c-dense set $W \subset X$ such that $f \upharpoonright W$ is super quasi-continuous.

Now we shall consider metric spaces for which Corollary 2 does not hold, even in a weaker form.

Lemma 5 Assume that $cf(\kappa) > \omega$, $L \subset X$ is a κ -Lusin set and $f: L \to \mathbb{R}$ is cliquish. Then the set D_f has cardinality less than κ .

PROOF. Recall that $D_f = \bigcup_{n=1}^{\infty} D_{f,n}$, where $D_{f,n} = \left\{x \in L: \operatorname{osc} f(x) \geq \frac{1}{n}\right\}$. Because every set $D_{f,n}$ is closed in L, so either $D_{f,n}$ is nowhere dense and $\operatorname{card}(D_{f,n}) < \kappa$ or $\operatorname{int}_L(D_{f,n}) \neq \emptyset$. The second case is impossible, because f is cliquish. Thus $\operatorname{card}(D_{f,n}) < \kappa$ for each n, so $\operatorname{card}(D_f) < \kappa$. \Box

Theorem 4 Let X be a separable metric space. If X is not 2^{ω} -typically dense in itself, then there exists a function $f: X \to \mathbb{R}$ such that $f \upharpoonright W$ is cliquish for no 2^{ω} -dense in X set W.

PROOF. We can assume that every open subset of X has cardinality at least 2^{ω} .

Let G be a non-empty open subset of X such that G is of first 2^{ω} -type. Then there are: a 2^{ω} -Lusin set L and a family of pairwise disjoint nowhere dense sets $\{M_i\}_i$ such that $L \cap \bigcup_i M_i = \emptyset$ and $G = L \cup \bigcup_i M_i$. As in the proof of Theorem 2 in [2] we consider two cases: if G is of the first category (or L has cardinality less than 2^{ω}), and if there exists an open subset T of G such that L is dense in T. In both those cases we define f in the same way as in [2]. In the last part of the proof of the second case we use Lemma 5 to observe that the supposition that f is cliquish implies the continuity of f on a set of size 2^{ω} , which is impossible. \Box

Corollary 3 Assume that X is a separable dense in itself metric space. Then for $\kappa = 2^{\omega}$ the following conditions are equivalent:

- (i) for each function $f: X \to \mathbb{R}$ there exists a κ -dense set $W \subset X$ such that $f \upharpoonright W \in \mathrm{QC}^*(W);$
- (ii) for each function $f: X \to \mathbb{R}$ there exists a κ -dense set $W \subset X$ such that $f \upharpoonright W \in \mathrm{PWD}(W)$;
- (iii) for each function $f: X \to \mathbb{R}$ there exists a κ -dense set $W \subset X$ such that $f \upharpoonright W \in QC(W);$
- (iv) for each function $f: X \to \mathbb{R}$ there exists a κ -dense set $W \subset X$ such that $f \upharpoonright W \in \mathrm{CLIQ}(W);$
- (v) X is κ -typically dense in itself.

Questions.

- 1. Does there exist a metric space X and a cardinal κ for which the conditions (i)—(iv) are not equivalent?
- 2. Assume that X is a separable dense in itself metric space. Are the conditions (i)—(v) equivalent for $\kappa \in (\omega, 2^{\omega})$?

Obviously, if CH is true then the notions of typically dense and c-typically dense are the same. So one can suppose that if X is κ -typically dense in itself for some uncountable cardinal κ then X is c-typically dense in itself. The next proposition shows that this hypothesis is not true.

Proposition 1 Assume that MA is true and CH fails. Then there exists a subspace $X \subset \mathbb{R}$ that is κ -typically dense in itself for each $\kappa < 2^{\omega}$ with $\operatorname{cf}(\kappa) > \omega$, but not 2^{ω} -typically dense.

PROOF. Let X be a c-Lusin set that is c-dense in \mathbb{R} . (See, e.g., [5].) Then X is not 2^{ω} -typically dense. We shall verify that it is κ -typically dense for a fixed $\kappa < 2^{\omega}$ with uncountable cofinality. Suppose that there exists a non-empty open in X set G that is a first κ -type set in X. So, in X there are a κ -Lusin set L and a meager set A such that $G = L \cup A$. Then L is a c-Lusin set and A is meager in \mathbb{R} . Thus card $(A) < 2^{\omega}$ and consequently, card $(L) = 2^{\omega}$. Since X is c-dense in itself, every meager in \mathbb{R} subset B of L is also meager in X. Therefore every set $B \subset L$ with card $(B) = \kappa$ is meager in X (cf., [8]), contrary to the definition of κ -Lusin set.

Corollary 4 Assuming MA + \neg CH and 2^{ω} is not the successor of κ with $cf(\kappa) = \omega$, there exists a subspace $X \subset \mathbb{R}$ such that:

- 1. for each $\kappa < 2^{\omega}$ and $f: X \to \mathbb{R}$ there exists a κ -dense in X set W_{κ} such that $f \upharpoonright W_{\kappa} \in \mathrm{QC}^*(W_{\kappa});$
- 2. there is $f: X \to \mathbb{R}$ such that $f \upharpoonright W \in \mathrm{CLIQ}(W)$ for no c-dense in X set W.

References

- H. Blumberg, New properties of all real functions, Trans. Amer. Math. Soc., 24 (1922), 113–128.
- [2] J. B. Brown, Metric spaces in which a strengthened form of Blumberg's theorem holds, Fund. Math., 71 (1971), 244–253.
- [3] J. B. Brown, Variations on Blumberg's theorem Real Anal. Exchange 9 (1983–84), 123–137.
- [4] J. B. Brown, *Restriction Theorems in Real Analysis*, Real Anal. Exchange 20 (1994–95), 510–526.
- [5] A. W. Miller, Special subsets of the real line, in Handbook of Set-Theoretic Topology, edited by K. Kunen and J. E. Vaughan, North-Holland (1984), 201–233.
- [6] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988–89), 259– 307.
- [7] J.C. Oxtoby, Measure and Category, New York-Heidelberg-Berlin, 1971.
- [8] J. Shoenfield, Martin's axiom, Amer. Math. Monthly 82 (1975), 610–617.
- [9] W. Sierpiński and A. Zygmund, Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math., 4 (1923), 316–318.