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HARMONIC SINGULARITY AT
INFINITY IN R

Abstract

Some properties of harmonic functions defined outside a compact set
in R™ are given. From them is deduced a generalized form of Liouville
theorem in R™ which is known to be equivalent to an improved version
of the classical Bocher theorem on harmonic point singularities.

1 Introduction

A generalized form of the classical Bocher theorem on the harmonic point
singularity in R™, n > 2, is given in Ishikawa, Nakai and Tada [8]. This is
equivalent to (Kelvin transformation) a generalized Liouville theorem: If u is
a harmonic function in R™, n > 2, such that liminf ;| % >0, then u is
a constant (P. Bourdon [4]).

In this note, we obtain these two theorems as consequences of some equiv-
alent properties of harmonic functions defined outside a compact set in R™.
These developments are based on our earlier papers [7] and [2].

In particular, we give a proof of the above mentioned Liouville theorem
that uses the arguments given by M. Brelot [6]; this proof is different from the
one given in [7] where a reference to the Divergence theorem is made. In the
special case of the complex plane C this theorem has been proved in [2] using
the Carathéodory inequality; here we add a simple proof, valid in R", n > 2,
that appeals to the Poisson representation.

2 Harmonic Functions Outside a Compact Set

Given a locally integrable function ¢(x) defined outside a compact set in R™,
let M(r, ) stand for the mean-value of ¢(x) on |z| = r for large r.
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Lemma 2.1. Let f(z) be a function defined outside a compact set in R™,
n > 2, such that
f(x)

liminf —= > 0.

Then there exists a locally integrable function p(x) such that f(x) > p(x)
outside a compact set and M (r,|¢|) = o(r) when r — co.

PROOF. Let liminf |, % =A2>0. If A >0, we can take ¢ = 0. Let us
suppose A = 0. For an integer m, there exists a compact K, such that

1
flx)>——|z| in K.
m

Choose ry, so that K,,, C {z : |z| < r;,}. Then choose 7,41 so that 7,11 >
T and Kpy1 C {2 @ || < rpy1}. Now, define ¢(z) for |z| large as

1
ox) =——|z| if rm <|z| <rmgr-
m

Then outside a compact set, ¢(x) is a locally integrable function such that

L 2@

=0 and M(r,|¢|) =o(r) when r— co.

Also f(x) > ¢(x) for |z| large. O

Lemma 2.2. Let u(z) be a bounded harmonic function outside a compact set
in R™, n > 2. Then lim|, o u(x) is finite.

PROOF. This is a classical result. See, for example, p. 195 and p. 201 in M.
Brelot [6]. O

Theorem 2.3. Let u(z) be a harmonic function defined outside a compact set
i R™, n > 2. Then the following are equivalent:

1) w(z) = o(|z|) when |z| — oco.

2) liminf |y 0 4“2 > 0.

||

3) There exists a locally integrable function p(x) such that u(x) > p(x) outside
a compact set, and M(r,|p|) = o(r) when r — oco.

4) lim|z| 00 u(z) is finite if n > 3 and lim ;o0 (u(x) — alog |z]) is finite for
some « if n = 2.
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PrROOF. 1) = 2): Evident.

2) = 3): Lemma 2.1.

3) = 4): Given a harmonic function u outside a compact set in R”, there
exists a harmonic function v in R™ such that

(a) u(z) — v(x) — alog|z| is bounded outside a compact set for some « if
n = 2, and

(b) u(x) — v(x) is bounded outside a compact set if n > 3.

To prove (a) and (b) we can use the series expansions for u(x) as given in M.
Brelot [6]. (A general result of this form applicable even to Riemann surfaces
and to some other harmonic spaces is given in Rodin and Sario [9]; see also
[1]). Consequently, the assumption on u(z) implies that the harmonic function
v(z) in R™ satisfies the condition that outside a compact set

v(z) > p(x) — alog|z] — B in R?

and
v(z) > p(x)— B, in R*, n>3

(where /3 and 3, are constants). In either case, v(x) > v (z) outside a compact
set K where () is a locally integrable function such that

M(r,|[¢]) =o(r) when r— oco.

Since v(x) > —|¢(x)] in R" \ K, v~ < [¢[; also |v] = v + 20~ and M(r,v) =
v(0). Hence M(r, |v|) = o(r) when r — co. This implies that v is a constant.
For this, we almost reproduce a proof given in M. Brelot [6], p. 194. (Later
we give another proof using the Poisson representation).

Write v(z) = Y ap(0)r?, where |z| = 7 and a,(#)’s are Laplace functions
of order p of the point 6 on the unit sphere. Since M (r, |v|) = o(r), M(r,va,) =
o(r) when r — co. But M(r,va,) = rPM(1,a2). Hence

P M(1,a2) -+ 0 when r—oo.

This implies that a, = 0 if p > 1. Hence v(z) = ao.

Going back to (a) and (b) above, we deduce that u(z) —alog |z| is bounded
outside a compact set if n = 2 and u(x) itself is bounded outside a compact
set if n > 3.

Finally, an appeal to Lemma 2.2 proves that 3) = 4).

4) = 1): Evident.

This completes the proof of the theorem. O
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3 Some Consequences of the Theorem

In this section, we obtain some corollaries of Theorem 2.3 which include
Liouville and Bocher theorems in R™.

Corollary 3.1. Let u(z) be a harmonic function that is bounded on one side
inlr—al>pinR™. Thenin |z —a|>r>p,

a) if n =2, u(x) = alog|z| + a bounded harmonic function, and
b) if n > 3, u(x) is bounded.
Corollary 3.2. Let u(z) be a harmonic function defined outside a compact

set in R™. If M(r,u™) = o(r) when r — oo, then

] O(logr) ifn=2
“Now inss.

PROOF. As mentioned in the proof of 3) = 4) of Theorem 2.3, there exists a
harmonic function v in R™ such that outside a compact set

a) in R? u(z) = v(z) + alog|z| + b(z) and
b) in R", n > 3, u(z) = v(z) + b(x)

where b(x) stands for a bounded harmonic function.

When n = 2, m(r,u) = v(0)+alogr+ M(r,b) = o(r) when r — co. Hence
if M(r,u*) = o(r), then M(r,|u]) = o(r). By Theorem 2.3, it follows that
lim,| o0 (u(z) — alog|z|) is finite. Hence |u| = O(logr) when r — oc.

When n > 3, M(r,u) = v(0) + M(r,b) = O(1) when r — oo. Hence
if M(r,u™) = o(r), we show as before that lim|,|_,. u(z) is finite. Hence
|u| = O(1) when r — oo. O

Corollary 3.3. (Liouville’s Theorem [4], [7]) Let h be a harmonic function
i R™, n > 2. Then the following are equivalent:

1) h(z) = o(|z|) when |z| — oco.
2) liminf |y e 22 > 0.

||

3) There exists a locally integrable function p(x) such that h(x) > p(x) outside
a compact set and M(r,|¢|) = o(r) when r — co.

4) h is a constant.
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PROOF. In view of Theorem 2.3, it is enough to remark that when n = 2,
h(z) — alog|z| tends to a finite limit when |z| — co. Hence

M (r, h(z) — alog|z|) = h(0) — alogr

tends to a finite limit when r — co; consequently, a = 0.
Thus for all n > 2, h(x) tends to a finite limit at the point at infinity.
Hence by the maximum principle, h is a constant. O]

Remark. The above generalized form of the Liouville theorem in the complex
plane C was proved in [2] using the Carathéodory inequality. Equally simple
is the following proof using Poisson kernel, which we give in R", n > 2.

PROOF. Assume h(z) is harmonic in R", n > 2 and M(r, |h|) = o(r) when
r — 0o. Let x,y € R™, |y| = r. Let a;, be the surface area of the unit sphere
in R™ and do,(y) the surface area on S, (r) = {y : |y| = r} in R™. Then,

! "=l = 22) )
o) =10 = |y [ (M )i )|
How W2yl — o) 1
B "2 (|y|? — |2 L 1
Play) = T —1=0(y)

when |y| — oo, for x in a compact set. (See M. Brelot [5] p. 134 for the
expansion of |y — x|™" as a uniformly convergent series.) That is, |P(x,y)| <
A/ly| when |y| is large, for some constant A. Hence

A
|h(z) — h(0)| < ?M(r, |h]) =0
when |y| = r — oo, by hypothesis. Thus h(z) = h(0) for all x. O

Corollary 3.4. (Bocher’s Theorem [8], [2], [7]) Let u(z) be a harmonic
function in 0 < |z| < 1 in R™, n > 2. Then the following are equivalent:

1) limz 0 |z tu(z) = 0.
2) liminf|, 0 [2]" tu(z) > 0.

3) There exists a locally integrable function p(x) such that u(x) > p(x) and
M(r,|¢l) = o(rt™™) when r — 0.

4) u(z) = v(z) + aE,(x) in 0 < |z| < 1, where v(z) is harmonic in |z| < 1
and E, (x) is the fundamental solution of the Laplacian A in R™.

PROOF. In view of Theorem 2.3, an application of the Kelvin transformation
proves the corollary. O
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