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A GEOMETRIC ALGORITHM TO DECIDE
THE FORCING RELATION ON CYCLES

Abstract

The forcing relation was shown to be a partial order by S. Baldwin.
Here we give a new, natural, geometric algorithm to determine if one
cycle forces another.

1 Introduction.

In 1964, Sarkovskii [1] defined this linear order on the set of natural numbers.
Sarkovskii order:

3, 5, 7, 9, · · · , 2 · 3, 2 · 5, 2 · 7, · · · , 22 · 3, 22 · 5, 22 · 7, · · · , 2n · 3, 2n · 5, 2n · 7, · · · ,

· · · , · · · , · · · , 24, 23, 22, 2, 1

He proved the following theorem.
Sarkovskii’s Theorem.
Let f : R → R be a continuous map. If f has a periodic point of least

period n, then f has a periodic point of least period m for every m to the
right of n in the Sarkovskii order.

In 1987, S. Baldwin [2] considered not only the least period of a periodic
point but also the orbit type. He defined the forcing relation on finite cyclic
permutations (cycles), proved that this relation is a partial order, and provided
an exhaustive but inefficient algorithm to decide if one cycle forces another.
Many people have continued the study of this forcing relation on cycles; see
[3] sections 2.3 - 2.7 for a thorough discussion. Of particular interest is the
question of how to efficiently determine if one cycle forces another cycle (see
[3] text following corollary 2.7.2). Using kneading theory and combinatorial
arguments, Jungreis [4] provided an algorithm to determine if one cycle forces
another. In the case when the two cycles have approximately the same number

Key Words: cycles and forcing relation
Mathematical Reviews subject classification: Primary: 58F03 Secondary: 58F20
Received by the editors October 15, 1996

709



710 Irene Mulvey

of critical points, he provides a polynomial-time algorithm to decide the forcing
relation. In [5], a geometric proof of Jungreis’ algorithm is given and in [6]
this algorithm is generalized to two arbitrary cycles.

In this paper, we present (in section 5) a new, natural, geometric algorithm
to determine if a cycle θ forces a cycle η. We use oriented graph machinery for
θ (section 3) and we define a template for η (section 4). The oriented graph
used here is a bit more complicated than that described in [2] and [3], but will
provide more information. This oriented graph enables one to rule out certain
cycles as being forced by the given cycle. In particular, our oriented graph
indicates the maximum number of consecutive moves to the right (and left)
that a cycle forced by a given cycle can make. The idea of the template for a
cycle is new. In section 6, we give examples and remarks on how this outlook
can be used to illustrate some of the structure of the total order induced by
the forcing relation on unimodal cycles.

2 Preliminaries

Let f : I → I be a continuous map on a compact interval. Define f0(x) = x
and for n ∈ N , fn(x) = f(fn−1(x)). For x ∈ I, the orbit of x is the set

orbf (x) = {f i(x) : i = 0, 1, 2, · · · }

If there exists k ∈ N satisfying fk(x) = x, we say x is periodic for f and x has
least period s where s is smallest in N such that fs(x) = x. A point of least
period 1 is called a fixed point for f . If x is periodic for f with least period s,
then the orbit of x is the finite set orbf (x) = {x, f(x), f2(x), · · · , fs−1(x)}.

A cycle is a bijection η : {1, 2, · · · ,m} → {1, 2, · · · ,m} satisfying ηk(1) 6= 1
for 1 ≤ k < m. We will usually denote a cycle η by η = (k1, k2, · · · , km) where
η(ki) = ki+1 and η(km) = k1.We will assume, without loss of generality, that
k1 = 1. Write the elements of a periodic orbit, orbf (x), in increasing order:
x1 < x2 < · · · < xs. We say orbf (x) has orbit type η if η is a cycle on
{1, 2, · · · , s} and f(xi) = xη(i). In fact, we will say any xi in orbf (x) has orbit
type η.

The forcing relation on cycles is defined as follows: θ forces η if and only
if every continuous map of the interval that has a periodic orbit of type θ
has a periodic orbit of type η. Baldwin [2] proved that this relation induces
a partial order on the set of cycles. In the rest of this paper, any periodic
orbit is assumed to have period s ≥ 3 since forcing on smaller periodic orbits
and the corresponding cycles can be easily handled via special cases. Period
doubles do not cause a problem either. A periodic orbit has an orbit type η on
{1, 2, · · · ,m} that is a period double if m is even and η cyclically permutes the
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sets {1, 2}, {3, 4}, · · · , {m − 1,m}. And, η is said to be a double of the cycle
η/2 on {1, 2, · · · ,m/2} defined by η/2(i) = j if and only if η({2i − 1, 2i}) =
{2j − 1, 2j}. Every double forces the cycle it is a double of and no cycle can
force a cycle θ without forcing every double of θ as well (see [7]). We may
assume that we are not dealing with a period double since we can replace any
period double η with the cycle it is a double of.

3 An Oriented Graph for θ

Let θ be a cycle on {1, 2, · · · , n} with n ≥ 3. In this section we define an
oriented graph M(θ) for θ and obtain results concerning loops in M(θ). (The
oriented graph constructed here is more complicated than the similar object
in [2] and [3] in that it is constructed using the integers {1, 2, · · · , n} and the
fixed points of the θ-linear map, but this more complicated construction yields
more information. See [8] sections 1.1-1.4, [2] section 2, and [3] Chapter 1.

The θ-linear map fθ is the continuous function defined by fθ : [1, n]→ [1, n]
by fθ = θ on {1, 2, · · · , n} and fθ is linear on [i, i + 1] for 1 ≤ i ≤ n − 1. Let
P = {p1, p2, · · · , pk} denote the non-empty, finite set of fixed points of fθ.

Since P ∩ {1, 2, · · · , n} = ∅, we can list the elements of P ∪ {1, 2, · · · , n}̇ in
increasing order:

1 = q1 < q2 < · · · < qn+k = n

These points determine a collection of (n + k − 1) non-degenerate, compact
intervals with mutually disjoint interiors and union equal to [1, n]. We label
each interval L or R depending on whether each element in the interior of the
interval is mapped to its left or to its right by fθ and we number the intervals
in increasing order from left to right. Specifically, for 1 ≤ i ≤ n+ k − 1,

Ii = [qi, qi+1] =

{
Li if fθ(x) < x for all x ∈ (qi, qi+1)

Ri if fθ(x) > x for all x ∈ (qi, qi+1).

Note that we always have [1, q2] = R1 and [qn+k−1, n] = Ln+k−1. Let
G = {I1,I2, · · · , In+k−1} denote the set of intervals and define a relation R on
G as follows:

IiRIj ⇔ fθ(Ii) ⊇ Ij .

Define a function sgn : G→ {+1,−1} by

sgn(Ii) =

{
+1 if fθ has positive slope on Ii

−1 if fθ has negative slope on Ii.
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The oriented graph for θ, denoted M(θ), is the triple (G,R, sgn).

A finite path of length s in M(θ) in an s-tuple W = (Ii1 , Ii2 , · · · , Iis) ∈ GS
such that IikRIik+1

for 1 ≤ k ≤ s−1. If, in addition, IisRIi1 , we say the finite
path is a loop of length s. A loop in M(θ) is repetitive if it is a shorter loop
repeated more than once. That is, W = (Ii1 , Ii2 , · · · , Iis) is repetitive if there
is a divisor r of s such that Iij = Iij+r for 1 ≤ j ≤ s − r. Otherwise, W is
non-repetitive. We state a slight variation of a well-known result. ([8] lemma
1.4, [3] lemma 1.2.7]).

Lemma 3.1. Let θ be a cycle with oriented graph M(θ). For each non-
repetitive loop, W = (Ii1 , Ii2 , · · · Iis), of length s ≥ 3 in M(θ), there exists an
x in [1, n] with least fθ-period s and fkθ (x) ∈ Iik+1

for 0 ≤ k ≤ s− 1.

In lemma 3.1, we must assume s ≥ 3 because in our construction a non-
repetitive loop of length 2 may correspond to a fixed point. But, for non-
repetitive loops of length greater than 2, there is no problem.

Since our oriented graph is signed, for any non-repetitive loop in M(θ),
we can find the orbit type of the periodic point x (as in [2] section 2, and [3]
remark 2.6.7). The oriented graph in this paper is a bit more complicated,
but the results are essentially the same. First, we define the orbit type of a
non-repetitive loop in M(θ).

Define a strict linear order on distinct loops of the same length in M(θ) as
follows. For W = (Ii1 , Ii2 , · · · , Iis) and V = (Ij1 , Ij2 , · · · , Ijs),

W < V ⇔
m−1∏
n=1

sgn(Iin) · im <

m−1∏
n=1

(sgn(Ijn) · jm

where m ≤ s is smallest such that im 6= jm. Define a natural shift operation
on loops in M(θ):

sh(Ii1 , Ii2 , · · · , Iis) = (Ii2 , Ii3 , · · · , Iis , Ii1)

If W is a non-repetitive loop of length s ≥ 3 in M(θ), letW be the smallest set
of loops from M(θ) that contains W and is closed under the shift operation.
Let g :W → {1, 2, · · · s} be the unique, order-preserving bijection and define a
cycle πW by πW (i) = g ◦ sh ◦ g−1(i) for 1 ≤ i ≤ s. We define the orbit type of
W to be the cycle πW . For W = (Ii1 , Ii2 , · · · Iis) a non-repetitive loop in M(θ),
we will say that x in [1, n] has itinerary W if fkθ (x) ∈ Iik+1

for 0 ≤ k ≤ s− 1.

Lemma 3.2. Let W and V be distinct loops of the same length in M(θ). If
W < V , then every x with itinerary W is less than every y with itinerary V .
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Proof. Let W = (Ii1 , Ii2 , · · · , Iis) and V = (Ij1 , Ij2 , · · · , Ijs). Say m ≤ s is
smallest such that im 6= jm. Since W < V , we must have either (1) x and y
satisfy fm−1(x) < fm−1(y) after having been mapped through an even number
of orientation-reversing intervals, or (2) x and y satisfy fm−1(x) > fm−1(y)
after having been mapped through an odd number of orientation-reversing
intervals. In either case, x < y.

Theorem 3.3. Let θ be a cycle with oriented graph M(θ). If W is a non-
repetitive loop of length s ≥ 3 in M(θ), then there exists a periodic point x in
[1, n] with least fθ-period s and the orbit type of x is the same as the orbit type
of W .

Proof. Say W = (Ii1 , Ii2 , · · · , Iis). By lemma 3.1, there is x in [1, n] with
least fθ-period s and fkθ (x) ∈ Iik+1

for 0 ≤ k ≤ s− 1. Write the orbit of x in
increasing order: orbf (x) = {x1 < x2 < · · ·xs}. Write W in increasing order:
W = {W1 < W2 < · · · < Ws}, where as before W is the smallest collection
of loops that contains W and is closed under the shift operation. Let πW be
the cycle that denotes the orbit type of W as previously defined. For each i,
xi has itinerary Wi by the order defined on walks. Let the orbit type of x be
given by the cycle ϕ. Now,

πW (i) =j ⇔ g ◦ sh ◦ g−1(i) = j

⇔sh ◦ g−1(i) = g−1(j)

⇔sh(Wi) = Wj

⇔the itinerary of f(xi) = the itinerary of xj

⇔f(xi) = xj

⇔ϕ(i) = j

4 The Template for η.

Let η = (k1, k2, · · · , ks) be a cycle on {1, 2, · · · , s} and assume, without loss of
generality, that k1 = 1. Define p : {1, 2, · · · , s} → {1, 2, · · · , s} by p(kj) = j.
That is ,

p(m) = j ⇔ ηj−1(1) = m

(So, p describes the location of each integer in the orbit of 1.) We now de-
fine the template for η which will be a collection of combinatorial data that
captures the orbit structure of η .
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Definition. The template for η is
(1) an s-tuple I = (I1, I2, · · · , Is) ∈ {R,L}s
(2) an (s− 1)-tuple J = (m1,m2, . . . ,ms−1) ∈ {<,≤}s−1
(3) an (s− 1)-tuple K = (n1, n2, · · · , ns−1) ∈ {0,+1,−1}s−1
defined as follows. For 1 ≤ j ≤ s define

Ij =

{
R if ηj(1) > ηj−1(1)

L if ηj(1) < ηj−1(1).

And for 1 ≤ j ≤ s− 1 define

mj =

{
< if Ip(j) 6= Ip(j+1)

≤ if Ip(j) = Ip(j+1), and

nj =


+1 if mj is ≤ and η is orientation-preserving on {j, j + 1}
−1 if mj is ≤ and η is orientation-reversing on {j, j + 1}
0 if mj is < .

The definition of nj makes sense because mj is ≤ only when the two adja-
cent points j and j+ 1 are both mapped to the right by η or are both mapped
to the left by η. Note that I1 = R and Is = L always.

In practice, it is simple to write the template for η. (It is helpful to draw
the orbit on a line.) The template for η = (132) is I = (R,L,L), J = (<
,≤), and K = (0,+1). The template for η = (13542) is I = (R,R,L, L, L),
J = (<,<,<,≤), and K = (0, 0, 0,+1). The template for η = (1234) is
I = (R,R,R,L), J = (≤,≤, <), and K = (+1,+1, 0).

5 Main theorem.

In this section we prove the main theorem which provides a way to deter-
mine if one cycle θ forces another cycle η. Assume θ is a cycle with oriented
graph M(θ) as defined in section 3. Assume η = (k1, k2, · · · , ks) is a cycle on
{1, 2, · · · , s} with k1 = 1, η has template (I, J,K) given by

I = (I1, I2, · · · , Is) ∈ {R,L}s

J = (m1,m2, · · · ,ms−1) ∈ {<,≤}s−1

K = (n1, n2, · · · , ns−1) ∈ {+1,−1, 0}s−1
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and as before, p : {1, 2, · · · , s} → {1, 2, · · · , s} is defined by p(kj) = j.
Definition. A non-repetitive loop W of length s from M(θ)

W = (Hi1 , Hi2 , · · · , His)

fits the template for η if and only if

(1) for all 1 ≤j ≤ s, Hij = Ij

(2) for all 1 ≤j ≤ s− 1, ip(j) mj ip(j+1)

(3) for all 1 ≤j ≤ s− 1, if ip(j) = ip(j+1), then sgn(Hip(j)) = nj

The idea is this: the data contained in the template of η captures the
orbit structure of η so that any loop in M(θ) that fits the template of η will
guarantee the existence of a periodic point for fθ that has orbit type η.

Lemma 5.1. Let W = (Hi1 , Hi2 , · · · , His) be a non-repetitive loop that fits
the template for η, then for 1 ≤ j ≤ s − 1 the loop that is a shift of W and
begins with Hip(j) is the jth smallest walk in W.

Proof. We will show that the loop beginning with Hip(j) is smaller than the
loop beginning with Hip(j+1)

. In any event, since W fits the template for η, we
have ip(j) ≤ ip(j+1). If ip(j) < ip(j+1) , then the result immediately follows. If
ip(j) = ip(j+1) , then sgn(Hip(j)) = nj is either +1 or −1. If sgn(Hip(j)) = +1
, then η is orientation-preserving on {j, j + 1}, so η(j) < η(j + 1). Then,
ip(η(j)) ≤ ip(η(j+1)). As before, if ip(η(j)) < ip(η(j+1)) , then the result follows.
If sgn(Hip(j)) = −1 , then η is orientation-reversing on {j, j + 1} , so η(j) >
η(j + 1). Then, ip(η(j)) ≥ ip(η(j+1)). If ip(η(j)) > ip(η(j+1)) , then the result
follows. The lemma follows by repeating this argument.

Lemma 5.2. If W is a non-repetitive loop that fits the template of η, then
the orbit type of W is η.

Proof. Suppose W has orbit type π. Then,

π(b) = g ◦ sh ◦ g−1(b)

= g ◦ sh
[
Hip(b) , Hip(b)+1

, · · ·Hip(b)−1

]
= g
[
Hip(b)+1

, Hip(b)+2
, · · ·Hip(b)

]
= g
[
Hip(η(b)) , Hip(η(b))+1

, · · ·Hip(η(b))−1

]
= η(b)

since p(b) + 1 = p(η(b)).
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Theorem 5.3. θ forces η ⇔ θ = η or there is a non-repetitive loop in M(θ)
that fits the template for η

Proof. [⇐] We have a loop W in M(θ) that fits the template for η. By
theorem 3.3, there is x ∈ [1, n] with least fθ-period s and the orbit type of x
is the orbit type of the W . By lemma 5.2, x has orbit type η.

[⇒]θ forces η and θ 6= η, so fθ has a periodic point x with orbit type η.
Then, W defined by W = (Ii1 , Ii2 , · · · , Iis) where f j−1(x) ∈ Iij for 1 ≤ j ≤ s
is a non-repetitive loop in M(θ) that fits the template for η.

6 Examples and Remarks.

Let θ = (1234). The oriented graph for θ is given by M(θ):

R1(+)→R2

R2(+)→R3, L4

R3(−)→L4

L4(−)→R1, R2, R3

For η = (123), there are exactly two loops in M(θ) that fit the template
for η; namely W1 = R1R2L4 and W2 = R2R3L4. So, θ forces η and, in
fact, fθ contains exactly two distinct orbits of type η. Now of course, by
Sarkovskii’s theorem, for every n, fθ must have a point of least period n. But
it is evident from M(θ) that θ cannot force any cycle whose template contains
2 or more consecutive L’s or 4 or more consecutive R′s. In particular, θ cannot
force η = (136452) since the template for this η begins with the RL pattern:
(R,R,L,R,L, L) which has 2 consecutive L′s. Further, θ = (1234) does force
η = (12435) as shown by the closed walk W = R1R2L4R3L4. And, θ = (1234)
forces η = (135246) as seen by the closed walk R1R2L4R2R3L4. This last η is
a double of η/2 = (123).

A cycle is called unimodal if there is exactly one turning point. For sim-
plicity, let us assume a unimodal cycle has exactly one turning point and this
turning point is a maximum. The forcing relation is a total order on the set
of unimodal cycles [9]. The geometric perspective in this paper sheds light on
the structure of this total order. For example, the template for a unimodal cy-
cle cannot have 2 or more consecutive L’s. And the structure of the oriented
graph for a unimodal cycle is relatively uncomplicated. It is readily shown
using the geometric algorithm described here that a unimodal cycle whose
template contains k consecutive R’s must force any unimodal cycle whose
template contains at most j consecutive R’s whenever j < k.



The Forcing Relation on Cycles 717

References

[1] A. N. Sarkovskii, Coexistence of cycles of a continuous map of the line
into itself, Ukr. Math. Z. 16 (1964) 61–71, in Russian.

[2] S. Baldwin, Generalizations of a theorem of Sarkovskii on orbits of con-
tinuous maps of the real line, Discrete Math. 67 (1987) 111–127.

[3] Alseda, LLibre, Misiurewicz, Combinatorial Dynamics and Entropy in
Dimension One, World Scientific Publishing Co., (1993).

[4] I. Jungreis, Some results on the Sarkovskii partial ordering of permuta-
tions, Trans. Amer. Math. Soc. 325 (1991) 319–344.

[5] C. Bernhardt, E. Coven, M. Misiurewicz, I. Mulvey, Comparing Periodic
orbits of Maps of the Interval, Trans. Amer. Math. Soc.333 (1992) no. 2
701–707.

[6] C. Bernhardt, E. Coven, A polynomial-time Algorithm for Deciding the
Forcing Relation on Cyclic Permutations, Contemp. Math. 135 (1992)
85–93.

[7] C. Bernhardt, Simple Permutations with order a power of two, Ergodic
Theory and Dynamical Systems 4 (1984), 179–186.

[8] L. Block, J. Guckenheimer, M. Misiurewicz, L-S Young, Periodic points
and topological entropy of one-dimensional maps, Trans. Amer. Math.
Soc. 300(1987) 297–306.

[9] P. Collet and J-P. Eckmann, Iterated Maps on the Interval as Dynamical
Systems, Birkhauser, (1980).


