
Real Analysis Exchange
Vol. 24(2), 1998/9, pp. 695–702

Omar P. Dzagnidze, A. Razmadze Mathematical Institute, Georgian
Academy of Sciences, 1, M. Aleksidze St., Tbilisi 380093, Georgia. e-mail:
odzagni@rmi.acnet.ge

SEPARATELY CONTINUOUS FUNCTIONS
IN A NEW SENSE ARE CONTINUOUS

Abstract

Two new notions of separate continuity either of which is equivalent
to continuity are introduced.

1 Introduction

Let us denote the set of real numbers by R. Rn (n ≥ 2) will denote the set of
all vectors x = (x1, . . . , xn) with elements xi ∈ R (i = 1, . . . , n) and a norm

‖x‖ =
( n∑
i=1

x2
i

)1/2. By U(x0) will be denoted a neighborhood of the point

x0 = (x0
1, . . . , x

0
n) ∈ Rn. We shall consider functions whose values are in R.

Recall that a function f , defined in the neighborhood U(x0), is called
continuous at the point x0 (sometimes it is called jointly continuous at the
point x0) if

lim
x→x0

f(x) = f(x0). (1.1)

In addition to the notion of continuity at the point, for functions of several
variables we also have the notion of separate continuity at a given point. A
function f is called continuous at x0 with respect to the variable xk if the
relation

lim
xk→x0

k

f(x0
1, . . . , x

0
k−1, xk, x

0
k+1, . . . , x

0
n) = f(x0) (1.2)

holds.
If a function f is continuous at x0 with respect to each variable xk, k =

1, . . . , n, then f is called separately continuous at the point x0. It is well
known that separate continuity of the function f at the point x0 does not

Key Words: Separate continuity in the strong sense, separate continuity in the angular
sense, continuity in the wide sense.

Mathematical Reviews subject classification: 26B05
Received by the editors July 3, 1998

695



696 Omar P. Dzagnidze

imply, generally speaking, the continuity of f at x0. Therefore the continuity
of a function of two variables at the point (x0

1, x
0
2) along the two straight lines

x2 = x0
2 and x1 = x0

1 does not imply its continuity at (x0
1, x

0
2). Moreover,

there exists a function of two variables discontinuous at the point (0, 0) which
is continuous along every straight line passing through (0, 0) ([2], p. 404–5;
[1], p. 48; [3], p. 464). Among such functions there are both bounded and
unbounded ones ([7], Chapter 4, Exercise 8). What is more, H. Lebesgue called
attention to the fact that a function of two variables can be discontinuous at
the point (x0

1, x
0
2) even if it is continuous along every analytic curve through

(x0
1, x

0
2) [4]. Later, A. Rosenthal established the following fact. If the single-

valued function f(x1, x2) is continuous at the point P0 = (x0
1, x

0
2) along every

convex curve through P0 which is (at least) once differentiable, then f is also
continuous at P0 as a function of (x1, x2). Yet f can be continuous along
every curve through P0 which is (at least) twice differentiable without being
continuous at P0 as a function of (x1, x2) ([6], Theorem 1. Here a generalization
of this theorem is also given for n > 2 variables with the term “convex curve”
being replaced by “primitive curve” (Theorem 4)).

The main purpose in this paper is to find necessary and sufficient conditions
for the function f(x1, . . . , xn) to be continuous at the point x0 = (x0

1, . . . , x
0
n),

which would give information on the properties of the function f at x0 with
respect to each independent variable. To this end, below we shall give the
required definitions.

2 Separate Continuity in the Strong Sense

Definition 2.1. A function f defined in the neighborhood U(x0), will be
called continuous in the strong sense, at x0, with respect to the variable xk if

lim
x→x0

[
f(x1, . . . , xk−1, xk, xk+1, . . . , xn)

− f(x1, . . . , xk−1, x
0
k, xk+1, . . . , xn)

]
= 0.

(2.1)

Definition 2.2. A function f , defined on U(x0), will be called separately
continuous in the strong sense, at the point x0, if f is continuous in the strong
sense, at x0, with respect to each variable xk, k = 1, . . . , n.

We have the following assertion.

Theorem 2.1. For a function f to be continuous at the point x0 it is necessary
and sufficient that it be separately continuous in the strong sense at x0.
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Proof. To show the necessity we take any number k, 1 ≤ k ≤ n, and write
the obvious equality

f(x1, . . . , xk−1, xk, xk+1, . . . , xn)− f(x1, . . . , xk−1, x
0
k, xk+1, . . . , xn)

=
[
f(x1, . . . , xk−1, xk, xk+1, . . . , xn)− f(x0)

]
+
[
f(x0)− f(x1, . . . , xk−1, x

0
k, xk+1, . . . , xn)

]
.

(2.2)

Since the function f is continuous at the point x0, the square-bracketed ex-
pressions on the right-hand side of equality (2.2) are arbitrarily small. There-
fore the left-hand side of (2.2) is also arbitrarily small. This is equivalent to
equality (2.1) for the number k. But k was chosen arbitrarily and therefore
the function f is separately continuous in the strong sense at the point x0.

To prove the sufficiency, we first recall the fact that the function f is
strongly continuous at the point x0 with respect to the variable x1 and thus
we have the equality

lim
x→x0

[
f(x1, x2, . . . , xn)− f(x0

1, x2, . . . , xn)
]

= 0. (2.31)

Likewise, strong continuity of f at the point x0 with respect to the variable
x2 is equivalent to the equality

lim
x→x0

[
f(x1, x2, x3, . . . , xn)− f(x1, x

0
2, x3, . . . , xn)

]
= 0,

which in the particular case x1 = x0
1 takes the form

lim
x→x0

[
f(x0

1, x2, x3, . . . , xn)− f(x0
1, x

0
2, x3, . . . , xn)

]
= 0. (2.32)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By the strong continuity of the function f at the point x0 with respect to
the variable xn, this process eventually results in the equality

lim
x→x0

[
f(x1, . . . , xn−1, xn)− f(x1, . . . , xn−1, x

0
n)
]

= 0,

which for particular values xj = x0
j , j = 1, . . . , n− 1, takes the form

lim
x→x0

[
f(x0

1, . . . , x
0
n−1, xn)− f(x0

1, . . . , x
0
n−1, x

0
n)
]

= 0. (2.3n)

Summing up equalities (2.31)–(2.3n), we obtain

lim
x→x0

[
f(x1, . . . , xn)− f(x0

1, . . . , x
0
n)
]

= 0,

which is equivalent to equality (1.1). The theorem is proved.
Equality (2.2) indicates that the following theorem is valid.
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Theorem 2.2. For a function f(x1, . . . , xn) to be continuous at the point
x0 = (x0

1, . . . , x
0
n) it is necessary and sufficient that f(x1, . . . , xn) be strongly

continuous at the point x0 with respect to only one of the variables and con-
tinuous at x0 with respect to all other variables collectively.

This theorem is especially simple for functions of two variables and is for-
mulated as follows.

Corollary 2.1. For a function of two variables ϕ(x1, x2) to be continuous at
the point x0 = (x0

1, x
0
2), it is necessary and sufficient that ϕ(x1, x2) be contin-

uous in the strong sense at the point x0 with respect to one of the variables
and continuous at x0 with respect to the other variable.

This corollary yields the following assertion.

Corollary 2.2. Let a function of two variables ϕ(x1, x2) be separately contin-
uous at the point x0 = (x0

1, x
0
2). For ϕ(x1, x2) to be continuous at the point x0,

it is necessary and sufficient that ϕ(x1, x2) be continuous in the strong sense
at x0 with respect to only one of the variables.

Corollary 2.1 and Theorem 2.1 imply this corollary.

Corollary 2.3. If a function of two variables ϕ(x1, x2) is continuous in the
strong sense at the point x0 = (x0

1, x
0
2) with respect to one of the variables

and continuous at x0 with respect to the other variable, then ϕ(x1, x2) will be
continuous in the strong sense at the point x0 even with respect to that other
variable.

3 Separate Continuity in the Angular Sense

Definition 3.1. A function f defined in the neighborhood U(x0), will be
called continuous in the angular sense at x0 with respect to the variable xk if
for every collection of positive constants c = (c1, . . . , cn)

lim
x→x0

|xj−x0
j |≤cj |xk−x0

k|
j 6=k

[
f(x1, . . . , xk−1, xk, xk+1, . . . , xn)−

−f(x1, . . . , xk−1, x
0
k, xk+1, . . . , xn)

]
= 0.

(3.1)

Obviously, the fact that the function at x0 is continuous in the strong sense
at the point x0 with respect to the variable xk implies that this function is
continuous in the angular sense at x0 with respect to the same variable xk.
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Definition 3.2. A function f , defined on U(x0), will be called separately
continuous in the angular sense at the point x0 if f is continuous in the angular
sense at x0 with respect to each variable xk, k = 1, . . . , n.

Theorem 3.1. For a function f to be continuous at the point x0 it is necessary
and sufficient that it be separately continuous in the angular sense at x0.

Proof. The necessity follows from the fact that the continuity of the function
f at the point x0 implies that the function f is continuous in the strong sense
at x0 with respect to each variable (see Theorem 2.1). This in turn implies
that the function f is continuous in the angular sense at the point x0 with
respect to each variable. Therefore the function f is separately continuous in
the angular sense at the point x0.

Let us now prove the sufficiency. Let the function f be separately contin-
uous in the angular sense at the point x0. Then f will be continuous in the
angular sense at the point x0 with respect to each variable. Hence relation
(3.1) will be fulfilled with respect to each variable xk (k = 1, . . . , n) for every
collection of positive constants. In particular, it will be fulfilled for cj = 1,
j = 1, . . . , n.

Let us represent the space Rn as the union of pyramids ∆1, . . . ,∆n hav-
ing the common vertices at x0. Each pyramid ∆k is defined by a system of
inequalities |xj − x0

j | ≤ |xk − x0
k| for all j 6= k. The pyramid ∆k contains a

straight line passing through the point x0 and parallel to the real Oxk-axis.
(Here the pyramid is assumed to be two-sheeted; i. e., stretching infinitely on
both sides of the vertex x0.)

To show that equality (1.1) holds, it is sufficient to prove the validity of
the relation

lim
x→x0

x∈∆k

f(x) = f(x0) (3.2)

for each k = 1, . . . , n.
Without loss of generality, we consider k = 1 and shall adapt our further

reasoning to the case (x1, . . . , xn) ∈ ∆1. Since f is continuous in the angular
sense at the point x0 with respect to the variable x1, we have the equality

lim
x→x0

|xj−x0
j |≤|x1−x0

1|
j=2,...,n

[
f(x1, x2, . . . , xn)− f(x0

1, x2, . . . , xn)
]

= 0. (3.31)

Since f is continuous in the angular sense at x0 also with respect to the
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variable x2, we obtain

lim
x→x0

|xj−x0
j |≤|x2−x0

2|
j 6=2

[
f(x1, x2, x3, . . . , xn)− f(x1, x

0
2, x3, . . . , xn)

]
= 0.

Hence for the particular case x1 = x0
1 we have the equality

lim
x→x0

|xj−x0
j |≤|x2−x0

2|
j=3,...,n

[
f(x0

1, x2, x3, . . . , xn)− f(x0
1, x

0
2, x3, . . . , xn)

]
= 0, (3.32)

and so on.
Finally, by the continuity of f in the angular sense at the point x0 with

respect to the variable xn, we have the equality

lim
x→x0

|xj−x0
j |≤|xn−x0

n|
j=1,...,n−1

[
f(x1, . . . , xn−1, xn)− f(x1, . . . , xn−1, x

0
n)
]

= 0,

which for xj = x0
j , j = 1, . . . , n− 1, takes the form

lim
x→x0

[
f(x0

1, . . . , x
0
n−1, xn)− f(x0

1, . . . , x
0
n−1, x

0
n)
]

= 0. (3.3n)

Combining equalities (3.31)–(3.3n) we obtain continuity.

Theorems 2.1 and 3.1 give rise to the following fact.

Theorem 3.2. Separate continuity in the strong sense of the function f of n
variables at the point x0 = (x0

1, . . . , x
0
n) and separate continuity in the angular

sense of the same function f at x0 are equivalent to each other, and either of
them is equivalent to the continuity of the function f at the point x0.

4 Continuity in the Wide Sense

For functions of several variables it is possible to form differences of an-
other type which figure in the definition of functions of bounded variation
(see, e. g., [2], §254; [5], Ch. II, §4, Section 42, and Ch. III, §2, Sec-
tion 59). For a functionf of n variables the difference ∆h

x0
f is defined as

∆h1
x0
1
(∆h2,...,hn

x0
2,...,x0

n
f) = · · · = ∆hn

x0
n
(∆h1,...,hn−1

x0
1,...,x0

n−1
f) = ∆h1

x0
1
(∆h2

x0
2
(· · ·∆hn

x0
n
f)), where

x = (x1, . . . , xn), x0 = (x0
1, . . . , x

0
n), h = (h1, . . . , hn), ∆hk

x0
k
f(x1, . . . , xn) =

f(x1, . . . , xk−1, x
0
k + hk, xk+1, . . . , xn)− f(x1, . . . , xk−1, x

0
k, xk+1, . . . , xn).



Separately Continuity Functions in a New Sense 701

Thus,

∆h1,h2

x0
1,x0

2
ϕ(x1, x2) =ϕ(x0

1 + h1, x
0
2 + h2)− ϕ(x0

1, x
0
2 + h2)

− ϕ(x0
1 + h1, x

0
2) + ϕ(x0

1, x
0
2),

(4.1)

∆h1,h2,h3

x0
1,x0

2,x0
3
ψ(x1, x2, x3) =

[
ψ(x0

1 + h1, x
0
2 + h2, x

0
3 + h3)

− ψ(x0
1, x

0
2 + h2, x

0
3 + h3)−

− ψ(x0
1 + h1, x

0
2, x

0
3 + h3) + ψ(x0

1, x
0
2, x

0
3 + h3)

]
−
[
ψ(x0

1 + h1, x
0
2 + h2, x

0
3)− ψ(x0

1, x
0
2 + h2, x

0
3)

− ψ(x0
1 + h1, x

0
2, x

0
3) + ψ(x0

1, x
0
2, x

0
3)
]
.

(4.2)

Now we introduce the following notion.

Definition 4.1. A function f(x), x = (x1, . . . , xn) ∈ U(x0) will be called
continuous in the wide sense at the point x0 = (x0

1, . . . , x
0
n) if

lim
h→0

∆h
x0f(x) = 0. (4.3)

Theorem 4.1. If a function ψ(x), x = (x1, . . . , xn) ∈ U(x0), is continuous
in the strong sense at the point x0 = (x0

1, . . . , x
0
n) with respect to only one

variable, then ψ(x) is continuous in the wide sense at x0.

Proof. Without loss of generality we shall verify that this theorem is valid
for functions of three variables. Let the function ψ(x1, x2, x3) be continuous in
the strong sense at the point x0 = (x0

1, x
0
2, x

0
3) with respect to any one variable,

say, with respect to x2. Then we can regroup the terms in equality (4.2) as
follows

∆h1,h2,h3

x0
1,x0

2,x0
3
ψ(x1, x2, x3) =

[
ψ(x0

1 + h1, x
0
2 + h2, x

0
3 + h3)

− ψ(x0
1 + h1, x

0
2, x

0
3 + h3)

]
−
[
ψ(x0

1, x
0
2 + h2, x

0
3 + h3)− ψ(x0

1, x
0
2, x

0
3 + h3)

]
−
[
ψ(x0

1 + h1, x
0
2 + h2, x

0
3)− ψ(x0

1 + h1, x
0
2, x

0
3)
]

+
[
ψ(x0

1, x
0
2 + h2, x

0
3)− ψ(x0

1, x
0
2, x

0
3)
]
.

The expressions within the square brackets tend to zero when (h1, h2, h3)→
(0, 0, 0) (see equality (2.1) for n = 3 and k = 2). Therefore

lim
(h1,h2,h3)→(0,0,0)

∆h1,h2,h3

x0
1,x0

2,x0
3
ψ(x1, x2, x3) = 0
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and the theorem is thereby proved.

Theorems 2.1 and 4.1 give rise to the following result.

Corollary 4.1. If a function f , defined on U(x0), is continuous at the point
x0 = (x0

1, . . . , x
0
n), then f is continuous in the wide sense at x0.

Remark 4.1. Generally speaking, continuity in the wide sense does not imply
the continuity. Indeed, for any finite functions α(x1) and β(x2) we have the
equality ∆h1,h2

x0
1,x0

2
ϕ(x1, x2) = 0, where ϕ(x1, x2) = α(x1) + β(x2). Therefore

α(x1) + β(x2) is continuous in the wide sense at (x0
1, x

0
2). For this function to

be continuous at some point (x0
1, x

0
2) it is necessary and sufficient (by Theorem

2.1) that ϕ(x1, x2) be continuous in the strong sense at (x0
1, x

0
2) with respect

to both x1 and x2. Hence the differences

ϕ(x0
1 + h1, x

0
2 + h2)− ϕ(x0

1, x
0
2 + h2) = α(x0

1 + h1)− α(x0
1),

ϕ(x0
1 + h1, x

0
2 + h2)− ϕ(x0

1 + h1, x
0
2) = β(x0

2 + h2)− β(x0
2)

must tend to zero when (h1, h2) → (0, 0). Therefore α(x1) and β(x2) are
continuous at x0

1 and x0
2, respectively.
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