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Jörg Neunhäuserer,∗ TU Clausthal, Department of Mathematics, Erzstraße
1, 38678 Clausthal-Zellerfeld Germany. email: neunchen@aol.com

ON INHOMOGENEOUS BERNOULLI
CONVOLUTIONS AND RANDOM POWER

SERIES

Abstract

We extend the results of Peres and Solomyak on absolute continu-
ity and singularity of homogeneous Bernoulli convolutions to inhomo-
geneous ones and generalize the result to random power series given by
inhomogeneous Markov chains. In addition we prove an Erdös-Salem
type theorem for inhomogeneous Bernoulli convolutions.

1 Introduction.

There exists an extended literature on the fascinating field of Bernoulli con-
volution, see especially [9] and references in there. Two highlights in the field
are the relation of Bernoulli convolutions to algebraic number theory found
by Erdös [3] and Salem [13] and the proof of absolute continuity of almost all
Bernoulli convolutions by Solomyak [15], which was simplified and generalized
to biased convolutions by Peres and Solomyak, see [10] and [11]. In this paper
we ask the natural question if these results may be generalized to inhomo-
geneous Bernoulli convolutions having different probabilities of the convolved

Mathematical Reviews subject classification: Primary: 26A46, 26A30; Secondary: 28A80,
28A78, 11R06

Key words: inhomogeneous Bernoulli convolution, random power series, absolute con-
tinuity, singularity, Pisot numbers

Received by the editors January 28, 2010
Communicated by: Zoltn Buczolich

∗Supported by the Marie Curie Training Network ,“Conformal Structures and Dynamics”
of the European Community

213



214 A.Bisbas, J.Neunäuserer

measures. We will show that this is in fact true. We will prove an analogue of
the Peres and Solomyak theorem and analogue of the Erdös-Salem theorem in
the inhomogeneous setting. We need some notation to state our results. For
a sequence (pn)n∈N0

of probabilities pn ∈ (0, 1) and β ∈ (0, 1) consider the
measure µβ given by the convolution

µβ = ∗∞n=0(pnδβn + (1− pn)δ−βn),

where δ is the Dirac measure. If (pn)n∈N0 is constant this is the classical
Bernoulli convolution, see [9] and references therein. It follows from the theory
of convolutions that µβ is a Borel probability measure of pure type, either
absolutely continuous or totally singular, see [4]. There are two other ways
to describe the measures µβ . Consider independent real random variables Xn

with P (Xn = 1) = pn and P (Xn = −1) = 1− pn and the geometric series

X =

∞∑
n=0

Xnβ
n

for β ∈ (0, 1). Obviously µβ is the distribution of this variable, i.e. µβ(B) =
P (X ∈ B) for all Borel sets B. One may also describe µβ as a projection of a
Borel probability measure on the sequence space Σ = {−1, 1}N0 . The sequence
p of probabilities induces a Borel probability measure µ on Σ by

µ([s0 . . . sn]) =

n∏
k=0

((pk − 1/2)sk + 1/2)

for a cylinder sets [s0 . . . sn]. Now µβ is given by

µβ = π(µ) = µ ◦ π−1,

where the geometric projection π : Σ 7−→ R is

π((sn)) =

∞∑
n=0

snβ
n.

For further use we introduce here the entropy h(µ) of an inhomogeneous
Bernoulli measure µ by considering the limit of mean values,

h(µ) = lim inf
n7−→∞

− 1

n

n−1∑
i=0

(pi log(pi) + (1− pi) log(1− pi))

compare [1]. We are now prepared to state our first result.
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Theorem 1.1. For a sequence (pn)n∈N0 of probabilities pn ∈ (0, 1) the con-
volution µβ is absolutely continuous for almost all β ∈ [e−h(µ), 0.649] and
singular if β < e−h(µ). If pn ∈ [1/3, 2/3] we may replace the upper bound
0.649 by 1.

For ergodic measures µ on the sequences space a similar result was proved
by Peres and Solomyak, see Theorem 4.1 of [11]. We consider here inhomo-
geneous Bernoulli convolutions which are in general not ergodic. The upper
bound 0.649 in our result is given by an interval of transversality with respect
to the coding map π, see section five of [11], and the extension of the interval
is proved considering Fourier transforms and again a transversality argument.
With some numerical calculations the upper bound of transversality can be
extended to 0.668, see [14]. We conjecture here that the bound can be replaced
by one without an additional assumption on pn.
Furthermore we like to remark that a result of Mauldin and Simon [8] implies
the following theorem.

Theorem 1.2. Either the measure µβ is singular or equivalent to the Lebesgue
measure restricted to [−β/(1− β), β/(1− β)].

We state this result without proof. It follows directly from theorem 2 of
[8], since inhomogeneous Bernoulli measures µ fulfill the condition

µ(B) > 0⇒ µ((i, B)) > 0

for i ∈ {−1, 1} and all Borel sets B ⊆ Σ, where (i, B) = {(i, j) ∈ Σ|j ∈ B}.
Compare with condition (1) of [8].

Our next result is an analogue of classical Erdös-Salem theorem, see [3] and
[13], on the relation of Bernoulli convolutions to algebraic number theory in
the non homogeneous setting.

Theorem 1.3. Fix a sequence (pn)n∈N0
of probabilities pn ∈ (c, 1 − c) for

some constant c ∈ (0, 0.5). The Fourier transform µ̂β(ξ) of the convolution
measure µβ does not tend to zero for ξ 7−→ ∞ if and only if β is the reciprocal
of a Pisot number.

By Riemann-Lebesgue lemma this theorem has the following Corollary:

Corollary 1.1. µβ is singular if β is the reciprocal of a Pisot number.

For (1/2)n∈N0 this corollary is Erdös result [3] and for constant sequences
(p)n∈N0

with p ∈ (0, 1) the result was proved by Lalley [6].
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Our next question is if results on convolutions may be generalized to stochastic
power series given by a Markov chain. We will show that this is at least true
for the results on absolute continuity and singularity of Peres and Solomyak.
To this end consider a Markov chain on Σ given by a sequence of matrices

P (n) = (p
(n)
ij )(i,j)∈{−1,1} for n ∈ N0. Here p

(n)
ij ∈ (0, 1) are the one step tran-

sition probabilities and P (0) = (p
(0)
1 , p0

−1) is an initial probability vector. The
measure of a cylinder set in Σ is given by

ν([s0 . . . sn]) = p(0)
s0

n−1∏
k=0

p(k)
sksk+1

.

The entropy of the Markov measure is

h(ν) = lim inf
n 7−→∞

− 1

n

n−1∑
k=0

∑
(i,j)∈{−1,1}

C(i, k)p
(k)
ij log p

(k)
ij

where C(1, n) = P̄ (n)(1, 0)T and C(−1, n) = P̄n(0, 1)T with P̄ (n) defined as
P̄ (n) = P (0)P (1) · · ·P (n−1), compare [2]. By the geometric projection π the
Markov measure µ induces a Borel probability measure

νβ = π(ν) = ν ◦ π−1

on the real line. This is the distribution of the random power series

Y =

∞∑
n=0

Ynβ
n

where Yn is the Markov process given by µ. Theorem 1.1 has an analogue for
the distribution νβ of inhomogeneous Markov geometric series:

Theorem 1.4. Let P (n) = (p
(n)
ij )(i,j)∈{−1,1} for n ∈ N0 with pnij ∈ (0, 1) be

an inhomogeneous Markov chain. The distribution νβ of the corresponding
random power series is absolutely continuous for almost all β ∈ [e−h(ν), 0.649]
and singular if β < e−h(ν).

We remark here than Fan and Zhang [5] have a result on the absolute con-
tinuity of the random power series given by the homogeneous golden Markov
chain. Due to the transversality properties with respect to the coding map in
this special case, their upper bound is slightly larger than our upper bound. In
general it seems not to be possible to extend this bound using Fourier trans-
form techniques.
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The rest of the paper is organized as follows. In the next section we prove
our results on absolute continuity of Bernoulli convolutions µβ and generalize
them to the distribution νβ of Markov geometric series. In section three we
prove the results on singularity of these measures. The last section contains
the proof of the Erdös-Salem theorem for inhomogeneous Bernoulli measures
µβ .

2 Absolute continuity of µβ and νβ.

For q ∈ (1, 2] let

λq = lim inf
n 7−→∞

1

n(1− q)
log

∑
(s0,...,sn−1)∈{−1,1}n

(

n−1∏
k=0

((pk − 1/2)sk + 1/2))q

= lim inf
n7−→∞

1

n(1− q)

n−1∑
k=0

log(pqk + (1− pk)q).

By part (a) of Theorem 4.1 of [11] we have that µβ is absolutely continuous
with density in Lq for almost all β ∈ [e−λq , 0.649], since λq is bound Dq(µ)
defined there. Now we consider λq for q 7−→ 1. Let

f(q, p) =

{ 1
1−q log(pq + (1− p)q) for q 6= 1

−(p log(p) + (1− p) log(1− p)) for q = 1

}
.

By the rule of L’Hospital the function is continuous on the square [0, 1]2 and
hence uniformly continuous. It follows that the convergence of mean values

lim
q 7−→1

1

n(1− q)

n−1∑
k=0

log(pqk+(1−pk)q) = − 1

n

n−1∑
k=0

(pk log(pk)+(1−pk) log(1−pk))

is uniform with respect to n. Hence

lim
q 7−→1

λq = lim
q 7−→1

lim inf
n 7−→∞

1

n(1− q)

n−1∑
k=0

log(pqk + (1− pk)q)

= lim inf
n 7−→∞

lim
q 7−→1

1

n(1− q)

n−1∑
k=0

log(pqk + (1− pk)q)

= lim inf
n 7−→∞

− 1

n

n−1∑
k=0

(pk log(pk) + (1− pk) log(1− pk)) = h(µ),
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which concludes the proof of absolute continuity in the interval [e−h(µ), 0.649].

We assume now that pn ∈ [1/3, 2/3] and use the Fourier transform of µβ .
The Fourier transform of a convolution is a product of Fourier transforms of
the convolved measures, therefore

µ̂β(ξ) =

∞∏
n=0

(pne
iβnξ+(1−pn)e−iβ

nξ) =

∞∏
n=0

(cos(βnξ)+(1−2pn) sin(−βnξ)i). (1)

Hence we have

|µ̂β(ξ)|2 =

∞∏
n=0

(cos2(βnξ) + (1− 2pn)2 sin2(βnξ))

≤
∞∏
n=0

(cos2(βnξ) +
1

9
sin2(βnξ)).

Now the right hand side is the square Fourier transform |ϑβ |2 of the homo-
geneous Bernoulli convolution ϑβ with pn = 1/3. By Corollary 1.4 of [11]
ϑβ , and hence µβ , is absolutely continuous with density in L2 for almost all
β ∈ (5/9, 1). Since 5/9 < 0.649 this concludes our argument.

It remains to establish absolute continuity of νβ for a Markov measure ν under
the assumption of theorem 1.4. Let

λ̄q = lim inf
n 7−→∞

1

n(1− q)
log

∑
(s0,...,sn−1)∈{−1,1}n

(p(0)
s1

n−1∏
k=0

p(k)
sk−1sk

)q.

Again by by part (a) of Theorem 4.1 of [11] the measure νβ is absolutely

continuous with density in Lq for almost all β ∈ [e−λ̄q , 0.649]. Now consider
q 7−→ 1. By considerations described in the case of Bernoulli measures we see
that this limit is uniform with respect to n and we can exchange limits. Hence
using the Rule of L’Hospital

lim
q 7−→∞

λ̄q = lim inf
n 7−→∞

lim
q 7−→1

1

n(1− q)
log

∑
(s0,...,sn−1)∈{−1,1}n

(p(0)
s1

n−1∏
k=0

p(k)
sk−1sk

)q

= lim inf
n7−→∞

− 1

n

∑
(s0,...,sn−1)∈{−1,1}n

p(0)
s1

n−1∏
k=0

p(k)
sk−1sk

log(p(0)
s1

n−1∏
k=0

p(k)
sk−1sk

) = h(ν),

which completes the proof.
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3 Proof of singularity of µβ and νβ.

Consider the space of sequence Σ = {−1, 1}N0 with the metric d given by

d(s, t) = β−|s∧t| = β−min{k|sk 6=tk}.

By Bisbas and Karanikas [1] we have Shannon’s local entropy theorem for a
non-uniform Bernoulli measure µ on Σ, that is

lim inf
n 7−→∞

− 1

n
logµ([s0, . . . , sn]) = h(µ)

for almost all s = (sk). Hence we have for almost all s ∈ Σ

lim inf
n 7−→∞

logµ(Bβn(s))

log βn
=

h(µ)

− log β

where Bβn(s) is a ball with respect to the metric d. By Frostmann’s lemma,
see [12], this implies implies dimH µ = −h(µ)/ log(β). The Hausdorff dimen-
sion here is defined with respect to the metric d. Now the coding map π is
Lipschitz with respect to d and does hence not increase Hausdorff dimension.
Consequently

dimH µβ = dimH π(µ) ≤ dimH µ = −h(µ)/ log(β).

If β < e−h(µ) we get dimH µβ < 1 and µβ is singular. Shannon’s local entropy
theorem remains true for non-uniform Markov measure ν on {−1, 1}N. This
fact is implicitly contained in the proof of theorem 1 of [2]. Hence by the
argument described before we get

dimH νβ ≤ −h(ν)/ log(β)

and νβ is singular if β < e−h(ν).

4 The Erdös-Salem type theorem.

We prove here the Erdös-Salem type theorem for inhomogeneous Bernoulli
measures µβ , see theorem 1.3.

By equation (1) of section four we get

|µ̂β(ξ)|2 =

∞∏
n=0

(cos2(βnξ) + (1− 2pn)2 sin2(−βnξ) ≥
∞∏
n=0

cos2(βnξ).
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for all ξ ∈ R. With ξk = 2πβ−k we get

|µ̂β(ξk)| ≥ ĉ
k∏

n=0

cos(2πβ−n)

where ĉ is independent of k. Now assume that β is the reciprocal of a Pisot
number, then there is a constant θ ∈ (0, 1) such that

min{|β−n − u|u ∈ Z} < θn ∀n ≥ 0.

Hence |µ̂β(ξk)| remains bounded from below and does not tend to zero for
k 7−→ ∞.

Now assume that |µ̂β(ξ)| tends to zero with ξ 7−→ ∞. We have

|µ̂β(ξ)|2 =

∞∏
n=0

((1− 2pn)2 sin2(βnξ) + cos2(βnξ))

=

∞∏
n=0

[1− (4pn − 4p2
n) sin2(βnξ)]

By our assumption there is a constant C > 0 and an increasing sequence ξs
such that |µ̂β(πξs)| ≥ C > 0. Writing ξs = λsβ

−ns with 1 ≤ λs < β−1 and
ns 7−→ ∞ we obtain

ns∏
n=0

[1− (4pn − 4p2
n) sin2(πλsβ

−n)] ≥ C2.

Since 1 + x < ex, this implies

ns∑
n=0

[(4pn − 4p2
n) sin2(πλsβ

−n)] ≤ log(1/C2).

By choosing a subsequence we may assume that λs converges to λ ∈ [1, β−1).
Since s is arbitrary large we get

∞∑
n=0

[(4pn − 4p2
n) sin2(πλβ−n)] ≤ log(1/C2).

By our assumption on pn we have 4pn − 4p2
n > c̄ > 0. Hence

∞∑
n=0

sin2(πλβ−n) ≤ c̄−1 log(1/C2).

Now chapter I of [13] implies that β is the reciprocal of a Pisot number. This
completes the proof of theorem 1.3.
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