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CHARACTERIZATIONS OF VBG N (N)

Abstract

We show that VBG N (N) is equivalent with Sarkhel and Kar’s class
(PAC)G on an arbitrary real set. Hence VBG N (N) is an algebra on
that set. In Theorem 4, we give three characterizations for VBG N (N)
on an arbitrary real set. It follows that Gordon’s AK n-integral [3] is a
special case of the PD-integral [7] of Sarkhel and De (Remark 3). In
Theorem 3 we obtain the following surprising result: a Lebesgue measur-
able function f is VBG on E if and only if f is V. BG on any null subset
of E. We also find seven characterizations of VBG N (N) for Lebesgue
measurable functions (see Theorem 5). For continuous functions on a
closed set, we obtain several characterizations of the class ACG. Using
a different technique, we obtain other characterizations of VBG N (N)
for a Lebesgue measurable function (see Theorem 8).

1 Introduction

The purpose of this paper is to give some characterizations of VBG N (N) on
an arbitrary real set.

In [8], Sarkhel and Kar introduced the class (PAC), showing that it is
contained in [VBG] N (N) and it is an algebra on any real set. Moreover,
(PAC) is equivalent to the class [VBG] N (N) on a closed set. It is clear now
that (PAC)G (generalized (PAC)) is contained in VBG N (V). Surprisingly,
the converse is also true. We show that VBG N (N) is equivalent to (PAC)G
on an arbitrary real set. Hence VBG N (N) is an algebra on that set. In fact
in Theorem 4, we give three characterizations for VBG N (N) on an arbitrary
real set. It follows that Gordon’s AK y-integral [3] is a special case of the
PD-integral [7] of Sarkhel and De (Remark 3).

In Theorem 3 we obtain the following surprising result: a Lebesgue mea-
surable function f is VBG on a set E if and only if f is VBG on any null
subset of E.
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As a consequence of Theorems 3 and 4, we find seven characterizations of
VBG N (N) for Lebesgue measurable functions (Theorem 5). One of them
asserts that: a Lebesgue measurable function f is VBG N (N) on a set E if
and only if f is VBG N (N) on any null subset of E.

For continuous functions on a compact set, we obtain several characteriza-
tions of the class ACG, such as: a continuous function f is ACG on a compact
set E if and only if f is (PAC)G on any null subset of E (Corollary 4).

In the last two sections, we give five enhancements of V(f; E) (the ordi-
nary variation of a function f on a set E): vi(E), v}(E), v}(E), v}(E) and
V?(E) For each of these set-functions we obtain another characterization of
VBG N (N) for a Lebesgue measurable function (see Theorem 8): a Lebesgue
measurable function f: E — R is VBGN(N) if and only if for every null sub-
set Z of E, there is a sequence {Zy,}n, whose union is Z, such that 1/;'c (Z,)=0
for each n.

2 Preliminaries

We denote by m*(X) the outer measure of the set X and by m(A) the Lebesgue
measure of A, whenever A C R is Lebesgue measurable. For the definitions of
VB, VBG, AC and Lusin’s condition (IV), see [5].

Definition 1. Let E be a real compact set, ¢ = inf(FE), d = sup(F) and
f: E — R. Let {(cg,dx)}x be the intervals contiguous to F and let

f(z) ifzxeFE
fE : [C, d] - R, fE(.’L‘) =
linear on each [cg, dy] .

Definition 2. ([6]). A sequence {E,} of sets whose union is E is called
an F-form with parts E,. If, moreover, each part E, is closed in E (i.e.,
FE, = P, N E, where P, is a closed set; so P, = En), then the E-form is said
to be closed. An expanding E-form is called an E-chain.

Definition 3. Let E be a real set and f: E — R.

e f is said to be [VBG] (respectively [ACG]) on E if there is a closed
E-form {E,} such that f is VB (respectively AC) on each E,.

e fissaid to be ACG on FE if there is an E-form {F,} such that f is AC
on each F,,. Note that ACG here differs from the definition given in [5],
because f is not supposed to be continuous.

Lemma 1. ([8]). For every closed E-form {E,}, there is a closed E-chain
{Qn} such that Q, = Ur<nQkn, where Qrn C Qrm C Ei for all k and for
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m >n >k, and d(Qin,Qjn) > 1/n for i # j. (Here d denotes the usual
metric distance).

3 The Conditions PAC, (PAC), [PAC]
Definition 4. Let Q CR, f: Q - R, EC @Q and r > 0. Put

o (Sarkhel, Kar, [8]) V(f; E;r) = sup{}_;"; |f(b:) — f(a:)] : {[as, bl }2y
is a finite set of nonoverlapping closed intervals with the endpoints in F

and Y10 (b —a;) <1}
e (Sarkhel, Kar, [8]) V(f; E;0) = inf,~o V(f; £;7);

e (Sarkhel, Kar, [8]) PV (f;E) = inf{sup,, V(f; E,;0) : {E,} is an E-
chain};

o [PV|(f;E) =inf{d>_, V(f;En;0): {E,} is a closed E-form};
o us(E)=inf{}" V(f;E,;0):{E,} is an E-form}.

Remark 1. Let E be a real set and f: F — R. Then f is AC on FE if and
only if V(f; E;0) =0 ([8], p. 337).

Definition 5. ([8]). Let E be a real set and f: E — R.
e (Sarkhel, Kar, [8]) f is said to be (PAC) on E if PV(f;E) =0.
e f issaid to be [PAC] on E if [PV](f; E) = 0.

e fissaid to be PAC on E if if(E) = 0 (our definition is different from
that of [7]; see Remark 3).

e (Sarkhel, De, [7]) f is said to be (PAC)G on E if there is an E-form
{E,} such that f is (PAC) on each E,.

e [ is said to be [PAC]G on E if there is an E-form {E,} such that f is
[PAC] on each E,.

Theorem 1 (Sarkhel). ([8]). Let P be a real set, f,g : P - R, E C P,
a,b € R. We have each of the following assertions.

(i) PV(af +bg; E) < |a- PV(f; E) +[b| - PV (g; E).
(ii) If PV(g; E) = 0, then PV (f + ¢; E) = PV (f; E).
(iii) If m*(E) =0, then m*(f(F)) < PV(f; E).

(iv) If PV(f; E) < +00, then f € [VBG] on E.
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(v) PV(f;E) <>, PV(f; E,) whenever {E,} is a closed E-form.
(vi) If f,g € (PAC) on E, then f-g € (PAC) on E.

Corollary 1. Let E be a real set and A= {f: E —-R: f e (PAC) on E}.
Then A is an algebra.

PROOF. See Theorem 1, (i), (vi). O
Proposition 1. Let Q be a real set, f: Q — R and E C Q. We have:
(i) ns(E) < [PV](f; E);
(i) PV (f; E) < [PV](f; E);
(iii) [PV(f; E) < 3, [PV](f; Ey) whenever {E,} is a closed E-form;
(iv) 1y : P(Q) — [0,400] is a metric outer measure.

PRrOOF. (i) This is obvious.

(ii) Suppose that [PV](f;E) = M < +oo (if M = +o0, there is nothing
to prove). Then for € > 0, it follows that there exist a closed E-form {E,}
and a sequence of positive numbers {r,} such that )" V(f;E,;r,) <M +e.
By Lemma 1, there exists a closed E-chain {Q,} such that Q, = U}_,Qkn,
Qrn € Qum C Ey, for all k and m > n > k and

for i # j. (1)

S|

d(Qin7 an) Z

Let p, = min{rl,rg, ey T, Qn} Let {[ap, bp) q:1 be a finite set of nonover-
lapping closed intervals with the endpoints in @, and !, (b, — ap) < pp.

By (1), both endpoints of an interval [a,, b,] belong to some Q;y,. It follows
that

Z‘f(bp)_f(apﬂﬁz (f; Qins pn) SZ (f;Ei;ri) <M +e€ foralln.
p=1 i=1 i=1

Therefore PV (f; E) < M.

(ili) We may suppose that ) [PV](f;E,;0) < +oo (otherwise there is
nothing to prove). Let € > 0. Then for every positive integer k, there exists a
closed Ej-form {Fj,} and a sequence of positive numbers {ry,} such that

€

> V(s Brnirin) < [PVI(f: i) + 5



CHARACTERIZATIONS OF VBG N (N) 615

But {Ek,} is a closed E-form, and
SN V(fi Ewniin) < e+ > _[PV](f; Ex).
k. n k

It follows that [PV|(f; E) < e+, [PV](f; Ex). Since € is arbitrary, we obtain
that [PV](f: B) < 4 [PV](f: Ep)

(iv) Clearly ps(0) = 0 and py is an increasing set-function; i.e., ps(A) <
py(B) whenever A C B. As in (iii) we obtain that

i (UnEn) < 3 pip(En). (2)

Let E1, E5 be such that d(E1; E2) =7 > 0. Suppose that p(E1 U Es) < 400
(lf /j,f(El UEQ) = 400, by (2), it follows that ,uf(El UEQ) = [Lf(El)“l‘,Uf(EQ)).
For € > 0 there exist a Ey1 U Ex-form {P,} and a sequence of positive numbers
{rn} such that

Zv(f;Pn;rn) < ,sz(E1 UE2)+€.
Let Pln = El ﬂPn, PQn = E2 ﬁpn and Pn = min{rnﬂn}' Then

pr(B) g (E2) < 2V (FiProi 5) + oV (i P ) <

<Y V(f5 Paipn) <D V(f; Pairn) < pgp(Br U Ep) +e.
Since € is arbitrary and py is an outer measure, we obtain that p¢ (£ UE>) =

g (Er) + py(E2). O

Lemma 2. Let F be a real set and f : E — R. If f € [ACG] on E, then
f €[PAC] on E.

PROOF. Let € > 0. Since f € [ACG] on E, there exists a closed E form {E,}
such that f € AC on each E,. For €/2", let r,, > 0 be given by the fact that
feAConE,. Then)  V(f;En;rn) <>, €/2" =e. Hence [PV](f;E) =0.
Therefore f € [PAC] on E. O

4 Characterizations of [VBG] N (N) on a Closed Set

Lemma 3. Let E be a real compact set, f : E - R, xg € E and ¢ > 0. If
f€VB on E, then there exists 6 > 0 such that

V(f;EN(xg,xz0+9)) <e and V(f;EN(xg—0,x0)) <e€.

Moreover, if {I,,}r, is a sequence of abutting closed intervals such that U, I, =
(xo — 6,0) or Upl,, = (w0, 20+ 0), then Y V(f; ENI,) <e.
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PROOF. Let a = inf E, b = supE and F : [a,b] = R, F(x) = fr(z) (see
Definition 1). Then F € VB (see for example Corollary 2.7.2, (ii) of [1]). Let
Ve i a,b] = R,
0 fx=a
Ve(z) =
V(F;la,z]) if x € (a,b]

Since VF is an increasing function on [a,b], Vr(z9—) = £~ and Vp(zo+) = £
exist and are both finite. It follows that there exists a § > 0 such that

Ve((wg — 8,20)) C (0~ —€,£7) and  Ve((zg,z0 +6)) C (01, €7 +¢)).
Let a,8 € E, a < 8. Then

1£(B) = f(a)] = |F(B) — Fa)| < V(Fs[a, 8]) = Vr(B) — Vr(a).
Therefore V(f; E N (xg,x0 + 9)) < €. Clearly

Y V(fENL) <Y V(F;1,) vaﬂn — Vr(an) <ce,

where {1}, = {[an, Bn]}n are as in the hypotheses. O

Lemma 4. Let E be a real compact set and f : E — R. If f € VBN (N),
then [PV|(f; E) =0; i.e., f € [PAC] on E.

PROOF. The proof is similar to that of the second part of Theorem 3.6 of [8].
Since f is VB on E, it follows that f is continuous nearly everywhere on E.
Let dy,ds, ... be the discontinuity points of f. By Lemma 3, for ¢ > 0 and for
each d,, we can find some intervals I,, = (pn,d,) and J,, = (d,,, ¢,) such that
S (V(FENLy) + V(FEN Jug)) < €/27T1 whenever {Lyx b, and {Jok e
are two sequence of closed intervals abutting end to end, with Ug1l,, = I,, and
UgJnk = Jn. Tt follows that Q = E'\ U, (I, U J,,) is a compact set and fq is
CNVBN(N)=AC. (See the Banach—Zarecki Theorem; here C denotes the
class of continuous functions.) Therefore f € AC on Q. For €/2 let 7o > 0 be
given by the fact that f € AC on Q. Then

V(f;Qsro) +ZZ ([EN L) + V(FENJu) < = +22n+1:6.

Therefore [PV](f; E) = 0. O

Theorem 2. Let E be a real compact set and f : E — R. The following
assertions are equivalent.

(i) f € [PAC] on E.
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(i) f e (PAC) on E.
(ii) f € [VBG]N(N) on E.

PRrROOF. (i) = (ii) See Proposition 1, (ii).

(if) = (iil) See Theorem 1, (iii), (iv).

(iii) = (i) Since f € [VBG]N(N), there is a closed E-form {E,} (Clearly
each E, is a closed set, because E is closed.) such that f € VBN (N) on
each E,. By Lemma 4, f € [PAC] on each E, and by Proposition 1, (iii),
fe[PAC]) on E. O

Remark 2. Theorem 2, (ii), (iii) is due to Sarkhel and Kar (see Theorem 3.6
of [8]).

5 Characterizations of VBG and ACG for Lebesgue
Measurable Functions

Lemma 5. Let E be a real compact set and f : E — R a continuous function.
The following assertions are equivalent.

(i) f € VBG (respectively ACG) on E.
(i) f € VBG (respectively ACG) on Z, whenever Z is a null subset of E.

PRrROOF. This follows by Proposition 1.9.1, (iii) of [1], if we put P; = the class
of continuous functions, and P = VB (respectively AC). O

Theorem 3. Let E be a bounded Lebesgue measurable set, and f : E — R a
Lebesgue measurable function. The following assertions are equivalent.

(i) f is VBG (respectively ACG) on E.
(i) f is VBG (respectively ACG) on Z, whenever Z is a null subset of E.

PROOF. (i) = (ii) This is obvious.

(ii) = (i) By Lusin’s theorem (see [4], p. 106 or [5], p. 72), there exists an
increasing sequence {E, },, of closed subsets of E such that m(UE,) = m(E)
and f|g, is continuous. Let Z = £\ (U, E,). Then Z is a null subset of £.
Hence f is VBG (resp. ACG) on Z. Fix some n. By Lemma 5, f is VBG
(resp. ACG) on E,,. Therefore f is VBG (resp. ACG) on E. O
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6 Characterizations of VBG N (N) on a Real Set

Lemma 6. Let f : [a,b] = R, f € VB on [a,b]. Consider the curve
C:X(t)=t Y(t)=f(t), tela,b]

and let Z = {x € [a,b] : f' () does not exist (finite or infinite)}. Let S :
[a,b] — R, where S(x) is the length of the curve C on the interval [a, z]. Then
m*(S(Z)) = 0.

ProOF. Let Cy = {z € [a,b] : f is continuous at x}. Then [a,b] \ Cf is

countable (see [4], p. 219). Let N = Z N Cs. Then m*(S(N)) = 0 (see [5],
pp. 125-126). It follows that m*(S(Z)) = 0. O

Lemma 7. Let f : [a,b] = R, f € VB on [a,b]. Let Z = {x € [a,b] : f (2)
does not ezist (finite or infinite)}. Then pp(Z) =0, i.e. f € PAC on Z.

PrROOF. By Lemma 6, m*(S(Z)) = 0. For € > 0, there exists an open set G
such that S(Z) C G and m(G) < e. Let {(ay, 3;)}: be the components of G
(a component is a maximal open interval contained in G). We may suppose
without loss of generality that S(Z) N (ay, B;) # 0. Let Z; ={x € Z: S(x) €
(a4, 8:)}. Since we always have that |f(8) — f(a)] < S(8) — S(a) and S is
strictly increasing, it follows that V(f; Z;) < 8; — a; and

pnp(Z) < Z_wf; Z) < Z(m —ai) <e.

Since € is arbitrary, we obtain that us(Z) = 0. O

Lemma 8. Let ECR and f: E—R. If f € ACG on E, then pus(E) = 0.

PROOF. Let € > 0. Since f € ACG on E, there exists an E-form {E,} such
that f is AC on each E,,. For ¢/2" let r,, > 0 be given by the fact that f is
AC on E,,. Then ) V(f;En;rn) < €. Hence py(E) = 0. O

Lemma 9. Let E C R and f : E — R. Suppose that m*(f(E)) = 0 and
that there exists an E-form {E,} such that f is monotone on each E,. Then

py(E) = 0.

PRrROOF. Since m*(f(F)) = 0 it follows that m*(f(E,)) = 0 for each n. Let
e > 0 and let G,, = U;(ani, Bni) be an open set such that f(E,) C G, and
m*(Gn) < €/2", where {(ani,Bni)}i is a sequence of nonoverlapping open
intervals. Let F,; = {z € E, : f() € (i, Bni)}- Then

sz(f7Enz) < ZZ(BT”' _ani) < €.

Therefore p7(E) = 0. O
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Lemma 10. Let E be a real bounded set and f : E — R. If f € VBN (N)
on E, then puys(E) = 0.

PROOF. Let a,b € R such that E C [a,b]. Since f € VB on E, there exists
a function G : [a,b] — R such that G|z = f and G € VB on [a,b] (see
Lemma 4.1 of [5], p. 221). Let A = {z € [a,b] : G () does not exist (finite or
infinite)}. By Lemma 7, we obtain that pg(A4) = 0. Hence pu(ANE) = 0.
Let B = {z € E: G (z) = £00}. Then m*(B) = 0. Since f € (N) on E,
we have that m*(f(B)) = 0. Also there exists a B-form {B,} such that G
is monotone on each B,, (see for example the proof of Theorem 10.1 of [5],
p. 235). By Lemma 9, it follows that u;(B) = 0. Let C = {z € [a,b] : G’ (z)
exists and is finite}. Then G € AC*G C ACG on C. Hence by Lemma 8,
ua(C)=0;s0 pur(ENC)=0. Thus pus(E) =0 (see Proposition 1, (iv)). O

Lemma 11. Let Q) be a real compact set, EC Q, f:Q =R andr>0. If f
is continuous on Q, then V(f; E;r) =V (f; E;r).

PrOOF. We always have V(f;E;r) < V(f;E;r). We show the converse.
Let V(f;E;r) = M < +oo (if M = 400 there is nothing to prove). Let
{lai, b;]}>1 be a finite set of nonoverlapping closed intervals with the endpoints
in F and >_;" | (b; —a;) < r. Since f is continuous on Q, for € > 0, there exists
al, by € E such that {[a},b}]}", are nonoverlapping closed intervals, with

177 17

m

D0 —ap) <r | f(a) = fa)] < e/2m and |f(b) = f(b])] < e/2m.

i=1

It follows that

m m

D1 a=flai)l < Y (1FGa=F O]+ 07 )=f (af) |+ (i) = £ (a})]) < M+e.

i=1 i=1
Since e is arbitrary, it follows that V(f; E;r) < M. O

Lemma 12. Let E be a real bounded set and f : E — R. If f € VB and
ps(E) =0, then [PV](f;E) = 0. Hence PV (f;E) = 0.

PROOF. Let € > 0. Since ps(E) = 0, there exist an E-form {E,} and a
sequence of positive numbers {r,} such that

3)

[N e

Z V(f7 Ey; rn) <

Let a,b € R such that E C [a,b]. Since f € VB on E, there exists a function
F :[a,b] — R such that Fjp = f and F' € VB on [a,b] (see Lemma 4.1 of [5],
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p. 221). Let D = {d,,} be the set of all discontinuity points of F. For each d,
there exist I, = (pn,d,) and J,, = (dn, ¢,) (see Lemma 3) such that

€

S (V(F;EN L) + V(F;EN k) < T (4)
k

whenever {I,,;}r and {J,;}r are two sequences of closed intervals abutting
end to end with Upl,, = I, and UpJp, = Jp. Let Q = [a,b] \ (Un (I, U Jp)).
Then @ is a compact set and

F|q is continuous. (5)

Let Q, = QN E,. Clearly {ENQy o U{ENInktn ks U{EN Ik tnk is a closed
E-form. By (3), (4), (5) and Lemma 11, it follows that

S VEQuira) + Y. Y VIFIENLy) + > Y V(F;EN Jup) <.
n n k n k

Thus [PV](f; E) = 0. That PV(f; E) = 0 follows by Proposition 1, (ii). O

Corollary 2. Let E be a real bounded set and f : E - R. If f e VBN (N),
then [PV](f; E) = 0.

PrOOF. By Lemma 10, f € VB and p¢(E) = 0. Now by Lemma 12, it follows
that [PV](f; E) =0. O

Lemma 13. Let ECR and f:E—R. If uy(E) <400, then feVBG on E.

PROOF. Since us(E) < 400, there exist an E-form {E,} and a sequence
{rn} of positive numbers such that > V(f;En;rn) < ps(E)+ 1. Hence
V(f;En;rn) < pg(E)+ 1. Then f € VB on each E,p, k =0,£1,£2,£3,. .,
where

Tn

5|

It follows that f € VBG on E. O

Theorem 4. Let E be a real bounded set and f : E — R. The following
assertions are equivalent.

(i) f € VBGN(N) on E.
(ii) f is [PAC]G on E.
(iii) f is PAC on E.

(iv) f is (PAC)G on E.
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PROOF. (i) = (ii) Since f € VBG N (N) on E, there exists an E-form {E,}
such that f € VBN (N) on each E,. By Corollary 2, f is [PAC] on each E,,.
Therefore f is [PAC]G on E.

(ii) = (iil) See Proposition 1, (i), (iv).

(iii) = (ii) By Lemma 13, f € VBG on E. Then there is an E-form {E,,}
such that f € VB on each E,,. Clearly pu¢(E,) = 0. By Lemma 12, we obtain
that [PV](f; E,) = 0. Hence f € [PAC]G on E.

(ii) = (iv) See Proposition 1, (ii).

(iv) = (i) Since f is (PAC)G on E, there exists an E-form {E,} such
that PV (f;E,) = 0 for each n. By Theorem 1, (iii), (iv), it follows that
f€[VBG]N(N) on each E,. Hence f € VBGN(N) on E. O

Remark 3. Sarkhel and De introduced the following condition (Definition 5.1
of [7] or the remark on p. 337 of [8]).

e A function f: F — R, E C R, is said to be PAC on FE, if there is a
countable subset F of E such that f is (PAC) on E \ Ej.

Clearly PAC differs from PAC defined in the present paper. Also in [7] the
following is proved.

e fissaid to be PACG on FE if there exists an E-form {E,} such that f
is PAC on each FE,,.

Clearly (PAC)G C PACG (see Definition 5). In [7] (see Theorem 5.2 and the
proof of Theorem 5.3), Sarkhel and De showed that PACG C VBGN(N). By
Theorem 4, (i), (iv), it follows that PACG = [PAC|G = (PAC)G = PAC =
VBG N (N) on a real bounded set E.

In [3], Gordon introduced the AK integral.

e A function f : [a,b] — R is said to be AKy integrable, if there is a func-
tion F':[a,b] — R such that F'e VBGN(N)N(approximately continuous)
and F,, = f a.e. on [a,b].

However, in his proof of the uniqueness of this integral he neglected to show
that the difference of two functions belonging to F' € VBG N (N)N (approx-
imately continuous) is still (N). In [2] we show that VBG N (N) is a linear
space for Borel measurable functions and give a complete proof that the AK
integral is well defined.

In [7] (Definition 7.1), Sarkhel and De introduced the PD-integral:

o A function f : [a,b] — R is said to be PD integrable, if there is a
function F': [a,b] — R such that F' € PACG N (proximally continuous)
and F,, = f a.e. on [a,b].
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Since the class of approximately continuous functions (see [7]) contains strictly
the class of approximately continuous functions and PACG = VBG N (N), it
follows that the AK n-integral is a special case of the P D-integral.

Corollary 3. Let E be a real bounded set and A = {f : E - R : f €
VBGN (N) on E}. Then A is an algebra.

PROOF. Let f,g € A, o, 8 € R. By Theorem 4, (i), (iv), we obtain that f,g €
(PAC)G on E. Then there exists an E-form {F,}, such that f,g € (PAC)
on each E,. Hence PV(f;E,) = PV(g;E,) = 0 for each n. By Theorem 1,
(i), PV(af +Bg; Ey) = 0. Hence af+ 89 € (PAC)G = VBGN(N) on E (see
Theorem 4, (i), (iv)). It follows that A is a real linear space. But f-g € (PAC)
on each F,, (see Theorem 1, (vi));so f-g € (PAC)G =VBGN(N) on E (see
Theorem 4, (i), (iv)). Therefore A is an algebra. O

Theorem 5. Let E be a bounded Lebesque measurable set, and let f : E — R.
If f is a Lebesgue measurable function the following assertions are equivalent.

(i) feVBGN(N) on E

(ii) f € [PAC|G on E.

(ii) f € PAC on E.

(iv) f e (PAC)G on E.

(v) f € VBGN(N) on Z, whenever Z is a null subset of E.

(vi) f € [PAC|G on Z, whenever Z is a null subset of E.
(vii) f € PAC on Z, whenever Z is a null subset of E.
(viti) f € (PAC)G on Z, whenever Z is a null subset of E.

PROOF. (i) < (v) follows by Theorem 3; (i) < (ii) < (iii) < (iv) and (v) &
(vi) & (vii) < (viii) follow by Theorem 4. O

Corollary 4. Let E be a real compact set and f: E — R. If f is continuous
on E, then the following assertions are equivalent.

(i) f € ACG on E.

(ii) f € VBGN(N) on E.
(iii) f € [PAC] on E.

(iv) f € (PAC) on E.
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(v) f e PAC on E;
(vi) f € ACG on Z, whenever Z is a null subset of E.

(vii) f € [PAC] on Z, whenever Z is a null subset of E.

(viii) f € (PAC) on Z, whenever Z is a null subset of E.

(ix) f € PAC on Z, whenever Z is a null subset of E.

PROOF. (i) < (ii) See Theorem 6.8 of [5], p. 228.

(ii) < (iil) & (iv) Since f is continuous, it follows that VBG = [V BG].
Now the assertions follow by Theorem 2.

(ii) < (v) See Theorem 5, (i), (iii).

(i) & (vi) See Lemma 5.

(vi) = (vii) Let Z be a null subset of E such that f € ACG on Z. Since f
is continuous on FE, it follows that f € [ACG] on Z. By Lemma 2, f € [PAC]

on /.

(vii) = (viii) See Proposition 1, (ii).
(viii) = (ii) See Theorem 5, (viii), (i).
(ix) < (ii) See Theorem 5, (vii), (i). O

7 Enhancements of the Ordinary Variation

Definition 6. Let F be a real bounded set, f: E — R and § : E — (0, +00).

Put

V(i E) = sup{> 1, |f(b:i) — f(a;)| : {[a;,b;]}"; is a finite set of
nonoverlapping closed intervals with the endpoints in E, such that 0 <
bi —a; < min{é(ai), 5(bz)},

VE(f; E) = sup{d_ 1, O(f;[ai,bi] N E) : {[a;,b;]}1; is a finite set of
nonoverlapping closed intervals with the endpoints in E, such that 0 <
b —a; < min{é(ai), 5(b1)},

VE(fi E) = sup{> i, O(f;[ai,b;] N E) : {[a;,b;]}"; is a finite set of
nonoverlapping closed intervals; there exists z; € [a;,b;] N E such that
[ai, bl] C (.’L‘z — 6(a:i),xi + 6(1‘1))},

VA E) = sup{> i, O(f;[ai,b;] N E) : {[a;,b;]}"; is a finite set of
nonoverlapping closed intervals; there exists x; € {a;,b;} N E such that
ai, bs] C (wi — 6(ws), @i + 6(x)) 15

VE(fi E) = sup{d_ 1, O(f;[ai,b;] N E) : {[a;,b;]}1, is a finite set of

nonoverlapping closed intervals with the endpoints in E, such that 0 <
bi — ai < 6(a;) + 0(bi);
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. V}(E) =infs{V{(f; E)}, i =1,2,3,4,5.
Theorem 6. Let E be a real bounded set, f,g: [a,b] = R and o, 8 € R.
(i) Vigipg(E) <lal-vi(E) + 8] - vi(E), i = 1,2,3,4,5.
(i) If vi(E) =0, then v}, (E) = vi(E), i =1,2,3,4,5.
(ii1) If max.cp{|f(2)],|lg(z)|} = M < 400, then
Vi (E) < M- (vi(E)+v,(E)).

(iv) PV(f; E) < v(B) < vA(E) < v}(E) = vA(E) < v}(B).

PROOF. Let 1,02 : E — (0,+00) and let 6(z) = min{d;(z), d2(x)}.
(i) We have

Vipipg(B) S Vilaf +Bg;iE) <la| - Vi (f; E)+ 8] - Vi (g; E) <

<lal - V5, (f; E) + |B|Vs, (9: E).-
Hence Véf+5g(E) <la|-v{(E)+ 18| - I/;(E)
(ii) Clearly v, (FE) = 0 implies that v* (E) = 0. By (i) we have
V}(E) = l/f+g ,(B) < 1/ +o(E) + vt o(E)
L E) £ V(B + (B — vh(E).
Therefore V}+9(E) = V;}(E)
(iii) Let z,y € E, < y. Then
[F () - 9(y) = f(@) - g(@)| = |a(y) - (f(y) = f(2)) + f(=) - (9(y) — g())]
M- (f(y) = f(@)] +g(y) = g()]) -

IA

It follows that

Vi B) V3L g B) < M- (Vi(F B) + Vi (g E))
< M- (Vi (f;E) + Vi, (g E)).

Therefore V}.g(E) <M - (u}(E) + Vi(E)).

(iv) We may suppose that v((E) = M < 4oo. (If M = 400, there is
nothing to prove.) For € > 0 there is a § : E — (0, +00) such that Vi (f; F) <
M+e Let By, ={x € E:d(x) > 1/k}, k =1,2,.... Then {E;} is an E-
chain. Fix some k and let {[a;, b;]}7, be a finite set of nonoverlapping closed
intervals with the endpoints in Ey, Y i~ (b; — a;) < 1/k. Clearly

1
y— 2 <min{é(z),d(y)}, whenever z,y € By and 0 <y —z < e
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It follows that Y°;", O(f;[a;, b)) N Ey) < M 4+ €. Then V(f; Ep; 1) < M +e.
Hence V(f; E;0) < M + ¢, for each k. Since ¢ is arbitrary, we obtain that
PV(f;B) < M.

For § : E — (0,+00) we have Vi' (f; E) < VZ(f; E) < V3(f; E). Tt follows
that v} (E) < v}(E) < v}(E).
We show that v}(E) = v}(E). Clearly v}(E) > vi(E). Let {[a;,b]}},
be a finite set of nonoverlapping closed intervals such that there exists x; €
[ai, b;] N E, with [a;,b;] C (x; — d(z;), z; + I(z;)). We may suppose without
loss of generality that each x; € (a;,b;). Then

n

Z(’)(f a;, b;]NE) <ZO [a;, x;]NE) +Z(9 [z, bi]NE) < Vi(f; E).
i=1 i=1

Hence V3 (f; E) < Vi (f; E). Thus v}(E) < v}(E); so v}(E) = vi(E).

We show that v} (E) < v}(E). Let {[a;, b;]}7, be a finite set of nonoverlapping
closed intervals such that there exists z; € {a;,b;} N E, with [a;,b;] C (x; —
0(x;), x;+0(x;)). We may suppose without loss of generality that each z; = a;.
For € > 0 there exists y; € [a;, b;] N E such that

O [as, ) 0 B) < O(f: a1, 1 B)
Then y; — a; < d6(a;) + d(y;). Hence

ZO [a;,b;] N E) <e—|—Z(’) la, y:) NE) < e+ VP (f; E).

i=1
It follows that Vi'(f; E) < VP (f; E). Therefore Vf(E) < Vf(E) O
Lemma 14. Let E be real bounded set and f : E — R. Then m*(f(E)) <

vi(E), i=1,2,3,4,5.

ProoOF. By Theorem 6, (iv), it is sufficient to prove the assertion for i = 1.
Let V}(E) = M < 4oo0. (If M = 400, there is nothing to prove.) For
€ > 0, there exists a § : E — (0,+00) such that Vi'(f; F) < M + €/2. Let
E,={x€ E:x) > (b—a)/n}. Then {E,} is an E-chain. Fix some n and
let

1
Epm = En N | "= (b - a),
n

:\5

b—a)|, m=12,...,n.

Clearly m*(f(E,)) < >0 _,m*(f(Enm)). For each m let zy,,ym € Epnm,
T < Ym, Such that

O(f: Bum) < 1 (4m) = f @) + 557 -
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Clearly ym — @y, < min{dé(z,,),6(ym)}. Then

n

> m (f(Bam)) € Y Of; Enm) < D |fUm) = f(zm))|

m=1

e 1. €
Therefore m*(f(E,)) < >0, m*(f(Enm)) < M+e. Since {E,} is increasing
and UE,, = E, it follows that m*(f(F)) < M + €. Since € is arbitrary, we
obtain that m*(f(E)) < M. O
<

Lemma 15. Let E be a real bounded set and f : E — R. Then V}(E)
>0 Vi(En), whenever {Ey} is a closed E-form.

PROOF. Suppose that Y, vj(E,) = M < 4oc. (If M = +oc there is nothing
to prove.) For € > 0, let 8, : E,, — (0, +00) such that Vi (f;E,) < y}(En) +
€/2™. By Lemma 1, there is a closed E-chain {Q,,} such that Q,, = Ux<nQkn,
where Qpn C Qkm C Ej, for all k and m > n > k, and d(Qin, Q;n) > 1/n for
i#j. Let 6 : E — (0,400),

91 (x) ifz e @
min{ -, 81(z),...,0n(2),d(z,Qn-1)} f 2€Q\Qn-1, n>2.

(Since @p,—1 is closed in E we have that d(z,Q,—1) > 0 for x € Q, \ Qn-1.)
Let {[ap,bp]}5—; be a finite set of nonoverlapping closed intervals with the
endpoints in F, such that b, — a, < min{dé(a,),d(by)}, p = 1,2,...,n. Fix
some p and let s be the first positive integer such that ap,b, € Qs. Suppose
for example that a, € Qs \ @s—1. From the definition of ¢ it follows that

by € Qs \ Qs—1. Then

xTr)=

8(ap) < min{le, 51(ayp), ..., 53(%)}

and

5(by) < min{;s,al(bp),...,as(bp)}.

Let k < s be such that a, € Qgs. Since b, — a, < §(ap) < 1/s, it follows that
b, belongs to the same Qs C Ej. Clearly b, — a, < min{dx(a,), dx(by)}. It
follows that

€

S 17(ty) = fla] < S0 (B + 5 ) < M e
p k
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Hence Vi (f; E) < M +e. Thus vj(E) < M +e. Since e is arbitrary, we obtain
that Vf( )< M. O

8 A Characterization of a Lebesgue Measurable Function
f, Satisfying VBG N (N), Using sl

Lemma 16. Let f : [a,b] = R and let Z = {x € [a,b] : [ is continuous at x;
f (z) does not exist (finite or infinite)}. If f € VB on [a,b], then u}(Z) =0,
i=1,2,3,4,5.

PROOF. By Theorem 6, (iv), it is sufficient to prove the assertion for ¢ = 5.
By Lemma 6, m*(S(Z)) = 0. For € > 0, there exists an open set G such that
S(Z) ¢ G = Uiy, B;) and m(G) < ¢, where {(a;,0;)}: are nonoverlapping
open intervals and S(Z) N (ay, ;) # 0. Since f is continuous at each point of
Z, using Theorem 8.4 of [5] (p. 123), it follows that S is continuous at each
point of Z. Let Z, = {z € Z : S(z) € (o, B:)}. Clearly Z = UZ;. Then
there exists a § : Z — (0,400) such that S((z — d(x),z + d(z))) C (o, B:)
whenever z € Z;. Let {[a;,b;]}]L; be a finite set of nonoverlapping closed
intervals with the endpoints in Z and 0 < b; — a; < (a;) + 6(b;). Fix some
laj,b;] and let ¢; € (aj,a; + 6(a;)) N (b; — (5(bj),bj). Suppose that a; € Z;
and b; € Z,. Then S(c¢;) € (o, B:) N (ak, Br); so i = k and b; € Z; too.
Consequently S(b;) € (a;,5;). Hence a; < S(aj) < S(b;) < B; (because S is
strictly 1ncreas1ng) But |f(y) — f(x)] < S(y) —S(x) Whenever a<z<y<b.
It follows that 7" O(f; [ay, b;]NZ) < 3770, S(b)—S(az) < 32, (Bi—au) <e.
Then V{(f; Z)<e. Hence v3(Z)<e. Since e is arbitrary, I/f(Z)—O. O

Lemma 17. Let E be a bounded null set and f : E — R. If f € AC on F,
then V}(E) =0,1=1,2,3,4,5.

Proor. By Theorem 6, (iv), it is sufficient to prove the assertion for i = 5.
For e > 0 let § > 0 be given by the fact that f € AC on E. Since E is a
null set, there exists an open set G such that E C G and m(G) < §. Let
n: E — (0,+00) be such that (z — n(x),x + n(z)) € G. Let {[a;, b;]},
be a finite set of nonoverlapping closed intervals with the endpoints in F,
such that 0 < b; — a; < n(a;) + n(b;). Clearly [a;,b;] C G. It follows that
Yo (b — ai) < m(G). Since Y.t O(f;lai, b)) N E) < e, it follows that

V3(f; E) < ¢, and consequently Vf(E) < €. Since € is arbitrary, we obtain
that V?(E) =0. O

Lemma 18. Let f:[a,b] > R and A C {x € [a,b] : f is continuous at x}. If
f is increasing on A, then m*(f(A)) = V}(A), i=1,2,3,4,5.
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ProOF. We always have m*(f(A)) < v(A) (see Lemma 14). We show the
converse. Suppose that m*(f(A4)) < 4oo. (If m*(f(A)) = +oo, there is
nothing to prove.) By Theorem 6, (iv), it is sufficient to prove the assertion for
i =5. For € > 0 let G be an open set such that f(A4) C G and m*(f(A)) +¢€ >
m(G). Let G = U; (o, B;i), where {(ay, 8;)}: is a sequence of nonoverlapping
open intervals. Then A = U;A;, where A; = {z € A: f(z) € (o, B;)}. Since f
is continuous at each point of A, there is a 6 : A — (0, 400) such that f((x —
0(x),z + d(x))) C (a4, B;) if © € A;. (This is possible because f is continuous
at each point of A.) Let {[a;,b;]} 2, be a finite set of nonoverlapping closed
intervals with the endpoints in A, with 0 < b; — a; < d6(a;) + 6(b;). Let
¢ € (aj,a;+d(a;))N(bj —06(b;),b;j). Suppose that a; € A; and b; € Ag. Then
f(¢j) € (i, Bi) N (o, Br); so @ = k and b; € A; too. Consequently f(b;) €
(e, B;). Since f is increasing on A, we have «; < f(a;) < f(b;) < B; and
SO g, b5 N A) = S () — )] < (B — ) < m(f(E)) +e.
Thus VP (f; A) < m*(f(A))+e, and since e is arbitrary, 1/]5c (A) <m*(f(4). O

Lemma 19. Let E be a real bounded set and f : E — R. If f € VB on FE,
then the following assertions are equivalent for i =1,2,3,4,5:

(i) f € (N) on E;

(ii) for every null set Z C E there exists a Z-form {Z,} such that v}(Z,) =
0, for each n.

PROOF. (i) = (ii) Since f € VB on E, there exists a function F' : [a,b] — R
such that Fiy = f and F € VB on [a,b] (see Lemma 4.1 of [5], p. 221). Let
D = {z € [a,b] : F is not continuous at x}. Then D is countable (see [4],
p. 219). Let A= {z € [a,b]\ D : F' () does not exist (finite or infinite)}. By
Lemma 16, v-(A) = 0; s0 v;(ANE) = 0. Let B={zr € E\D: F'(z) = +00}.
Then m*(B) = 0. Since F € (N) on E, we obtain that m*(F(B)) = 0. Also,
there exists a B-form {B,} such that F' is monotone on each B,. Then
V(Bn) = 0 (see Lemma 18). Let C = {z € [a,b] : F'(z) exists and is finite}.
Then F € AC*G C ACG on C. Tt follows that there exists a C-form {C),}
such that F' € AC on each C,,. Let Z be a null subset of £ and Z, = AN Z.
Then vf(Z,) = 0. Let Dy = ZN D = {d1,dy,...}. Clearly v}({dx}) = 0 and
v$(Z N By,) = 0. By Lemma 17, v4(Z N C,,) = 0. Therefore we have (ii).

(ii) = (i) This implication is always true. Let Z be a null subset of E.
Then there exists a Z-form {Z,} such that v{(Z,) = 0. By Lemma 14,
m*(f(Z,)) = 0. It follows that m*(f(Z)) = 0. Hence f € (N) on E. O

Theorem 7. Let E be a real bounded set and A = {f : E - R : f €
VBN (N)}. Then A is an algebra.
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PrOOF. Let f,g € A, o, € R. Clearly af+ g € VB. Let Z be a null subset
of E. By Lemma 19, there exists a Z-form {Z,,} such that y}(Zn) = V;(Zn) =
0,7 € {1,2,3,4,5}. By Theorem 6, (i) we have that l/éf+ﬁg(Zn) = 0. Hence
af + Bg € (N) on E (see Lemma 19). Therefore A is a real linear space.
Clearly f-g € VB on E, and f and g are bounded on E. By Theorem 6, (iii),
Vi.(Zn) = 0,4 € {1,2,3,4,5}, and by Lemma 19, we obtain that f-g € (N)
on the set F. O

Remark 4. As a consequence of Theorem 7, we obtain again Corollary 3.

Lemma 20. Let E be a real bounded set and f : E — R. If v4(E) < +oo,
i1€{1,2,3,4,5}, then f € [VBG] on E.

PROOF. See Theorem 6, (iv) and Theorem 1, (iv). O

Theorem 8. Let E be a bounded Lebesgue measurable set and f : E — R a
Lebesgue measurable function. For i € {1,2,3,4,5}. The following assertions
are equivalent.

(i) feVBGN(N) on E.
(ii) for every null set Z C E there is a Z-form {Z,} such that v;(Z,) = 0.

PROOF. (i) = (ii) See Lemma 19,

(ii) = (i) Let Z be a null subset of E. By hypothesis and Lemma 20,
f € VBG on Z. Tt follows that f € VBG on E (see Theorem 3). By
hypothesis and Lemma 14, we obtain that m*(f(Z)) = 0. Hence f € (N) on
the set E. O

Remark 5. Consider the following definition.

Let E be a real set. A function v : P(E) — [0, +0o0] is said to be o0 — AC
on E, if for every null set Z C FE there is a Z-form {Z,} such that
v(Zy,)=0.

In this terms Theorem 8 can be written as follows.
Let E be a bounded Lebesgue measurable set, f : E — R a Lebesgue

measurable function and i € {1,2,3,4,5}. Then f € VBGN (N) on E
if and only if 1/} isog— AC on E.
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