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SOME REMARKS ON QUASIINVARIANT
AND INVARIANT MEASURES

Abstract

We discuss two natural questions concerning some properties of
quasiinvariant and invariant measures: the existence of nonmeasurable
sets with respect to such measures and the existence of a nonzero σ-finite
quasiinvariant measure on a proper Borel subgroup of the real line.

Let E be a nonempty set, let G be a group of transformations of E and let
µ be a σ-finite measure defined on some σ-algebra of subsets of E. Denote by
I(µ) the family of all µ-measure zero subsets of E. We recall that

1. µ is G-quasiinvariant if dom (µ) and I(µ) are G-invariant classes of sets;

2. µ is G-invariant if dom (µ) is a G-invariant class of sets and, for each
X ∈ dom (µ) and for each g ∈ G, we have µ(g(X)) = µ(X).

The most well-known example of an invariant measure is the left (right)
invariant Haar measure on a locally compact topological group (see, for in-
stance, [2]). An important special case of a Haar measure is the standard
Borel measure on a finite-dimensional Euclidean space (in particular, on the
real line). A Haar measure µ on a σ-compact locally compact topological group
(G, ·) has the so-called Steinhaus property: if X ∈ dom (µ) and µ(X) > 0, then
the set X · X−1 is a neighbourhood of the neutral element of G. Note that
the category analogue of the Steinhaus property holds true for any topological
group. Namely, if (Γ, ·) is a topological group and Y is a second category sub-
set of Γ possessing the Baire property, then the set Y ·Y −1 is a neighbourhood
of the neutral element of Γ.

Evidently, in order to obtain a quasiinvariant measure, it is sufficient to take
an arbitrary invariant measure µ and to consider any measure equivalent to µ.
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However, there are some quasiinvariant probability measures which cannot
be obtained in such a way. This fact implies, in particular, that some natural
questions (e.g. concerning the existence of nonmeasurable sets or the existence
of a measure with some additional properties) can relatively easily be solved
for invariant measures, but turn out to be rather difficult for quasiinvariant
measures. The main goal of this paper is to illustrate an essential difference
between invariant and quasiinvariant measures from this point of view.

In our further considerations, the symbol N denotes the set of all natural
numbers, Z – the set of all integers, Q – the set of all rational numbers and
the symbol R denotes the real line.

We begin with one problem concerning the existence of nonmeasurable sets
with respect to nonzero σ-finite quasiinvariant measures. First, let us recall
that a group G acts I(µ)-freely in E if, for any two distinct transformations
g and h from G, the set {x ∈ E : g(x) = h(x)} is of µ∗-measure zero (where
µ∗ denotes, as usual, the outer measure canonically associated with µ). The
following result was obtained in [1], [3] and [9] and can be regarded as an
abstract version of the classical Vitali theorem on the existence of Lebesgue
nonmeasurable subsets of the real line (see [12]).

Theorem 1. Let (E,G) be a space with a transformation group, let µ be a
σ-finite G-quasiinvariant measure on E and let X be a subset of E with
µ∗(X) > 0. Suppose also that G is uncountable and acts I(µ)-freely in E.
Then there exists a subset of X nonmeasurable with respect to µ. In partic-
ular, if µ is not identically zero, then dom (µ) differs from the family of all
subsets of E (in other words, µ is not an universal measure on E).

For the proof of Theorem 1, see the works mentioned above. Here we only
wish to notice that the proof of this theorem is based on the classical result
of Ulam [11], stating that the first uncountable cardinal ω1 is not real-valued
measurable, and on certain properties of selectors associated with a subgroup
of G of cardinality ω1.

In connection with Theorem 1, let us also remark that it can be essentially
strengthened for σ-finite invariant measures. Namely, the following statement
was recently obtained in [10].

Theorem 2. Let (E,G) be a space with a transformation group, let µ be a
σ-finite G-invariant measure on E and let X be a µ-measurable set with
µ(X) > 0. Suppose, in addition, that G is uncountable and acts I(µ)-freely
in E. Then there exists a subset Y of X nonmeasurable with respect to ev-
ery G-invariant measure on E extending µ (in other words, Y is absolutely
nonmeasurable with respect to the class of all G-invariant extensions of µ).
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Example 1. Let E = R× R denote the Euclidean plane, let G be the group
of all translations of E and let ν be the classical two-dimensional Lebesgue
measure on E. It is not difficult to show (by using the method of transfinite
induction) that there exists a function f : R → R whose graph Z = Zf is a
ν-thick subset of E. In particular, we have the equality ν∗(Z) = +∞. At the
same time, by applying the standard methods of extending invariant measures
(see, for example, [6, pp. 276–287] or [4]), it can be proved that there exists a
complete G-invariant measure ν′ on E satisfying the following two conditions:

a) ν′ is an extension of ν;

b) Z ∈ dom (ν′) and ν′(Z) = 0.

We thus see that the set Z (being of strictly positive outer ν-measure)
contains no subset absolutely nonmeasurable with respect to the class of all
G-invariant extensions of ν. Therefore, we can conclude that the assumption
X ∈ dom (µ) is rather essential in the formulation of Theorem 2. On the other
hand, it is obvious that Theorem 1 does not need such an assumption.

A detailed proof of Theorem 2 is given in [10]. Unfortunately, the argument
used in [10] is heavily based on the assumption of the invariance of µ and does
not work for σ-finite quasiinvariant measures. Consequently, the following
problem remains unsolved.

Problem 1. Let E be a set, let G be an uncountable group of transformations
of E and let µ be a σ-finite G-quasiinvariant measure on E such that G acts
I(µ)-freely in E. Can one assert that, for any µ-measurable set X with µ(X) >
0, there exists a subset of X absolutely nonmeasurable with respect to the class
of all G-quasiinvariant extensions of µ?

Moreover, this problem remains open even for the classical situation where
E coincides with the real line R and G is some uncountable group of transla-
tions of R.

Example 2. It is well known that any Vitali subset of the real line R is not
measurable in the Lebesgue sense and does not possess the Baire property with
respect to the standard topology of R. Furthermore, any Vitali subset of is
absolutely nonmeasurable with respect to the class of all Q-invariant measures
extending the Lebesgue measure on R. At the same time, it is not hard to
demonstrate that there exist a Vitali set X and a nonzero σ-finite R-invariant
measure µ on R, for which we have X ∈ dom (µ) (see [4, Chapter 4]). In
other words, the set X is not absolutely nonmeasurable with respect to the
class of all nonzero σ-finite R-invariant measures on R and, consequently, X is
not absolutely nonmeasurable with respect to the class of all R-quasiinvariant
probability measures on R.
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In connection with Example 2, the following problem may be posed.

Problem 2. Let (E,G) be a space with a transformation group and let M
(M ′) denote the class of all nonzero σ-finite G-invariant (G-quasiinvariant)
measures on E. Give a characterization of all those subsets of E which are
absolutely nonmeasurable with respect to M (M ′).

Now, we wish to discuss one question concerning the existence of invariant
and quasiinvariant measures on some good (from the set-theoretical point of
view) subgroups of the real line and the one-dimensional torus. First, let us
consider the following simple example.

Example 3. Let S1 denote, as usual, the unit circle on the Euclidean plane,
regarded as a compact topological Abelian group, and let G be an uncountable
Borel subgroup of S1. Suppose also that there exists a G-invariant Borel
probability measure µ on G. Then one can assert that G = S1. Indeed, let
us put µ′(X) = µ(X ∩ G) for any Borel subset X of S1. Clearly, µ′ is a
G-invariant Borel probability measure on S1. Since G is uncountable, there
exists an element g ∈ G of infinite order. Obviously, the set {gn : n ∈ N} is
dense in S1. Starting with this fact and taking account of the invariance of µ′

with respect to each gn (n ∈ N), we can easily infer that µ′ is also invariant
with respect to each element of S1. Consequently, µ′ must coincide with
the standard Borel probability measure on S1. Suppose for a moment that
G 6= S1. Then, using the Steinhaus property of the standard Borel probability
measure, we obtain that µ′(G) = 0. But this is impossible since the measure
µ′ is concentrated on G. The contradiction yields us the required equality
G = S1.

A similar argument works for R, and we easily obtain that if G is an
uncountable Borel subgroup of R for which there exists at least one G-invariant
Borel measure µ on G satisfying the relation

0 < µ([0, 1] ∩G) < +∞,

then G coincides with R.

If we want to establish an analogous result for nonzero σ-finite quasiinvari-
ant measures given on proper Borel subgroups of R (S1, respectively), then
we need a much more difficult technique.

In order to demonstrate this, let us recall one simple notion from the
general theory of topological groups (see, e.g., [2, Chapter 2]. We say that
a given topological group G is compactly generated if there exists a compact
subset of G algebraically generating G.
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Lemma 1. Let G be a locally compact topological group and let K be a compact
subset of G. Then there exists a clopen compactly generated subgroup of G
containing K.

Proof. Denote by e = eG the neutral element of G. Clearly, the set {e} ∪K
is compact, too. Consequently, there exists an open set U ⊂ G containing
{e} ∪K and having the compact closure. Let us put V = cl (U). Then it is
easy to check that the group generated by V is the required one.

We also need the following well-known statement which describes the struc-
ture of compactly generated locally compact Abelian groups.

Lemma 2. Let G be an arbitrary compactly generated locally compact Abelian
group. Then G is topologically isomorphic to the product group Rn×Zm×G0

where n and m are some natural numbers and G0 is a compact Abelian group.

Proof. The proof of this fundamental result (essentially due to Pontryagin
and van Kampen) is presented in Chapter 2 of [2].

The next classical statement is due to Mackey (see [5]).

Lemma 3. Suppose that Γ is a standard topological group (i.e. Γ is a Borel
subgroup of some Polish topological group) and suppose that µ is a left
Γ-quasiinvariant Borel probability measure on Γ. Then there exists a locally
compact Polish topological group G with the left G-invariant Haar measure ν,
such that

1. there is an algebraic isomorphism f : Γ → G which simultaneously is a
Borel isomorphism between the topological spaces Γ and G;

2. the measure f(µ) is equivalent to the Haar measure ν.

Actually, we need only relation 1 of Lemma 3. The fact that the mea-
sures f(µ) and ν are equivalent does not play an essential role in our further
considerations.

Notice that Lemma 3 with some related results is discussed in the well-
known textbook by Parthasarathy [7]. However, the presentation of this ma-
terial in [7] is not quite correct.

Lemma 4. Let Γ, G and f be as in the previous lemma. Then the mapping
f−1 is a continuous bijection from G onto Γ.

Proof. Evidently, f−1 is an algebraic isomorphism between the groups G
and Γ. Also, f−1 is measurable with respect to the Haar measure ν on G.
Hence, applying the Steinhaus property of ν, we obtain that f−1 is continuous.
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Actually, the same argument yields the well-known fact that any measurable
(with respect to the completion of a Haar measure) homomorphism from a
σ-compact locally compact topological group into a separable topological
group is continuous. Moreover, the category analogue of the Steinhaus prop-
erty implies that an algebraic homomorphism from a Baire topological group
into a separable topological group, having the Baire property, is necessarily
continuous.

Now, we are ready to prove the following result (we do not assert that it
is new, but we could not find its precise proof in the literature).

Theorem 3. Let E be either R or S1 and let Γ be a proper Borel subgroup
of E. Suppose, in addition, that there exists a nonzero σ-finite Γ-quasiinvari-
ant Borel measure µ on Γ. Then Γ is at most countable.

Proof. Without loss of generality we may assume that µ is a probability mea-
sure. According to Lemma 3, there exists a locally compact Polish topological
Abelian group G (equipped with the Haar measure ν) such that

1. there is an algebraic isomorphism f : Γ → G which simultaneously is a
Borel isomorphism between the topological spaces Γ and G;

2. the measure f(µ) is equivalent to the Haar measure ν.

Suppose for a moment that our group Γ is uncountable, i.e. card (Γ) =
c where c denotes the cardinality of the continuum. Then we also have
card (G) = c. Let K be an arbitrary uncountable compact subset of G. Ap-
plying Lemma 1, we can find a clopen compactly generated subgroup G′ of G
containing K. In particular, for G′, we have the equality card (G′) = c. Now,
according to Lemma 2, the group G′ is topologically isomorphic to the product
group Rn × Zm × G0 where n and m are some natural numbers and G0 is a
compact Abelian group. Further, as we know (see Lemma 4), the mapping
f−1 : G′ → E is an injective continuous homomorphism from G′ onto a proper
subgroup of E. Consequently, f−1(Rn) is a proper connected subgroup of E
and f−1(G0) is a proper compact subgroup of E. ¿From these facts we can
easily deduce that n = 0 and that the group G0 is finite. But this immediately
implies that the group G′ is at most countable, which is impossible.

The contradiction obtained finishes the proof of Theorem 3.

Evidently, Theorem 3 remains true for any proper analytic (coanalytic)
subgroup Γ of E equipped with a nonzero σ-finite Γ-quasiinvariant Borel mea-
sure µ. Indeed, since Γ is a Radon topological space, it contains a subgroup Γ′

such that card (Γ′) = card (Γ) and Γ′ is an Fσ-subset of E, and the restriction
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of µ to the Borel σ-algebra of Γ′ is not identically equal to zero. So we may
directly apply Theorem 3 to Γ′.

However, Theorem 3 cannot be extended to the class of all projective sub-
groups of E where E = R or E = S1. Indeed, in the Constructible Universe
we have a projective subgroup Γ of R nonmeasurable in the Lebesgue sense.
For such a group Γ, the relations

Γ 6= R, λ∗(Γ) > 0, card (Γ) > ω

are fulfilled, where λ denotes the standard Lebesgue measure on R, and it is
clear that there exists a nonzero σ-finite Γ-invariant Borel measure on Γ.

The following problem is of some interest from the methodological point
of view.

Problem 3. Give a relatively elementary proof of Theorem 3 by using only
the methods of real analysis and classical measure theory, which do not rely on
the Mackey theorem and on the deep results concerning the structure of locally
compact topological Abelian groups.

Let us remark that in [8] the author tries to present such a proof, but his
argument is not quite correct.

We conclude with an example which shows that, for the Euclidean plane,
the situation essentially differs from the situation of the real line.

Example 4. Let E = R×R and let Γ = (R×{0})+({0}×Q). Obviously, Γ is
a proper uncountable dense Fσ-subgroup of E. We equip Γ with the induced
topology. Then it is not hard to define a nonzero σ-finite Borel measure µ on
Γ satisfying these two conditions:

a) µ is Γ-invariant;

b) µ does not have the Steinhaus property.

More precisely, condition b) says that there exists a µ-measurable set X
with µ(X) > 0 for which the difference set

X −X = {x− y : x ∈ X, y ∈ X}

contains no neighbourhood of the neutral element of Γ.
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