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POINTS OF WEAK SYMMETRIC
CONTINUITY

Abstract

We show that every set of reals is a set of points of weak symmetri-
cal continuity for some function and compare it with other generalized
continuities. We also make some remarks on points of weak symmetric
continuity when function is finite valued.

Our terminology is standard and follows [2]. Let us recall a known fact
about points of continuity. (See e.g. [6].)

Fact 1. The set of points of continuity of any function (from R to R) is a Gδ
set and any Gδ set is the set of points of continuity for some function.

Many authors have investigated what happens if we replace the ordinary
continuity by other types of continuity, i.e., which sets may be obtained as
sets of points of different types of generalized continuity. First let us look at
the symmetric continuity.

Definition 2. A function f : R → R is symmetrically continuous at a point
x if

∀ε>0 ∃δ>0 ∀h<δ |f(x+ h)− f(x− h)| < ε.

Symmetrical continuity is obviously a weaker notion than ordinary conti-
nuity and Fact 1 is not valid any more for points of symmetric continuity. In
fact it is an old problem of Marcus to characterize these points. (For partial
results see Thomson [8] and Jasku la, Szkopińska [5].)

Another notion we consider is weak continuity.
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Definition 3. A function f : R→ R is weakly continuous at a point x if there
exist the sequences 〈xn〉 and 〈yn〉 such that xn ↗ x, yn ↘ x, and

lim
n→∞

f(xn) = lim
n→∞

f(yn) = f(x).

In particular f(xn)− f(yn)→ 0.

The next, rather unexpected, theorem says that weak continuity is indeed
a very weak notion.

Theorem 4. [9, Chap. 2] Every function f : R → R is weakly continuous
everywhere except a countable set and every countable subset of R is the set of
points of weak discontinuity for some function.

Proof. For the first part see for example [9, Chap. 2].
For the second part, let A = {an : n ∈ ω} be a countable set. The function

f(x) =
∑
an<x

2−n is the one we are looking for. Indeed, if x > an > y
then f(x) − f(y) ≥ 2−n, so f is not weakly continuous at any an. If x 6∈ A
and if y is closer to x than any of the points a1, . . . , ak then |f(y) − f(x)| ≤∑∞
n=k+1 2−n = 2−k since we do not have any an’s in (x− |x− y|, x+ |x− y|)

with n ≤ k. Therefore f is continuous (so weakly continuous) at x /∈ A.
Now if we replace weak continuity by its symmetric counterpart, we obtain

the following notion.

Definition 5. A function f : R→ R is weakly symmetrically continuous at a
point x if there exists a sequence 〈hn〉 converging to 0 such that

lim
n→∞

f(x+ hn)− f(x− hn) = 0.

(Paradoxically, weak symmetric continuity is a stronger notion than weak
continuity.) We will investigate the problem of characterizing the sets of points
where a function can be weakly symmetrically continuous. The first result in
this direction was obtained by Ciesielski and Larson, and it looks surprising
in light of Theorem 4.

Theorem 6. (Ciesielski, Larson [3]) There is a function g : R → N that is
weakly symmetrically discontinuous everywhere.

The next theorem, generalizing Theorem 6, answers the problem com-
pletely.

Theorem 7. Any set of reals is the set of points of weak symmetrical conti-
nuity for some function f : R→ N.
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Note that since the existence of weakly symmetrically discontinuous func-
tion from R to R cannot be proved without the Axiom of Choice [3, Cor. 1.5],
the same can be said about Theorem 7.

The main part of the proof is in the following lemma.

Lemma 8. For any set A ⊂ R there exists a set X such that

(a) for every a ∈ A there is a sequence 〈hn〉 with hn ↗ 0 and a± hn ∈ X;

(b) for every b ∈ R \A there is no such a sequence.

Before we start the proof let us remark that the set X may be always chosen
to be meager and of measure zero. This partially answers the question stated
at the Miniconference in Auburn in 1997 after the presentation of Lemma 8.

The set X can be found as a subset of some special meager and measure
zero set C. To make the below proof work, we need only that for all x ∈ R
and for all n ∈ ω there are continuum many pairs y, z ∈ C ∩

(
x− 1

n , x+ 1
n

)
with y+z

2 = x. Corollary 10 guarantees the existence of such set C. In the
proof below however, for the sake of simplicity (and since we do not need that
strengthened version to prove Theorem 7), we take C = R. The reader may
notice that with no changes the proof works for other sets C.
Proof of Lemma 8. We will construct the setX inductively, using transfinite
induction. First note that (a) is equivalent to the following condition.

(a′) For every a ∈ A there are the sequences 〈xn〉 and 〈yn〉 from X such that
xn ↗ a, yn ↘ a, and xn+yn

2 = a for every n.

Condition (b) than says that there are no such sequences 〈xn〉, 〈yn〉 for b /∈ A.
Let κ be the cardinality of A and let A = {aα : α < κ} be an enumeration

of A. By induction on α < κ we construct the sequences 〈xαn : n < ω〉 and
〈yαn : n < ω〉 witnessing (a′) for a = aα, aiming for X =

⋃
α<κ{xαn, yαn : n < ω}.

The challenge will be in maintaining condition (b). We will use the following
auxiliary sets:

Xα =
⋃
β<α

({
xβn : n < ω

}
∪
{
yβn : n < ω

})
,

Bα =
{
x+ y

2
: x, y ∈ Xα

}
\A,

and the functions fα : Bα → R defined by

fα(b) = inf
{
|b− x| : x ∈ Xα and ∃y∈Xα

x+ y

2
= b

}
.
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(Here |b− x| denotes the distance between the numbers b and x.)
In the construction we will maintain the following two inductive conditions:

(c) fα(x) > 0 for each x ∈ Bα, and

(d) fβ ⊂ fα for β ≤ α.

Conditions (c) and (d) imply that (b) holds for every point in
⋃
α<κBα, since

f =
⋃
α<κ fα is positive on

⋃
α<κBα. Hence, maintaining (c) and (d) during

the construction will imply that (b) holds.
For every point outside

⋃
α<κBα, condition (b) is automatically satisfied

and the set X will have the desired property.
Take the first sequence 〈x0

n〉 to be x0
n = a0 + 1

n . Then y0
n = a0 − 1

n ,
X0 = {x0

n, y
0
n : n < ω}, and B0 = {x+y2 : x, y ∈ X0} \ A. Since the only

accumulation point of X0 is a0 ∈ A then f0(x) > 0 for all x 6= a0 and (c) is
satisfied.

Assume that for some α < κ we have already defined the sequences 〈xβn〉
and 〈yβn〉 for all β < α. We choose sequences 〈xαn〉 and 〈yαn〉 satisfying (a′) so
that

∀b∈Bβ∀n 2b− xαn 6∈
⋃
β<α

Xβ ∪ {xαk , yαk : k < n}

and
∀b∈Bβ∀n 2b− yαn /∈

⋃
β<α

Xβ ∪ {xαk , yαk : k < n}.

Such sequences exist since we may choose points xαn and yαn inductively so that

xαn, y
α
n /∈

2b− x : b ∈
⋃
β<α

Bβ & x ∈

⋃
β<α

Xβ ∪ {xαk , yαk : k < n}


(that set has cardinality |

⋃
β<αBβ | ⊗ |

⋃
β<αXβ | ≤ |α| ⊗ω < c) and xn+yn

2 =
aα. It is clear that both inductive conditions are preserved.

Now putting X =
⋃
α<κXα =

⋃
α<κ{xαn, yαn : n < ω}, we see that (a) is

obviously satisfied and (b) is satisfied since f =
⋃
α<κ fα is a positive function

and for every point b not in A either we do not have a pair of sequences
contained in X and symmetric about that point or these sequences cannot
have elements closer to b than f(b).

Proof of Theorem 7. Let g : R → N be an everywhere weakly symmet-
rically discontinuous function and A ⊂ R. We’ll construct a function f that
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has points of weak symmetric continuity exactly in the set A. Let X be the
set from Lemma 8 for the set A. We define

f(x) =

{
g(x) + 1 for x /∈ X
0 for x ∈ X.

Obviously every point of A is a point of weak symmetric continuity of f .
(There is a symmetric sequence in X converging to this point.) If x 6∈ A then we
do not have a sequence symmetrically convergent to x contained in X. We also
do not have such a sequence contained in R\X satisfying the definition of weak
symmetric continuity for x, because g is weakly symmetrically discontinuous
everywhere. Finally any “mixed” sequence will not satisfy that definition
either since f differ on points from X and outside of X by at least 1.

Now we provide the proof of the existence of measure zero and meager set
C. Since the main theorems of this paper do not require that set, the reader
may skip that part. The author includes this since it seems to him that it is
worth adding that “small” sets can have big “weak symmetric closure.” Note
also, that the property stated in Theorem 9 is closely related to the Steinhaus
property that every number in [0, 1] is the sum of two numbers from the Cantor
ternary set.

We will use the base 7 expansion, i.e., for x ∈ [0.1] we write x = 0.x1x2 . . .
meaning that x =

∑∞
i=1

xi
7i , xi ∈ {0, 1, 2, 3, 4, 5, 6}.

For every finite sequence x1x2 . . . xn, where xi ∈ {0, 1, 2, 3, 4, 5, 6}, let

Cx1x2...xn = {x ∈ [0, 1] : x = 0.x1x2 . . . xnxn+1 . . . xi 6= 3 for i > n}.

Cx1x2...xn is a “Cantor 1
7” set. It is a perfect set of measure zero (thus, nowhere

dense).
Denote also

Ĉ =
⋃
{Cx1x2...xn : n ∈ ω}.

The set Ĉ being a countable union of measure zero and nowhere dense sets
has measure zero and is meager. The next theorem says it is the set we are
looking for. We say that a set A ⊂ R is symmetric about a point x ∈ R if
x+ h ∈ A ⇐⇒ x− h ∈ A ∀h (the same as A = 2x−A).

Theorem 9. For every x ∈ (0, 1) and for every open neighbourhood U of x
there is a perfect set P contained in Ĉ ∩ U and symmetric about x.

Proof. Let x ∈ (0, 1) and let 0.x1x2 . . . be the expansion of x. We assume that
not almost all x′is are equal to 6. Let also U be an arbitrary neighbourhood
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of x. We fix number n ∈ ω such that for all y = 0.y1y2 . . . with yi = xi for
i ≤ n we have y ∈ U .

We consider three cases.

Case 1. In the sequence x1x2 . . . we have infinitely many 1’s or 2’s or 3’s or
4’s or 5’s.
Say at first that we have infinitely many 1’s and that xij = 1, j = 1, 2, 3 . . .
and ij > n. We define numbers y and z.
y = 0.y1y2 . . . and z = 0.z1z2 . . . where
yi = xi for i ≤ n, zi = xi for i ≤ n,
yij = 0 or yij = 1, zij = 2− yij ,
yi = 2 if xi = 3, i > n, zi = 4 if xi = 3, i > n,
yi = xi, zi = xi for all other i.
Clearly all such y’s form a “Cantor-like” perfect set and so do z’s, every y and
z belongs to U ∩ Cx1x2...xn . For every pair of corresponding y and z we have
yi+zi

2 = xi so y+z
2 = x.

If we have infinitely many other digits instead then we repeat the above
construction changing only yij and zij according to the following formulas.
xij = 2 → yij = 0 or yij = 4, zij = 4− yij ,
xij = 3 → yij = 0 or yij = 6, zij = 6− yij ,
xij = 4 → yij = 2 or yij = 4, zij = 8− yij ,
xij = 5 → yij = 5 or yij = 6, zij = 10− yij .
Once again we see that yi+zi

2 = xi so y+z
2 = x and that y’s and z’s form a

symmetric perfect set around x that is contained in Ĉ ∩ U .

Case 2. In x1x2 . . . we have infinitely many 0’s and 6’s and Case 1 does not
hold.
In that case we have infinitely many pairs xi = 6, xi+1 = 0. Let xij =
6, xij+1 = 0 for j = 1, 2, . . . and ij > n.
We define numbers y = 0.y1y2 . . . and z = 0.z1z2 . . ..
yi = xi, zi = xi for i ≤ n,
(yij = 6 and yij+1 = 0) or (yij = 5 and yij+1 = 1),
zij = 6, zij+1 = 0 if yij+1 = 0 and zij+1 = 5 if yij+1 = 1,
yi = 2 if xi = 3, i > n, zi = 4 if xi = 3, i > n,
yi = xi, zi = xi in other places.
We may easily check that y+z

2 = x (since yi+zi
2 = xi), y’s and z’s are in U and

in Cx1x2...xn . It’s also clear that y’s and z’s form a perfect set.

Case 3. In x1x2 . . . all xi are eventually equal 0.
Now x = 0.x1x2 . . . xk000 . . . and xk 6= 0.
If k > n then the set Cx1x2...(xk−1) ∪ Cx1x2...xk is a desired set.
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If k ≤ n then the set Cx1x2...(xk−1)66...6 ∪ Cx1x2...xk00...0 (n− k 0’s and n− k
6’s) is a desired set.

Now if we have a copy of Ĉ in every interval [n, n+ 1] (n ∈ Z) that is if

C =
⋃
n∈Z

Ĉ + n

then the theorem 9 holds for any x ∈ R, and we have the corollary.

Corollary 10. The set C is of measure zero and first category and for every
x ∈ R and every open neighbourhood U of x there is a perfect set P contained
in C ∩ U and symmetric about x.

In theorem 7 we built a function with infinitely many values. An interesting
problem that Ciesielski and Larson ask in [3] is whether this is necessary, that
is, if there is a nowhere weakly symmetrically continuous function with finitely
many values.

In case of 2-value function we have the following result. (Compare also [3].)

Theorem 11. (Nowik [7]) Every 2-valued function has only countably many
points of weak symmetric discontinuity.

Ciesielski in [1] showed also that every 3-valued function has a point of weak
symmetric continuity. We do not know if the same is true for 4-valued func-
tions. Recently Ciesielski and Shelah [4] showed that there is an everywhere
weakly symmetrically discontinuous function with bounded range.
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