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UPPER AND LOWER HENSTOCK
INTEGRALS

Abstract

The Riemann integral can be defined in terms of upper and lower
Riemann sums. In this paper, we show how the Henstock integral can
also be defined in a similar manner.

A natural generalization of the Riemann integral is the Henstock inte-
gral (see, for example, [2]), which also includes the Lebesgue integral and
the Newton integral. The Henstock integral is also known as the Kurzweil or
Kurzweil-Henstock integral. Since the Riemann integral is defined for bounded
functions only, upper and lower Riemann sums always exist. However this is
no longer the case for the Henstock integral, since Henstock integrable func-
tions are not necessarily bounded. The essential idea in the definition of the
Henstock integral is that when forming Riemann sums we do not use all the
points in each interval of a partition as it is done in the Riemann integral,
rather we use only certain designated points in the interval. This is done by
introducing a positive function δ(x), and using only those points ξ in [u, v] for
which [u, v] ⊂ (ξ−δ(ξ), ξ+δ(ξ)). Keeping to such ξ, a kind of upper and lower
sums can now be define. In this paper, we identify the designated points di-
rectly by introducing a contraction of intervals into their subsets, which serves
the same purpose as the positive function δ(ξ) in the Henstock integral, and
thus define corresponding upper and lower sums and in turn the upper and
lower Henstock integrals. When the two integrals are equal, we obtain the
Henstock integral.

We recall that given δ(ξ) > 0, a partition D of [0, 1] given by

x0 = 0 < x1 < · · · < xn = 1, ξ1, ξ2, · · · , ξn,
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is said to be δ-fine if ξi ∈ [xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for i = 1, 2, · · · , n.
Then a function f is Henstock integrable to A on [0, 1] if for every ε > 0 there
is δ(ξ) > 0 such that for every δ-fine partition D of [0, 1] we have∣∣∣∣∣

n∑
i=1

f(ξi)(xi − xi−1)−A

∣∣∣∣∣ < ε.

For convenience, we write D = {([u, v], ξ)} where [u, v] denotes a typical in-
terval in D and ξ ∈ [u, v]. Then for brevity we write the above inequality
as ∣∣∣(D)

∑
f(ξ)(v − u)−A

∣∣∣ < ε.

A set-valued function ν defined on the set of all nondegenerate closed
subintervals of [0, 1] is called a contraction on [0, 1] if it maps a nondegenerate
closed interval I ⊆ [0, 1] to a subset ν(I) of [0, 1], possibly empty, such that
the following conditions are satisfied:

(1) ν(I) ⊆ I for each interval I ⊆ [0, 1],

(2) I1 ⊆ I2 implies ν(I2) ∩ I1 ⊆ ν(I1),

(3)
⋃

I⊆[0,1]

(ν(I) ∩ Io) = [0, 1], where Io denotes the interior of I, except when

I = [0, a] or [b, 1], then Io means [0, a) or (b, 1] respectively.

A trivial example is when ν(I) = I. However, very often, ν(I) is a proper
subset of I.

Lemma 1. Let ν1 and ν2 be two contractions on [0, 1]. Then ν(I) = ν1(I) ∩
ν2(I), for all intervals I ⊆ [0, 1], is also a contraction on [0, 1].

Proof. Conditions (1) and (2) in the definition are clearly true for ν. Now we
prove only (3). Consider any two intervals I and J inside [0, 1]. Since ν1(I) ⊆ I
and ν2(J) ⊆ J , we have ν1(I) ∩ ν2(J) = (ν1(I) ∩ I ∩ J) ∩ (ν2(J) ∩ I ∩ J) ⊆
ν1(I ∩ J) ∩ ν2(I ∩ J) = ν(I ∩ J). This implies that

(ν1(I) ∩ Io) ∩ (ν2(J) ∩ Jo) ⊆ ν(I ∩ J) ∩ (I ∩ J)o.

Then

[0, 1] =

 ⋃
I⊆[0,1]

ν1(I) ∩ Io
⋂ ⋃

J⊆[0,1]

ν2(J) ∩ Jo
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=
⋃

I,J⊆[0,1]

(ν1(I) ∩ ν2(J) ∩ Io ∩ Jo)

⊆
⋃

I,J⊆[0,1]

(ν(I ∩ J) ∩ (I ∩ J)o)

=
⋃

I⊆[0,1]

(ν(I) ∩ Io) .

For any two contractions ν1 and ν2, we write ν1 ≤ ν2 if ν2(I) ⊆ ν1(I) for all
intervals I ⊆ [0, 1]. In view of the above lemma, the family of all contractions
is a directed set with respect to the order ≤ and hence we may define the
Moore-Smith limit using this directed set. For Moore-Smith or generalized
limit, see [1].

A partition D of [0, 1] is said to be ν-fine if ν([u, v]) is nonempty for every
[u, v] in D. Let ν be a contraction on [0, 1]. We define the following sums if
they exist.

Sl(D, f) = (D)
∑

inf
η∈ν([u,v])

f(η) (v − u), Sl(ν, f) = inf
D
Sl(D, f).

where Sl(D, f) corresponds to the lower Riemann sum of f except that the
infimum is now taken over ν([u, v]) and not the whole interval [u, v], and the
infimum in Sl(ν, f) is taken over all ν-fine partitions D of [0,1]. Note that
Sl(D, f) has a meaning only when f is bounded on ν([u, v]). Similarly, we
define

Su(D, f) = (D)
∑

sup
η∈ν([u,v])

f(η) (v − u), Su(ν, f) = sup
D
Su(D, f).

In fact, Sl(ν, f) and Su(ν, f) can also be obtained in one step as follows:

Sl(ν, f) = inf
D

(D)
∑

f(ξ)(v − u) and Su(ν, f) = sup
D

(D)
∑

f(ξ)(v − u),

where the infimum and supremum are taken over all ν-fine partitions D of
[0, 1] with ξ ∈ ν([u, v]) for all [u, v] in D.

Theorem 2. If a function f is Henstock integrable to A on [0, 1], then there
is a contraction ν on [0, 1] such that f is bounded on ν(I) for each I ⊆ [0, 1],
and furthermore Sl(ν, f) and Su(ν, f) exist.

Proof. Let ε = 1 and δ(ξ) > 0 be given as in the definition of the Henstock
integral, and F the Henstock primitive (or Henstock indefinite integral) of f on
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[0, 1]. For any interval I ⊆ [0, 1], define νδ(I) = {x ∈ I|I ⊆ (x−δ(x), x+δ(x))}.
Then νδ is a contraction on [0, 1]. It follows from Henstock’s lemma [2] that
if νδ([u, v]) 6= ∅, then |f(ξ)(v − u) − F (v) + F (u)| ≤ 1 for ξ ∈ νδ([u, v]).
Consequently,

|f(ξ)| ≤ 1 + |F (v)− F (u)|
|v − u|

for ξ ∈ νδ([u, v]).

That is, f is bounded on νδ([u, v]) when νδ([u, v]) 6= ∅. The case when
νδ([u, v]) = ∅ is trivial. Also, for any ν-fine partition D of [0, 1] and any
ξ ∈ [u, v] we have |(D)

∑
f(ξ)(v − u)| ≤ |F (1) − F (0)| + 1. In other words,

Sl(ν, f) and Su(ν, f) exist.

The above theorem provides the necessary motivation. The upper and
lower Henstock integrals can now be defined by

(H)

∫
f = sup

ν≥ν0
Sl(ν, f) and (H)

∫
f = inf

ν≥ν0
Su(ν, f),

where ν0 is any contraction on [0, 1] so that Sl(ν0, f) or Su(ν0, f) exists in
each respective case.

Note that the definitions above are independent of the choice of ν0. In
fact, (H)

∫
f is the Moore-Smith limit of Sl(ν, f) with ν running through the

directed set of contractions that are greater than some ν0 for which Sl(ν0, f)

exists. Similarly, (H)
∫
f is the Moore-Smith limit of Su(ν, f) over ν.

Now we prove the main theorem of this paper.

Theorem 3. The following conditions are equivalent for a function f on [0, 1].

(1) f is Henstock integrable to A on [0, 1].

(2) For any ε > 0 there is a contraction ν on [0, 1] such that for any ν-
fine partition D of [0, 1], we have |(D)

∑
f(ξ)(v − u) − A| < ε, where

ξ ∈ ν([u, v]) for all [u, v] ∈ D.

(3) For any ε > 0 there is a contraction ν on [0, 1], such that for any ν-fine
partitions D1 and D2 of [0, 1], we have

|(D1)
∑

f(ξ)(v − u)− (D2)
∑

f(ξ)(v − u)| < ε.

(4) The upper and lower Henstock integrals exist and are both equal to A.
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(5) Let

σ(ν) = sup
D
|(D)

∑
f(ξ)(v − u)−A|,

where the supremum is taken over all ν-fine partitions D of [0, 1]. Then
the Moore-Smith limit of σ(ν) over the directed set of all contractions on
[0, 1] is 0.

Proof. Suppose (1) holds. Let ε and δ(ξ) > 0 be given as in the definition of
the Henstock integral. Define νδ as in the proof of Theorem 2. Then it follows
from the definition of the Henstock integral that for any νδ-fine partition D

of [0, 1] we have |(D)
∑

f(ξ)(v − u)−A| < ε. Hence (1) implies (2).

The fact that (2) implies (3) is straightforward. Next, suppose (3) holds.
Then for any ν-fine partitions D1 and D2 of [0, 1], we have

|Su(D1, f)− Sl(D2, f)| ≤ ε.

Taking all possible ν-fine partitions D1 and D2 of [0, 1], we have

0 ≤ Su(ν, f)− Sl(ν, f) ≤ ε.

Note that if ν1 ≤ ν2, then Sl(ν1, f) ≤ Sl(ν2, f) ≤ Su(ν2, f) ≤ Su(ν1, f).
Finally, we obtain

0 ≤ inf
ν≥ν0

Su(ν, f)− sup
ν≥ν0

Sl(ν, f) ≤ Su(ν, f)− Sl(ν, f) ≤ ε.

That is, (3) implies (4).
Now suppose (4) holds. Then for any contraction ν on [0, 1]

σ(ν) = max{|Su(ν, f)−A|, |Sl(ν, f)−A|}.

Using the fact that the upper and lower Henstock integrals are the Moore-
Smith limits of Su(ν, f) and Sl(ν, f) respectively, we obtain that (4) implies
(5).

Finally, suppose (5) holds. Then for every ε > 0 there is a contraction ν
on [0, 1] such that σ(ν) < ε. For any ξ ∈ [0, 1], in view of condition (3) in the
definition of ν we can find a closed interval I such that ξ ∈ ν(I) ∩ Io. Then
we define δ(ξ) > 0 such that (ξ− δ(ξ), ξ+ δ(ξ)) ⊆ I. Then any δ-fine partition
D of [0, 1] is also ν-fine, and we have

|(D)
∑

f(ξ)(v − u)−A| ≤ σ(ν) < ε.

As we can see in the proof of Theorem 3, the correspondence between δ(ξ)
and ν need not be one-to-one. Also, we see that each of (2) to (5) in Theorem
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3 provides an alternative definition to the Henstock integral. In particular,
condition (2) and the integral value is uniquely determined in view of Lemma
1. We remark that if we relax the conditions of a contraction to the following:

(1′) I1 ⊆ I2 implies ν(I2) ⊆ ν(I1), and

(2′)
⋃

I⊆[0,1]

(ν(I) ∩ Io) = [0, 1],

then each of the corresponding results in Theorem 3 is equivalent to the Mc-
Shane integral [2, p. 108].

Next, we give a condition on ν such that the Henstock integral reduces to
the Riemann integral. A contraction ν on [0, 1] is said to be locally open if for
any point x ∈ [0, 1], there is a closed interval I, such that x ∈ (ν(I))o.

Theorem 4. A function f is Riemann integrable on [0, 1] if and only if, for
each ε > 0, there is a locally open contraction ν on [0, 1] such that f is bounded
on ν(I) for each closed interval I, and |Su(ν, f)− Sl(ν, f)| < ε.

Proof If f is Riemann integrable on [0, 1], then for any ε > 0 there is a
constant δ > 0, such that for any δ-fine partition D of [0, 1],

|(D)
∑

sup
x∈[u,v]

f(x)(v − u)− (D)
∑

inf
y∈[u,v]

f(y)(v − u)| < ε.

Let νδ be the contraction on [0, 1] generated by δ(ξ) as in the proof of
Theorem 2. Then by the construction of ν we see that νδ is locally open, and
|Su(νδ, f)− Sl(νδ, f)| ≤ ε.

Conversely, suppose f satisfies the condition. Then, for any ε > 0, we can
show that for each point x there is an interval Ix with x ∈ Iox and ν(Ix) = Ix.
Now {Iox|x ∈ [0, 1]} is an open cover of [0, 1]. So there is a partition D =
{([u, v], x)} of [0, 1] such that each [u, v] is contained in Ix. Hence ν([u, v]) =
[u, v], and so D is a ν-fine partition. Since f is bounded on each interval
[u, v], it is a bounded function on [0,1]. From the assumption on ν, it follows
that |Su(D, f) − Sl(D, f)| < ε. Actually, the sums in the above inequality
are respectively the upper and lower Riemann sums of f with respect to the
partition D. Hence f is Riemann integrable on [0, 1].
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