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EXTENDING DARBOUX FUNCTIONS
WITH FINITE VARIATION

Abstract

In this paper we show that a Darboux function with finite variation,
which is defined on closed, convex and boundary subset of R?, can be
extended to a Darboux function with finite variation, which is defined on
R2. Moreover, the set of all points of continuity and the set of all points
of quasi-continuity for the first function are equal to the corresponding
sets for the extension of this function.

In many papers concerning real functions of a real variable, the problem of
the “variation of the function” plays an important role. Consequently many
mathematicians dealt with the variation of functions defined on more abstract
spaces (see for example, [7]). It is known (see [3]) that if f : [0,1] — R is
a continuous function and Ny denotes a Banach indicatrix of the function f,
then Ny is a measurable function and the variation \/Z( f) of the function f
on the interval [a,b] equals fj;o N¢(y)dy. (T. Salat in [6] proved that this
holds also for Darboux functions.) This allows one to generalize the notion of
variation for functions which are defined and take their values in more general
spaces. Let us first define Banach indicatrix.

Definition 1. We define the Banach indicatriz of a function f: E — R?
(E C R?) to be the function Ny : R? — R such that Ny equals the number
of points of the set f=1(p) when this set is finite, and equals +o0o when it is
infinite.

Definition 2. Let f : E — R?(E C R?) be a function whose Banach indi-
catriz Ny is measurable. Then f is called a function with finite variation if

fR2 Ny¢(p)dp < +o0.
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In [3] properties of Darboux functions with finite variation, mapping R?
into R2, were considered for the first time. These considerations concerned,
among others things, the existence of mappings which are not continuous. In
[4] A. Rychlewicz showed that, in the topological sense, there are a lot of such
functions. He also considered the problem of extending Darboux functions
with finite variation. He proved the following assertion.

Theorem 1. Let K be a closed convex subset of R? which is not a boundary
set. Let f: K — R? be a Darboux function with finite variation. Then, for
each connected and stratiformly locally connected (with respect to K) subspace
X of R?, containing K, there exists a Darbouz function f* : X — R? with
finite variation which is an extension of f on X such that

Qr = Qy+ C Qs+ (K).

In this paper we shall show that we need not assume that K has non-
empty interior. We follow the notation used in, e.g., [1] or [3]. But we take a
”stronger” version of the definition of a Darboux function.

Definition 3. A function f: X =Y (X, Y - topological spaces) is called a
Darbouz function if f(C) is a connected set for each connected set C C X.

(Since the initial functions will be defined on convex boundary sets, our
version of the theorem is stronger than those with the definition from works
[3] and [4]). Let ® denote the set {(z,y) € R? : z € QVy € Q} where Q
denotes the set of rational numbers. Let K (a,¢) stand for the closed ball with
center a and radius €, i.e. K(a,e) = {2z : p(a,z) < ¢} where p denotes the
metric on the plane R2.

Definition 4. We say that a function f : X —'Y (X,Y — metric spaces) is
quasi-continuous at xq if for each neighborhood U of the point x¢ and for each

neighborhood V of the point g(xq), there exists a non-empty open set G C U
such that f(G) C V.

If f: X — R? (where X = R or X = R?), then by Q; (Cf) we denote
the set of all points of quasi-continuity (continuity) of the function f. If %
is an equivalence relation then the abstract class of this relation determined
by an element « is denoted by [a].. As in paper [3] we adopt the following
definitions.

Definition 5. Let X be a set. Let (Y,p) be a metric space, A C X and
f: A—=Y. A function f*: X =Y is called an e-extension of the function
f (e = 0) if f* is an extension of f and for each o € f*(X), there exists
B € f(A) such that p(a, B) < €.
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Definition 6. We say that a non-empty closed set K cuts a topological space
X (between non-empty sets A and B) if X \ K = U UV where U and V are
non-empty open sets such that UNV =0 and ACU,BCV.

If A and B are subsets of some topological space X, then the symbol
int 4(B) denotes the interior of the set B in A being a subspace of X. If
A = X, we simply write int(B). A projection onto the space X is denoted by

Projx-
First, we shall prove some lemmas.

Lemma 1. Let A ¢ R%2. If U C R? is an open set such that U U A is
connected, then (U N®)U A is a connected set.

PROOF.Suppose that (UN®)UA is not connected. Then (UNP)UA =W UT
where W and T are non-empty and separated sets, i.e.

U\®CUCc(UN®) Ccl(W)Uecl(T) (1)

and
TUWUU\®)=UUA. (2)

Therefore, by (1) and (2),
UUA=(TU(U\®) Nc(T)) U U(U\®) Nc(W))).
Moreover, note that
TU(U\®)N(T) A0 and  WU(U\®)N(W))£0.  (3)
Now, it will be shown that
TU(U\®) Nel(T)) and WU ((U\®)Ncl(W)) are separated.  (4)
Indeed, we have

(TU(U\®)Ne(T))N(WU U\ ®)Ncl(W)))
=(cl(T)Necd(W)N U\ @)U (cl((U\ @) Nel(T)) Necl(W)N (U \ ®))
=c(T)Ncd(W)N (U \ P).

Suppose that there exists ¢ € cl(T)Ncl(W)N(U\ ®). Then there exists r > 0
such that K (xg,7) C U. Then

K(zo,r)NT #0 and K(xg,7)NW £ 0. (5)
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Also, K(zg,r)N® C UN® C WUT. Evidently, K(xo,r) N ® is a connected
set, so K(xg,7)N® C W or K(zg,r)N® C T. If K(zg,r) NP C W, then,
by (5), cl(W)NT D> K(zg,r)NT # 0. If K(zg,7) N ® C T, then, by (5),
c(T)NW D K(zg,7) N W # 0, which contradicts the fact that W and T are
separated sets. We have thus proved that cI(T) Ncl(W)N (U \ @) = 0. Hence
A(TU(U\N®)N(T) N (WU U\ ®)Necl(W)) = 0. In a similar way we
can prove that

(TU (U \ @) N el(T))) Nel(W U (U \ @) N el(W))) = 0,

which gives (4). By (3) and (4), this contradicts the connectedness of the set
U U A. Thus we have proved that (U N®) U A is connected.

Corollary 1. If U C R? is an open connected set, then U N ® is connected

Lemma 2. Let F C R be a closed convex set. Let f : F — R? be a Darboux
function with finite variation. Then, for any ¢ > 0, there exists a Darboux
function g : R — R? with finite variation which is an e extension of f such

that Qg = Q5 and Cy = CY.

PROOF.Obviously, F' is a line, a closed half-line, a non-degenerate closed seg-
ment, or a point. If F' = R, we obviously put ¢ = f. Hence, in the remainder of
the proof, we may assume that F' # R. First, we shall consider the case when
F is a closed half-line. Let p denote its endpoint. Assume that F' = (—o0, p]
(if F' = [p, +00), the proof is analogous). Let ¢ > 0. Consider two cases:

1 ¢ Q.

Then in R\ F' we define the equivalence relation x by
rxy<—=zx—yecQ.

Let D denote thetset of abstract classes of the relation x. Then there exists a
onto

bijection h : D ¥ K(f(p),e) N ®. We define g : R — R? by

f(x), ifx e F,
“@:{}mﬂg,ﬁxem\ﬁ

Evidently,
g is an € — extension of f. (6)

Now, we shall show that
g is a Darboux function. (7)

Let C' C R be a connected set. Consider the following cases.
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1) C' C F; then g(C) = {(C) is connected.
2) CCR\F.

2a) C is a point, so is g(C).

2b) C is a non-degenerate segment or a half-line.

Then, for any abstract class [z], € D, [z],NC # 0. Hence g(C) = K(f(p),e)N
® is a connected set.

3) CNF#0 and C\F #0.
Note that, in this case,

g(CNF) and g(C\ F) are non — empty connected

(8)

and non — separated sets.

Since g(C) = g(CNF)Ug(C\ F), we conclude from (8) that g(C') is connected.
This proves (7).

Now, we shall show that @), = Qf.Obviously, Therefore it sufficient to
prove that Q)4 C Q. For the purpose, we shall first show that

p ¢ Qq. (9)
Indeed, since p ¢ Q, there exist 0 < g9 < € and dy > 0 such that
for any non-emptyset U C (p — dg,p] open in Ff(U) ¢ K(f(p),e0). (10)
To prove p ¢ @it is sufficient to show that
for any non-empty set V' C (p — o, p + do), (V) € K(f(p),€).
Let V C (p — dp,p + o) be a non-empty open set. If VN (p — dg,p) # 0,
then g(V N (p — do,p)) ¢ K(f(p),€0) by (10), and so, g(V) & K(f(p),%o)-
If V.0 (p—do,p) =0, then g(V) = K(f(p),e) N ®. If g(V) C K(f(p),e0),
then K (f(p),e) C K(f(p),eo0), but this is obviously impossible. Hence g(V) ¢

K(f(p),e0). We have thus shown p ¢ Q.
It is easily seen that

Q,CFandQ,C Q;U{p}U(R\ F). (11)

Since p ¢ Qq4, by (11), Q4 C Q. Since Q5 C Qq, Qf = Qq.
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Now, we shall show that C; = Cy. Obviously, Cy C C,. Since Cy; C Qg,
we conclude from (11) that Cy C F. The obvious inclusion Cy C Cy U (R\ F)
gives Cy C Cf, which proves Cy = CF.Since Q4 = Q5 and since Cy = Cy, by
(6), and (7)we can infer, in this case, that

g is a Darboux function that is an e-extension of f such that

(12)
Qg =Qf and Cy = Cj.

20]7 € Qf.
Let p, = p+ % for n > 1. Let us also put P; = [p1,+00) and P, = [pn, Pn—1)
for n > 2. In each P, we define the equivalence the relation x by

rxy<—zx—yecqQ.

Let P, denote the set of abstract classes of relation x for n > 1. Then,
onto

for n > 1, there exists a bijection g, : P, — K(f(p), =) N ® such that

gn([pnl+) € K(f(p), z57) N . Then we define g : R — R? by

g(x) _{ ?’I’(Li‘[l‘]*) zif e P,yn=1,2,...,

) ifx € F.

Obviously,
g is an e-extension of f. (13)

We shall show that ¢ is a Darboux function. Let C C R? be a connected set.
Consider the following cases.

1) C C F; then, clearly, g(C) = f(C) is connected.
2) C CR\F.

2a) C is a point, so is g(C).
2b) C'is a non-degenerate segment or a half-line.
Let ng = min{n >1:CN P, # 0}.
2b1) I CNPyy # {Pno}: then g(CNPy,) = gng(Pny) = K(f(p), ;)N®. Hence

9(C) = (K(f(p). 55) N®) UULZ, 11 9(Pa N C) = K(f(p),55) N .

2b2) It CﬁPﬂo = {pno}’ theng(P’ﬂoJrlnC) = gn0+1(Pno+1) = K(f(p)7 ﬁ)ﬁ
®. Hence g(C) = (K(f(p), 7:57) N®) Ugn, ([Pnol) = K(f(p), 7o57) N @

Thus, in the latter two cases, g(C) is a connected set.
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3) CNF#0 and C\F #0.
Notice that

g(CNF) and g(C \ F) are non-empty connected

(14)
and non-separated sets.

Since g(C) = g(CNF)Ug(C\ F), it follows from (14) that g(C) is connected.

This completes the proof that g is Darboux.

Now, we shall show that @), = Qy.Obviously, Qy C Q4. To prove the
inverse inclusion, let us note that Q, C F and Q, C QU {p} U (R\ F). Since
p € Qy, Qg C Qy. This proves Qg = Q7.

We shall now show that C; = Cy. For this purpose, it suffices to prove
that p € Cy <= p € C,. It is obvious that if p ¢ C}, then p ¢ Cy. So, let us
suppose that p € C. le e* > 0. Choose ng > 1 such that = < ¢* and §; > 0
for which f((p — 61,p]) C K(f(p),e*). Set d2 = pp, — and 6 = min(dy, d2).
Then

g((p—3d,p+9)) C K(f(p),e").

Therefore p € C; and Cy; = CY is proved.From The preceding we can infer, in
this case, that

g is a Darboux function that is an e-extension of f such that

(15)
Qg = Qf and Cg = Cf.

By (12) and (15) to complete the proof, it suffices to show that, in cases 1°
and 2°, ¢ has a finite variation. To this end, note that

_J Ni(y) yif ¢ K(f(p),e)N @,
Ng(y){ oo yif € K(f(p),e) N ®.

Hence N,(y) = Ny(y) almost everywhere in R?. Therefore the measurability
of Ny implies that of Ny, and

V)= [ Ny dy:/ Ng(y)dy+/ Ny(y) dy
R R? K(f(p),e)n® R2\ (K (f(p),€)N®)

_ / N,(y)dy = Ny (y) dy
\(K (f(p),e)N®) R2\(K(f(p),e)N®)

< [ Ny = Vi < hoe
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In a similar way one can show that there exists a function g satisfying the
conditions of the assertion in the case when F' is a non-degenerate segment.
It is easy to consider the case when F' is a point.

Now we shall prove the main theorem.

Theorem 2. Let F be a closed convex and boundary subset of R?. Let f :
F — R? be a Darbouz function with finite variation. Then, for any & > 0,
there exists o Darbouz function f* : R? — R? with finite variation which is an
e-extension of f such that Qp« = Qy and Cyr = CY.

ProOF.By Lemma 2, we can consider only the case when F is a line. Let Hfl)

denote a closed half-line which is perpendicular to F', with endpoint k%l) eF.
Let Lgl) be a line containing Hfl). Next, let II™ stand for a closed half-plane
with edge F', which contains Hl(l). For each a € (0, 4+00), denote by A, C II*
the line which is parallel to F' and distant from F' by . Then let us denote
{m}(l)} =A1N Hl(l). Let H”l(l)7 H” gl) stand for two open half- lines lying on
1), with endpoint m}(l) included in Ua>1 A
and let Po(l) denote a closed convex set which is determined by H’ 51), a segment
[m}(l), kgl)] and a half-line with endpoint k;l) included in F', which is on the
same side of L(l) as Hj )

Let P( ) be a closed convex set determined by H; »(1 ), a segment [m;
(1)

the opposite sides of the line Lg

1(1) k(l)}

and a half-line with endpoint &, 1ncluded in F, which is on the same side of
Lgl) as H” 5“. Moreover, let P’ ) denote an open convex angle determined
by H'Y and BV, Put BV = PYnE, FY = PP nF, FY =
Uyef(F“)) K(y,e) and F’(l) = Uyef(Ffl))K(y,e). For each w € (0, +00),
let {m 1)} H(1 N A1y and let Hl(}U) (H1(qi)) denote a closed half-line with
endpoint /" which is parallel to Hi(l) (Hi’(l))7 included in IIT. Moreover,
set Kol = H”( U H; (1) for w € (0,+00). Note that, for each = € Pl’(l),

there exists only one w € (0,400) such that x € KoV Put IC§1) = {Ki,(l)
w € (0,+00)}. In this family we define the equivalence relation o by

KMo Ki)(,l) —w-uweqQ.

Let I@gl) stand for the set of abstract classes of the relation o. Then there
exists a bijection

kP P (7Y oY) ne.
Put Ai” ={4.N Pt(l) ca> 1} for t = 0,1. In each of these families we define
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the equivalence relation ¢ by
(A NP o (Agn N PY) = o/ — o € Q.

Fort=0,1, let A,El) denote the set of abstract classes of the relation ¢. Then
there exist bijections

U :.,Zl(()l %F’(l) Nnoé
and .
D, A g ) g
We define g : -1 Aa — R? by
MK (@)o) itwe WY,

oV ([Ao(@)]s)  ifz e PV N U oy Aa
1
oV ([A1(2))) ﬁxeﬂ A Upsr 4

gi(z) =

where K (z) (A¢(z), t = 0,1) denotes a set from the family ICgl) (A§1)7 t=
0,1), containing x. Now let k?), k;(f) € F denote distinct points having
distance 1 from k‘il) and set k§2) = k%l). Let Hl(z), H2(2), H§2) C II* be
closed half-lines which are perpendicular to F', with endpoints k%z), kéz), k;éQ),
respectively. Note that H2(2) = Hfl). Set {m?’@)} = A% N Ht(Q), t=1,2,3,
n = 1,2. Note that m1(2) = 1(1). Let L§2) denote a line which contains Ht(z)7
t=1,2,3 and let H;" ) ,Hy® c T+ (t =1,2,3) be closed half- lines lying on
the opposite sides of the line L( ) with endpoint mf( )
conditions hold:

such that the following

HY® 0 i my™) .0, B 0 (mimy™) #0
1?0 (my™ my ™) 0, 0 (my®my™) £,
H’(2) Hé’@) are not parallel to F,
Hy® 0 ) cUyoy Aa (t=1,2).

a>1

Then let P, @) (t =1,2,3) denote an open convex angle between the half-lines
Ht’(z) and H;’(Q). Let Pt(2) (t = 1,2) stand for a closed convex set determined by
the half-line H”(2)7 the segments [mf@), k:t(z)], [k‘(z) k:t(i)l] nd [k:t(i)l, mgi)l] and
the half-line Ht3-1) Let P0(2) denote a closed convex set determined by the half-

2(2 2 2
2(2) 1, (2) (2)

line H i( )7 the segment [m and a half-line with endpoint k;”’, included

in F, that does not contain kf). Let P3(2) be a closed convex set determined
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by the half-line Hé’@), the segment [mg(Z), kéz)] and a half-line with endpoint
k§2), included in F, that does not contain kég). Put Ft(z) = Pt(2) NF and
F,(2) -U ) K(y,5) fort=0,1,2,3.

For w € [0,%) and t =1,2,3, let {i”} = H{” N As_,, and let H;S) (H;)
denote a closed half-line which is parallel to H( ) (H”(2))7 with endpoint
mi$? | included in IT+. Set {q;g})} = Ht’EQ) NAs iy, {qt = H,;:fuz) NAsi,
for w € [0,%) and t =1,2,3. For t =1,2,3 and w € (0, 1), let

. (2 2) (2 (2
K = [t ¢ 10 (g%, a0 0 g it
and Kt( = {mg@)}. Observe that, for t = 1,2,3 we have for each = €
P’(Q) N U1< <1 Aa, there exists only one w € [0, i) such that z € Kfu(z). Put

K2 = {Kfu(2 tw € [0,4)} for t = 1,2,3. In each of these families we define
the equivalence relation o by

Ki® o K'Y e — ' € Q.

w’

For t = 1,2,3, let I@t@) denote the set of abstract classes of the relation o.
Then there exist bijections

Bk M (FA P ne

fort =1,2,3. Put .A(ue) = {A, ﬂP,E,e) 1 ¥ <a<oo}fort=0,1,2,3. In each
of these families we define the equivalence relation ¢ by

(A NP o (Aer NPP) = o/ —a” € Q.

Fort =0,1,2,3, let AEQ) denote the set of abstract classes of the relation ©.
Then there exist bijections

gp,(f) : Aﬁz) onte Ft’(2) no

for t = 0,1,2,3. Let ]55(2) (15;(2)) denote an open convex angle included
in Pt’(z), determined by the half-lines H;(Q) and Ht(2) (Hg(Q) and Ht(Q)) for
t=1,2,3. Let us set

AP = An@EPup®), 4% =An@EPup?),

Ay = AN B, A3 = 40 (BP u PP,

AP = A n B, AP = A0 (B u PP,
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In each of the sets A;(2) and A;’(Z) (t = 1,2,3) we define the equivalence
relation x by

zxy <= p(z,y) € Q

where p denotes the metric in R%. For ¢t = 1,2,3, let A;(z) and A;’(z) denote
abstract classes of the relation x. Then, for ¢ = 1,2, 3, there exist bijections

24P ™ A ne and % 4P ™ RPN,

We define g5 : U% Ay — R2 by

<a<l

o7 ([A(@)]o) it € PP NUs ey Aart =0,1,2,3,

VO (Ki(@)]o) ifz € P NUs ey Aart =1,2,3,
92(®) =< &@([2],) ifzeA® t=123,

&P ([2],) if o€ A;® t=1,2,3,

FEP ifz=m® t=1,2,3,

where A:(x) (Ki(x)) denotes a set from the family Aff’ (K,Ez)), containing
x. To define a function g3 : U%<o¢§é A, — R?, let us draw four more

half-lines contained in II* and perpendicular to F. The endpoints of these
half-lines are points lying on F which are the midpoints of the segments
[k?), kgz)] and [kéz), kéz)] or having distance 1 from the ends of the segment
[k?), ng)] and do not belong to this segment. Thus we shall consider the
points ¥, .. k) (where k¥ = kP £ = 1P = £V £ = 1) and
the half-lines H 1(3), R ;3), corresponding to them, and analogously for the
function g,. Following the above construction, we define an infinite family of
functions

gn - U%<a§ﬁ AQ%R2(71:273,...).

Then we define g : IIT — R? by

flz ifx € F,
g(x): gn($)7 ifl‘GU%<a§ﬁAa,n:273,...7
gi1(z) ifz ey Aa-

We shall now prove some facts which will be used in the latter part of the
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proof. We shall first show that

if C' C R? is a connected set such that C'N P,;(E"O) N U Ay #0

1

1
s <a<

ng—1
for some ng > 1 and to € N (for which Pt’(n(’) is defined) and (16)
1
C ¢ Klotmo) f 0, ———
7 K or any w € oo —1) )

then (F;™) U ;™Y n @ c ¢(0).

In order to simplify the notation, let ng = 2, tg = 1 and P = Pl’(2) N
U%<a<1 A,. Then there exists ag € C' N P. It follows that ag € Kllu(f) for
some wy € [0, 1). Note that

) Fuepr) (wiFwe A CNKYD #0),

Indeed, if, for any w # wo and w € [0, 1), C'N K& = (), then there exists

be C\P. Let w' € (wp,%). Then Ki(,Q) NC =0 and Kllu(?) cuts the plane
between ag € C' and b € C, which contradicts the connectedness of C. We

have thus proved ().
So, there exists a1 € C'N K&,(f). Assume that wg < wi. Notice that, for
w € (wo,wr), Ki,(Q) cuts the plane between ag and a1, so C' N Ki(z) # () for

any w € (wp,wy). Therefore, in each abstract class of I@gz), there exists a set
K such that C' N K # (). Consequently, by the definition of g, we obtain

g(CnP)=gK?) = FP R Nne.

Hence (Fd(z) U Fi(2)) N® C ¢g(C), which proves (16). Similarly one can prove
that

if C C R? is a connected set suchthatC' N P;") # ¢

(17)
and C' ¢ K1 for any w € (0,400), then (Fd(l) U Fl’(l)) nNe c g(0).
Now, we shall show that
if C' C R? is a connected set such that C' N Pt(ono) N U Ao #0
%<a< n0171
for some ng > 1 and to € N (for which Pt("‘)) is defined) and (18)

. 1
Cg AN Pt(0 ) for any o € (—,

then F;(") N @ o).
e e = ), then F}) c g(C)
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To simplify the notation, let ng = 2,ty =1 and R = P1(2) OU%<Q<1 A,. There
exists ag € C N R, and then ag € A,, for some ag € (%, 1). Note that

(x) O\ (Aay NP NP UPPurP)n (] Aa 0.

l<a<a

1t cn(P;Pur®)nU. 1 cact Aa # 0, then from (16) it follows that 0o c
g(C), which gives (18) So now, let us assume that

cnePup?)n | Aa=0.

5 <a<1

By (%*), we have [C \ (Agy, N Pl )] N R # 0, hence (CNR)\ Ay, # 0. So,
there exists a; € (CNR)\ Ay, thus a1 € Ay, ﬂPl( ) for some o € (3,1) and
a1 # ap. We can assume that ag < ay. Then g(CNR) = Fl’(2) N ®. From the

above considerations we obtain the inclusion Fl’(z) N® C ¢g(C), which yields
(18). Similarly one can prove that

if C' c R? is a connected set such that C'N Pt(ol) N U Ay £ 0
a>1

for some tg € {0,1} and C ¢ A, N Pt(ol)for any a > 1 (19)
then Iy N ® C ¢(C).
Now, we show that:
if C € R? is a connected set which contains at least two
distinct points, such that C'N A;gn") # () for some ng > 2 and (20)

to > 1 (for which 4" is defined), then F;™Y n® c ¢(C).

For simplicity, let ng = 2. By our assumption, there exists ag € C N A, (2).
Consider the following cases.

19: ¢y € {2,3}.

We give the proof only for the case ty = 2 (the other casebeingsimilar). Notice
that

kxx)  ON[(A2\{aH U (BP0 | A u B n ] 4a)] #0.

l<a<i a>1

Then there are two possible cases.

1): COUP NUscacr Aa) U (B MU o Aa)] # 0.
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Then C NP NUs_pey Ao #0 or CORY AUy A # 0. TN R 0
U%<a<1 A, # 0, then the assumptions of condition (16) hold (for tg = 2, ng =
2), 50 ;¥ n & c (FPUR®)ne c ¢(0). 1NN, <, Aa # 0 then the
assumptions of condition (19) hold (for ¢ty = 0), so Fl’(z) nNe C Fd(l) N® c g(C)
(because F1(2) - Fél)).

2): C NP NUs coer Aa) U (BY MU s Aa)] = 0.

Then from (% * ) we have C'N (A’Q(Q) \ {ao}) # 0. So, there exists a; €

cn (A’2(2) \{ao}). Notice that C’OA’Z(Q) contains some non-degenerate segment.
From the definitions of go and g we have

FP 00 c go(Af?) = g(cn AP c g(O).

Hence, in both cases, Fl’(Q) N® C g(C), which proves (20).
20ty = 1.
A similar analysis to that in case 1° shows that

on (AP \{ahu @ n (J 4n)u@? n 4a)

1<a<l a>1

UEPn | Al #£0

i<ax<1

and, the remainder of the proof is analogously to that of case 1. Condition
(20) has thus been proved.

Now, we shall show that

if C' C R?; is a connected set which contains at least two
distinct points, such that C'N A;’O(no) # () for some ng > 2 and (21)
to > 1 (for which Ay is defined), then F;(™) n® c ¢(C).

)

For simplicity, let ng = 2. By our assumption, there exists ag € C'N A}

Let us consider the following cases.
19: ¢y € {1,2}.
We shall demonstrate the proof only for the case tg = 1 (the other case being
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similar). Let us notice that

(****)C’ﬂ[(A”(2 \ {ao}) U 2)0 U Aq) P(z)ﬂ U Aq)
2<(x<1 2<a<1
BP0 A0 U@ 0 Aa)uAas?] #0.
i<a<1 a>1

Then two cases are possible.

D:on BP0 J 4)uE®n | 4.

l<a<l l<a<1
UEP 0 | A)u B n | Aa)ua® £0.
%<O¢<1 a>1

Then

cnP®n | Aa#borCcnPPn | Aa#Dor
i<ax<1 1<a<l
CnPPn | Aa#0 oCnPP 0| Ao #0or

1<ax<l a>1

cnAa® 0

IfCnp @ n U1<a<1 Ay # 0, then the assumptions of condition (16) hold
(for to =1, ng = 2), so F;¥ nd c (F;P U na c ¢(0).
If C’ﬂP(Q) NUz Loa<t Ay # 0, then the assumptions of condition (18) hold (for
to=1,no=2), soFl’( 'nd cg(O).
IfCnNPp; 2 U1<a<1 A, # 0, then from condition (16) we have Fi(Z) nNd C
(F® UF?)ne cg(C).
Ifcn Pél) N Uas1 Ao # 0, then from condition (19) we get Fl’(Q) NnNe C
Fd(l) Ne c g(0).
If Cn A, 12 # (), then condition (20) gives Fl’(2) Nd C g(0).

2): cm (P AUs cact 4 U (P DU ezt Aa) U (B N Ui ey
(P U1 4) U AL £0.
Then from (xx*x) we have C'N (A’l’@) \ {ao}) # 0. Consequently, there exists
a € CnN (A’l’(z) \{ao}). Notice that C’ﬂA’l’(2) contains some non-degenerate

Ay U

<a<l
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segment. By the definitions of g5 and g,
F?n® c go(A) = g(Cn 4;") c (0.

Hence, in both cases, Fl’(z) N® C g(C), which proves (21).
20 : tO = 3.
Similarly, we could first show that

PP | Al 'n | Aou@PnJ Aa)]#£0

i<a<1 3<a<1 a>1

and, the remainder of the proof is similar to that of case 1°). Condition (21)
has thus been proved. Now, we shall show that

g is a Darboux function. (22)

Let Cy be a connected set. If C; C F or C} is a point, then, clearly, g(Cy) is a
connected set. The set g(C1) is a point (thus a connected set) in the following
cases.

1
C, C Kfv(") for some n,t and w € |0, ———— |,
2n(n —1)

or € ¢ KXY for some w € (0, +00),

n 1 1
or Ci C Ag, ﬂP() forsomentandozG( >
n'n—1

or C;i CA,N Pt(l) for some t and o > 1.

Suppose that g is not a Darboux function. Then there exists a connected set C
such that g(C) = WUT where W and T are non-empty and separated. Clearly,
this does not occur for any cases which we considered for C. For each n € N|
let \{0}, D(()n) (Dgi)_l) denote the intersection of the closed half-plane with
edge L™ (L{Y_)), containing H;™ (H;™)), and the zone Uicacr 4a
(or, for n = 1: {Juoq Aa). For any n > 1 and t € {1,2,... ,3" :5} let
D(n) denote the intersection of a closed zone between the lines L( " and Lf‘i)l

and of the zone U1<a< 1 Aq. Forn =2, put M, = U2 T mp Tt }. Let
M_{n>2.C’ﬂ(U1 Ao \ M,,) # 0} if CNUysn a—(b or

M={n>2: Cﬂ(U1< e Ao\ DL) #0FU{L} i CN U,y Aa # 0.
Observe that M # (). For eachnGM let

D, ={D" :i=1,...,0,} c{D{" :t€{0,1,...,2" = 1}},
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where (¢;)i=1,...1, is a subsequence of the sequence (0,1,...,2" — 1), be a
family of sets such that (C'N Dt(?)) \ {mg_l(n),m?;ll(n)} # (0 (if the points
my ) ,my +11( ") are defined). Note that, for each n € M, D,, # . Let n € M
and i € {1 ln}. Let n # 1 (for n = 1, the proof is similar). Moreover, let
i be a number such that ¢; # 0 and t; # 2™ — 1 (for t; = 0 or t; = 2" — 1, the
proof is similar). Then, from the definition of D,, it follows that

cnB™n | Aa#0 oo cnPMn | Aa#0

loac—Lo lca< s
oo CnPBN | Aa#0 or cna™M#£0
Lca<ts

or CﬂAtTjr)l#@

If Cn P )N U1<a< 1 Ao # (), then, by the assumptions, from (16) w
deduce that Ft’i(") Ne C (Ft(ﬁ)1 u Ft’i(")) Nne c g(0).

If Cn Pt(i") N U%<a<ﬁ Ay # 0, then, by the assumptions, from (18) we
conclude that F’(") Ne c g(0).

fCnpP; (1)1 NUx Loqe Lo Ay # 0, then, by the assumptions, from (16) we infer
that F;™ n® c (F; 1N F%)n® cg(C).

If Cn A;’i(") # (), then, by the assumptions, from (21) we conclude that
Ft’f") Nne cg(0).

IfCn A’t(fi)l # (), then from (20) we deduce that Ft’i(n) Nd C g(0).

Thus we have that the inclusion Ft’i(n) N® C g(C) holds for any n € M and
i € {1,...,1,}. This means that

gFncyu U (F;"™ na) cg(0). (23)
neM i=1
Let £ =U,cum Ui’;l Ft(in). Note that Ft(in) = projF(Dt(?)) for any n € M and
i € {1,...,1,}. Moreover, observe that:
(FNC)UE is a connected set. (24)

Since f is a Darboux function and (FNC)UE C F, from (24) it follows that
F(FNC)UE) is a connected set. Then, also,

In
Z = U U Ft’i(") Uf(FNC) is a connected set. (25)

neM i=1
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Indeed, note that

L
=J UM ur(Frnoyue),

neM i=1

because f(E) C U,em Ul 1F’( ™ Since, f(FNC)UE), F (for neM
and i € {1,...,1,}) are connected, and f((FNC)UE)N th") D f( )ﬂFt’i(n)

f(Ft(i")) OFt’i(”) = f(Ft(in)) # (). Therefore Z is connected. From Lemma 1 and
from (25) we deduce that

ln
( U U Ft’f”) N®)U f(FNC) is a connected set. (26)
neM i=1

Since g(C) = WUT, f(FNC) =g(FNC), W and T are separated. Therefore
from (23) and (26) we see that g(FNC)UJ, e Uli’;l(Ft’i(n) nNe)cw or
g(FNCYUUpenm Uill(Ft’i(n) N®) C T. We may assume that

g(FnC)u UUF("WI) W. (27)

neM i=1

(The other case is analogous.)

Now, we shall show thatg(C) C W.Choose z € C. If x € F, then, by (27),
g(x) € g(FNC) C W. So, we assume that z ¢ F. Then z € Dg“’) for some
ng € M, tp € {0,1,...,2™ —1}. Let ng > 1 (for ng = 1, the proof is similar)
and let tg # 0, tg # 2™ — 1, (for tg = 0 or tg = 2™ — 1 the proof is similar).
Consider the following three cases

x#m no 1(no) and z # mZ)oJrll(no)

Then Dt(;m) € D,,. From (27) we have F,;(E"O) N ® C W.Consider the following
subcases. (
la): x € P}, o) ﬂU L o< b 1Aa.

Then g(z) € (Ftén"l) F (n"))ﬂfb Sincexz € C'and x € P’(no)ﬁui<a<# Aa,
we have C'N Py, (10) U Lcaco iy Ao # (). Hence from (16) we infer that

(no) Ft’é"(’)) NdCgC)=WUT.

0—

(F;

From the connectedness of the set (F} ™ (n“) UF; (n”)) N @, the fact that the sets
W and T are separated, the condition (Ft’é’iol) U Fgé"o)) N® # () and since
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F™) 0@ c W, it follows that (F;"Y U F;\") N ® c W. Hence g(z) € W.
1b): w e Y nUL cact Ao

_"O 1
This case is slmllar to la).

le): z € (Pt(gnO) nUL <1 Aq) U A”(HO) U AtoTl)
ng ng—1

<o
Then from the definitions of the functions g and g, and since g(C) C W, it
follows that g(z) € Ft’é"”) neécw.
20 . 4 — m?oo—l(no).
Then :
- if Lg:o) = Lg"’*l) for some t; € {0,1,...,2" =1 —1} then at least one of the
sets Dt(:f)l, Dg:o), Dg’f;l), Dt(fofl) belongs to the family {DE?) :neM,ic
{1t}

- if ngli)l = L(no Y for some t1 € {0,1,...,2%~1 — 1} then at least one

of the sets D,Eglf)l, Dt(:"), Dt(?ﬂfl) belongs to the family {D,Ein) tneM)ie
{1,..., L} }

In each of the above cases, let Dtgﬁ) denote this set. Then projp(z) € Ff(ﬁ)

and (by (27)) g(z) € f(Ft(")) C cl(Ff(ﬁ) N ®) C cl(W). From the fact that
the sets W and T are separated it follows that g(z) ¢ T. On the other hand,

g(x) € g(C) =W UT. Hence g(x) € W.

30z = m?oﬂl(no) This case is considered similarly as 2°.

The inclusion g(C) C W has thus been proved. From it and the equality
g(C) = W UT it follows that T' = @, which completes the proof that g is a
Darboux function.

Now, we shall demonstrate that ), = Q. For this purpose, we first prove
that @y C @Qg.Consider g € Q. Fix €*,6* > 0. Then there exist a point
a2’ and a number § > 0, such that (z/ — ¢,2' + ') C (xg — 6%, 20 + &%)
and f((z" —¢",2" 4+ 6")) C K(f(w0), % ). Let ng € N\ {0,1} be a positive

integer such that = < % and such that there are four different half-lines

Ht(m)) among those which have occurred in the construction of the function
gno (Denote them Ho, Hy, H°, H?.), for which

HO N (:L’/ - 6/axl) 7£ (Z)v HO n (xlaxl + 51) 7£ (Z)a

Hy N (2 — ,2) £ 0, BN\ (2!, 2/ + ') 0

and Ty C Tg where Tp () denotes an open zone between a line which contains
Hj and a line which contains H° (Hg and HY). Let Vo = To NUp<qe 1 Aa N
Sa<qs

K(xg,0*). Clearly, Vj is non-empty and open in I, and Vy C K (g, d*)NIIT.
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Note that g(Vo) C K(f(xo),e*), which proves Q, C Q.

Now, we shall show that @, C Qy.Consider g € Q4. Clearly, g € F.
Fix e*,0* > 0. Without loss of generality we may assume that é* < % Then
there exist a point ' and a number §' > 0, such that K(z',0") C K(xg,0*)
and g(K(2/,8")NIIT) C K(f(z0), %) Then K (a/,0") ﬁU%<a<ﬁ Ag #0
for some ng > 2. Assume that K(z,d") intersects a closed zone between the
lines LE:O) and ngﬁ)l for some tg € {1,...,2™ —2}. (If K(2',d") intersects a
closed half-plane with edge Lgn(’) which does not contain Lé"O), or if K(z',0")
intersects a closed half-plane with edge Lgﬁg)_l which does not contain Lé’ig)_Q,
the proof is analogous.) Then

K@ 6)nPM™n )  Ad#0

1 S
70 <a< 7o—1

or
K@ o)n(Bmupi)n | Aa#0.

1 1
ng <<7g-1

From (16) and (18) we can conclude that Ft’o("") N® C g(K(a,§)NnIt).

Then put Wy = projz(K(2',8")) N Ft(O""). Clearly, intp(Wy) # 0 and Wy C
(xg — 0*,2z0 + ¢*). Then

U Ko ne cg(K (@' 8) NI € K(f(wo). =)
y€f(Wo)

Hence

fwo) el |J K, )n®) C K(f(ro). ),
yef(Wo)

which proves Q)4 C Q¢ and consequently Q, = Q.

We shall now show that Cy; = C'r.We first prove that Cy C Cy.Consider
zo € Cy. Fix e* > 0. Let § > 0 be a number such that f((xg — J, 20 + 9)) C
K(f(zo), %) Let ng € N'\ {0,1} be a positive integer such that ;= < %
and such that there are four different half-lines Ht(n(’) among those which have

occurred in the construction of the function g,, (Denote them H,, H}, H°,
H?.), for which

Ho N (zg — 0,20) # 0, H°N (20,20 +0) # 0,
Hy N (zo — 8,20) # 0, HY N (x0,20 +6) # 0
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and Ty C Ty where T () denotes an open zone between a line which contains
Hy and a line which contains H° (H and H?). Let Vo = Ty N Uo<acr Aan
Sa<sg

K(zg,0). Clearly, V; is a non-empty neighborhood of x¢ open in IT*. It is
easy to check that g(Vp) C K(f(xo),e*), which proves C; C C,.. It is also
easily seen that C; C Cy, which proves Cy + Cy..

Now, we shall show that g has finite variation.For the purpose, note that

N, (y): Nf(y)7 y¢UZEf(F) K(zgs)ﬂ(I)’
9 +00, Y€ U,epr K(z,6)N Q.

Hence N, (y) = N¢(y) almost everywhere in R?. Therefore N, is a measurable
function, and

V(g = [ Nyy)dy

R2 R?

-/ Ny(wdy+ | )N, (y) dy
Uzef(F)K(z,s)r“@ ]RZ\(Uzef(F) K(z,e)N®

)N (y)dy < /R2 N¢(y)dy = \/(f) < +o0.

R2

/R2\(Uz€f(F) K(2,6)N®

Clearly, g is an e-extension of f. Since Q4 = Qy and since Cy = Cy, by (22)
g : IT" — R? is a Darboux function with finite variation, being an e-extension
of f, such that Q, = Q7 and Cy = C}.

Let Sp : R? — R? be a symmetry with respect to the line F. We define
f*:R2 > R? by

o (2) if x € I,
[ (@) —{ i(gF(x)) if z € R?\ intTI").

It is easy to see that f* : R? — R? satisfies the conditions of our theorem.
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