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ON THE LATTICE GENERATED BY
HAMEL FUNCTIONS

Abstract
We say that f: R — R is LIF if it is linearly independent over QQ as
a subset of R? and that it is a Hamel function (HF) if it is a Hamel basis
of R2. In this paper we present a discussion on the lattices generated by
the classes HF and LIF. We also investigate extensions of partial LIF
functions to HF and LIF functions defined on whole R.

1 Introduction.

Let us establish some of the terminology to be used. Symbols R and Q stand
for the set of real and rational numbers, respectively. Ordinal numbers will
be identified with the set of their predecessors and cardinal numbers with
the initial ordinals. The symbol |X| denotes the cardinality of a set X. In
particular, the symbol ¢ stands for |R| and |Q| = w. For a set X and a
cardinal k, [X]" is the family of all subsets of X with cardinality . Similarly
we define the family [X]<". No distinction is made between a function and
its graph. For any function f : X — Y symbols rng(f) and dom(f) denote
the range and the domain of f respectively. The symbol f|4 denotes the
restriction of f to A. Suppose V is linear space over some field K and W C V'
is a linear subspace. Then the symbol codimy (W) = dim(V/W) will stand
for the codimension of the subspace W.

We will consider R (R?) as a linear space over the field Q. For A C R*
(k =1,2,...), LINg (A) denotes the linear subspace of R¥ over Q generated
by A. Any basis of R¥ over Q will be referred to as a Hamel basis. A function
fR—=Ris
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o additive (f € Add) if f(z)+ f(y) = f(z +y) for all z,y € R;

o linearly independent (f € LIF) if f is a linearly independent subset of
R2;

o Hamel function (f € HF) if f is a Hamel basis of R2.

Let X C R. We will say that f : X — R is PHF if it is a Hamel basis of R?
and that it is PLIF if it is a linearly independent subset of R2. For f: X — R
and z € R let

k k
LC(f,x) = {szf(ffz) k<wpi €Qu; € X, piw; = fﬂ} :

i=0 =0

When z = 0 we will write LC (f).

A family F of real functions f : X — R is a lattice iff min(f,g9) € F
and max(f,g) € F for f,g € F. If F is a family of real functions, then the
symbol L(F) stands for the lattice generated by F, i.e. the smallest lattice
of functions containing F. Evidently, we have £(A) C £(B) if A C B and
L(L(A)) = L(A).

Let F be a family of real functions. Then the symbols Max(F)= {max(g, h) :
g,h € F} and Min(F)= {min(g, h) : g,h € F} will stand for the maxima and
minima sets for family F, respectively. Obviously if A C B are families of real
functions, then Max(A) C Max(B) and Min(A) C Min(B).

The class of Hamel function was first introduced and researched by Plotka
in papers [7, 9, 8, 10]. The aim of this paper is to answer some questions con-
cerning lattices generated by HF and LIF functions. Finding lattice generated
by a family of real functions is a typical problem in real analysis (see e.g. [6]).
Our main result in this topic consist of showing that L(HF) = £(LIF). An-
other important problem is extendability of partial functions (see e.g. [3]). We
prove in Theorem 8 a sufficient condition for a PLIF function to be extendable
to a HF function. Next we use Theorem 8 to prove that L(LIF) = L(HF).

2 The lattices of Hamel and linearly independent func-
tions.

Lemma 1 ([5, Fact 2.3]). Suppose f € HF, then g : R — R defined by
g(x) = f(x) + ¢ f(0) where g, € Q\ {—1} for x € R is a Hamel function.

Lemma 2 ([8, Fact 6]). Suppose X € [R]<, f: X — R, f € LIF. Then f
can be extended to HF function f: R — R.
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Definition 1. For F C R® the class Mpya(F) = {f € R® : max{f, g} €
F for every g € F} is called the maximal upper family for F and Muin(F) =
{f € RR : min{g, f} € F for every g € F} is called the mazimal lower family
for F.

Fact 1. Myay(HF) = Muin (HF) = Myax (LIF) = My (LIF) = 0

PRrROOF. We will show only the case Mpax(HF) = ), the other equalities can
be proven in a similar fashion. Let g : R — R be a function, we will show that
there exists f : R — R such that f € HF and h = max{f, g} ¢ HF. Fix linearly
independent vectors =,y € R. First suppose that g(z)+g(y) = g(z+y). Fix a
Hamel function f such that f(z) < g(x), f(y) < g(y) and f(z+vy) < g(z+y).
Such a function exists in virtue of Lemma 1. Then max{f, g} ¢ LIF. Now let
us assume that g(x) 4+ g(y) # g(x +vy). Hence we get two cases. First suppose
that g(z) + g(y) > g(z +y). Fix 21 € (=00, 9(x)), 22 € (—00,9(y)) and put
= {{x,z1),(y,22), (. +y,9(x) + g(y))}. We will show that f' € PLIF.
Indeed suppose that qo (z, 21) +q1 {(y, 22) +¢2 {x + y, g(z) + g(y)) = 0 for some
90,9192 € Q. From goz + q1y + ¢2(x + y) = 0 we get that ¢go = 1 = —¢go.
Hence go(21 +22 —g(2) —g(y)) = 0. Hence go = 0 or z1 + 22 — g(z) — g(y) = 0.
Notice that 21 + 22 — g(x) — g(y) < g(z) +g(y) — g(x) — g(y) = 0, consequently
go = q1 = g2 = 0. Let f € HF be an extension of function f’. Let h =
max{f, g}, then h(z) + h(y) — h(z +y) = g(z) + g(y) — g(x) — g(y) = 0, so
h ¢ HF.

Now assume that g(z) + g(y) < g(z +y), then z = g(x +y) — g(y) > g(z).
Choose z; € (—00,¢(y)) and z3 € (—o0,g(x +y)) such that z 4+ 21 — 22 # 0
and put f' = {{x,2),{y,z1),{x +y,22)}. We will show that f’ € PLIF.
Suppose qo (2, 2) + q1 (Y, 21) + g2 (¥ +y, 22) = 0 for some go,q1,¢2 € Q. Then
qo = g1 = —q2, 50 qo(z+ 21 — 22) = 0. Hence go = ¢1 = ¢2 = 0. Let f € HF be
an extension of function f’ and h = max{f, g}. Then h(z)+h(y) —h(z+y) =
z+9(y) —glx+y)=0,s0 h ¢ HF. O

Definition 2. We will say that a function f: R — R is n-Hamel function if
there exist sets Ag,...,An—1 C R and functions fo,..., fn_1 € HF such that
U?:_OIAi =R, Ay N A =0 for m,k <n, and fija, = fla, fori<n.

Fact 2. Max(HF) = Min(HF).

PRrROOF. First we will show that if f € Max(HF) (f € Min(HF)) then —f €
Max(HF) (—f € Min(HF)). Pick f € Max(HF), then there exist functions
g,h € HF such that f = max{g,h}. Define Ay = {z € R: g(z) = f(z)} and

=R sate) = ) Pt = { S0 o n e
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and h(x) = { —I/?ng—pmh(O) igi;iﬁ; , where ¢;,p, € Q, —g(z) —
4:9(0) < —h(x) for x € Ay, ¢ # —1 and —h(z) — pyh(0) < —g(x) for x € A,
pr # —1. Such p.,q, exist because g(0) # 0 # h(0). Since g,h € HF, so
—g,—h € HF and consequently in virtue of Lemma 1 we get that g, h € HF.
Then —f = max{§,h} € Max(HF). The case f € Min(HF) can be proved
analogously. To finish the proof notice that f € Max(HF) iff — f € Min(HF),
hence Max(HF) = Min(HF). O

Lemma 3. If f is n-Hamel function then [ is a maximum of n Hamel func-
tions.

PrROOF. Fix an n-Hamel function f. Hence there exists a partition Ag, ..., Ap_1
of R and Hamel functions fo,..., f,—1 such that f;j4, = f|a,. Define

fi(z) = { E ; + g fi(0) igi i ; ﬁz , where ¢&. € Q\ {—1} is such that
fi(z) + 4L fi(0) < fi(x ) for z € Aj, i # j. Such ¢} exists since f;(0) # 0.
By Lemma 1, f; € HF. Fix i < n and z € A;. Then fj(z) = fi(z) +
aif;(0) < filz) = fi(x) for j # i, s0 f(x) = fi(x), and therefore f =

max{fg,...,fn_l}. O
Theorem 1. f € Max(HF) iff f is 2-Hamel function.

PrROOF. = Fix f € Max(HF). Then there exist g,h € HF such that f =
max{g,h}. Put Ag={x € R:g(z) < h(zx)} and 4; = {x € R: h(z) < g(x)}.
Then AgNA; =0 and AgUA; =R and f|a, = hja,, fla, = 9|4, Hence f is
2-Hamel function.

< This follows from Lemma 3 for n = 2. L]

Lemma 4. The set L = {f : R® : f is n-Hamel function for some n € N} is
a lattice.

PRrROOF. Fix g,h € L and put By = {z € R : h(z) < g(z)}, By = {z €
R : g(z) < h(z)} and f = max{g,h}. Since g,h € L, then there ex-
ist numbers m,n € N, sets Agyo,...Ao,m,A1,0,...,41,, C R and functions
90, -+, 9m,ho,...,hyn, € HF such that Agp,...,Aom and Ayo,..., A1, are
pairwise disjoint and g;, , = 9)40,1» hjlay, = hja,,- Define AY = BonAy,; for
i <m and A} = By N Ay, for i <n. Then the famlly {AY, A1 i<m,j<n}
and functions 9o, -+ 9m, ho, - . ., by, witness that f is (n+m)- Hamel function,
so f € L. Similarly we show that min{g, h} € L. O

Theorem 2. L(HF) = {f € RE: f is n-Hamel function for some n € N}.
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PRrROOF. In virtue of Lemma 4 we get the inclusion C. To prove the inclusion
O use Lemma 3. O

Notice that similarly as in the above discussion we could show that a real
function f € Max(LIF) iff there exists a decomposition of R into sets A, B such
that f|4 and f|p are extendable to linearly independent functions. Moreover
f € L(LIF) iff there exists n € N and a decomposition of R into n sets
Ao, ..., Ap_1suchthat f|a,,..., f|a,_, are extendable to linearly independent
functions.

In the next theorem we will use the following notation. For f € L(HF) let
n(f) be the minimal number such that f is n(f)-Hamel function, L; = HF
and, generally, L, = {f : n(f) <n} forn € N.

Theorem 3. L1 C Lo & ... & L, & ... and U L, = L(HF).

Proor. Fixn € N, g € HF, ¢o = 1 and zp € R\ {0}. Put z; = ¢;xo where
¢; € Q\ {0,1} are pairwise different, 1 < i <n. Define h : R\ {z1,...,2,} —
R as h = g\{a1,...e,}- Notice that since LINg (R\ {z1,...,z,}) = R, so
LC(h,x) # 0. Choose yg € LC(h, zg) and put y; = q;yo for 1 <4 < n. Define
fiR—>Ras f=hU{(z;y):1<i<n}. We will show that f € L,,41\ L.
First notice that since fir\{z,,...2.}1> 1(T1,¥1)}, -+ {{Tn,yn)} are extendable
to Hamel functions, so f € L, 1. Now suppose that f € L,, hence there exists
a partition of R into sets By, ... B, _1 such that f|B7¢ is extendable to a Hamel
function for 0 < i <n— 1. Since |[{zg,...,2,}| = n+ 1, so there exists i such
that |B; N{xo,...,zn}| > 2. Hence there exist k # [ such that xy,x; € B; and
consequently (zy,yx) — L& (z1,y1) = 0, so f|p, ¢ PLIF, a contradiction. Hence

&L O

Remark 1. Note that L(HF)NAdd = 0, because f(0) # 0 for each f € L(HF).
Similarly, if f = max{fo, f1,...} for some infinite sequence (f,) of Hamel
functions, then f(0) # 0 and therefore f ¢ Add.

neN

The following Lemma is a simple modification of [1, Lemma 7.3.10]. (See
also [4] and [2].)

Lemma 5. Fiz a cardinal § and infinite reqular cardinals 7y, k such that v < K
and § <. Let |A| =k, |B| =7 and f : A X B — §, then for every cardinal
a < 0 there exist By € [B]* and Ay € [A]" such that f(ag,by) = f(a1,b1) for
every ag,a; € Ag and by, by € By.

PROOF. Fix a < §. First we will show that for every a € A there exist
B, € [B]* and B, < ¢ such that f(a,b) = 3, for every b € B,. To see this,
notice that for every a € A the sets S? = {b € B : f(a,b) = B8}, B < §, form
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a partition of the set B. Since |B| = v and v > ¢, so there exists an § = 3,
such that the set S? is of power 7. Notice that [S]* # . Fix B, € [S5]*
and observe that f(a,b) = 8, for every b € B,,.

Now F : A — [B]® x § be defined by F(a) = (Bq, 84). Then f(a,b) = 8, for
every a € A and b € B,. The set [B]® x ¢ has cardinality 7, so there exists
(Bo, B) € [B]® x 6 such that Ay = F~!(By,3) has cardinality x. Hence for
every a € Ag and b € By we have f(a,b) = 8. O

Theorem 4. Suppose that f : R — R is constant on some nonempty open
interval (a,b) C R, then f ¢ L(LIF).

PRrROOF. Fix a partition Sy,...,S, of R. Let U C R be an non-empty open
interval such that = + y € (a,b) for every z,y € U. Fix a Hamel basis H C U
and disjoint sets A, B C H such that |A] = w; and |B| = w. Define g :
Ax B —A{0,...,n} by g(a,b) =miff a+b € S,,. Then in virtue of Lemma 5
for function g and a = 2 there exist By = {bo,b1} € [B]? and Ay € [A]¥ such
that b+ a € Sy for some k£ < n and every a € Agp, b € By. Fix ag,a1 € Ap
and put x = bg + ag, y = by + a1, z = by + ap and t = by + a;. Notice that
x,y, z,t are pairwise different, x,y, z,t € (a,b) and x —y = z — t. Since f is
constant on (a,b), 50 (z, f(x)) — {5, f3)) + (t: F(1)) — (= ()} = 0. Hence
f ¢ L(LIF). O

Problem 1. Does there exist a function f € L(HF) such that f is continuous
on some nonempty open interval?

Now we will consider maxima of countable families of functions.

Theorem 5. The Continuum Hypothesis holds iff R®\ {f € R® : £(0) = 0} =
{IIIE;LX{fO7 fl, .. } : fo, f17 ... € HF}

PROOF. = By Remark 1 it is enough to show that if f(0) # 0 then f =
max{ fo, f1,...} for some fo, f1,... € HF. Fix f € R® with f(0) # 0. It
is well known that the continuum hypothesis holds iff the set of all non-zero
reals is a union of countably many Hamel bases [2]. Hence there exist pair-
wise disjoint linearly independent sets Hy, Hs,... C R such that R\ {0} =

Un—i Hp. Put Hy = {0} and define f; = fg, for ¢ = 0,1,.... Then

fg, fl ... can be extended to a Hamel functions [8, Fact 6], denote those ex-

tensions again by fo, f1,... respectively. For ¢ = 0,1,... define functions
_ | flx) for z € H; . .

filz) = { Fi(z) + g J.(0) for z ¢ Hy where ¢&. € Q \ {—1} is such that

fi(@) + L f;(0) < f(x). Then f = max{fo, f1,...} and fo, f1,... € HF.
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x forx#0
a forxz=0
a € R\ {0}. Hence there exists (f,)nen C HF such that f = max{f, : n € N}.
Define H, = {x € R: fu(z) = f(x)} \ {0}. Then R\ {0} = U, cy Hn. We
will show that H,, is linearly independent for n € N. Suppose the opposite
that there exists ¢ € N such that H; is linearly dependent. Hence there exist
different o, ..., z, € H; and qo, . .., g, € Q\ {0} such that >"}'_, gk = 0, so
> ro @k Tk, fi(zk)) = 0, a contradiction. Fix a Hamel basis H and A, B C H,
AN B =, such that ¢ > |A| > |B| > w. Define function g : A X B — w by
g(a,b) = m iff a+ b € H,,,. Hence there exist sets Ay and By as in Lemma 5
for function g and o = 2. Choose different ag,a; € Ag, by, b1 € By and put
Z;5 = a; + bj for ¢,5 < 2. Then z;; are different numbers all belonging to the
same H,. On the other hand we have gy — 19 = o1 — T11, a contradiction
with the fact that H,, is linearly independent. O

< Suppose ¢ > wy. Define f : R — R as f(z) = for some

Remark 2. Notice that by similar reasoning as in Theorem 5 if we assume
ZFC + —CH then no constant function is a mazxima of a countable family of
Hamel functions.

3 Extensions of Hamel functions.

Fact 3. Suppose f: X — R. Then LINg (f) = LINg (X) x R iff there exists
a € LINg (X) such that LC(f,a) =R.

PROOF. = Fix a € LINg (X). Then {a} x LC(f,a) = LINg (f) N ({a} x R)
and since LINg (f) = LINg (X) x R, so LC(f,a) =R.

< The inclusion C is clear. To see D, pick (z,y) € LINg (X) x R and
a € LINg (X) such that LC(f,a) = R. Since z — a € LINg (X), so there exist
q0,---,qn € Q\ {0} and o, ...,z, € X such that > I  gz; = x —a. Put
z =Y. oqif(z;). Since LC(f,a) = R, so y — z € LC(f,a). Hence there
exist po,...,pm € Q\ {0} and yo, ..., ym € X such that 7" p; (yi, f(ys)) =
(a,y — z). Hence we get

m n

(z,y) ={a,y —2) + (x —a,2) = Zpi (i (i) + th (@i, [ (@) -

i=0 i=0
Consequently, (z,y) € LINg (f). O

Remark 3. Suppose f : X — R is linearly independent, |R \ X| < w and
codimg: (LINg (f)) = |[R\ X|. Then f can be extended to a Hamel function
f.
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ProOOF. Order R\ X = {z} : k < n}. We will define a function f:R—=R
by induction. For x € X put f(z) = f(x). Suppose, for | < k, a function

f is defined for points ; such that f; = f U U<k {<ml,f(xl)>} is linearly

independent. Since | < k < n, so codimgz (LINg (f;)) =n—-1>n—k > 0.
Note that LINg (X) = R, hence by Fact 3 there exists y ¢ LC(fi, zx). Put

f(zx) = y. Notice that f € HF. O

Theorem 6. Suppose X C R, LINg (X) =R and f: X — R is PLIF. Then
f is extendable to a HF function iff codimg: (LINg (f)) = R\ X].

PROOF. = Let f: R — R be an HF extension of the function f. Then
codimes (LINg (1)) = |£\ f| = ldom(f) \ dom(f)] = [R\ X|.

< Without loss of generality we can assume that |R\ X| =k > w. Pick a
Hamel basis H C R? such that f C H. Well order R\ X = {z, : a < k} and
H\ f = {{an,ba) : @ < k}. For a < k we will construct partial functions f,
such that

() £ C f5C fofor f<aand |ful <|f]+]al
(i) f. € PLIF;
(ili) o € dom(fasr);
(V) (aa:ba) € LINg (fai1).

Then f = Ua<r fa is a HF extension of the function f. Suppose that for
B < v functions fsz are constructed. If 7y is a limit ordinal then f, = Uﬁ<w fa-
Otherwise there exists « such that v = a + 1.

Step 1. If 2, € dom(f,) then f! = f,. Otherwise, since

codimgz (LINg (fa)) = K, so fo ¢ PHF. Hence in virtue of Fact 3 there exists
y € R\ LC(fa,xa). Put f) = fo U{{(za,y)}. Then obviously f/ € PLIF.
Step 2.  If (aq,ba) € LINg (f)) then fot1 = f.,. Otherwise we get two
cases. If a, ¢ dom(f.) then define fo+1 = f, U {(an,ba)}. Then, since
(@a,ba) ¢ LINg(f.), fa41 € PLIF. Now suppose that a, € dom(f}).
Pick = ¢ dom(f}). Since LINg (dom(f.)) = R, so there exist qo,...,qn €
Q\ {0} and wo,...,z, € dom(f}) such that —z = >, ¢x;. Define y =
Soien @ifo(z;) and fy = fL U {{(z,bs — fi(aa) —y)}. We will show that
[+ € PLIF. This fact follows easily from

(@ ba) = <aa7f(/y(aa)> + (0,00 — lex(aa» =

(@as falaa)) + (=2,y) + (2,00 — fi(aa) — y) ¢ LINg (f5)

and since (aq, f,(aq)), (—z,y) € LINg (f},), so we get that (x, by — f,(aa) — y) ¢
LINg (f.). Hence fo41 € PLIF and (a4, bs) € LINg (fat1)- O
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Theorem 7.

1. If | X| < ¢, then any f : X — R, f € PLIF can be extended to a HF
function.

2. Suppose |X| = c¢. Then there exists fx : LINg (X) — R, fx € PLIF
such that LINg (fx) = LINg (X) x R.

3. If we additionally assume in (2) that LINg (X) # R, then fx is not
extendable to a LIF function.

PrOOF. (1) follows from [5, Lemma 2.3].

(2) Fix X € [R]¢ and let ¢ : R — LINg (X) be a linear isomorphism.
Define @ : R? — LINg (X) x R by ®(x,y) = (p(z),y). Then @ is a linear
isomorphism. Furthermore ® preserves functions i.e. if f : R — R is a
function, then ®(f) is also a function. Hence for every f € HF the function
®(f) : LINg (X) — R is a basis of the space LINg (X) x R. Set fx = ®(f).

(3) We will show that any extension of fx on R is linearly dependent.
Fix a function f : R — R which is an extension of function fx. Let Y C
X be a basis of LINg (X) and H C R a Hamel basis such that Y C H.
Define f : LINg (X) U H — R as the restriction JILiNg(x)un- Notice that

fx C f and since LC (fx) =R, so LC (f) = R. Hence in virtue of Fact 3,
LINg ( f) = LINg (Y U H) x R = R2. On the other hand, H ULINg (X) ¢ R,

so any extension of f is linearly dependent and consequently f is linearly
dependent. 0

Lemma 6. Suppose f : X — R is PLIF. Then codimpn,x)xr (LINg (f)) >
codimg (LC (f)).

PROOF. Fix a basis ¥ C R of subspace LC(f) and a set A C R such
that Y U A is a Hamel basis of R. Since LC (f) is linearly isomorphic to
LINg (f) N ({0} x R), so f U ({0} x A) is a linearly independent set. Fi-
nally LINg (f U ({0} x A)) C LINg (X) x R, so codimpng,(x)xr (LINg (f)) >
codimg (LC (f)). O

Theorem 8. Suppose X C R and f : X — R is linearly independent. Then
[ is extendable to a HE function iff codimpin,x)xr (LINg (f)) = [R\ X]|.

PRrROOF. First notice that in virtue of Theorem 6 and Lemma 2 without loss
of generality we can assume that LINg (X) # R and | X| = c.

= Let f: R — R be a HF extension of a function f and Y C X be a basis
of the space LINg (X). Fix a Hamel basis H C R such that Y C H and define
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F:XUH —R, by F= fxum-
Claim 1. codimg (LC (F)) = .
Well order R\ (X U H) = {z, : @ < ¢}. Notice that

LC(F) ¢ LC (Fu {<x0,f(x0)>}) C...cLC (f)

Indeed, fix o < ¢. There exist different zf,...,2; € X UH and ¢f,...,q; €
Q\ {0} such that Y ,¢fz® = —z4. Let y = > 1 ¢* f(x¢) + f(z4). Then

yelc|FulJ {<xwf(xv)>}

y<a

f is a linearly independent set, so y ¢ LC (F UU,<a {<x7, f(:cv)>}) Recall

that LC (F UU,<a {<x7, f(x7)>}> is a linear subspace of R for every a < c.
Hence
codimg (LC (F)) = R\ (XUH)| =c.

Claim 2. LC (F) = LC (f).
Since f C F,LC(f) C LC(F). Fixy € LC(F),s0(0,y) = > ¢ (xs, f(@:))+
Z;n:o p; (y;, F(y;)), for some p;,q; € Q and different x; € X, y; € H\'Y for
i <nand j <m. Since LINg ({z; : ¢ <n}) NLINg ({y; : ¢ < m}) = {0}, so
Yoo @i = 0 and 37" pjy; = 0. Because H \ X is a linearly independent
set, so p; = 0 for j < m. Hence y € LC(f).

Hence in virtue of Lemma 6 we get that

codimg: (LINg (f)) > codimg (LC (f)) = .

< Again we start with showing that codimg (LC (f)) = ¢. To see this fix
x € R\LINg (X). Notice that since | X| = ¢, so |[LINg (X U {z})\LINg (X)| =
c. PutY = LINg (X U{z}) and well order ¥ = {z, : @ < ¢}. We define
partial functions f,, a < ¢, such that

(i) fC fs C faforf <o
(ii) f. € PLIF;
(iil) z, € dom(fut1).

If o is a limit ordinal, then f,

U,<q fy- Otherwise a = 8+ 1. Since
¢ = codimpng(x)xr (LINg (f3))

codimy xr (LINg (f3)) and a < ¢, so in

IA
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virtue of Fact 3 there exists y € R\ LC(f3,24). Put fo = fe U {{(za,v)}. It
is easy to notice that

LC(f) =LC(fo) ¢ LC(f1) & ... & LC(fo).

Since LC (fo), @ < ¢, is a linear subspace of R, so codimg (LC (f)) > ¢.
Fix a basis Y of the space LINg (X) such that Y C X and a Hamel basis H

f(x) forzeX

h that Y € H. Define f : XUH — R by f(z) = )
sueh tha efine f v J(@) {o forze H\ X

Obviously LC (f) = LC(f). In virtue of Lemma 6

codimgs (LINQ ( f)) > codimg (Lc ( f)) = codimg (LC (f)) = ¢,

so in virtue of Theorem 6, f can be extended to a Hamel function. O

Corollary 1. Suppose f: X — R is a PLIF function. Then f is extendable
to a LIF function iff codimpngx)xr (LINg (f)) > [R\ X]|.

PROOF. = Assume the opposite that codimpn,x)xr (LINg (f)) < [R\ X].
But then any function f R >R, fC f , has to be linearly dependent, a
contradiction.

<= First notice that if [R\ X| = ¢ then codimpn,x)xr (LINg (f)) = «.
Hence from Theorem 8, f can be extended to a HF function. Now assume
that [R\ X| = k < ¢. Well order R\ X = {z, : a < s} and define f(z) =

{ flz) forzeX ; where yo € R\ LC(f UUs o {(7s,9p)} 7a). Such a

Yo for x = z,
choice is possible since o < k£ and codimg2 (LINg (f)) > #. Then f € LIF and

fcf. 0O

Next we apply the obtained extension theorem to prove a result concerning
the lattice of Hamel functions.

Theorem 9. Max(HF)=Max(LIF).

PRrROOF. Since HF C LIF, so the inclusion C is obvious.
D Fix f € Max(LIF). Hence there exist g, h € LIF such that f = max{g, h}.
Let A={z € R:g(z) = f(x)} and B={x € R\ A: h(z) = f(z)}. Since
AUB =R, so |A| =cor |B| =¢. Hence we get two cases.

First suppose that |A] = ¢ and |B| < ¢. Notice that LINg (4) = R.
Fix disjoint Hamel bases Hy,H» C R\ B and a linearly independent set
X C Hj such that LINg (X) N LINg (B) = 0 and LINg (BU X) = R. First
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notice that f|(4\x) is extendable to a HF function. Indeed, since f|4 is a
linearly independent set, so codimg: (LINg (fja\x)) = |X| =c¢ =R\ (4\
X)|. Furthermore Hy C A\ X, so LINg (A\ X) = R. Hence in virtue of
Theorem 6, f4\x is extendable to a HF function. It is easy to see that
f\(BUX) € PLIF and LC (f|(BuX)) =LC (f|B). Since |B| < ¢, SO |LC (f‘B)| <
¢ and consequently codimg (LC (f|3)) = ¢. Hence codimg2 (LIN@ (f|BuX)) >
codimg (LC (f|BUX)) =c¢=|R\ (BUX)|, so in virtue of Theorem 6, fpux
can be extended to a HF function and by Theorem 1, f € Max(HF).

Now assume that |A| = |B| = ¢. Notice that since f|4 and f|p are extend-
able to LIF functions, so codimps (LINQ (f‘A)) > |B| = ¢ and
codimp2 (LINQ (f|B)) > |A] = ¢. Hence both f|4 and f|p are extendable to
Hamel functions and as above, f € Max(HF). O

Corollary 2. £L(HF) = L(LIF).
PRrOOF. The inclusion C is obvious. To see the other inclusion notice that in

virtue of Theorem 9, LIF C L(HF). Hence L(LIF) C L(HF). O

References

[1] K. Ciesielski, Set theory for the working mathematician, London Math-
ematical Society Student Texts, 39, Cambridge University Press, Cam-
bridge 1997.

[2] P. Erdés and S. Kakutani, On non-denumerable graphs, Bull. Am. Math.
Soc., 49 (1943), 457-461.

[3] A. B. Kharazishvili and A. Kirtadze, On extensions of partial functions,
Ezpo. Math., 25(4) (2007), 345-353.

[4] P. Komjath, New trends in discrete and computational geometry, volume
Algorithms and Combinatorics volume 10 chapter XII, SpringerVerlag,
1993.

[5] G. Matusik and T. Natkaniec, Algebraic properties of Hamel functions,
Acta Math. Hung., (2009), to appear.

[6] T. Natkaniec, On the mazimum and the minimum of quasi-continuous
functions, Math. Slovaca, 42(1) (1992), 103-110.

[7] K. Plotka, On functions whose graph is a Hamel basis, Proc. Am. Math.
Soc., 131(4) (2003), 1031-1041.



ON THE LATTICE GENERATED BY HAMEL FUNCTIONS 77

[8] K. Plotka, Darbouz-like functions within the class of Hamel functions,
Real Anal. Ezchange, 34(1) (2008), 115-126.

[9] K. Plotka, On functions whose graph is a Hamel basis II, Can. Math.
Bull., 52(2) (2009), 295-302.

[10] K. Plotka and I. Reclaw, Finitely continuous Hamel functions, Real Anal.
Ezxchange, 30(2) (2005), 867-870.



78

GRZEGORZ MATUSIK



