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ON DERIVATIVES VANISHING ALMOST
EVERYWHERE ON CERTAIN SETS

Abstract

Let g be a measurable real valued function on a bounded, measurable
subset of the real line. We prove that if g(E) has measure 0, then 0
is one of the derived numbers of g at almost every point in E. We
find a function H on the real line that is nondecreasing and closely
associated with G, such that if g(E) has measure 0, the H ′ vanishes
almost everywhere. Moreover, if g is an N -function on E and if H ′

vanishes almost everywhere, then g(E) has measure 0.

1

In this paper g is a measurable function on a bounded measurable set E of
real numbers. We let m denote Lebesgue measure and me denote Lebesgue
exterior measure. From [K] or [SV] we deduce that if g is differentiable almost
everywhere on E and if m(g(E)) = 0, then g′ = 0 almost everywhere on E.
Moreover, if g is anN -function (this means g maps subsets of E of measure zero
to sets of measure zero) and if g has zero derivative almost everywhere on E,
then m(g(E)) = 0. These results have application, for example, to variations
on the chain rule of differentiation and the change of variables formula of
integration (consult [F] and [SV]).

Approximate differentiation [S, chapters VII and IX] is important in real
analysis. In section 2, we prove that these results hold when derivatives are
replaced by approximate derivatives. We offer (See also [F, Lemma K] and
[El, page 489] the following theorem.

Theorem 2.1. Let g be approximately differentiable almost everywhere on E.
We have:

(1) if m(g(E)) = 0, then g′ap = 0 almost everywhere on E,

Key Words: derivative, approximate derivative, derived number, N -function, measure,
bounded variation

Mathematical Reviews subject classification: 26A24, 28A20
Received by the editors December 17, 1997

641



642 F. S. Cater

(2) if g is an N -function on E, and if g′ap = 0 almost everywhere on E, then
m(g(E)) = 0.

We say that a point xo ∈ E is a knot point of g if D+g(xo) = D−g(xo) =∞
and D+g(xo) = D−g(xo) = −∞ where D+g denotes the upper right Dini
derivative of g relative to E, etc.

We deduce from [S, Theorem 10.1, chapter IX] that for almost every x ∈
E, either x is a knot point of g or g is approximately differentiable at x.
Immediately from Theorem 2.1 we obtain:

Corollary 2.2. Let m(g(E)) = 0. Then almost every x ∈ E is either a knot
point of g or g′ap(x) = 0.

Corollary 2.3. Let g′ap 6= 0 almost everywhere on E, and let g be a one-to-one
function on E. Then g−1 is an N -function on g(E).

When we use derived numbers [N, chapter VIII, p. 207] relative to E, we
can delete the differentiation hypothesis altogether. In section 3, we offer:

Theorem 3.1. Let m(g(E)) = 0. Then 0 is a derived number of g at almost
every x ∈ E.

An immediate consequence of this is:

Corollary 3.2. Let g be one-to-one on E, and let all the derived numbers of
g be nonzero at almost every x ∈ E. Then g−1 is an N -function on g(E).

Apparently neither Theorem 2.1(1) nor Theorem 3.1 implies the other,
although they each imply part of the result cited in [SV].

In section 4 we try to link zero derivatives with me(g(E)) when g is mea-
surable. The obvious problem is that g need not be differentiable, so we use
derivatives of a function closely associated with g. For each real number y, let
H(y) = m

(
{t ∈ E : g(t) < y}

)
. Then H(y) is a nondecreasing function of y

mapping R into the interval [0,m(E)]. We offer:

Theorem 4.1. We have:

(1) if m(g(E)) = 0, then H ′ = 0 almost everywhere on R;

(2) if H ′ = 0 almost everywhere on R, and if g is an N -function on E, then
m(g(E)) = 0.

We also find use for infinite derivatives. Put

T =
{
t ∈ E : m(g−1(g(t))) = 0

}
.

We offer:
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Theorem 4.2. We have:

(1) if m(g(E)) = 0, then H ′(g(t)) =∞ for almost every t ∈ T ;

(2) if H ′(g(t)) =∞ for almost every t ∈ T , and if g is an N -function on E,
then m(g(E)) = 0.

Now for t ∈ E, put

K(t) = lim sup
r↓0

r
(
H
(
g(t) + r

)
−H

(
g(t)

))−1
.

We offer:

Theorem 4.3. Let g be an N -function on E. Then K is a measurable ex-
tended real valued function that is finite almost everywhere on E. Moreover,

m(g(E)) =

∫
E

K(t) dt . (∗)

Thus we found a function K closely associated with g for which equation
(∗) holds.

2

To prove Theorem 2.1, let g be approximately differentiable almost everywhere
on E. Say A = {x ∈ E : g is approximately differentiable at x} where
m(E \A) = 0. From [S, Theorem 10.8, chapter VII] we deduce that there is a
sequence of sets A1, A2, A3, . . . where A = ∪nAn and g is of bounded variation
on each An. Fix n and let f denote the restriction of g to An. It follows that
f ′An

(x) = g′ap(x) at any point of density x of An, and thus f ′An
= g′ap almost

everywhere on An.

To prove part (1) assume m(g(E)) = 0. Then m(f(An)) = 0 and by [SV]
we have f ′An

= 0 almost everywhere on An. It follows that g′ap = 0 almost
everywhere on An. But n was arbitrary, so g′ap = 0 almost everywhere on A
and on E. 2

To prove part (2) assume g is an N -function on E and g′ap = 0 almost
everywhere on E. Let f and An be as in the preceding paragraph. Then f is
an N -function on An and f ′An

= 0 almost everywhere on An. By [SV] we have
m(f(An)) = 0 and hence m(g(An)) = 0. But n is arbitrary, so m(g(A)) = 0.
Finally, m(E \ A) = m(g(E \ A)) = 0 because g is an N -function on E. It
follows that m(g(E)) = 0. 2
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The proof of Corollary 2.2 was essentially given in section 1, so we omit it
here.

To prove Corollary 2.3, let B be a subset of g(E) with m(B) = 0. There
is a set C that is the intersection of countably many open sets in R such
that B ⊂ C and m(C) = 0. Then g−1(C) is measurable because g is a
measurable function on E. By Theorem 2.1, g′ap = 0 almost everywhere on

g−1(C) and from the hypothesis we deduce that m
(
g−1(C)

)
= 0. But B ⊂ C

so m
(
g−1(B)

)
= 0. 2

3

We begin this section with a lemma that may be of some interest in its own
right.

Lemma I. Let p ≥ 1 and let m(E) > p2me(g(E)). Then there is a measurable
subset A of E such that m(A) > (1 − p−1)m(E) and for each x ∈ A there is
a u ∈ E (depending on x) with

∣∣g(x)− g(u)
∣∣ < 2p−1|x− u| .

Proof. Let I1, I2, I3, . . . be a sequence of mutually disjoint open intervals
covering g(E) such that

∑
nm(In) < p−2m(E). Let J1, J2, J3, . . . be those

intervals In for which m
(
g−1(In)

)
> p ·m(In), and let K1,K2,K3, . . . be the

remaining In. Now g is measurable, so

m
(
∪j g−1(Kj)

)
=
∑
j

m
(
g−1(Kj)

)
≤ p ·

∑
j

m(Kj)

by the choice of the Kj . But
∑

j m(Kj) ≤
∑

nm(In) < p−2m(E), so

m
(
∪j g−1(Kj)

)
< p−1m(E) . (1)

Also by (1),

m(E) = m
(
∪n g−1(In)

)
= m

(
∪j g−1(Jj)

)
+m

(
∪j g−1(Kj)

)
<

< m
(
∪j g−1(Jj)

)
+ p−1m(E) ,

so
m
(
∪j g−1(Jj)

)
>
(
1− p−1

)
m(E) . (2)

It remains to prove that ∪jg−1(Jj) suffices for A. Let x ∈ ∪jg−1(Jj). Say
x ∈ g−1(JN ) and g(x) ∈ JN . Recall that by the choice of JN ,

m
(
g−1(JN )

)
> p ·m(E) . (3)
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There are points u, v ∈ g−1(JN ) such that

|u− v| > p ·m(JN ) . (4)

Moreover, g(u), g(v) g(x) ∈ JN and because JN is an open interval,∣∣g(x)− g(u)
∣∣ < m(JN ) and

∣∣g(x)− g(v)
∣∣ < m(JN ) . (5)

Now by (4), |x−u|+|x−v| ≥ |u−v| > p·m(JN ), so either |x−u| > p·m(JN )/2
or |x − v| > p ·m(JN )/2. Then by (5), either |x − u| > p|g(x) − g(u)|/2 or
|x− v| > p|g(x)− g(v)|/2.

To prove Theorem 3.1, for each positive integer i partition E into finitely
many mutually disjoint measurable sets Ei1, Ei2, Ei3, . . ., each of diameter
< 2−i. By hypothesis, m(g(Eij)) = 0 for all i and j. We deduce from Lemma I,
there is measurable set Aij ⊂ Eij such that m(Eij \ Aij) < 2−i−jm(Eij) and
for each x ∈ Aij there is a u ∈ Eij with |g(x)− g(u)| < 2−i|x− u|. We leave
the proof that 0 is a derived number of g at each point in B = ∩∞k=1∪∞i=k∪jAij

and m(E \B) = 0. 2

The proof of Corollary 3.2 is analogous to the proof of Corollary 2.3, so we
leave it.

4

We begin with a lemma to dispose of certain details.

Lemma II. If S ⊂ T , and m(H(g(S))) = 0, then m(S) = 0. Moreover, if
at each x ∈ S either H ′(g(x)) = 0 or H does not have a finite or infinite
derivative at g(x), then m(S) = 0.

Proof. Let m(H(g(S))) = 0. Choose ε > 0. Let (a1, b1), (a2, b2), (a3, b3), . . .
be a sequence of open intervals covering H(g(S)) with

∑
i(bi − ai) < ε. Thus

H
(
g(S)

)
⊂ ∪i(ai, bi) . (1)

For each index i, put Si = {s ∈ S : H(g(s)) ∈ (ai, bi)}. Let u1, u2 ∈ Si for
some index i, where H(g(u1)) ≤ H(g(u2)). Then ai < H(g(u1)) ≤ H(g(u2)) <
bi. So

ai < m
{
t ∈ E : g(t) < g(u1)

}
≤ m

{
t ∈ E : g(t) < g(u2)

}
< bi .

Because g is measurable,

m
{
t ∈ E : g(u1) ≤ g(t) < g(u2)

}
=m

{
t ∈ E : g(t) < g(u2)

}
−m

{
t ∈ E : g(t) < g(u1)

}
.
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So {
t ∈ E : g(u1) ≤ g(t) < g(u2)

}
< bi − ai . (2)

But u2 ∈ T , so m
{
t ∈ E : g(t) = g(u2)

}
= 0, and by (2)

m
{
t ∈ E : g(u1) ≤ g(t) ≤ g(u2)

}
< bi − ai . (3)

It is not difficult to see that

m(Si) ≤ (bi − ai) . (4)

(Just let g(u1) tend to inf g(Si) and g(u2) tend to sup g(Si), etc.)
It follows from (1) and (4) that

m(S) ≤
∑
i

m(Si) ≤
∑
i

(bi − ai) < ε . (5)

Finally, ε is arbitrary, so m(S) = 0. Put

S′ = {s ∈ S : H ′(g(s)) = 0},

S′′ = {s ∈ S : H has no finite or infinite derivative at g(s)}.

Then m(H(g(S′))) = 0. By de la Vallée Poussin’s Theorem (see for example
[S, Theorem (9.1), chapter IV]), we see that m(H(g(S′′))) = 0.

To prove the second statement in Lemma II, assume S = S′ ∪ S′′. Hence
m(H(g(S))) ≤ m(H(g(S′))) +m(H(g(S′′))) = 0. So m(H(g(S))) = 0. By the
previous part, m(S) = 0.

We turn now to the theorems in section 4.

Proof of Theorem 4.1(1). Let m(g(E)) = 0. Let ε > 0. Let I1, I2, I3, . . .
be mutually disjoint open intervals covering g(E) such that

∑
j m(Ij) < ε.

Select an index N so that
∑∞

j=N+1m(g−1(Ij)) < ε2 . Then

m
(
∪∞j=N+1 g

−1(Ij)
)
< ε2 . (6)

Let [a1, b1], [a2, b2], [a3, b3], . . . be mutually disjoint closed intervals, each dis-
joint from ∪Nj=1Ij . By (6) and the definition of H, we have

∑
j

(
H(bj) −

H(aj)
)
< ε2. By [HS, Theorem (18.14), chapter V],

∑
j

∫ bj

aj

H ′(x) dx ≤
∑
j

(
H(bj)−H(aj)

)
< ε2 . (7)
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Let D = {x : H ′(x) > ε}. We deduce from (7) that

m
(
D ∩

(
∪j [aj , bj ]

))
< ε . (8)

From (8) we deduce that m
(
D \ (∪Nj=1Ij)

)
≤ ε. But m

(
∪Nj=1Ij

)
< ε, so

m(D) < 2ε . (9)

Because ε is arbitrary, we conclude that m
{
x : H ′(x) > 0

}
= 0.

Proof of Theorem 4.1(2). Let H ′ = 0 almost everywhere, and let g be
an N -function on E. Let S = {s ∈ T : H ′(g(s)) = 0}. By Lemma II,
m(S) = 0. Because g is an N -function on E, m(g(S)) = 0. Now H ′ = 0
almost everywhere, so m(g(T \ S)) = 0, and hence m(g(T )) = 0.

Moreover, g−1(y) can have positive measure for at most countably many
y, so g(E \ T ) is countable. Finally, m(g(E)) = 0.

Proof of Theorem 4.2(1). Let m(g(E)) = 0. Put

T1 = {t ∈ T : H has no finite or infinite derivative at g(t)},

T2 = {t ∈ T : H has a finite derivative at g(t)}.

By Lemma II, m(T1) = 0. We deduce from [S, Theorem (4.5), chapter IX]
and m

(
g(T2)

)
= 0 that m

(
H(g(T2)

)
= 0. By Lemma II, m(T2) = 0. So

m(T1 ∪ T2) = 0, and t ∈ T \ (T1 ∪ T2) implies H ′(g(t)) =∞.

Proof of Theorem 4.2(2). Let H ′(g(t)) = ∞ for almost every t ∈ T and
let g be an N -function on E. Put T0 = {t ∈ T : H ′(g(t)) = ∞}. Then
m(g(T0)) = 0 by [S, Theorem (4.4), chapter IX]. But m(T \ T0) = 0 by
hypothesis and hence m

(
g(T \ T0)

)
= 0 because g is an N -function on E.

It follows that m(g(T )) = 0. We recall that g(E \ T ) is a countable set, so
m(g(E)) = 0.

For our last result, we need more lemmas.

Lemma III. Let g be an N -function on E. Then there exists a measurable
set P ⊂ T such that

(i) K(t) = 0 for almost every t ∈ E \ P ,

(ii) m
(
g(E \ P )

)
= 0,

(iii) 0 < K(t) = 1/H ′
(
g(t)

)
<∞ for every t ∈ P .
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Proof. If t ∈ E \ T , it follows that

H
(
g(t) + h

)
−H

(
g(t)

)
≥ m

(
g−1(g(t))

)
> 0

for any h > 0, and it follows from the definition of K that K(t) = 0. We recall
that g(E \ T ) is countable, so m(g(E \ T )) = 0. Now put

T3 = {t ∈ T : H has no finite or infinite derivative at g(t)},

T4 = {t ∈ T : H ′(g(t)) = 0},

T5 = {t ∈ T : H ′(g(t)) =∞}.

By Lemma II, m(T3) = m(T4) = 0, and because g is an N -function on E,
m(g(T3)) = m(g(T4)) = 0. For t ∈ T \ (T3 ∪ T4) it follows that H has a
positive finite or infinite derivative at g(t), and it follows from the definition
of K that K(t) = 1/H ′(g(t)) (here 0 = 1/∞). But H(g(t)) and H

(
g(t) + h

)
are measurable functions of t because g is measurable and H is monotonic.
We deduce that K is measurable on T \ (T3 ∪ T4). Then T5 is a measurable
set. By [S, Theorem (4.4), chapter IX], m(g(T5)) = 0. By the definition of K,
K(t) = 0 for any t ∈ T5.

Put P = T \(T3∪T4∪T5). Then P is measurable because T and the Ti are
measurable. Finally, (i), (ii) and (iii) follow from the preceding paragraph.

It is well-known that if g is a measurable N -function on E, then g(E) is
measurable. It follows that g(P ) is measurable in Lemma III.

Lemma IV. Let g be an N -function on E. Let c, d, u be real numbers such
that u > 0 and 0 < c < d. Let L be a closed set such that for every x ∈ L and
y satisfying x < y < x+u, we have c(y−x) ≤ H(y)−H(x) ≤ d(y−x) . Then

c ·m(L) ≤ m
(
g−1(L)

)
≤ d ·m(L) .

Proof. Let n be an integer with n−1 < u. Cover L with countably many
mutually disjoint half open intervals [a1, b), [a2, b2), [a3, b3), . . . so that bi−ai <
n−1 and ai ∈ L for each i. Let Un = ∪i[ai, bi). It follows that

c(bi − ai) ≤ H(bi)−H(ai) ≤ d(bi − ai) for each i ,

and hence
c(bi − ai) ≤ m

(
g−1[ai, bi)

)
≤ d(bi − ai) . (10)

It follows that

c ·
∑
i

(bi − ai) ≤
∑
i

m
(
g−1([ai, bi))

)
≤ d ·

∑
i

(bi − ai)
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and
c ·m(Un) ≤ m

(
g−1(Un)

)
≤ d ·m(Un) . (11)

By inductive construction, we choose Un so that Un ⊂ Un−1 for all n > 1+u−1.
The distance from the closed set L to any point in Un cannot exceed n−1.
Hence ∩nUn = L. From (11) we deduce c ·m(L) ≤ m

(
g−1(L)

)
≤ d ·m(L) .

Lemma V. Let g be an N -function on E. Let c, d, u be real numbers such
that u > 0 and 0 < c < d. Let L1 = {x ∈ g(P ) : for any y such that
x < y < x+ u we have c(y − x) ≤ H(y)−H(x) ≤ d(y − x)}. Then

c ·m(L1) ≤ m
(
g−1(L1)

)
≤ d ·m(L1) .

Proof. If x ∈ g(P ) and x is in the closure of L1 and if H is continuous at x,
it is easy to see that x ∈ L1. So we leave the proof that L1 is measurable. Say
L1 = M0 ∪M1 ∪M2 ∪M3 ∪ . . . where m(M0) = 0, M1 ⊂M2 ⊂M3 ⊂ . . ., and
each Mi (i > 0) is closed. Now M0 ⊂ g(P ) and because H is differentiable at
each point of M0, we have m(H(M0)) = 0. Then by Lemma II, m(g−1(M0)) =
0. By Lemma IV, c · m(Mi) ≤ m(g−1(Mi)) ≤ d · m(Mi) for each i > 0. It
follows that

c ·m
(
M0 ∪M1 ∪M2 ∪ . . .

)
≤ m

(
g−1(M0 ∪M1 ∪M2 ∪ . . .)

)
≤

≤ d ·m
(
M0 ∪M1 ∪M2 ∪ . . .

)
,

or in other words c ·m(L1) ≤ m
(
g−1(L1)

)
≤ d ·m(L1) .

In the next lemma, we can see the proof of Theorem 4.3 emerging.

Lemma VI. Let g be an N -function on E. Let c, d be real numbers such that
0 < c < d and let V = {x ∈ g(P ) : c < H ′(x) < d}. Then

c ·m(V ) ≤ m
(
g−1(V )

)
≤ d ·m(V ) .

Proof. For indices i, j, put Vij = {x ∈ V : for any y such that x < y <
x + i−1, we have (c + j−1)(y − x) ≤ H(y) − H(x) ≤ (d − j−1)(y − x)}. By
Lemma V, we have for each i and j,

(c+ j−1) ·m(Vij) ≤ m
(
g−1(Vij)

)
≤ (d− j−1) ·m(Vij) . (12)

For each j, V1j ⊂ V2j ⊂ V3j ⊂ . . . and we deduce from (12) that for each j,

(c+ j−1) ·m(∪iVij) ≤ m
(
g−1(∪iVij)

)
≤ (d− j−1) ·m(∪iVij) . (13)

Moreover ∪iVi1 ⊂ ∪iVi2 ⊂ ∪iVi3 ⊂ ∪ . . . and we deduce from (13) that

c ·m(∪i ∪j Vij) ≤ m
(
g−1(∪i ∪j Vij)

)
≤ d ·m(∪i ∪j Vij) .

Finally, ∪i ∪j Vij = V .



650 F. S. Cater

Proof of Theorem 4.3. Let g be an N -function on E. Choose ε > 0. Let
y0, y1, y−1, y2, y−2, y2, y−3, . . . be positive numbers such that 0 < yi−yi−1 < ε,
m
(
{t ∈ P : K(t) = yi}

)
= 0 for each index i, and

lim
i→−∞

yi = 0 , lim
i→∞

yi =∞ .

Let Pi = {t ∈ P : yi−1 < K(t) < yi} for each i. By Lemma III, y−1i <
H ′(g(t)) < y−1i−1 for t ∈ Pi. By Lemma VI and the definition of Pi, we have
Pi = g−1(g(Pi)) and

y−1i ·m
(
g(Pi)

)
≤ m(Pi) ≤ y−1i−1m

(
g(Pi)

)
.

This can be rewritten

yi−1 ·m
(
Pi

)
≤ m

(
g(Pi)

)
≤ yi ·m

(
Pi

)
.

But also

yi−1 ·m(Pi) ≤
∫
Pi

K(t) dt ≤ yi ·m(Pi)

and we combine these inequalities to obtain∣∣∣m(g(Pi)
)
−
∫
Pi

K(t) dt
∣∣∣ ≤ (yi − yi−1) ·m(Pi) < ε ·m(Pi) . (14)

We sum to obtain∣∣∣∣ ∞∑
i=−∞

(
m
(
g(Pi)

)
−
∫
Pi

K(t) dt
)∣∣∣∣ ≤ ε · ∞∑

i=−∞
m(Pi) = ε ·m(P ) . (15)

It follows from (15) that
∣∣m(g(P ))−

∫
P
K(t) dt

∣∣ ≤ ε ·m(P ) if m(g(P )) < ∞,
and

∫
P
K(t) dt =∞ if m(g(P )) =∞. Because ε is arbitrary we conclude that

in any case

m
(
g(P )

)
=

∫
P

K(t) ft . (16)

In view of Lemma III, equation (∗) follows from (16).
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