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HARMONIC SINGULARITY AT
INFINITY IN Rn

Abstract

Some properties of harmonic functions defined outside a compact set
in Rn are given. From them is deduced a generalized form of Liouville
theorem in Rn which is known to be equivalent to an improved version
of the classical Bôcher theorem on harmonic point singularities.

1 Introduction

A generalized form of the classical Bôcher theorem on the harmonic point
singularity in Rn, n ≥ 2, is given in Ishikawa, Nakai and Tada [8]. This is
equivalent to (Kelvin transformation) a generalized Liouville theorem: If u is

a harmonic function in Rn, n ≥ 2, such that lim inf |x|→∞
u(x)
|x| ≥ 0, then u is

a constant (P. Bourdon [4]).

In this note, we obtain these two theorems as consequences of some equiv-
alent properties of harmonic functions defined outside a compact set in Rn.
These developments are based on our earlier papers [7] and [2].

In particular, we give a proof of the above mentioned Liouville theorem
that uses the arguments given by M. Brelot [6]; this proof is different from the
one given in [7] where a reference to the Divergence theorem is made. In the
special case of the complex plane C this theorem has been proved in [2] using
the Carathéodory inequality; here we add a simple proof, valid in Rn, n ≥ 2,
that appeals to the Poisson representation.

2 Harmonic Functions Outside a Compact Set

Given a locally integrable function ϕ(x) defined outside a compact set in Rn,
let M(r, ϕ) stand for the mean-value of ϕ(x) on |x| = r for large r.
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Lemma 2.1. Let f(x) be a function defined outside a compact set in Rn,
n ≥ 2, such that

lim inf
|x|→∞

f(x)

|x|
≥ 0 .

Then there exists a locally integrable function ϕ(x) such that f(x) ≥ ϕ(x)
outside a compact set and M(r, |ϕ|) = o(r) when r →∞.

Proof. Let lim inf |x|→∞
f(x)
|x| = λ ≥ 0. If λ > 0, we can take ϕ ≡ 0. Let us

suppose λ = 0. For an integer m, there exists a compact Km such that

f(x) > − 1

m
|x| in Kc

m .

Choose rm so that Km ⊂ {x : |x| < rm}. Then choose rm+1 so that rm+1 >
rm and Km+1 ⊂ {x : |x| < rm+1}. Now, define ϕ(x) for |x| large as

ϕ(x) = − 1

m
|x| if rm < |x| ≤ rm+1 .

Then outside a compact set, ϕ(x) is a locally integrable function such that

lim
|x|→∞

|ϕ(x)|
|x|

= 0 and M(r, |ϕ|) = o(r) when r →∞ .

Also f(x) ≥ ϕ(x) for |x| large.

Lemma 2.2. Let u(x) be a bounded harmonic function outside a compact set
in Rn, n ≥ 2. Then lim|x|→∞ u(x) is finite.

Proof. This is a classical result. See, for example, p. 195 and p. 201 in M.
Brelot [6].

Theorem 2.3. Let u(x) be a harmonic function defined outside a compact set
in Rn, n ≥ 2. Then the following are equivalent:

1) u(x) = o(|x|) when |x| → ∞.

2) lim inf |x|→∞
u(x)
|x| ≥ 0.

3) There exists a locally integrable function ϕ(x) such that u(x) ≥ ϕ(x) outside
a compact set, and M(r, |ϕ|) = o(r) when r →∞.

4) lim|x|→∞ u(x) is finite if n ≥ 3 and lim|x|→∞
(
u(x)− α log |x|

)
is finite for

some α if n = 2.
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Proof. 1) ⇒ 2): Evident.
2) ⇒ 3): Lemma 2.1.
3) ⇒ 4): Given a harmonic function u outside a compact set in Rn, there

exists a harmonic function v in Rn such that

(a) u(x) − v(x) − α log |x| is bounded outside a compact set for some α if
n = 2, and

(b) u(x)− v(x) is bounded outside a compact set if n ≥ 3.

To prove (a) and (b) we can use the series expansions for u(x) as given in M.
Brelot [6]. (A general result of this form applicable even to Riemann surfaces
and to some other harmonic spaces is given in Rodin and Sario [9]; see also
[1]). Consequently, the assumption on u(x) implies that the harmonic function
v(x) in Rn satisfies the condition that outside a compact set

v(x) ≥ ϕ(x)− α log |x| − β in R2

and
v(x) ≥ ϕ(x)− βo in Rn , n ≥ 3

(where β and βo are constants). In either case, v(x) ≥ ψ(x) outside a compact
set K where ψ(x) is a locally integrable function such that

M
(
r, |ψ|

)
= o(r) when r →∞ .

Since v(x) ≥ −|ψ(x)| in Rn \K, v− ≤ |ψ|; also |v| = v + 2v− and M(r, v) =
v(0). Hence M(r, |v|) = o(r) when r →∞. This implies that v is a constant.
For this, we almost reproduce a proof given in M. Brelot [6], p. 194. (Later
we give another proof using the Poisson representation).

Write v(x) =
∑∞

0 ap(θ)rp, where |x| = r and ap(θ)’s are Laplace functions
of order p of the point θ on the unit sphere. SinceM(r, |v|) = o(r), M(r, vap) =
o(r) when r →∞. But M(r, vap) = rpM(1, a2p). Hence

rp−1M(1, a2p)→ 0 when r →∞ .

This implies that ap = 0 if p ≥ 1. Hence v(x) ≡ a0.
Going back to (a) and (b) above, we deduce that u(x)−α log |x| is bounded

outside a compact set if n = 2 and u(x) itself is bounded outside a compact
set if n ≥ 3.

Finally, an appeal to Lemma 2.2 proves that 3) ⇒ 4).
4) ⇒ 1): Evident.
This completes the proof of the theorem.
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3 Some Consequences of the Theorem

In this section, we obtain some corollaries of Theorem 2.3 which include
Liouville and Bôcher theorems in Rn.

Corollary 3.1. Let u(x) be a harmonic function that is bounded on one side
in |x− a| > ρ in Rn. Then in |x− a| ≥ r > ρ,

a) if n = 2, u(x) = α log |x|+ a bounded harmonic function, and

b) if n ≥ 3, u(x) is bounded.

Corollary 3.2. Let u(x) be a harmonic function defined outside a compact
set in Rn. If M(r, u+) = o(r) when r →∞, then

|u| =

O(log r) if n = 2

O(1) if n ≥ 3 .

Proof. As mentioned in the proof of 3) ⇒ 4) of Theorem 2.3, there exists a
harmonic function v in Rn such that outside a compact set

a) in R2, u(x) = v(x) + α log |x|+ b(x) and

b) in Rn, n ≥ 3, u(x) = v(x) + b(x)

where b(x) stands for a bounded harmonic function.
When n = 2, m(r, u) = v(0)+α log r+M(r, b) = o(r) when r →∞. Hence

if M(r, u+) = o(r), then M(r, |u|) = o(r). By Theorem 2.3, it follows that
lim|x|→∞

(
u(x)− α log |x|

)
is finite . Hence |u| = O(log r) when r →∞.

When n ≥ 3, M(r, u) = v(0) + M(r, b) = O(1) when r → ∞. Hence
if M(r, u+) = o(r), we show as before that lim|x|→∞ u(x) is finite. Hence
|u| = O(1) when r →∞.

Corollary 3.3. (Liouville’s Theorem [4], [7]) Let h be a harmonic function
in Rn, n ≥ 2. Then the following are equivalent:

1) h(x) = o(|x|) when |x| → ∞.

2) lim inf |x|→∞
h(x)
|x| ≥ 0.

3) There exists a locally integrable function ϕ(x) such that h(x) ≥ ϕ(x) outside
a compact set and M(r, |ϕ|) = o(r) when r →∞.

4) h is a constant.
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Proof. In view of Theorem 2.3, it is enough to remark that when n = 2,
h(x)− α log |x| tends to a finite limit when |x| → ∞. Hence

M
(
r, h(x)− α log |x|

)
= h(0)− α log r

tends to a finite limit when r →∞; consequently, α = 0.
Thus for all n ≥ 2, h(x) tends to a finite limit at the point at infinity.

Hence by the maximum principle, h is a constant.

Remark. The above generalized form of the Liouville theorem in the complex
plane C was proved in [2] using the Carathéodory inequality. Equally simple
is the following proof using Poisson kernel, which we give in Rn, n ≥ 2.

Proof. Assume h(x) is harmonic in Rn, n ≥ 2 and M(r, |h|) = o(r) when
r →∞. Let x, y ∈ Rn, |y| = r. Let αn be the surface area of the unit sphere
in Rn and dσn(y) the surface area on Sn(r) = {y : |y| = r} in Rn. Then,∣∣h(x)− h(0)

∣∣ =

∣∣∣∣ 1

αnrn−1

∫
Sn(r)

( |y|n−2(|y|2 − |x|2)

|y − x|n
− 1
)
h(y) dσn(y)

∣∣∣∣ .
Now

P (x, y) =
|y|n−2(|y|2 − |x|2)

|y − x|n
− 1 = O

( 1

|y|

)
when |y| → ∞, for x in a compact set. (See M. Brelot [5] p. 134 for the
expansion of |y − x|−n as a uniformly convergent series.) That is, |P (x, y)| ≤
A/|y| when |y| is large, for some constant A. Hence∣∣h(x)− h(0)

∣∣ ≤ A

r
M(r, |h|)→ 0

when |y| = r →∞, by hypothesis. Thus h(x) = h(0) for all x.

Corollary 3.4. (Bôcher’s Theorem [8], [2], [7]) Let u(x) be a harmonic
function in 0 < |x| < 1 in Rn, n ≥ 2. Then the following are equivalent:

1) lim|x|→0 |x|n−1u(x) = 0.

2) lim inf |x|→0 |x|n−1u(x) ≥ 0.

3) There exists a locally integrable function ϕ(x) such that u(x) ≥ ϕ(x) and
M(r, |ϕ|) = o(r1−n) when r → 0.

4) u(x) = v(x) + αEn(x) in 0 < |x| < 1, where v(x) is harmonic in |x| < 1
and En(x) is the fundamental solution of the Laplacian ∆ in Rn.

Proof. In view of Theorem 2.3, an application of the Kelvin transformation
proves the corollary.
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