RESEARCH Vol. 243). 109875 pp. 505 15

Alexander Blokh! Department of Mathematics, University of Alabama in
Birmingham, University Station, Birmingham, AL 35294-2060. Current
address: Mathematisches Institut, Universtat Erlangen-Niirnberg, Erlangen
91054, Germany. e-mail: ablokhmath.uab.edu

DENSITY OF PERIODIC ORBITS IN
w-LIMIT SETS WITH THE HAUSDORFF
METRIC

Abstract

We prove that if f is a continuous interval map such that all wan-
dering intervals converge to periodic orbits, then the family of periodic
orbits is dense in w-limit sets with Hausdorff metric.

1 Introduction

Periodic orbits together with their various characteristics are rather important
for dynamical systems. In the case of an interval map f it is reflected by the
fact that periodic points are dense in some sets which are important for the
dynamics of f (from now on by f we always denote a continuous interval map).
The first result in this direction is due to A. N. Sharkovsky who proved in [S1]
that the set of periodic points is dense in the set of all recurrent points of f (see
also [N]). Since recurrent points are dense in the center of a dynamical system
it shows that , on the interval the center of a dynamical system coincides with
the closure of the set of periodic points. A related result was later obtained in
[B] where it was proven that if y is an f-invariant probabilistic measure, then
a point x with p(w(z)) = 1 exists if and only if u can be approximated by
measures concentrated on periodic orbits; in particular any ergodic measure
is approximated by a measure concentrated on a periodic orbit.
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Another interesting topic in one-dimensional dynamics is studying of w-
limit sets with Hausdorff metric on them. More precisely, let K be the class of
compact subsets of [0, 1] endowed with Hausdorff metric H and let Z(f) C K
be the family of all w-limit sets of an interval map f. There has been a
series of papers studying the family Z(f) and related topics. In particular
the properties of the map wy : [0,1] — Z(f) defined by wy : © — wy(x) were
studied in [BC]. It was shown that this map is almost never continuous but
is always in the second Baire class, some general theorems relating the Baire
class of w; to its Borel class and to certain notions of semi-continuity of wy
were also obtained.

One more paper where the properties of Z(f) are studied is [BBHS] where
it is proved that Z(f) is compact which in the light of the essential disconti-
nuity of wy seems somewhat surprising. A useful technical result obtained in
[BBHS] is a criterion connecting a local behavior of a map in a small neigh-
borhood of a given compact set A with the property of the set A to be the
w-limit set of some point; the compactness of Z(f) was obtained in [BBHS]
as a corollary of this criterion (see also [BS]).

The problem we study in this paper is whether or not periodic orbits
are dense in the family Z(f). One can consider this problem as a natural
continuation of the above mentioned ones ([S1], [B], [BBHS]). The question
however significantly differs from the old ones. For example, it is easy to see
that the results of [B] do not apply to the situation in question; indeed, in
[B] we deal with measures while our problem concerns w-limit sets. Yet some
tools developed in [B] prove to be useful for us as we shall see later.

The difference between the situation for measures and w-limit sets can be
seen from the fact that actually periodic orbits are not always dense in the
family Z(f) (we shall give an example later in the paper). However there is
a natural and from the practical point of view the most interesting class of
interval maps for which periodic orbits are dense in Z(f). Let us introduce
this class of maps. Let I be an interval such that I, f(I),... are pairwise
disjoint; then we call T , wandering. Denote by | X| the Lebesgue measure of
a set X; in particular, if I is an interval, then |I| is its length. It is clear that
if I is wandering, then |f™(I)] — 0. Therefore all points « € I have the same
w-limit set which we denote by w(I).

We consider a class of maps G such that for any f € G if I is a wandering
interval, then w([) is a periodic orbit. Even making only this assumption about
the maps (i.e. without assuming piecewise monotonicity) one can establish
their nice properties. In particular, for maps f € G it is possible to describe
their typical in topological sense limit behavior (see [B]): if f € G, then there
is a massive set £ C [0,1] such that for any = € E the set w(x) is either a
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periodic orbit, or a limit set of special kind called , solenoid or , generalized
adding machine (see definitions later) or a finite union of pairwise disjoint
closed intervals cyclically permuted by f on which f is transitive. However
- and from the point of view of applications more importantly - it also turns
out that smooth interval maps belong to G (see [L], [BL], [MMS] for details).
This justifies our interest to the maps from the class G, and now we can state
our

Main Theorem. Let f € G. Then the family of all periodic orbits of f is
dense in Z(f).

This result seems to be reasonably sharp; in fact below we give an easy
example of a piecewise monotone (in fact bimodal) interval map g ¢ G for
which the conclusion of Main Theorem fails. To do so we will need a well
known in one-dimensional dynamics construction of ‘gluing in’ an interval
with all its preimages which essentially allows us to represent discontinuous
interval maps as continuous interval maps on appropriately chosen invariant
subsets. This can be done for a wide variety of discontinuous interval maps,
yet for our purposes it is enough to work with the following specific case.

Consider a discontinuous map 7 : [0,1] — [0,1] defined as 7(z) = z +
0 mod 1 where 0 < 6 < 1 is an irrational number; in other words, 7 is a
discontinuous lifting of an irrational rotation by € onto interval. Obviously
the only point of discontinuity of 7 is a =1 — 6.

Let us now construct a new map f by means of ‘blowing up’ the point a.
That is, let us look at a as if it were a small interval, say, [a/, V'], on which the
map f is defined as follows:

(a) points a”,b” are chosen so that a’ < a” <b” <V;
(b) fla',a"] =1, fb", V'] =0, f|[a”,b"] is linear.

The next step is to consider the first 7-preimage a of a and also replace it by
an interval, say, [a],b]] on which our new map f is defined as monotone and
such that a}, ] are mapped into the points a’,b" appropriately (this depends
on whether 7 reverses monotonicity at @ or not). Clearly one can repeat this
construction over and over; carefully choosing the lengths of ‘inserted’ intervals
one will get in the end a limit map f with the following properties.

(1) f:[e,d] — [e,d] is a continuous map;

(2) There are points a’ < @’ < b” < V' such that f|[c,a’] is strictly increas-
ing, fla’,a"] = d, f|la",b"] is strictly decreasing, f[b"”,b'] = ¢, f|[V,d] is
strictly increasing.



506 ALEXANDER BLOKH

(3) If A = {z : orbs(x) € [c,d'] U [V, d]}, then A is in fact a minimal set
on which f is monotonically at most 2-to-1 semiconjugate to 7 every-
where so that there are no periodic orbits contained in [c,a’] U [V, d]; in
particular, ¢,d € A.

It is easy to see that in fact no periodic orbit approximates A. Indeed, let
e = min(|a” — d/|, |b"” — ¥'|). If a periodic orbit @ is such that H(Q, A) < ¢,
then @Q C [c,a”’] U [V”,d]. Due to the property (3) of the map f the set Q
cannot belong to [c,a’] U [V, d]. Therefore @ N ([a,a”] U [b”,b]) is not empty.
However by the construction it implies that either d € @ or ¢ € @ which is
impossible.

Actually, it is easy to construct the map f so that essentially the same

properties hold with the only difference that f will have no flat spots (a , flat
spot is a maximal non-degenerate interval on which a map is a constant); in
order to do this we will have to define f on [a/,a”] and [0”,b’] more carefully
so that both intervals will be wandering with orbits imitating orbits of points
1 and 0 under 7 which in turn will imply for f the same conclusions as before.
We will not dwell on these details assuming that enough motivation for Main
Theorem has already been provided.
Acknowledgments I would like to thank Andy Bruckner, Paul Humke and
Jaroslav Smital the work with whom on the paper [BBHS] was not just a
starting point for the present paper but also a great pleasure. I also would
like to thank G. Keller for inviting me to Erlangen and useful discussions as
well as Erlangen University for its hospitality.

2 Preliminaries

In our study we rely upon some results of [B] which we now describe. Let I be
an interval such that I, f(I),..., f*~(I) are pairwise disjoint while f™(I) = I.
Then T is called a , periodic interval and both the union |J/—; f*(I) and
the family of intervals {f*(I) ;:01 = orb [ are called a , cycle of intervals.
Also, a continuous map defined on a finite union of pairwise disjoint intervals
and cyclically permuting these intervals is called , non-strictly periodic; for
instance, a map f restricted to a cycle of intervals is non-strictly periodic. Now,
let Iy D I; D ... be periodic intervals with periods mg, m1,.... Obviously
m;y1 is a multiple of m; for all 4. If m; — oo, then the intervals {Ij}j‘?‘;o are
said to be , gemerating and any invariant closed set S C @ = mjzo orb I is
called a , solenoidal set; if () is nowhere dense, then we call Q a , solenoid.
It turns out that solenoidal w-limit sets are one of the three major classes of
w-limit sets existing for interval maps.
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To introduce another class of w-limit sets let us suppose that a map f has
a cycle of intervals M = T U f(I)U---U f*~1(I). Consider a set {z € M :
for any relative neighborhood U of x in M we have orbU = M}; it is easy to
see that this is a closed invariant set. It is called a , basic set and denoted by
B(M, f) provided it is infinite. Basic sets are components of the decomposition
of the set Per f constructed in [B]. Their properties are listed in Theorem 2.1,
however first we need one more definition. Let FF: M — M and G : K — K
be two non-strictly periodic maps of the same period, ¢ : M — K be a
(non-strict) monotone semiconjugacy between F and G and B C M be a
F-invariant closed subset of M. If ¢(B) = J and for any « € J we have
¢~ 1(x) N B = d¢~ (), then we say that ¢ , almost conjugates F|B to G.
Here 0Z is the , boundary of a set Z. Clearly this is equivalent to the fact
that closures of intervals complementary to B in M are exactly flat spots of
¢ (and therefore B is exactly the set of points which do not have ¢-‘flat spot’
neighborhoods).

Now we list the properties of basic sets.

Theorem 2.1. ([B]) Let f be a continuous interval map, A = w(x). Then
one of the following statements holds for A.

(1) A is a periodic orbit, mazimal by inclusion among w-limit sets.
(2) A is a solenoidal set.
(3) There exists a basic set B such that A C B.
Moreover, the following additional statements hold.
(a) Basic sets are perfect mazimal by inclusion w-limit sets.

(b) Distinct basic sets intersect each other at finite or empty sets, no three
basic sets have a common point and any basic set is disjoint from any
solenoidal set.

(¢) If B= B(K, f) is a basic set of period m, then there exists a transitive
non-strictly periodic map g of the same period and a map ¢ which almost
conjugates f|K and g.

(d) If w(x) belongs to a basic set B, then there exists a point ' € B such
that w(z) = w(z').

This result justifies the approach to some problems in one-dimensional dy-
namics which is based on considering the cases (1), (2) and (3) from Theorem
2.1 separately and then combining the results into one. In particular, this
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allows us to establish some properties of invariant measures of interval maps
which prompted the problem in question. Note that while studying the cases
(1) and (2) is more or less straightforward, that of the case (3) usually consists
of two parts:

(a) working with non-strictly periodic transitive maps;
(b) lifting the results to an w-limit set contained in a basic set.
For the part (a) the following facts about transitive maps are useful.

Lemma 2.2. ([B]) Let g : [0,1] — [0,1] be a transitive map. Then one of the
following statements holds.

(1) g is mizing.

(2) There exists a fized point a € (0,1) such that g[0,a] = [a, 1], g[a,1] =
[0,a] and both ¢?|[0,a] and g*[a,1] are mizing.

The following lemma deals with expanding properties of mixing maps.

Lemma 2.3. ([B]) Let f:[0,1] — [0,1] be mizing. Then for any § > 0 and
any open U there exists N = N(§,U) such that f*(U) D [0,1 — §] for any
n>N.

Corollary 2.4 easily follows from Lemmas 2.2 and 2.3.

Corollary 2.4. Let f :[0,1] — [0,1] be a transitive map. Then there exists
e'(f) =€ > 0 such that for any § > 0 and 0 < e < €' the following holds.

1. There exists a number n = n(d,e) such that for any interval U of the
length greater than 6 we have |f™(U)| > € for any m > n. (In particular
if © € U, then for any such m the distance between f™(x) and at least
one of the endpoints of f™(U) is greater than £/2.)

2. Periodic points are dense in [0, 1].

PRrROOF. (1) If f is mixing, then let &/ = 1. If f is not mixing then by Lemma
2.2 there exists a € (0, 1) such that f[0,a] = [a,1] and f[a,1] = [0, a]. In this
case let ¢/ = min(a,1 —a). Let e < &’.

We will need the following construction. Clearly there exists a finite family
of intervals Uy, ..., U; of the length, say, 6/2 such that any interval of the length
6 contains at least one of them. Let us now consider mixing and non-mixing
cases separately.

Let f be mixing. Applying Lemma 2.3 to each U; and the interval I =
[(1—¢)/4,(3 +¢€)/4] of the length (¢ +1)/2 > ¢ we see that f"(U;) D I for
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sufficiently big r and any ¢. Therefore for any interval W of the length bigger
than ¢ and any sufficiently big  we have |f"(W)| > ¢ which proves statement
(1) for mixing maps.

Suppose that f is not mixing. Then there is a point a € (0,1) such
that f[0,a] = [a,1], fla,1] = [0,a] and both f?|[0,a] and f2|[a, 1] are mixing.
Choose closed intervals J C (0,a) and J” C (a,1) of the length (¢ + ¢')/2.
Let U; C [0,a]. Then by Lemma 2.3 there exists p; such that f27(U;) D J’ for
r > p;. On the other hand f(U;) is a non-degenerate interval; so by Lemma 2.3
there exists ¢ such that f27(f(U;)) = f>*TY(U;) D J" for r > g;. Therefore for
sufficiently big m we have |f™(U;)| > e. Similarly one can consider the case
when U; C [a, 1] as well as the case when a € int U;. This completes the proof
of the first part of the statement (1). The second part follows immediately.

(2) Due to Lemma 2.3 for any « € (0,1),e > 0 there is a closed interval
I C [z —¢e,2+¢] and a number N such that f¥(I) D I. So there is a periodic
point in I which completes the proof. O

We call the constant &'(f) from Corollary 2.4 the , expansiveness of f.

The following two lemmas are of technical nature and will be useful in the
proof of Main Theorem.

Lemma 2.5. Let ' : X — X be a continuous map of a compact metric
space (X, d) and let M = w(x) have the following property: there are subsets
My, ...,M,_1 of M such that M = UZ;Ol My, Myt = f(M;),0<i<k—2
and My = f(My_1) (so that all M; are F"-invariant). Then if for any €
there is an F™-periodic orbit Q with H(Q, M) < €, then for any 0 there is an
f-periodic orbit P with H(P,M) < 4.

PROOF. An F™-periodic orbit @ is e-close to My in Hausdorff metric if for
any point € @ there is a point y € My such that d(x,y) < € and for any
z € My there is ¢ € @ such that d(z,() < €. Let us choose ¢ so that for any
two points u, v if d(u,v) < ¢ then d(f*(u), fi(v)) < & for any 0 < i < n.

Let @ = orbpn(w) be an F"-periodic orbit such that H(Q, My) < e
and P = orbg(w) be the corresponding F-periodic orbit. Let us prove that
H(P,M) < . Indeed, if x € M then there exists a point 2’ € My and a
number 5,0 < j < n such that F7(z') = 2. By the assumption there is a
point ¢’ € @ such that d(z’,y’) < e. Therefore by the choice of £ we have
d(F(z"), F/(y')) < &; in other words there is a point FJ(y’) € P in the
d-neighborhood of FJ(x') = .

It remains to prove that for any z € P there is ( € M such that d(z,() <
0. Indeed, if z € P then there exists 2/ € Q and j,0 < j < n such that
Fi(2') = z. Now, there exists ¢’ € My such that d(z/,{") < ¢ which implies
that d(F7(2'), F7((")) = d(z, F7({")) < 6 and completes the proof. O
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For any map F let S"**(z, F) = {F"(z), F"*(z),..., F"tF(2)}.

Lemma 2.6. Let F': X — X be a continuous map of a compact metric space
X into itself and let k € N. Suppose w(x) = M be infinite and A C M s
finite. Then there exists a neighborhood U D A for which one can find an n
so large that S"H*(x, F) is disjoint from U.

ProoFr. Consider the finite set B = Uf:o Fi(A) and choose a neighborhood
W of B such that M ¢ W. Then choose a neighborhood U of A such that
F'(U) Cc W for any 0 < i < k. Let us prove that U has the required property.
Indeed, by the choice of W there is an arbitrarily big N = n + k such that
FN(z) ¢ W. Then F"*i(z) ¢ U for any 0 < j < k since otherwise fV(z) €
Fk=3(U) ¢ W which is a contradiction. Clearly since N is arbitrarily large,
n = N — k is also arbitrarily large which completes the proof. O

Finally, we will also need the following well known fact (see, e.g. [S2]).

Lemma 2.7. ([S2]) If w(x) is finite then it is a periodic orbit.

3 Density of Periodic Orbits in w-Limit Sets

We begin our study of the density of periodic orbits in the family of w-limit sets
with the Hausdorff metric by considering this question for transitive interval
maps and then for subsets of basic sets. This approach is justified by Theorem
2.1 and Lemma 2.5. However for transitive interval maps we prove a refined
version of the Main Theorem.

First we need an important technical lemma describing the dynamics of a
point z with infinite limit set w(z) = A in small neighborhoods of a periodic
point a € A. It will be convenient to denote the minimal distance between a
point z and a compact set K by d(z, K).

Lemma 3.1. Let & be a point whose w-limit set w(x) = A is infinite. Let
a € A be a periodic point of period m. Then for any € > 0 there exist open
neighborhoods U D'V > a and points y,z € ANU distinct from a such that

1. U] <¢;

2. if fi(z) €V for some j and k is the least number such that fi+mF(z) ¢
U, then any interval connecting f7+™*(x) and any point from V' contains
at least one of the points y, z.

ProoOF. Let € > 0 is given. It is well known that periodic points are not
isolated in limit sets containing them. Consider two cases according to whether
a is not isolated in A from one side or from two sides.
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a) Suppose that a is not isolated in A from either side. Choose U so
that |U| < ¢ and there are points y,z of A in both components of U \ {a}.
Choose a neighborhood V of a so that V' C (y,2). Then the required follows
immediately because no matter on what side of a the point f77™*(z) lies any
interval connecting f/7™*(z) and any point from V contains at least one of
the points y, z.

b) Suppose that a is isolated from the right. Choose U = (b, ¢) so that
|U| < € and the following additional properties hold:

1. (a,c)NA =0 and d(c,A) = |c — al;
2. f™(b, a) lies to the left of c.
Now, choose a neighborhood V' = (u,v) C U of a so that:
1. fMV) cCU;
2. lv—a| <|ec—al/2;
3. (byu)N A #0.

Then choose V' C V' so small, that the least number k with f*(x) € V is very
big; so big that for all i > k we have d(fi(x), A) < |v — a|. Let us show that
this implies that for all i > k the points f¢(x) avoid the interval [v,c). Indeed,
by the choice of the distances for any point ¢ € [v,¢) we have d((, 4) > |[v—a|
while by the assumption for all i > k we have d(f(z), A) < |[v — a.

Choose a point y = z € (b,u) N A. Let j be a number such that f7(z) €
V and let k be the smallest number such that f/+™*(z) ¢ U. Then 2’ =
fitmk=m () € U and we consider now the question of where in U can the
point =’ lie. We already know that =’ ¢ (v,c). On the other hand z’ ¢ V’
since f™ (V') C U while f™(2') ¢ U. So the only possibility is that 2’ € (b, u).
However f(b, a) lies to the left of ¢; therefore so does f™(z"). We conclude that
fitmk () = fm(2') < b and thus indeed any interval connecting f77™*(z) and
any point from V contains y = z. This completes the proof. O

The next step is to introduce an important technical notion of fine collec-
tions of intervals. Let U = U; U Uy U - - - U U,, be the union of closed intervals
such that A = w(xz) C U. We cousider a specific class of such unions. Namely,
U is called an e-fine collection of intervals with respect to the set A or simply
a fine collection if the following holds.

1. Intervals in U are non-degenerate, their interiors are pairwise disjoint,
all intervals are non-disjoint from A and have the lengths less than e.
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2. Suppose that [a, b] is one of the intervals from U. Then neither a nor b is
contained in the orbit of z. Moreover, if a € A (b € A) then w(a) (w(b))
and a (b) is approximated from within [a, b] by points of the orbit of x.
On the other hand if a ¢ A then f(a) ¢ int U; Uint Uy U --- Uint U,
and the same holds for b.

3. orbs(z) C U.

There are obvious properties of the endpoints of intervals {U;} that follow
immediately from the definition of a fine collection. Before we state them
we introduce a few special sets. Namely, let II be the set of all endpoints of
intervals from U and let also II' = TIN A, 1" = II\ A; clearly IT, I’ and IT” are
finite. Also, by part (3) of the definition of a fine collection, for any j there
exists s(j) such that f7(z) € Uy(j). We shall see shortly that if w(z) = A is
infinite then s(j) is well-defined.

Lemma 3.2. For any k there exist a number p' > 0 such that if | f™(x) —a| <
P’ for an endpoint a of the interval Ug(,y, then a € 1 and points fitm(z), fi(a)
belong to the same interval Ug(iqpm) for all 0 <i < k.

PROOF. First of all we may assume p’ to be so small that d(b, orb(z)) > p’ for
any b € I1”. Thus if |f™(z) — a| < p’ then a € IT'.

Now, if a € II', then the definition implies that orbs(a) C U. For any
0 < i < k the distance between f(a) and all the intervals {U;} which do not
contain fi(a) is positive. Let p be the minimum of all these distances and
choose p’ so small that |u—v| < p’ implies that |f¢(u) — fi(v)] < p, 0 < i < k.
Therefore, if | f™(x) — a| < p’ then |f™*%(x) — fi(a)| < p. On the other hand
f7(2) € Ugmeay- If f(a) € Us(m) then by the choice of p we must have
|f™ % () — fi(a)| > p, a contradiction. So fi(a) ¢ Us(mi) which completes
the proof. O

The following lemma immediately follows from the definition.

Lemma 3.3. Points of II” are mapped into 11 or outside U; so eventually all
points of II" are mapped either outside U or into II'.

Lemma 3.4 relies upon Lemma 3.3.

Lemma 3.4. If A is infinite then the point x is never mapped into a point
Jrom 11 (and so the interval Uy, containing f*(x) is well defined).

PROOF. Since A is infinite, = is never mapped into a point from II’. On
the other hand if it is mapped into II” then by Lemma 3.3 it is eventually
mapped into I’ (which impossible as we have just seen) or outside U (which
is impossible by property (3) of fine collections). This competes the proof. [



DENSITY OF PERIODIC ORBITS IN w-LIMIT SETS 513

From now on we fix a transitive map f : [0,1] — [0,1] and assume that
g'(f) = €’ is the expansiveness of f. Moreover, suppose that A = w(x) C U is
an infinite limit set and U = U; UUs U --- U U, D A is an €’ /2-fine collection
with respect to A. Moreover, let I" be the set of all points from those periodic
orbits to which points from IT" converge. Also, a closed interval with endpoints
a, b is denoted by [a; b] (where both possibilities a < b and a > b are included).

We now prove the central technical lemma of this section. Here speaking
of semineighborhoods we always mean compact semineighborhoods.

Lemma 3.5. Let f : [0,1] — [0,1] be transitive and let £'(f) = &' be the
expansiveness of f. Suppose that A = w(x) C U is an infinite limit set, U =
Uy U0 U---UU, D A is an €' /2-fine collection with respect to A. Then there
exists a number a > 0 such that in any semineighborhood W of x there exists
an interval V such that for some integer t we have f7(V) C Usj,0 < j <t
and f*(V;) contains a point ¢’ € A with its a-neighborhood.

PROOF. Let us describe the following process. For the sake of definiteness
let z € W = Vy C Uyq) be a left semineighborhood of z. We construct an
interval Vi as follows. We know that f(z) € int (Ugy). If f(Vo) C Usry, we
set V7 = V. Otherwise considering the family of all left semineighborhoods
of z we can get the biggest with the f-image in U) and denote it by V1.
Obviously then G' = [a; f(z)] C f(V1) C Uy for an endpoint a of Ug(;y and
a €Il

Clearly, similarly we can construct by induction a nested sequence of left
semineighborhoods of x such that V; D V4 D ..., and the construction is well
defined. More precisely, let f™(z) € int Uyy,. If f™T1(V;,) is contained in
Usim), we set Vi1 = Vi Otherwise we again consider the family of left
semineighborhoods of z, contained in Vj,, get the biggest with the fm+1-
image in Uy(;) and denote it by V,,41. Then for an appropriate interval G' =
[a; fm1(z)] with a being an endpoint of Usim+1) (@ € II), we have G C
ferl(Vtm-‘rl) - Us(m+1)'

We have R = N2, V; = {z}. Indeed, otherwise R is a closed interval
whose images are contained in the intervals U;,1 < j < n and therefore have
length smaller than €’/2 all the time which contradicts Corollary 2.4 and the
choice of ¢’. This implies that the process in question eventually does not
depend on the choice of W = V. More precisely, let Vo D Vj be two left
semineighborhoods of x and let V; and V; denote the i-th semineighborhoods
of x constructed for V; and V{ respectively. Then there exist the least k such
that Vi G Vi and the least 4 such that V; & Vj. It is easy to see then that
i <k, V{ =V and, moreover, for all r > 0 we have V/, . = Vj4,. Therefore
the arguments we are about to apply to some Vj in fact apply to all Vj, so
that the constant o which we find for this Vj in fact is independent of V.
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So, let us fix V4. Also, let us denote the set of those m for which f™(V,,) D
[dm; f™(2)],dm € 11, by A; to avoid ambiguity with the choice of d,, in the
case when f™(V,,) = Us(m) we always choose d,, to be the left endpoint of
Us(m) (which actually does not make any difference). Consider a few cases
concerning various types of behavior of a point d,,.

Suppose first that for all sufficiently big m € A and some ¢’ > 0 we have
|f™(Vin)| > ¢'. (In particular, this holds if |f™(z) — dyy| > ¢'.) We may
assume that ¢’ < &’/2. Then by Corollary 2.4 and because all interval U; are
shorter than €’/2, there exists a number K such that for any K consecutive and
sufficiently big integers there exists an element of A among them. Indeed, if
|f™(Vn)| > 0 then by Corollary 2.4 |f*"<'/2(f™(V,,))| > &'/2 and so some
number ¢ < n(d’, &’ /2) must belong to A. Now it suffices to set K = n(d’,e'/2).

Clearly this implies that for some §” < ¢’ we have that |f™(V,,)| > ¢" for
any m. Indeed, transitivity implies that there are no flat spots of f. For any x
define a function ®(x) = ming<;<x {|f*[z,z+0']|}. Then ®(z) is a continuous
positive function which therefore has a positive minimal value ", and we may
assume that 6” < §’. Now, for any sufficiently large j there exists m € A
such that m < j < m + K. Then by the construction we have V; = V,,, and
PPV =177 (f™(Vin))| = 8" because |f™ (V)] = 0.

Let us show how this implies what is required. Indeed, since A is infinite,
there exists a non-isolated point z € A. We may assume that z is non-isolated
in A from the right. Then we can find three points 2’,2”,2"”" € A such that
z<z <2 <" <z+6"/2. Let

0 < a<1/2min{|z" — z|,|2" = 2|, [z" = 2"|, |z + 8" /2 — 2""|}).

Suppose that for some sufficiently big i we have |fi(x) — 2’| < a. Since
|f{(V;)| > &”, at least one component among the two into which fi(x) divides
fi(V;) is longer than §”/2. If its the left component, then it contains z’ with
its a-neighborhood and if its the right component, then it contains 2"’ with its
a-neighborhood. In other words we were able to find a constant a(f) = a > 0
with the property that there exists an arbitrary interval V; close to x such
that f(V;) contains a point from A with its a-neighborhood and f7(V;) is
contained in one of the intervals from U for 0 < j <.

So we may assume that there are arbitrarily big numbers m € A for which
|f™(Vin)| (and therefore |f™(x) — d,,|) is arbitrarily small. Choosing a subse-
quence we may assume that in fact there is a point d € II such that f™(z) — d
and [d; f™(z)] C f™(Vin); moreover, if there are periodic or periodic points
which appear infinitely many times as points d,,,m € A, then we choose d
as one of them; that is, d neither periodic nor periodic only if there are no
periodic or periodic points appearing infinitely many times among the points
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dm,m € A. Notice that by Lemma 3.4 x is never mapped into IT and so
f™(x) # d for any m € A. Moreover, the set II” is disjoint from w(z); so
d € w(z) = A. Consider some cases.

1) The point d is periodic (of period, say, [). Let us show that then Lemma
3.1 implies what is required. Indeed, choose sufficiently small neighborhoods
U D V and points y, z as guaranteed by Lemma 3.1. Then choose a large
number m € A so that d,, = d, f™(x) € V. Suppose that k is the least
number such that f*¥™(z) ¢ U. Then (d; f*+™(x)) contains either a point
y or a point z with a neighborhood of fixed size. On the other hand by the
construction [d; f5¥+™(x)] C 5+ (Vigym). Clearly, this implies the required.

2) The point d is periodic. In this case it is enough to map d by the
corresponding power of f into a periodic point and then apply the arguments
from the case 1).

3) The point d is neither periodic nor periodic. Since d € I, we see that d
converges to a periodic orbit of a point from the set I', say, of period I. Let u be
a point from this periodic orbit. Choose sufficiently small neighborhoods U D
V of u and corresponding points y, z as guaranteed by Lemma 3.1. Also, choose
a much smaller neighborhood V' of u so that V' > V” and let € be smaller than
the length of either of components of V' \ {u}. Choose k sufficiently large so
that for all j > 0 we have |f*¥7(d) — f/(u)| < e. Then choose § so small
that [f°(d) — f*(v)| < ¢,0 < s < k for any point v such that |d — v| < 0.
Finally, choose m so big that |d — f™ ()| < §. Then |f*(d) — f™T5(z)| < e
for all 0 < s < k. Moreover, by the choice of k the further images of d stay
in e-neighborhood of the orbit of u while the orbit of x must leave U because
the limit set of x is infinite. We can again apply Lemma 3.1 which, similarly
to the cases 1) and 2), implies the existence of the required number «. This
completes the proof of the lemma. O

Lemma 3.6 relies upon Lemma 3.5.

Lemma 3.6. Let f : [0,1] — [0,1] be transitive, let A = w(x) C U be an
infinite limit set where U = Uy UUy U ---U U, is an €'(f)/2-fine with respect
to A collection. Then there is a periodic orbit Q C \J;_, int U; which visits
interiors of all intervals U;, 1 < i < n.

PRrROOF. Let a > 0 be a constant from Lemma 3.6. Consider the orbit of x
and choose numbers N < M in the following way.

First of all, we require that the set S{¥ (x, f) intersect all intervals from U
and the same holds for S %ﬂ” (x, f). Also, if some of the endpoints of intervals
from U are periodic then let M be greater than all their periods. Finally, let
N and M be such that H(SY (z, f), A) < a/4,H(SﬁI{V[(x,f),A) < a/4. (To
get these last properties we may need to replace = by its forward iterate under
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sufficiently high power of f.) Choose a small neighborhood W of x so that
for any 0 < j < N + M we have f/(W) C int Us(;)- (This is possible since
by Lemma 3.4 the orbit of z does not pass through endpoints of the intervals
from U.) Notice that together with the choice of n, M this implies that sets
fH(W),0 < i < N visit all intervals from U and also sets fi{(W), N+1<i < M
visit all intervals from U. Moreover, we may assume that |f7(W)| < a/4 for
any 0 <j < N+ M.

By Lemma 3.5 there is a number ¢ and an interval V' C W such that
JUV) C Usy,0 < i < ¢ and fY(V) contains a point ¢/ € A with its a-
neighborhood. Notice that by the choice of W we have t > N + M. Now,
since H(SY (z, f), A) < a/4, there exists I < N such that f!(z) is a/4-close
to ¢. Thus the «/4-neighborhood of f!(x) is contained in f*(V); on the
other hand by the choice of W we see that f!(V) is contained in the a/4-
neighborhood of f!(z) which implies that f*(V) > f'(V). Therefore there is
a periodic point z € (V) such that f=!(z) = 2. By the choice of V and W
we see that orbz C |J}_, int U;. Indeed, the fact that orbz C U is obvious.
Suppose that z is mapped into an endpoint y of one of intervals from U by
some iterate of f; this endpoint is then periodic of period less than M. The
period in question is in fact the period of z as well which implies that the
point y can be found among points fVN1(2), fN2(2),..., f¥TM(2). On the
other hand by the choice of W we have that f/(W) is contained in the interior
of some interval from U for N < j < N + M. This contradiction implies
that orbz C U?:l int U;. To complete the proof it remains to notice that sets
fi(V),N < i < M visit all intervals from U because they are contained in
fi(W), and that | < N < N+ M < t. O

Now we are ready to prove our Main Theorem. Recall, that we consider a
class of maps G such that for any f € G if I is a wandering interval then w(I)
is a periodic orbit. Also, by K we denote the class of compact subsets of [0, 1]
endowed with Hausdorff metric H and by Z(f) C K we denote the family of
all w-limit sets of an interval map f.

Main Theorem. Let f € G. Then the family of all periodic orbits of f is
dense in Z(f).

PROOF. Let A = w(x); our aim is to find a periodic orbit @ such that H(Q, A)
is arbitrary small. This is trivial if A is a periodic orbit itself. Since by Lemma
2.7 all finite limit sets are periodic orbits, we may assume from now on that
A is infinite.

Suppose that A is a solenoidal set. Then the fact that all wandering in-
tervals of f converge to periodic orbits implies that in fact A is a solenoid.
Indeed, let V"D V4 D ... be a nested sequence of periodic intervals of periods
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mg,mi,...,m; — oo, generating A. If A is not a solenoid then there is a
non-trivial component of @ = (2, orbs(V;); in other words, there exists a se-
quence 19 < 79 < ... and a non-degenerate interval J = ﬂ;’io fr (V). Clearly
J is a wandering interval which does not converge to a periodic orbit; this
contradiction implies that A = Q = (;2,orbs(V;) is a solenoid. Therefore
g; = max{|f"(V;)| : 0 <1i < m; — 1} converges to 0 while i tends to infinity.
On the other hand for any ¢ there is a periodic orbit Q; C orby(V;) and it
follows from the definition that H(Q;, A) < &;. So to find a periodic orbit
which is no more than e-distant from @ in the sense of Hausdorff metric it is
enough to take @; with ¢; < e.

It remains now to consider the case of an infinite limit set A contained
in a basic set. We prove this in a few steps establishing along the way some
properties of basic sets and transitive maps.

Property A. If g:[0,1] — [0,1] is mizing then for any € there is a periodic
orbit Q such that H(Q,[0,1]) < e.

PROOF OF PROPERTY A. Let us make use of Lemma 2.3. Indeed, we can
find a finite family of pairwise disjoint closed intervals Uy, ..., U, such that
R =;_,U; C (0,1) and the length of any of these intervals and any of the
gaps between them is less than £/3. Then due to Lemma 2.3 there is a number
N such that f¥(U;) D R for any 1 <4 < n. Hence there is a periodic point z
such that z € Uy, fN(2) € Uy, ..., N V(2) € U,, fN"(2) = 2. The choice
of the intervals U;, 1 < ¢ < n implies now that H(orby(z),[0,1]) < e. O

Property A implies Property B.

Property B. Let A have a non-empty interior. Then for any € there is a
periodic orbit Q such that H(Q, A) < e.

PROOF OF PROPERTY B. It is easy to see that if A has a non-empty in-
terior then in fact A is a cycle of intervals on which f is transitive. Let
A= Ui:ol f*(I) be the cycle of intervals of period k where I = [c,d]. Then
by Lemma 3.2 either f¥|I is mixing or there is a point a € I such that
fFle,a] = [a,d], f¥[a,d] = [c,a] and both f?!|[c,a] and f?¥|[a,d] are mixing.
In any case, there is an interval J and a number m such that 7" ," f#(J) = A,
any two iterates of J either coincide or have at most one point in common and
f™|J is mixing (either J = [¢,d],m = k or [¢,a],m = 2k). By Lemma 2.5 it
is enough to show that f™|J has the property that J as a limit set of f™ is
approximated in the sense of Hausdorff metric by periodic orbits; this follows
from Property A. O

From now on we assume that A = w(x) C B = B(K), B is a basic set and
that A is nowhere dense. Let K be a cycle of intervals of period k and let I be
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one of the intervals from K. By Theorem 2.1 we may also assume that x € B.
Denote AN fi(I) by A; for any 0 < i < k — 1. Then f(4;) = A;41(0 <4 <
k—2),f(Ax—1) = Ag. Let f™ = F; by Lemma 2.5 it is enough to show that
Ag can be arbitrary well approximated by an F-periodic orbit. By Theorem
2.1 F(I) = I, F|I is monotonically semiconjugate by a map ¢ to a transitive
interval map ¢ : [0,1] — [0,1]. Also, we can assume that x € By = BNI. Our
aim is to find for any ¢ > 0 an F-periodic orbit @ so that H(Q, Ag) < &; so
from now on we consider the map F restricted to I instead of original map f.
We need to establish a few more technical properties. If H is a closed set
then we call an open interval W an , H-gap if W is complementary to H.

Property C. If y is a point of a B-gap whose limit set is contained to B
(e.g., if y is an endpoint of the gap) then it converges to a periodic orbit.

PRrROOF OF PROPERTY C. Due to the existence of the monotone semiconjugacy
between F'|I and a map ¢ the gap in question is either eventually mapped into
a periodic By-gap or wandering and thus converging to a periodic orbit. In
either case the assumption that w(y) C B implies that w(y) is a periodic
orbit. O

Property D. Suppose y € By is a limit point for By from a side T but is
not a limit point of Ay from the side T'; then in any small T-semineighborhood
of y there is an F-periodic point y' such that ¢(orbr(y’)) is disjoint from
$(Ao) = Co.

PrOOF OF PROPERTY D. If U is a T-semineighborhood of y then ¢(U) is non-
degenerate by Theorem 2.1. Since g is transitive, by Corollary 2.4 g-periodic
points are dense in [0, 1]. Thus we can find a g-periodic point z in int ¢(U). The
monotonicity of ¢ now implies that the ¢-preimage of z contains an F-periodic
point which we denote by y’. Since z ¢ Cj, we see that ¢(orbp(y’)) = orby(z)
is disjoint from Cy. Notice that Property D (unlike Property C) does not
depend on the assumptions about f. O

Let us now prove the Main Theorem. Consider first the case when Ay = By.
Clearly the continuity of ¢ implies that there is § > 0 such that |¢[z—e, x+€]| >
¢ for any x € By. Also, by Property A we can find a g-periodic orbit @
such that H(Q,[0,1]) < §/3. Then there is an F-periodic orbit P such that
¢(P) = @ (we may even choose P C B). Let us show that H(P, By) < ¢.
Indeed, otherwise there exists a point z € By such that [z —e,z+¢] NP = 0.
On the other hand |¢[x — &,z +€]| > § which implies that there is a point z €
int(¢lx—e,r+¢])NQ. Then ¢~ 1(2) C [r—¢,x+¢] and so [x—¢e,z+&]NP # (.
The contradiction implies that H (P, By) = H(P, Ap) < e.
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So from now on we assume that Ay # By, or, equivalently, ¢(A4p) = Cy is
nowhere dense in [0, 1] (and thus Ay is nowhere dense in By). We continue by
constructing a finite family of closed intervals with pairwise disjoint interiors
U =U,U---Ul, D Ay with some additional properties. First, we may assume
that € > 0 is sufficiently small so that for any x, y such that |z —y| < & we have
|o(z) — ¢(y)| < €'(g)/2. In what follows we construct a finite set V' of points
some of which will be the endpoints of our future intervals U;. We begin by
assuming that V = () and will be adding points to this set.

Let ug be the leftmost point of Ag. Suppose first that ug is a limit point
of the set By from the left. Then by Property D there is an f-periodic point
vo € (ug — €/4,ug) such that ¢(orbr(vg)) is a g-periodic orbit disjoint from
Co. We add orbg(vg) to the set V. Suppose now that ug is the right endpoint
of a Byg-gap. By Property C we may assume that orbp(x) never enters this
By-gap; in this case let vg = up and add the point vy to the set V.

Consider now a few possibilities for the interval (ug +¢/4,up +¢/2) = W.
First suppose that W is not disjoint from By. Then because Ag is nowhere
dense in By we can find a point v’ € (W N By) \ Ag. By Property D there is
an F-periodic point v; € W such that ¢(orbg(vy)) is disjoint from Cp; in this
case we add the entire orbp(v1) to the set V and set v] = vy.

Now suppose that W is contained in a By-gap, say, (a,b). If a ¢ Ay we can
by Property D find a periodic point v; < a close to a so that [v1,a] N Ag = 0
and ¢(orbp(vy)) is disjoint from Cy. Then we add orbp(vi) to V. On the
other hand if a € Ay then we set v1 = a and add v; to V. In any case we also
set v] = b. Notice that in this case (i.e. when W is contained in a By-gap) the
sets w(v1) and w(v]) are periodic orbits (by the construction and by Property
C).

To go on we need to establish some properties of our construction. First
of all, one of the following holds.

(1) w—e/4 <wvg <ug <ug+e/4 <wvy =v] <ug+e/4. (This corresponds
to the case when W is non-disjoint from By.) or

(2)  wp—e/d <vy <wup <v1 <ugte/d <up+e/2 < vi. (This corresponds
to the case when W is disjoint from By.)

Let us now make a few remarks concerning our construction.

a) Points which do not belong to A are all periodic and added to the set
V' together with their orbits while points from A no matter whether
periodic or not are added to the set V ‘individually’, i.e. without adding
the entire periodic orbit.
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b) Although the point v} takes part in the construction we do not include
this point in the set V.

c) By Property C' in the case (2) the point = cannot visit W. Thus, replac-
ing x by its appropriate forward image we may assume that in any case
[v1,v]] is disjoint from orbp(x).

d) So far for a point v € V we have the following choices: a) v ¢ Ay is
a periodic point such that ¢(orbpr(v)) is disjoint from Cp; b) v € Ay,
wr(v) is a periodic orbit and either v = vy = ug is approximated by the
orbit of z only from the right, or v = v; = v is approximated by the
orbit of x from both sides, or v = v; < v{ is approximated by the orbit
of z only from the left and wr(v]) is a periodic orbit.

Now, let us continue dealing with the set Ay to the right of v]. Denote the
leftmost point of Ay N [v],00) by u; and repeat our construction with some
additions. Namely, if v] ¢ Ao then we find vy and extend the set V' as before
with only the additional property that v] < ve which is clearly possible. If
v} € A then v} is the right endpoint of a B-gap approximated from the right
by the orbit of = in which case we set vo = v} and add v] to V. Tt is clear that
we can continue the construction until the entire set Ag is covered, i.e. until for
some k we have Ay C Uf:o [V2i, Vai41]; since for any i we have vy; | | —va; > /4
the process will end in a finite number of steps.

Consider now the set of points V. They divide the whole interval into
subintervals. Take only those among these subintervals which have infinite
intersections with the orbit of & and denote them by Uy,...,U,,. Consider
various possibilities which can realize for U;.

1) U; = [d,d] and d ¢ Ag. Then by the construction d is an F-periodic
point and ¢(orbg(d)) N Cy = 0.

2) U; = [d,d'] and d € Ap. By the construction then wg(d) is a periodic
orbit and d is approached by x from the right.

3) U, = [d,d'] and d’ ¢ Ap. Then by the construction d’ is an F-periodic
point and ¢(orbp(d")) N Cy = 0.

4) U; = [d,d'] and d' € Ay. By the construction then wp(d’) is a periodic
orbit and d’ is approached by z from the left.

Consider the family of intervals ¢(U;) = V;. Then it follows easily from the
construction and properties 1) - 4) that they form an &'(g)/2-fine collection.
Therefore by Lemma 3.2 there is a g-periodic orbit P which belongs to the set
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Ui~ int V; and enters each V; at least once. If Q is an F-periodic orbit such
that ¢(Q) = P then obviously Q € J.", int U; and @Q enters each U; at least
once. Notice, that UU; D Ag and the length of each U; is less than £/2. This

implies that H(Q, Ag) < € and completes the proof. O
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