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EXTENDING DARBOUX FUNCTIONS
WITH FINITE VARIATION

Abstract

In this paper we show that a Darboux function with finite variation,
which is defined on closed, convex and boundary subset of R2, can be
extended to a Darboux function with finite variation, which is defined on
R2. Moreover, the set of all points of continuity and the set of all points
of quasi-continuity for the first function are equal to the corresponding
sets for the extension of this function.

In many papers concerning real functions of a real variable, the problem of
the “variation of the function” plays an important role. Consequently many
mathematicians dealt with the variation of functions defined on more abstract
spaces (see for example, [7]). It is known (see [3]) that if f : [0, 1] → R is
a continuous function and Nf denotes a Banach indicatrix of the function f ,

then Nf is a measurable function and the variation
∨b
a(f) of the function f

on the interval [a,b] equals
∫ +∞
−∞ Nf (y) dy. (T. Šalat in [6] proved that this

holds also for Darboux functions.) This allows one to generalize the notion of
variation for functions which are defined and take their values in more general
spaces. Let us first define Banach indicatrix.

Definition 1. We define the Banach indicatrix of a function f : E → R2

(E ⊂ R2) to be the function Nf : R2 → R such that Nf equals the number
of points of the set f−1(p) when this set is finite, and equals +∞ when it is
infinite.

Definition 2. Let f : E → R2 (E ⊂ R2) be a function whose Banach indi-
catrix Nf is measurable. Then f is called a function with finite variation if∫
R2 Nf (p) dp < +∞.
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In [3] properties of Darboux functions with finite variation, mapping R2

into R2, were considered for the first time. These considerations concerned,
among others things, the existence of mappings which are not continuous. In
[4] A. Rychlewicz showed that, in the topological sense, there are a lot of such
functions. He also considered the problem of extending Darboux functions
with finite variation. He proved the following assertion.

Theorem 1. Let K be a closed convex subset of R2 which is not a boundary
set. Let f : K → R2 be a Darboux function with finite variation. Then, for
each connected and stratiformly locally connected (with respect to K) subspace
X of R2, containing K, there exists a Darboux function f? : X → R2 with
finite variation which is an extension of f on X such that

Qf = Qf? ⊂ Q̃f?(K).

In this paper we shall show that we need not assume that K has non-
empty interior. We follow the notation used in, e.g., [1] or [3]. But we take a
”stronger” version of the definition of a Darboux function.

Definition 3. A function f : X → Y (X, Y - topological spaces) is called a
Darboux function if f(C) is a connected set for each connected set C ⊂ X.

(Since the initial functions will be defined on convex boundary sets, our
version of the theorem is stronger than those with the definition from works
[3] and [4]). Let Φ denote the set {(x, y) ∈ R2 : x ∈ Q ∨ y ∈ Q} where Q
denotes the set of rational numbers. Let K(a, ε) stand for the closed ball with
center a and radius ε, i.e. K(a, ε) = {z : ρ(a, z) ≤ ε} where ρ denotes the
metric on the plane R2.

Definition 4. We say that a function f : X → Y (X,Y – metric spaces) is
quasi-continuous at x0 if for each neighborhood U of the point x0 and for each
neighborhood V of the point g(x0), there exists a non-empty open set G ⊂ U
such that f(G) ⊂ V .

If f : X → R2 (where X = R or X = R2), then by Qf (Cf ) we denote
the set of all points of quasi-continuity (continuity) of the function f . If ?
is an equivalence relation then the abstract class of this relation determined
by an element α is denoted by [α]?. As in paper [3] we adopt the following
definitions.

Definition 5. Let X be a set. Let (Y, ρ) be a metric space, A ⊂ X and
f : A → Y . A function f? : X → Y is called an ε-extension of the function
f (ε ≥ 0) if f? is an extension of f and for each α ∈ f?(X), there exists
β ∈ f(A) such that ρ(α, β) ≤ ε.
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Definition 6. We say that a non-empty closed set K cuts a topological space
X (between non-empty sets A and B) if X \K = U ∪ V where U and V are
non-empty open sets such that U ∩ V = ∅ and A ⊂ U,B ⊂ V .

If A and B are subsets of some topological space X, then the symbol
intA(B) denotes the interior of the set B in A being a subspace of X. If
A = X, we simply write int(B). A projection onto the space X is denoted by
projX .

First, we shall prove some lemmas.

Lemma 1. Let A ⊂ R2. If U ⊂ R2 is an open set such that U ∪ A is
connected, then (U ∩ Φ) ∪A is a connected set.

Proof.Suppose that (U ∩Φ)∪A is not connected. Then (U ∩Φ)∪A = W ∪T
where W and T are non-empty and separated sets, i.e.

U \ Φ ⊂ U ⊂ cl(U ∩ Φ) ⊂ cl(W ) ∪ cl(T ) (1)

and

T ∪W ∪ (U \ Φ) = U ∪A. (2)

Therefore, by (1) and (2),

U ∪A = (T ∪ ((U \ Φ) ∩ cl(T ))) ∪ (W ∪ ((U \ Φ) ∩ cl(W ))).

Moreover, note that

T ∪ ((U \ Φ) ∩ cl(T )) 6= ∅ and W ∪ ((U \ Φ) ∩ cl(W )) 6= ∅. (3)

Now, it will be shown that

T ∪ ((U \ Φ) ∩ cl(T )) and W ∪ ((U \ Φ) ∩ cl(W )) are separated. (4)

Indeed, we have

cl(T ∪ ((U \ Φ) ∩ cl(T ))) ∩ (W ∪ ((U \ Φ) ∩ cl(W )))

=(cl(T ) ∩ cl(W ) ∩ (U \ Φ)) ∪ (cl((U \ Φ) ∩ cl(T )) ∩ cl(W ) ∩ (U \ Φ))

=cl(T ) ∩ cl(W ) ∩ (U \ Φ).

Suppose that there exists x0 ∈ cl(T )∩cl(W )∩(U \Φ). Then there exists r > 0
such that K(x0, r) ⊂ U . Then

K(x0, r) ∩ T 6= ∅ and K(x0, r) ∩W 6= ∅. (5)
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Also, K(x0, r) ∩ Φ ⊂ U ∩ Φ ⊂ W ∪ T. Evidently, K(x0, r) ∩ Φ is a connected
set, so K(x0, r) ∩ Φ ⊂ W or K(x0, r) ∩ Φ ⊂ T. If K(x0, r) ∩ Φ ⊂ W , then,
by (5), cl(W ) ∩ T ⊃ K(x0, r) ∩ T 6= ∅. If K(x0, r) ∩ Φ ⊂ T , then, by (5),
cl(T ) ∩W ⊃ K(x0, r) ∩W 6= ∅, which contradicts the fact that W and T are
separated sets. We have thus proved that cl(T ) ∩ cl(W ) ∩ (U \Φ) = ∅. Hence
cl(T ∪ ((U \ Φ) ∩ cl(T ))) ∩ (W ∪ ((U \ Φ) ∩ cl(W )) = ∅. In a similar way we
can prove that

(T ∪ ((U \ Φ) ∩ cl(T ))) ∩ cl(W ∪ ((U \ Φ) ∩ cl(W ))) = ∅,

which gives (4). By (3) and (4), this contradicts the connectedness of the set
U ∪A. Thus we have proved that (U ∩ Φ) ∪A is connected.

Corollary 1. If U ⊂ R2 is an open connected set, then U ∩ Φ is connected

Lemma 2. Let F ⊂ R be a closed convex set. Let f : F → R2 be a Darboux
function with finite variation. Then, for any ε > 0, there exists a Darboux
function g : R → R2 with finite variation which is an ε extension of f such
that Qg = Qf and Cg = Cf .

Proof.Obviously, F is a line, a closed half-line, a non-degenerate closed seg-
ment, or a point. If F = R, we obviously put g = f. Hence, in the remainder of
the proof, we may assume that F 6= R. First, we shall consider the case when
F is a closed half-line. Let p denote its endpoint. Assume that F = (−∞, p]
(if F = [p,+∞), the proof is analogous). Let ε > 0. Consider two cases:
10p /∈ Qf .
Then in R \ F we define the equivalence relation ? by

x ? y ⇐⇒ x− y ∈ Q.

Let D denote the set of abstract classes of the relation ?. Then there exists a
bijection h : D onto7−→ K(f(p), ε) ∩ Φ. We define g : R→ R2 by

g(x) =

{
f(x), if x ∈ F,
h([x]?), if x ∈ R \ F.

Evidently,
g is an ε− extension of f. (6)

Now, we shall show that

g is a Darboux function. (7)

Let C ⊂ R be a connected set. Consider the following cases.
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1) C ⊂ F ; then g(C) = f(C) is connected.

2) C ⊂ R \ F .

2a) C is a point, so is g(C).

2b) C is a non-degenerate segment or a half-line.

Then, for any abstract class [x]? ∈ D, [x]?∩C 6= ∅. Hence g(C) = K(f(p), ε)∩
Φ is a connected set.

3) C ∩ F 6= ∅ and C \ F 6= ∅.

Note that, in this case,

g(C ∩ F ) and g(C \ F ) are non− empty connected

and non− separated sets.
(8)

Since g(C) = g(C∩F )∪g(C \F ), we conclude from (8) that g(C) is connected.
This proves (7).

Now, we shall show that Qg = Qf .Obviously, Therefore it sufficient to
prove that Qg ⊂ Qf . For the purpose, we shall first show that

p /∈ Qg. (9)

Indeed, since p /∈ Qf , there exist 0 < ε0 < ε and δ0 > 0 such that

for any non-emptyset U ⊂ (p− δ0, p] open in Ff(U) 6⊂ K(f(p), ε0). (10)

To prove p /∈ Qg,it is sufficient to show that

for any non-empty set V ⊂ (p− δ0, p+ δ0), g(V ) 6⊂ K(f(p), ε).

Let V ⊂ (p − δ0, p + δ0) be a non-empty open set. If V ∩ (p − δ0, p) 6= ∅,
then g(V ∩ (p − δ0, p)) 6⊂ K(f(p), ε0) by (10), and so, g(V ) 6⊂ K(f(p), ε0).
If V ∩ (p − δ0, p) = ∅, then g(V ) = K(f(p), ε) ∩ Φ. If g(V ) ⊂ K(f(p), ε0),
then K(f(p), ε) ⊂ K(f(p), ε0), but this is obviously impossible. Hence g(V ) 6⊂
K(f(p), ε0). We have thus shown p /∈ Qg.

It is easily seen that

Qg ⊂ F and Qg ⊂ Qf ∪ {p} ∪ (R \ F ). (11)

Since p /∈ Qg, by (11), Qg ⊂ Qf . Since Qf ⊂ Qg, Qf = Qg.
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Now, we shall show that Cg = Cf . Obviously, Cf ⊂ Cg. Since Cg ⊂ Qg,
we conclude from (11) that Cg ⊂ F . The obvious inclusion Cg ⊂ Cf ∪ (R \F )
gives Cg ⊂ Cf , which proves Cg = CF .Since Qg = Qf and since Cg = Cf , by
(6), and (7)we can infer, in this case, that

g is a Darboux function that is an ε-extension of f such that

Qg = Qf and Cg = Cf .
(12)

20 p ∈ Qf .
Let pn = p+ 1

n for n ≥ 1. Let us also put P1 = [p1,+∞) and Pn = [pn, pn−1)
for n ≥ 2. In each Pn we define the equivalence the relation ? by

x ? y ⇐⇒ x− y ∈ Q.

Let Pn denote the set of abstract classes of relation ? for n ≥ 1. Then,

for n ≥ 1, there exists a bijection gn : Pn
onto−→ K(f(p), εn ) ∩ Φ such that

gn([pn]?) ∈ K(f(p), ε
n+1 ) ∩ Φ. Then we define g : R→ R2 by

g(x) =

{
gn([x]?) x if ∈ Pn, n = 1, 2, . . . ,
f(x) if x ∈ F.

Obviously,
g is an ε-extension of f. (13)

We shall show that g is a Darboux function. Let C ⊂ R2 be a connected set.
Consider the following cases.

1) C ⊂ F ; then, clearly, g(C) = f(C) is connected.

2) C ⊂ R \ F .

2a) C is a point, so is g(C).

2b) C is a non-degenerate segment or a half-line.

Let n0 = min{n ≥ 1 : C ∩ Pn 6= ∅}.

2b1) If C∩Pn0 6= {pn0}, then g(C∩Pn0) = gn0(Pn0) = K(f(p), εn0
)∩Φ. Hence

g(C) = (K(f(p), εn0
) ∩ Φ) ∪

⋃+∞
n=n0+1 g(Pn ∩ C) = K(f(p), εn0

) ∩ Φ.

2b2) If C∩Pn0
= {pn0

}, then g(Pn0+1∩C) = gn0+1(Pn0+1) = K(f(p), ε
n0+1 )∩

Φ. Hence g(C) = (K(f(p), ε
n0+1 )∩Φ)∪gn0

([pn0
]?) = K(f(p), ε

n0+1 )∩Φ.

Thus, in the latter two cases, g(C) is a connected set.
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3) C ∩ F 6= ∅ and C \ F 6= ∅.

Notice that

g(C ∩ F ) and g(C \ F ) are non-empty connected

and non-separated sets.
(14)

Since g(C) = g(C ∩F )∪ g(C \F ), it follows from (14) that g(C) is connected.
This completes the proof that g is Darboux.

Now, we shall show that Qg = Qf .Obviously, Qf ⊂ Qg. To prove the
inverse inclusion, let us note that Qg ⊂ F and Qg ⊂ Qf ∪ {p} ∪ (R \F ). Since
p ∈ Qf , Qg ⊂ Qf . This proves Qg = Qf .

We shall now show that Cg = Cf . For this purpose, it suffices to prove
that p ∈ Cf ⇐⇒ p ∈ Cg. It is obvious that if p /∈ Cf , then p /∈ Cg. So, let us
suppose that p ∈ Cf . Fix ε? > 0. Choose n0 ≥ 1 such that ε

n0
< ε? and δ1 > 0

for which f((p − δ1, p]) ⊂ K(f(p), ε?). Set δ2 = pn0
− p and δ = min(δ1, δ2).

Then

g((p− δ, p+ δ)) ⊂ K(f(p), ε?).

Therefore p ∈ Cg and Cg = Cf is proved.From The preceding we can infer, in
this case, that

g is a Darboux function that is an ε-extension of f such that

Qg = Qf and Cg = Cf .
(15)

By (12) and (15) to complete the proof, it suffices to show that, in cases 10

and 20, g has a finite variation. To this end, note that

Ng(y) =

{
Nf (y) y if /∈ K(f(p), ε) ∩ Φ,
+∞ y if ∈ K(f(p), ε) ∩ Φ.

Hence Ng(y) = Nf (y) almost everywhere in R2. Therefore the measurability
of Nf implies that of Ng, and

∨
R

(g) =

∫
R2

Ng(y) dy =

∫
K(f(p),ε)∩Φ

Ng(y) dy +

∫
R2\(K(f(p),ε)∩Φ)

Ng(y) dy

=

∫
R2\(K(f(p),ε)∩Φ)

Ng(y) dy =

∫
R2\(K(f(p),ε)∩Φ)

Nf (y) dy

≤
∫
R2

Nf (y) dy =
∨
R

(f) < +∞.
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In a similar way one can show that there exists a function g satisfying the
conditions of the assertion in the case when F is a non-degenerate segment.
It is easy to consider the case when F is a point.

Now we shall prove the main theorem.

Theorem 2. Let F be a closed convex and boundary subset of R2. Let f :
F → R2 be a Darboux function with finite variation. Then, for any ε > 0,
there exists a Darboux function f? : R2 → R2 with finite variation which is an
ε-extension of f such that Qf? = Qf and Cf? = Cf .

Proof.By Lemma 2, we can consider only the case when F is a line. Let H
(1)
1

denote a closed half-line which is perpendicular to F , with endpoint k
(1)
1 ∈ F .

Let L
(1)
1 be a line containing H

(1)
1 . Next, let Π+ stand for a closed half-plane

with edge F , which contains H
(1)
1 . For each α ∈ (0,+∞), denote by Aα ⊂ Π+

the line which is parallel to F and distant from F by α. Then let us denote

{m1(1)
1 } = A1 ∩H(1)

1 . Let H ′
,(1)
1 , H”

(1)
1 stand for two open half- lines lying on

the opposite sides of the line L
(1)
1 , with endpoint m

1(1)
1 included in

⋃
α>1Aα,

and let P
(1)
0 denote a closed convex set which is determined by H ′

(1)
1 , a segment

[m
1(1)
1 , k

(1)
1 ] and a half-line with endpoint k

(1)
1 included in F , which is on the

same side of L
(1)
1 as H

,(1)
1 .

Let P
(1)
1 be a closed convex set determined by H

,,(1)
1 , a segment [m

1(1)
1 , k

(1)
1 ]

and a half-line with endpoint k
(1)
1 included in F , which is on the same side of

L
(1)
1 as H”

(1)
1 . Moreover, let P ′

(1)
1 denote an open convex angle determined

by H ′
(1)
1 and H”

(1)
1 . Put F

(1)
0 = P

(1)
0 ∩ F , F

(1)
1 = P

(1)
1 ∩ F , F

,(1)
0 =⋃

y∈f(F
(1)
0 )

K(y, ε) and F
,(1)
1 =

⋃
y∈f(F

(1)
1 )

K(y, ε). For each w ∈ (0,+∞),

let {m̂1(1)
w } = H

(1)
1 ∩A1+w and let H

,(1)
1,w (H

,,(1)
1,w ) denote a closed half-line with

endpoint m̂
1(1)
w which is parallel to H

,(1)
1 (H

,,(1)
1 ), included in Π+. Moreover,

set K
1(1)
w = H

,,(1)
1,w ∪ H

,(1)
1,w for w ∈ (0,+∞). Note that, for each x ∈ P

,(1)
1 ,

there exists only one w ∈ (0,+∞) such that x ∈ K1(1)
w . Put K(1)

1 = {K1(1)
w :

w ∈ (0,+∞)}. In this family we define the equivalence relation ◦ by

K1(1)
w ◦K1(1)

w′ ⇐⇒ w − w′ ∈ Q.

Let K̂(1)
1 stand for the set of abstract classes of the relation ◦. Then there

exists a bijection

ψ
(1)
1 : K̂(1)

1
onto7−→ (F

,(1)
0 ∪ F ,(1)

1 ) ∩ Φ.

Put A(1)
t = {Aα∩P (1)

t : α > 1} for t = 0, 1. In each of these families we define
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the equivalence relation � by

(Aα′ ∩ P (1)
t ) � (Aα′′ ∩ P (1)

t )⇐⇒ α′ − α′′ ∈ Q.

For t = 0, 1, let Â(1)
t denote the set of abstract classes of the relation �. Then

there exist bijections

ϕ
(1)
0 : Â(1)

0
onto−→ F

,(1)
0 ∩ Φ

and
ϕ

(1)
1 : Â(1)

1
onto−→ F

,(1)
1 ∩ Φ.

We define g1 :
⋃
α>1Aα → R2 by

g1(x) =


ψ

(1)
1 ([K1(x)]◦) if x ∈ P ,(1)

1 ,

ϕ
(1)
0 ([A0(x)]�) if x ∈ P (1)

0 ∩
⋃
α>1Aα,

ϕ
(1)
1 ([A1(x)]�) if x ∈ P (1)

1 ∩
⋃
α>1Aα,

where K1(x) (At(x), t = 0, 1) denotes a set from the family K(1)
1 (A(1)

t , t =

0, 1), containing x. Now let k
(2)
1 , k

(2)
3 ∈ F denote distinct points having

distance 1 from k
(1)
1 and set k

(2)
2 = k

(1)
1 . Let H

(2)
1 , H

(2)
2 , H

(2)
3 ⊂ Π+ be

closed half-lines which are perpendicular to F , with endpoints k
(2)
1 , k

(2)
2 , k

(2)
3 ,

respectively. Note that H
(2)
2 = H

(1)
1 . Set {mn(2)

t } = A 1
n
∩ H(2)

t , t = 1, 2, 3,

n = 1, 2. Note that m
1(2)
2 = m

1(1)
1 . Let L

(2)
t denote a line which contains H

(2)
t ,

t = 1, 2, 3 and let H
,(2)
t , H

,,(2)
t ⊂ Π+ (t = 1, 2, 3) be closed half- lines lying on

the opposite sides of the line L
(2)
t with endpoint m

2(2)
t , such that the following

conditions hold:

H
,,(2)
1 ∩ (m

1(2)
1 ,m

1(2)
2 ) 6= ∅, H

,(2)
2 ∩ (m

1(2)
1 ,m

1(2)
2 ) 6= ∅,

H
,,(2)
2 ∩ (m

1(2)
2 ,m

1(2)
3 ) 6= ∅, H

,(2)
3 ∩ (m

1(2)
2 ,m

1(2)
3 ) 6= ∅,

H
,(2)
1 , H

,,(2)
3 are not parallel to F,

H
,,(2)
t ∩H ,(2)

t+1 ⊂
⋃
α>1Aα (t = 1, 2).

Then let P
,(2)
t (t = 1, 2, 3) denote an open convex angle between the half-lines

H
,(2)
t andH

,,(2)
t . Let P

(2)
t (t = 1, 2) stand for a closed convex set determined by

the half-line H
,,(2)
t , the segments [m

2(2)
t , k

(2)
t ], [k

(2)
t , k

(2)
t+1] and [k

(2)
t+1,m

(2)
t+1] and

the half-line H
,(2)
t+1. Let P

(2)
0 denote a closed convex set determined by the half-

line H
,(2)
1 , the segment [m

2(2)
1 , k

(2)
1 ] and a half-line with endpoint k

(2)
1 , included

in F , that does not contain k
(2)
2 . Let P

(2)
3 be a closed convex set determined



Extending Darboux Functions with Finite Variation 599

by the half-line H
,,(2)
3 , the segment [m

2(2)
3 , k

(2)
3 ] and a half-line with endpoint

k
(2)
3 , included in F , that does not contain k

(2)
2 . Put F

(2)
t = P

(2)
t ∩ F and

F
,(2)
t =

⋃
y∈f(F

(2)
t )

K(y, ε2 ) for t = 0, 1, 2, 3.

For w ∈ [0, 1
4 ) and t = 1, 2, 3, let {m̂t(2)

w } = H
(2)
t ∩A 3

4−w
and let H

,(2)
t,w (H

,,(2)
t,w )

denote a closed half-line which is parallel to H
,(2)
t (H

,,(2)
t ), with endpoint

m̂
t(2)
w , included in Π+. Set {q,(2)

t,w } = H
,(2)
t,w ∩ A 3

4 +w, {q,,(2)
t,w } = H

,,(2)
t,w ∩ A 3

4 +w

for w ∈ [0, 1
4 ) and t = 1, 2, 3. For t = 1, 2, 3 and w ∈ (0, 1

4 ), let

Kt(2)
w = [m̂t(2)

w , q
,(2)
t,w ] ∪ [q

,(2)
t,w , q

,,(2)
t,w ] ∪ [q

,,(2)
t,w , m̂t(2)

w ]

and K
t(2)
0 = {m̂t(2)

0 }. Observe that, for t = 1, 2, 3 we have for each x ∈
P
,(2)
t ∩

⋃
1
2<α<1Aα, there exists only one w ∈ [0, 1

4 ) such that x ∈ Kt(2)
w . Put

K2
t = {Kt(2)

w : w ∈ [0, 1
4 )} for t = 1, 2, 3. In each of these families we define

the equivalence relation ◦ by

Kt(2)
w ◦Kt(2)

w′ ⇐⇒ w − w′ ∈ Q.

For t = 1, 2, 3, let K̂(2)
t denote the set of abstract classes of the relation ◦.

Then there exist bijections

ψ
(2)
t : K̂(2)

t
onto−→ (F

,(2)
t−1 ∪ F

,(2)
t ) ∩ Φ

for t = 1, 2, 3. Put A(∈)
t = {Aα ∩P(∈)

t : ∞∈ < α <∞} for t = 0, 1, 2, 3. In each
of these families we define the equivalence relation � by

(Aα′ ∩ P (2)
t ) � (Aα” ∩ P (2)

t )⇐⇒ α′ − α” ∈ Q.

For t = 0, 1, 2, 3, let Â(2)
t denote the set of abstract classes of the relation �.

Then there exist bijections

ϕ
(2)
t : Â(2)

t
onto−→ F

,(2)
t ∩ Φ

for t = 0, 1, 2, 3. Let P̂
,(2)
t (P̃

,(2)
t ) denote an open convex angle included

in P
,(2)
t , determined by the half-lines H

,(2)
t and H

(2)
t (H

,,(2)
t and H

(2)
t ) for

t = 1, 2, 3. Let us set

A
,(2)
1 = A1 ∩ (P

(2)
0 ∪ P̂ ,(2)

1 ), A
,,(2)
1 = A1 ∩ (P̃

,(2)
1 ∪ P (2)

1 ),

A
,(2)
2 = A1 ∩ P̂ ,(2)

2 , A
,,(2)
2 = A1 ∩ (P̃

,(2)
2 ∪ P (2)

2 ),

A
,(2)
3 = A1 ∩ P̂ ,(2)

3 , A
,,(2)
1 = A1 ∩ (P̃

,(2)
3 ∪ P (2)

3 ).
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In each of the sets A
,(2)
t and A

,,(2)
t (t = 1, 2, 3) we define the equivalence

relation ? by

x ? y ⇐⇒ ρ(x, y) ∈ Q

where ρ denotes the metric in R2. For t = 1, 2, 3, let Â,(2)
t and Â,,(2)

t denote
abstract classes of the relation ?. Then, for t = 1, 2, 3, there exist bijections

ξ
,(2)
t : Â,(2)

t
onto−→ F

,(2)
t−1 ∩ Φ and ξ

,,(2)
t : Â,,(2)

t
onto−→ F

,(2)
t ∩ Φ.

We define g2 :
⋃

1
2<α≤1Aα → R2 by

g2(x) =



ϕ
(2)
t ([At(x)]�) if x ∈ P (2)

t ∩
⋃

1
2<α<1Aα, t = 0, 1, 2, 3,

ψ
(2)
t ([Kt(x)]◦) if x ∈ P ,(2)

t ∩
⋃

1
2<α<1Aα, t = 1, 2, 3,

ξ
,(2)
t ([x]?) if x ∈ A,(2)

t , t = 1, 2, 3,

ξ
,,(2)
t ([x]?) if x ∈ A,,(2)

t , t = 1, 2, 3,

f(k
(2)
t ) if x = m

1(2)
t , t = 1, 2, 3,

where At(x) (Kt(x)) denotes a set from the family A(2)
t (K(2)

t ), containing
x. To define a function g3 :

⋃
1
3<α≤

1
2
Aα → R2, let us draw four more

half-lines contained in Π+ and perpendicular to F . The endpoints of these
half-lines are points lying on F which are the midpoints of the segments

[k
(2)
1 , k

(2)
2 ] and [k

(2)
2 , k

(2)
3 ] or having distance 1 from the ends of the segment

[k
(2)
1 , k

(2)
3 ] and do not belong to this segment. Thus we shall consider the

points k
(3)
1 , . . . , k

(3)
7 (where k

(3)
2 = k

(2)
1 , k

(3)
4 = k

(2)
2 = k

(1)
1 , k

(3)
6 = k

(2)
3 ) and

the half-lines H
(3)
1 , . . . ,H

(3)
7 , corresponding to them, and analogously for the

function g2. Following the above construction, we define an infinite family of
functions
gn :

⋃
1
n < α ≤ 1

n−1
Aα → R2 (n = 2, 3, . . .).

Then we define g : Π+ → R2 by

g(x) =


f(x) if x ∈ F,
gn(x), if x ∈

⋃
1
n<α≤

1
n−1

Aα, n = 2, 3, . . . ,

g1(x) if x ∈
⋃
α>1Aα.

We shall now prove some facts which will be used in the latter part of the
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proof. We shall first show that

if C ⊂ R2 is a connected set such that C ∩ P ,(n0)
t0 ∩

⋃
1
n0
<α< 1

n0−1

Aα 6= ∅

for some n0 > 1 and t0 ∈ N (for which P
,(n0)
t is defined) and

C 6⊂ Kt0(n0)
w for any w ∈

[
0,

1

2n0(n0 − 1)

)
,

then (F
,(n0)
t0−1 ∪ F

,(n0)
t0 ) ∩ Φ ⊂ g(C).

(16)

In order to simplify the notation, let n0 = 2, t0 = 1 and P = P
,(2)
1 ∩⋃

1
2<α<1Aα. Then there exists a0 ∈ C ∩ P . It follows that a0 ∈ K

1(2)
w0 for

some w0 ∈ [0, 1
4 ). Note that

(?) ∃w1∈[0, 14 ) (w1 6= w0 ∧ C ∩K1(2)
w1
6= ∅).

Indeed, if, for any w 6= w0 and w ∈ [0, 1
4 ), C ∩ K1(2)

w = ∅, then there exists

b ∈ C \ P . Let w′ ∈ (w0,
1
4 ). Then K

1(2)
w′ ∩ C = ∅ and K

1(2)
w′ cuts the plane

between a0 ∈ C and b ∈ C, which contradicts the connectedness of C. We
have thus proved (?).

So, there exists a1 ∈ C ∩K1(2)
w1 . Assume that w0 < w1. Notice that, for

w ∈ (w0, w1), K
1(2)
w cuts the plane between a0 and a1, so C ∩K1(2)

w 6= ∅ for

any w ∈ (w0, w1). Therefore, in each abstract class of K̂(2)
1 , there exists a set

K such that C ∩K 6= ∅. Consequently, by the definition of g, we obtain

g(C ∩ P ) = g2(K̂(2)
1 ) = (F

,(2)
0 ∪ F ,(2)

1 ) ∩ Φ.

Hence (F
,(2)
0 ∪ F ,(2)

1 ) ∩ Φ ⊂ g(C), which proves (16). Similarly one can prove
that

if C ⊂ R2 is a connected set suchthatC ∩ P ,(1)
1 6= ∅

and C 6⊂ K1(1)
w for any w ∈ (0,+∞), then (F

,(1)
0 ∪ F ,(1)

1 ) ∩ Φ ⊂ g(C).
(17)

Now, we shall show that

if C ⊂ R2 is a connected set such that C ∩ P (n0)
t0 ∩

⋃
1
n0
<α< 1

n0−1

Aα 6= ∅

for some n0 > 1 and t0 ∈ N (for which P
(n0)
t is defined) and

C 6⊂ Aα ∩ P (n0)
t0 for any α ∈ (

1

n0
,

1

n0 − 1
), then F

,(n0)
t0 ∩ Φ ⊂ g(C).

(18)
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To simplify the notation, let n0 = 2, t0 = 1 and R = P
(2)
1 ∩

⋃
1
2<α<1Aα. There

exists a0 ∈ C ∩R, and then a0 ∈ Aα0
for some α0 ∈ ( 1

2 , 1). Note that

(??) [C \ (Aα0
∩ P (2)

1 )] ∩ (P
,(2)
1 ∪ P (2)

1 ∪ P ,(2)
2 ) ∩

⋃
1
2<α<1

Aα 6= ∅.

If C∩(P
,(2)
1 ∪P ,(2)

2 )∩
⋃

1
2<α<1Aα 6= ∅, then from (16) it follows that F

,(2)
1 ∩Φ ⊂

g(C), which gives (18). So now, let us assume that

C ∩ (P
,(2)
1 ∪ P ,(2)

2 ) ∩
⋃

1
2<α<1

Aα = ∅.

By (??), we have [C \ (Aα0
∩ P (2)

1 )] ∩ R 6= ∅, hence (C ∩ R) \ Aα0
6= ∅. So,

there exists a1 ∈ (C ∩R) \Aα0 , thus a1 ∈ Aα1 ∩P
(2)
1 for some α1 ∈ ( 1

2 , 1) and

α1 6= α0. We can assume that α0 < α1. Then g(C ∩R) = F
,(2)
1 ∩Φ. From the

above considerations we obtain the inclusion F
,(2)
1 ∩ Φ ⊂ g(C), which yields

(18). Similarly one can prove that

if C ⊂ R2 is a connected set such that C ∩ P (1)
t0 ∩

⋃
α>1

Aα 6= ∅

for some t0 ∈ {0, 1} and C 6⊂ Aα ∩ P (1)
t0 for any α > 1

then F
,(1)
t0 ∩ Φ ⊂ g(C).

(19)

Now, we show that:

if C ⊂ R2 is a connected set which contains at least two

distinct points, such that C ∩A,(n0)
t0 6= ∅ for some n0 ≥ 2 and

t0 ≥ 1 (for which A
,(n0)
t is defined), then F

,(n0)
t0−1 ∩ Φ ⊂ g(C).

(20)

For simplicity, let n0 = 2. By our assumption, there exists a0 ∈ C ∩ A,(2)
t0 .

Consider the following cases.
10 : t0 ∈ {2, 3}.
We give the proof only for the case t0 = 2 (the other casebeingsimilar). Notice
that

(? ? ?) C ∩ [(A
,(2)
2 \ {a0}) ∪ (P

,(2)
2 ∩

⋃
1
2<α<1

Aα) ∪ (P
(1)
0 ∩

⋃
α>1

Aα)] 6= ∅.

Then there are two possible cases.

1): C ∩ [(P
,(2)
2 ∩

⋃
1
2<α<1Aα) ∪ (P

(1)
0 ∩

⋃
α>1Aα)] 6= ∅.
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Then C ∩P ,(2)
2 ∩

⋃
1
2<α<1Aα 6= ∅ or C ∩P (1)

0 ∩
⋃
α>1Aα 6= ∅. If C ∩P ,(2)

2 ∩⋃
1
2<α<1Aα 6= ∅, then the assumptions of condition (16) hold (for t0 = 2, n0 =

2), so F
,(2)
1 ∩ Φ ⊂ (F

,(2)
1 ∪F ,(2)

2 )∩Φ ⊂ g(C). If C∩P (1)
0 ∩

⋃
α>1Aα 6= ∅ then the

assumptions of condition (19) hold (for t0 = 0), so F
,(2)
1 ∩Φ ⊂ F ,(1)

0 ∩Φ ⊂ g(C)

(because F
(2)
1 ⊂ F (1)

0 ).

2): C ∩ [(P
,(2)
2 ∩

⋃
1
2<α<1Aα) ∪ (P

(1)
0 ∩

⋃
α>1Aα)] = ∅.

Then from (? ? ?) we have C ∩ (A
,(2)
2 \ {a0}) 6= ∅. So, there exists a1 ∈

C∩(A
,(2)
2 \{a0}). Notice that C∩A,(2)

2 contains some non-degenerate segment.
From the definitions of g2 and g we have

F
,(2)
1 ∩ Φ ⊂ g2(Â,(2)

2 ) = g(C ∩A,(2)
2 ) ⊂ g(C).

Hence, in both cases, F
,(2)
1 ∩ Φ ⊂ g(C), which proves (20).

20 t0 = 1.
A similar analysis to that in case 10 shows that

C ∩

(A
,(2)
1 \ {a0}) ∪ (P

,(2)
1 ∩

⋃
1
2<α<1

Aα) ∪ (P
(1)
0 ∩

⋃
α>1

Aα)


∪ (P

(2)
0 ∩

⋃
1
2<α<1

Aα) 6= ∅

and, the remainder of the proof is analogously to that of case 10. Condition
(20) has thus been proved.

Now, we shall show that

if C ⊂ R2; is a connected set which contains at least two

distinct points, such that C ∩A,,(n0)
t0 6= ∅ for some n0 ≥ 2 and

t0 ≥ 1 (for which A
,,(n0)
t is defined), then F

,(n0)
t0 ∩ Φ ⊂ g(C).

(21)

For simplicity, let n0 = 2. By our assumption, there exists a0 ∈ C ∩ A,,(2)
t0 .

Let us consider the following cases.
10 : t0 ∈ {1, 2}.
We shall demonstrate the proof only for the case t0 = 1 (the other case being



604 Bozena Swiatek

similar). Let us notice that

(? ? ??)C∩
[
(A

,,(2)
1 \ {a0}) ∪ (P

,(2)
1 ∩

⋃
1
2<α<1

Aα) ∪ (P
(2)
1 ∩

⋃
1
2<α<1

Aα)

∪ (P
,(2)
2 ∩

⋃
1
2<α<1

Aα) ∪ (P
(1)
0 ∩

⋃
α>1

Aα) ∪A,(2)
2

]
6= ∅.

Then two cases are possible.

1) : C ∩

(P
,(2)
1 ∩

⋃
1
2<α<1

Aα) ∪ (P
(2)
1 ∩

⋃
1
2<α<1

Aα)


∪ (P

,(2)
2 ∩

⋃
1
2<α<1

Aα) ∪ (P
(1)
0 ∩

⋃
α>1

Aα) ∪A,(2)
2 6= ∅.

Then

C ∩ P ,(2)
1 ∩

⋃
1
2<α<1

Aα 6= ∅ or C ∩ P (2)
1 ∩

⋃
1
2<α<1

Aα 6= ∅ or

C ∩ P ,(2)
2 ∩

⋃
1
2<α<1

Aα 6= ∅ orC ∩ P (1)
0 ∩

⋃
α>1

Aα 6= ∅ or

C ∩A,(2)
2 6= ∅

If C ∩ P ,(2)
1 ∩

⋃
1
2<α<1Aα 6= ∅, then the assumptions of condition (16) hold

(for t0 = 1, n0 = 2), so F
,(2)
1 ∩ Φ ⊂ (F

,(2)
0 ∪ F ,(2)

1 ) ∩ Φ ⊂ g(C).

If C ∩P (2)
1 ∩

⋃
1
2<α<1Aα 6= ∅, then the assumptions of condition (18) hold (for

t0 = 1, n0 = 2), so F
,(2)
1 ∩ Φ ⊂ g(C).

If C ∩ P ,(2)
2 ∩

⋃
1
2<α<1Aα 6= ∅, then from condition (16) we have F

,(2)
1 ∩ Φ ⊂

(F
,(2)
1 ∪ F ,(2)

2 ) ∩ Φ ⊂ g(C).

If C ∩ P (1)
0 ∩

⋃
α>1Aα 6= ∅, then from condition (19) we get F

,(2)
1 ∩ Φ ⊂

F
,(1)
0 ∩ Φ ⊂ g(C).

If C ∩A,(2)
2 6= ∅, then condition (20) gives F

,(2)
1 ∩ Φ ⊂ g(C).

2): C ∩ [(P
,(2)
1 ∩

⋃
1
2<α<1Aα) ∪ (P

(2)
1 ∩

⋃
1
2<α<1Aα) ∪ (P

,(2)
2 ∩

⋃
1
2<α<1Aα) ∪

(P
(1)
0 ∩

⋃
α>1Aα) ∪A,(2)

2 ] 6= ∅.
Then from (? ? ??) we have C ∩ (A

,,(2)
1 \ {a0}) 6= ∅. Consequently, there exists

a1 ∈ C ∩ (A
,,(2)
1 \{a0}). Notice that C∩A,,(2)

1 contains some non-degenerate
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segment. By the definitions of g2 and g,

F
,(2)
1 ∩ Φ ⊂ g2(Â,,(2)

1 ) = g(C ∩A,,(2)
1 ) ⊂ g(C).

Hence, in both cases, F
,(2)
1 ∩ Φ ⊂ g(C), which proves (21).

20 : t0 = 3.
Similarly, we could first show that

C ∩ [(P
,(2)
3 ∩

⋃
1
2<α<1

Aα) ∪ (P
(2)
3 ∩

⋃
1
2<α<1

Aα) ∪ (P
(1)
1 ∩

⋃
α>1

Aα)] 6= ∅

and, the remainder of the proof is similar to that of case 10). Condition (21)
has thus been proved. Now, we shall show that

g is a Darboux function. (22)

Let C1 be a connected set. If C1 ⊂ F or C1 is a point, then, clearly, g(C1) is a
connected set. The set g(C1) is a point (thus a connected set) in the following
cases.

C1 ⊂ Kt(n)
w for some n, t and w ∈

[
0,

1

2n(n− 1)

)
,

or C1 ⊂ K1(1)
w for some w ∈ (0,+∞),

or C1 ⊂ Aα ∩ P (n)
t for some n, t and α ∈

(
1

n
,

1

n− 1

)
,

or C1 ⊂ Aα ∩ P (1)
t for some t and α > 1.

Suppose that g is not a Darboux function. Then there exists a connected set C
such that g(C) = W∪T where W and T are non-empty and separated. Clearly,
this does not occur for any cases which we considered for C1. For each n ∈ N,
let \{0}, D(n)

0 (D
(n)
2n−1) denote the intersection of the closed half-plane with

edge L
(n)
1 (L

(n)
2n−1), containing H

,(n)
1 (H

,,(n)
2n−1), and the zone

⋃
1
n<α≤

1
n−1

Aα

(or, for n = 1:
⋃
α>1Aα). For any n > 1 and t ∈ {1, 2, . . . , 2n − 2}, let

D
(n)
t denote the intersection of a closed zone between the lines L

(n)
t and L

(n)
t+1

and of the zone
⋃

1
n<α≤

1
n−1

Aα. For n ≥ 2, put M̂n =
⋃2n−1
t=1 {m

n−1(n)
t }. Let

M = {n ≥ 2 : C ∩ (
⋃

1
n<α≤

1
n−1

Aα \ M̂n) 6= ∅} if C ∩
⋃
α>1Aα = ∅ or

M = {n ≥ 2 : C ∩ (
⋃

1
n<α≤

1
n−1

Aα \ M̂n) 6= ∅} ∪ {1} if C ∩
⋃
α>1Aα 6= ∅.

Observe that M 6= ∅. For each n ∈M , let

Dn = {D(n)
ti : i = 1, . . . , ln} ⊂ {D(n)

t : t ∈ {0, 1, . . . , 2n − 1}},
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where (ti)i=1,...,ln is a subsequence of the sequence (0, 1, . . . , 2n − 1), be a

family of sets such that (C ∩ D(n)
ti ) \ {mn−1(n)

ti ,m
n−1(n)
ti+1 } 6= ∅ (if the points

m
n−1(n)
ti ,m

n−1(n)
ti+1 are defined). Note that, for each n ∈M , Dn 6= ∅. Let n ∈M

and i ∈ {1, . . . , ln}. Let n 6= 1 (for n = 1, the proof is similar). Moreover, let
i be a number such that ti 6= ∅ and ti 6= 2n − 1 (for ti = 0 or ti = 2n − 1, the
proof is similar). Then, from the definition of Dn it follows that

C ∩ P ,(n)
ti ∩

⋃
1
n<α<

1
n−1

Aα 6= ∅ or C ∩ P (n)
ti ∩

⋃
1
n<α<

1
n−1

Aα 6= ∅

or C ∩ P ,(n)
ti+1 ∩

⋃
1
n<α<

1
n−1

Aα 6= ∅ or C ∩A,,(n)
ti 6= ∅

or C ∩A,(n)
ti+1 6= ∅.

If C ∩ P ,(n)
ti ∩

⋃
1
n<α<

1
n−1

Aα 6= ∅, then, by the assumptions, from (16) we

deduce that F
,(n)
ti ∩ Φ ⊂ (F

,(n)
ti−1 ∪ F

,(n)
ti ) ∩ Φ ⊂ g(C).

If C ∩ P (n)
ti ∩

⋃
1
n<α<

1
n−1

Aα 6= ∅, then, by the assumptions, from (18) we

conclude that F
,(n)
ti ∩ Φ ⊂ g(C).

If C∩P ,(n)
ti+1∩

⋃
1
n<α<

1
n−1

Aα 6= ∅, then, by the assumptions, from (16) we infer

that F
,(n)
ti ∩ Φ ⊂ (F

,(n)
ti ∪ F ,(n)

ti+1) ∩ Φ ⊂ g(C).

If C ∩ A,,(n)
ti 6= ∅, then, by the assumptions, from (21) we conclude that

F
,(n)
ti ∩ Φ ⊂ g(C).

If C ∩A,(n)
ti+1 6= ∅, then from (20) we deduce that F

,(n)
ti ∩ Φ ⊂ g(C).

Thus we have that the inclusion F
,(n)
ti ∩ Φ ⊂ g(C) holds for any n ∈ M and

i ∈ {1, . . . , ln}. This means that

g(F ∩ C) ∪
⋃
n∈M

ln⋃
i=1

(F
,(n)
ti ∩ Φ) ⊂ g(C). (23)

Let E =
⋃
n∈M

⋃ln
i=1 F

(n)
ti . Note that F

(n)
ti = projF (D

(n)
ti ) for any n ∈ M and

i ∈ {1, . . . , ln}. Moreover, observe that:

(F ∩ C) ∪ E is a connected set. (24)

Since f is a Darboux function and (F ∩C)∪E ⊂ F , from (24) it follows that
f((F ∩ C) ∪ E) is a connected set. Then, also,

Z =
⋃
n∈M

ln⋃
i=1

F
,(n)
ti ∪ f(F ∩ C) is a connected set. (25)
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Indeed, note that

Z =
⋃
n∈M

ln⋃
i=1

F
,(n)
ti ∪ f((F ∩ C) ∪ E),

because f(E) ⊂
⋃
n∈M

⋃ln
i=1 F

,(n)
ti . Since, f((F ∩ C) ∪ E), F

,(n)
ti (for n ∈ M

and i ∈ {1, . . . , ln}) are connected, and f((F ∩C)∪E)∩F ,(n)
ti ⊃ f(E)∩F ,(n)

ti ⊃
f(F

(n)
ti )∩F ,(n)

ti = f(F
(n)
ti ) 6= ∅. Therefore Z is connected. From Lemma 1 and

from (25) we deduce that

(
⋃
n∈M

ln⋃
i=1

F
,(n)
ti ∩ Φ) ∪ f(F ∩ C) is a connected set. (26)

Since g(C) = W ∪T , f(F ∩C) = g(F ∩C), W and T are separated. Therefore

from (23) and (26) we see that g(F ∩C)∪
⋃
n∈M

⋃ln
i=1(F

,(n)
ti ∩Φ) ⊂W or

g(F ∩ C) ∪
⋃
n∈M

⋃ln
i=1(F

,(n)
ti ∩ Φ) ⊂ T . We may assume that

g(F ∩ C) ∪
⋃
n∈M

ln⋃
i=1

(F
,(n)
ti ∩ Φ) ⊂W. (27)

(The other case is analogous.)
Now, we shall show thatg(C) ⊂W.Choose x ∈ C. If x ∈ F , then, by (27),

g(x) ∈ g(F ∩ C) ⊂ W . So, we assume that x /∈ F . Then x ∈ D(n0)
t0 for some

n0 ∈M , t0 ∈ {0, 1, . . . , 2n0 − 1}. Let n0 > 1 (for n0 = 1, the proof is similar)
and let t0 6= 0, t0 6= 2n0 − 1, (for t0 = 0 or t0 = 2n0 − 1 the proof is similar).
Consider the following three cases

10 : x 6= m
n0−1(n0)
t0 and x 6= m

n0−1(n0)
t0+1 .

Then D
(n0)
t0 ∈ D\′ . From (27) we have F

,(n0)
t0 ∩ Φ ⊂ W.Consider the following

subcases.
1a): x ∈ P ,(n0)

t0 ∩
⋃

1
n0
<α< 1

n0−1
Aα.

Then g(x) ∈ (F
,(n0)
t0−1 ∪F

,(n0)
t0 )∩Φ. Since x ∈ C and x ∈ P ,(n0)

t0 ∩
⋃

1
n0
<α< 1

n0−1
Aα,

we have C ∩ P ,(n0)
t0 ∩

⋃
1
n0
<α< 1

n0−1
Aα 6= ∅. Hence from (16) we infer that

(F
,(n0)
t0−1 ∪ F

,(n0)
t0 ) ∩ Φ ⊂ g(C) = W ∪ T.

From the connectedness of the set (F
,(n0)
t0−1 ∪ F

,(n0)
t0 ) ∩Φ, the fact that the sets

W and T are separated, the condition (F
,(n0)
t0−1 ∪ F

,(n0)
t0 ) ∩ Φ 6= ∅ and since
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F
,(n0)
t0 ∩ Φ ⊂W , it follows that (F

,(n0)
t0−1 ∪ F

,(n0)
t0 ) ∩ Φ ⊂W. Hence g(x) ∈W .

1b): x ∈ P ,(n0)
t0+1 ∩

⋃
1
n0
<α≤ 1

n0−1
Aα.

This case is similar to 1a).

1c): x ∈ (P
(n0)
t0 ∩

⋃
1
n0
<α< 1

n0−1
Aα) ∪A,,(n0)

t0 ∪A,(n0)
t0+1 .

Then from the definitions of the functions g and gn and since g(C) ⊂ W , it

follows that g(x) ∈ F ,(n0)
t0 ∩ Φ ⊂W.

20 : x = m
n0−1(n0)
t0 .

Then :
- if L

(n0)
t0 = L

(n0−1)
t1 for some t1 ∈ {0, 1, . . . , 2n0−1−1}, then at least one of the

sets D
(n0)
t0−1, D

(n0)
t0 , D

(n0−1)
t1−1 , D

(n0−1)
t1 belongs to the family {D(n)

ti : n ∈ M, i ∈
{1, . . . , ln}};
- if L

(n0)
t0+1 = L

(n0−1)
t1 for some t1 ∈ {0, 1, . . . , 2n0−1 − 1}, then at least one

of the sets D
(n0)
t0−1, D

(n0)
t0 , D

(n0−1)
t1−1 belongs to the family {D(n)

ti : n ∈ M, i ∈
{1, . . . , ln}};
In each of the above cases, let D

(n̂)

t̂
denote this set. Then projF (x) ∈ F

(n̂)

t̂

and (by (27)) g(x) ∈ f(F
(n̂)

t̂
) ⊂ cl(F

(n̂)

t̂
∩ Φ) ⊂ cl(W ). From the fact that

the sets W and T are separated it follows that g(x) /∈ T . On the other hand,
g(x) ∈ g(C) = W ∪ T . Hence g(x) ∈W .

30 : x = m
n0−1(n0)
t0+1 . This case is considered similarly as 20.

The inclusion g(C) ⊂ W has thus been proved. From it and the equality
g(C) = W ∪ T it follows that T = ∅, which completes the proof that g is a
Darboux function.

Now, we shall demonstrate that Qg = Qf . For this purpose, we first prove
that Qf ⊂ Qg.Consider x0 ∈ Qf . Fix ε?,δ? > 0. Then there exist a point
x′ and a number δ′ > 0, such that (x′ − δ′, x′ + δ′) ⊂ (x0 − δ?, x0 + δ?)
and f((x′ − δ′, x′ + δ′)) ⊂ K(f(x0), ε

?

2 ). Let n0 ∈ N \ {0, 1} be a positive

integer such that ε
n0

< ε?

a and such that there are four different half-lines

H
(n0)
t among those which have occurred in the construction of the function

gn0
(Denote them H0, H?

0 , H0, H0
? .), for which

H0 ∩ (x′ − δ′, x′) 6= ∅, H0 ∩ (x′, x′ + δ′) 6= ∅,
H?

0 ∩ (x′ − δ′, x′) 6= ∅, H0
? ∩ (x′, x′ + δ′) 6= ∅

and T0 ⊂ T ?0 where T0 (T ?0 ) denotes an open zone between a line which contains
H0 and a line which contains H0 (H?

0 and H0
? ). Let V0 = T0 ∩

⋃
0≤α< 1

n0

Aα ∩
K(x0, δ

?). Clearly, V0 is non-empty and open in Π+, and V0 ⊂ K(x0, δ
?)∩Π+.
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Note that g(V0) ⊂ K(f(x0), ε?), which proves Qg ⊂ Qf .

Now, we shall show that Qg ⊂ Qf .Consider x0 ∈ Qg. Clearly, x0 ∈ F .
Fix ε?, δ? > 0. Without loss of generality we may assume that δ? < 1

2 . Then
there exist a point x′ and a number δ′ > 0, such that K(x′, δ′) ⊂ K(x0, δ

?)
and g(K(x′, δ′) ∩ Π+) ⊂ K(f(x0), ε

?

2 ). Then K(x′, δ′) ∩
⋃

1
n0
<α< 1

n0−1
Aα 6= ∅

for some n0 ≥ 2. Assume that K(x′, δ′) intersects a closed zone between the

lines L
(n0)
t0 and L

(n0)
t0+1 for some t0 ∈ {1, . . . , 2n0 − 2}. (If K(x′, δ′) intersects a

closed half-plane with edge L
(n0)
1 which does not contain L

(n0)
2 , or if K(x′, δ′)

intersects a closed half-plane with edge L
(n0)
2n0−1 which does not contain L

(n0)
2n0−2,

the proof is analogous.) Then

K(x′, δ′) ∩ P (n0)
t0 ∩

⋃
1
n0
<α< 1

n0−1

Aα 6= ∅

or

K(x′, δ′) ∩ (P
,(n0)
t0 ∪ P ,(n0)

t0+1 ) ∩
⋃

1
n0
<α< 1

n0−1

Aα 6= ∅.

From (16) and (18) we can conclude that F
,(n0)
t0 ∩ Φ ⊂ g(K(x′, δ′) ∩ Π+).

Then put W0 = projF (K(x′, δ′)) ∩ F (n0)
t0 . Clearly, intF (W0) 6= ∅ and W0 ⊂

(x0 − δ?, x0 + δ?). Then

⋃
y∈f(W0)

K(y,
ε

n0
) ∩ Φ ⊂ g(K(x′, δ′) ∩Π?) ⊂ K(f(x0),

ε?

2
).

Hence

f(W0) ⊂ cl(
⋃

y∈f(W0)

K(y,
ε

n0
) ∩ Φ) ⊂ K(f(x0), ε?),

which proves Qg ⊂ Qf and consequently Qg = Qf .

We shall now show that Cg = Cf .We first prove that Cf ⊂ Cg.Consider
x0 ∈ Cf . Fix ε? > 0. Let δ > 0 be a number such that f((x0 − δ, x0 + δ)) ⊂
K(f(x0), ε

?

2 ). Let n0 ∈ N \ {0, 1} be a positive integer such that ε
n0

< ε?

2

and such that there are four different half-lines H
(n0)
t among those which have

occurred in the construction of the function gn0
(Denote them H0, H?

0 , H0,
H0
? .), for which

H0 ∩ (x0 − δ, x0) 6= ∅, H0 ∩ (x0, x0 + δ) 6= ∅,
H?

0 ∩ (x0 − δ, x0) 6= ∅, H0
? ∩ (x0, x0 + δ) 6= ∅
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and T0 ⊂ T ?0 where T0 (T ?0 ) denotes an open zone between a line which contains
H0 and a line which contains H0 (H?

0 and H0
? ). Let V0 = T0 ∩

⋃
0≤α< 1

n0

Aα ∩
K(x0, δ). Clearly, V0 is a non-empty neighborhood of x0 open in Π+. It is
easy to check that g(V0) ⊂ K(f(x0), ε?), which proves Cf ⊂ Cg.. It is also
easily seen that Cg ⊂ Cf , which proves Cf + Cg..

Now, we shall show that g has finite variation.For the purpose, note that

Ng(y) =

{
Nf (y), y /∈

⋃
z∈f(F )K(z, ε) ∩ Φ,

+∞, y ∈
⋃
z∈f(F )K(z, ε) ∩ Φ.

Hence Ng(y) = Nf (y) almost everywhere in R2. Therefore Ng is a measurable
function, and∨

R2

(g) =

∫
R2

Ng(y) dy

=

∫
⋃

z∈f(F )K(z,ε)∩Φ

Ng(y) dy +

∫
R2\(

⋃
z∈f(F )K(z,ε)∩Φ

)Ng(y) dy

=

∫
R2\(

⋃
z∈f(F )K(z,ε)∩Φ

)Nf (y) dy ≤
∫
R2

Nf (y) dy =
∨
R2

(f) < +∞.

Clearly, g is an ε-extension of f . Since Qg = Qf and since Cg = Cf , by (22)
g : Π+ → R2 is a Darboux function with finite variation, being an ε-extension
of f , such that Qg = Qf and Cg = Cf .

Let SF : R2 → R2 be a symmetry with respect to the line F . We define
f? : R2 → R2 by

f?(x) =

{
g(x) if x ∈ Π+,
g(SF (x)) if x ∈ R2 \ intΠ+).

It is easy to see that f? : R2 → R2 satisfies the conditions of our theorem.
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