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Abstract

The present paper is a survey on Ck,1 functions. Both theoretical
and numerical results related to this class of nonsmooth functions are
presented. We also give few new results and pose some open problems
for further investigation.

1 Introduction.

Much of classical calculus is based on the notions and properties of gradient
and differential; major subjects such as optimization and differential equations
heavily involve the notion of derivative. As a result, to develop any kind of
nonsmooth calculus this definition has to be replaced by a new one, trying to
preserve, in some generalized form, most of the basic properties and results.
This is what several authors have done; extending classical calculus by first
modifying the concept of gradient. Sometime these new notions have been
defined as generalized derivatives, gradients or differentials. Different schools
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introduced and constructed new tools and theories that allow treating several
nonsmooth function classes (see, for instance, [21, 66, 68, 69, 86, 89, 76]).
One of the most important such classes is the one of Lipschitz functions from
Rn to R; this class of functions has many important properties and many
applications. They have been widely used in the literature (see for instance
[38]). A smaller class, which is also very important is the collection of the so
called C1,1 functions, i.e. Fréchet differentiable functions with locally Lips-
chitz derivatives. This definition was introduced by Hiriart-Urruty and others
([40, 39]). Hiriart-Urruty also introduced the concept of a generalized Hessian
matrix for C1,1 functions and proved second order optimality conditions for
nonlinear constrained problems. Many authors have highlighted relevant real
applications in which second order differentiability of the involved data cannot
be assumed but for which C1,1 regularity holds. For instance, the extended
linear-quadratic programming problem used in the context of stochastic pro-
gramming and optimal control, even in the fully quadratic case, doesn’t use
a twice differentiable objective function; however these objective functions
are differentiable and their derivatives are Lipschitzian. The augmented La-
grangian method of a twice smooth nonlinear programming problem is another
example. On the other hand, from a computational perspective, the interest
in C1,1 functions comes from the fact that several numerical schemes need
the Lipschitz property of their derivatives to be convergent. A natural gen-
eralization is the class of Ck,1 functions, with k being a positive integer. A
function f from Rn (or from an open set in Rn) to R is said to be Ck,1 if
f is Fréchet differentiable up to order k with a locally Lipschitz derivative of
order k. We say that f is Ck,1 near x ∈ Rn if there is an open neighborhood
U of x such that f restricted to U is Ck,1. The class C0,1 is defined as the
class of locally Lipschitz functions. The class of Ck,1 functions has been con-
sidered by several authors in the literature; for instance, Luc [63], considering
the class of Ck,1 functions, introduced the notion of a generalized k-th differ-
ential, extended Taylor’s formula, proved higher order optimality conditions,
and provided characterizations of generalized convex functions. Many other
generalized derivatives have been introduced to deal with problems involving
Ck,1 data. Among them are notions due to Dini-Hadamard [13], Peano and
Riemann [1, 2, 22, 51, 70, 72], Michel and Penot [67], and Cominetti and
Correa [14].

We now list three examples to show the importance of this class of nons-
mooth functions in real applied problems.

Example 1.1. Many problems in science and engineering (see, for instance,
[76] and the references therein) can be formulated in terms of a nonsmooth
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semi-infinite optimization problem such as the following:

Minimize f(x) (1.1)

subject to max
t∈[a,b]

φj(x, t) ≤ 0, j = 1, . . . , l (1.2)

where f : Rn → R is C1,1 and φj : Rn × R → R is C2, j = 1, . . . ,. A
possible approach for solving this kind of problem is to convert it into equality
constraints

hj(x) =
∫ b

a

[max {φj(x, y), 0}]2 dt = 0, j = 1, . . . , l. (1.3)

Since φj is C2, it is easy see that the function hj is C1,1 with gradient

∇hj(x) = 2
∫ b

a

max{φj(x, t), 0}∇φj(x, t)dt, j = 1, . . . , l. (1.4)

Example 1.2. Consider the following minimization problem: Minimize f(x)
over all x ∈ RN such that g1(x) ≤ 0, . . . , gm(x) ≤ 0. Letting r denote a positive
parameter, the augmented Lagrangian Lr (see [76] and references therein) is
defined on Rn × Rm as

Lr(x, y) = f(x) +
1
4r

m∑
i=1

{[yi + 2rgi(x)]+}2 − y2
i . (1.5)

Then Lr(x, ·) is concave and Lr(·, y) is convex whenever the minimization
problem is a convex minimization problem. By replacing y = 0 we have

Lr(x, 0) = f(x) + r

m∑
i=1

[g+
i (x)]2 (1.6)

which is the ordinary penalized version of the minimization problem. Lr is
differentiable everywhere on Rn × Rm with

∇xLr(x, y) = ∇f(x) +
m∑
j=1

[yj + 2rgj(x)]+∇gj(x) (1.7)

∂Lr
∂yi

(x, y) = max
{
gi(x),− yi

2r

}
, i = 1 . . .m. (1.8)
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Example 1.3. Several formulations of applied problems involve strongly dis-
continuous data. For instance, for a given vector x ∈ Rn the step function
supp(x), which counts the number of positive components of x, can be found in
portfolio optimization, data classification and neural networks (see [49, 58]).
One possible approach for dealing with this kind of function consists of approx-
imating the problem by a nonlinear continuous function which can be easily
proved to be a C1,1 function. This allows approximating a strongly discontin-
uous optimization problem by a C1,1 optimization problem for which a well
established numerical scheme is available.

Many results have also been extended by dealing with vector Ck,1 func-
tions, set valued Ck,1 functions, multi-objective and set valued Ck,1 optimiza-
tion problems. Among them are the papers [15, 29, 30, 31, 32, 33, 34, 36,
37, 49, 50, 60, 62]. The present paper is a survey of Ck,1 functions, mostly
concentrating on the case k ≥ 1. We shall also give a few new results and
pose some problems for further investigation. The paper is organized as fol-
lows. Section 2 is devoted to a characterization of Ck,1 functions; in Section 3
a generalized Taylor’s formula is provided; in Section 4 optimality conditions
for both unconstrained and constrained problems are presented as well as some
numerical techniques; while Section 5 concludes with some final remarks and
several applications of Ck,1 functions to boundary value problems.

2 Characterization Of Ck,1 Functions.

In this section we provide a characterization of Ck,1 functions through k-th
discretized differences. Our approach is mainly based on the papers [51, 52, 53].
There are other different characterizations in the literature provided by several
authors and using different notions of generalized derivatives. We give a short
overview of one of them at the end of this section. The main advantage of
using discretized differences consists of having a characterization which doesn’t
require any kind of extra regularity assumption on f or its derivatives.

Let f : Ω ⊆ Rn → R be a function defined on an open set Ω. For such a
function let

Θkf(x, t, w) =
k∑
i=0

(−1)k−i
(
k

i

)
f(x+ itw − 1

2
ktw). (2.1)

where w ∈ Rn and t ∈ R. Similarly one can introduce

θkf(x, t, w) =
k∑
i=0

(−1)k−i
(
k

i

)
f(x+ itw). (2.2)
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Let us note that whenever t = 0 or w = 0 we have Θkf(x, t, w) = θkf(x, t, w) =
0. It is also easy to see that θkf(x, t, w) = Θkf(x + k

2 tw, t, w). Through dis-
cretized differences one can also introduction a notion of generalized convexity,
as stated in the following definition.

Definition 2.1. [10, 27] A continuous function f : Ω ⊆ Rn → R is said to be
locally k-convex at x0 ∈ Ω when

Θk+1f(x, t, w)
tk+1

≥ 0, (2.3)

∀x in a neighborhood U of x0, ∀w ∈ Rn and ∀t such that x± k
2 tw ∈ Ω.

When k = 1 the previous definition reduces to that for convex functions.
Now suppose that f : Ω→ R be a function such that Θk+1(x, t, w)/tk+1 ≥M ,
for each x in a neighborhood U of x0, t in a neighborhood V of 0 and w ∈ S1.
If M ≥ 0, then f is obviously k-convex. If M < 0, let

p(x) = p(x1, . . . , xn) =
k+1∑
j=0

∑
i1+i2+...+in=j

ci1,...,inx
i1
1 · · ·xinn (2.4)

be a polynomial of degree at most k+ 1 in the variables x1, . . . xn. It is known
that, letting w = (w1, . . . , wn),

Θk+1p(x, t, w)
tk+1

=
∑

i1+i2+...+in=k+1

ci1,...,inw
i1
1 · · ·winn (2.5)

so that one can always choose the coefficients of the polynomial so that

inf
w∈S1

Θk+1p(x, t, w)
tk+1

≥ −M (2.6)

for every x and t, and hence the function f(x) + p(x) is locally k-convex at
x0. The following result provides a characterization of Ck,1 functions.

Theorem 2.2. [53] Assume that the function f : Ω → R is bounded on a
neighborhood of the point x0 ∈ Ω. Then f is of class Ck,1 at x0 if and only
if there exist neighborhoods U of x0 and V ⊂ R of 0 such that Θk+1f(x,t,w)

tk+1 is
bounded on U × V \{0} uniformly with respect to w ∈ S1.

Corollary 2.3. [53] Assume that the function f is bounded on a neighborhood
of x0. Then f is of class Ck,1 at x0 if and only if there exist neighborhoods U
of x0 and V of 0 such that θk+1f(x,t,w)

tk+1 is bounded on U × V \{0}, uniformly
with respect to w ∈ S1.
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Through the notions of discretized differences it is possible to introduce
the notions of Riemann derivatives. The k-th Riemann derivative of f at a
point x ∈ Ω in the direction w is defined as

Dk
Rf(x,w) = lim

t→0

Θkf(x, t, w)
tk

, (2.7)

if this limit exists. If the existence of the limit is replaced by the limsup or
liminf one can introduce the notion of upper and lower Riemann derivatives
as follows:

D
k

Rf(x,w) = lim sup
t→0

Θkf(x, t, w)
tk

, (2.8)

and

Dk
Rf(x,w) = lim inf

t→0

Θkf(x, t, w)
tk

. (2.9)

The corresponding k-th Riemann-type derivative is defined as

dkRf(x,w) = lim
t→0

θkf(x, t, w)
tk

. (2.10)

For a survey on Riemann derivatives and their relationships with other defini-
tions of generalized derivatives one can see for instance [1, 2, 11, 22, 27, 26, 70].
The previous characterization can be now reformulated in terms of Riemann
derivatives, as stated in the following corollary.

Corollary 2.4. [53] Assume that f is continuous on a neighborhood of the
point x0. Then f is of class Ck,1 at x0 if and only if both Dk+1f(x) and
Dk+1f(x) are bounded on a neighborhood of x0.

Previous results extend the elementary condition which relates the Lip-
schitzian condition on f (k) and the boundedness of f (k+1). We have gen-
eralized this relation without requiring any differentiability hypothesis and
linking the existence and the Lipschitz behaviour of f (k) to the boundedness
of Θk+1f(x,t,w)

tk+1 or of the upper and lower Riemann derivatives. Similar con-

ditions can be expressed in terms of dk+1f and d
k+1

f . Further extensions
of these results can be obtained for the class of Ck,α functions that is the
set of all functions for which f (k) exists in a neighborhood of x0 and f (k)

is locally Hölderian of degree α at x0. In particular, for this class of func-
tions, it can be proved that the boundedness of certain discretized differences
is related to higher order smooothness and quasi-smoothness conditions (see
[11, 19, 20, 23]).



Ck,1 Functions: A Survey 317

We are going to conclude this section by presenting an interesting charac-
terization of the class of C1,1 function, which has been provided by Ioffe in [46]
and based on the notion of Clarke and Dini generalized derivatives. Before
presenting the main result, we need to introduce the following definitions and
terminology. For a locally Lipschitz function f ,

fo(x,w) = lim sup
y→x,t→0+

f(y + tw)− f(x)
t

(2.11)

is the Clarke directional derivative of f at x along the direction w ([13]). We
say that f is Clarke regular at x if

fo(x,w) = d−f(x,w) = lim inf
t→0+

f(x+ tw)− f(x)
t

(2.12)

for all w. The quantity d−f(x,w) is called the lower Dini directional derivative
of f at x along w. The upper Dini directional derivative d+f(x,w) is defined
in the same way with lim inf replaced by lim sup. Finally, recall that

∂−f(x) = {x∗ : 〈x∗, w〉 ≤ d−f(x,w),∀w} (2.13)

is the Dini subdifferential of f at x. We are ready to present the following
result.

Theorem 2.5. [46] Let f be a real-valued function that is defined and locally
Lipschitz on an open subset Ω of Rn. Then the following properties are equiv-
alent:

1. f is C1,1 on Ω;

2. f is Clarke regular on Ω and fo(·, ·) satisfies the Lipschitz condition in
a neighborhood of every (x, 0) ∈ Ω× Rn;

3. ∂−f(x) is nonempty for any x ∈ Ω and locally Lipschitz (as a set-valued
mapping from Rn into Rn);

4. d−f(x,w) satisfies the Lipschitz condition in a neighborhood of every
(x, 0) ∈ Ω× Rn;

We remark that other characterizations of C1,1 functions that involve dif-
ferent notions of second order generalized derivatives can be found in [14, 40,
67, 71].
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3 Taylor’s Formula and the Implicit Function Theorem.

In this section, following D. T. Luc [63] and using Clarke’s generalized Jacobian
[13], a Taylor formula for a Ck,1 function f : Rn → R is presented. This result
is applied to derive calculus rules for the generalized Hessian in the Implicit
Function Theorem with Ck,1 functions and second-order characterization of
quasiconvex functions.

3.1 Taylor’s Formula.

Let f : Rn → R be a Ck+1 function. The classical Taylor Theorem states
that for every pair of points a, b ∈ Rn, there is a point c in the open interval
c ∈ (a, b) such that

f(b)−f(a) =
k∑
i=1

1
i!
Dif(a)(b−a, . . . , b−a)+

1
(k + 1)!

Dk+1f(c)(b−a, . . . , b−a) .

where Dif(a) : Rn×Rn×. . .Rn(i times)→ R denotes the multilinear mapping
defined on (Rn)i which represents the differential of f of order i at the point
a. Theorem 3.1 below generalizes Taylor’s Theorem for Ck,1 functions. It
applies the notion of a subgradient of higher order as defined in the sequel.
For every f ∈ Ck,1 by Rademacher’s Theorem, its k-th order derivative Dkf
is differentiable almost everywhere. (For the exact formulation and the proof
of Rademacher’s Theorem see e.g. [38].) The generalized Jacobian of Dkf at
x ∈ Rn in Clarke’s sense [13], denoted by J̄Dkf(x), is defined as the convex
hull of all (nk × n)-matrices obtained as the limit of a sequence of the form
JDkf(xi) where {xi}∞i=1 converges to x and the classical Jacobian matrix
JDkf(xi) of Dkf at xi exists. The (k + 1)-th order subdifferential of f at
x is defined as the set ∂k+1f(x) := J̄Dkf(x). The elements of this set are
called the (k + 1)-th order subgradients of f at x. They can be considered
as multilinear functions on the space Rn × · · · × Rn (k + 1 times). When
k = 1 the set ∂f(x) := ∂1f(x) = J̄f(x) is the Clarke subdifferential of f at
x and its elements are the Clarke subgradients of f at x. The space of the
(nk × n)-matrices A = (aij), i = 1, . . . nk, j = 1, . . . , n, is endowed with the

norm ‖A‖ =
(∑nk

i=1

∑n
j=1 a

2
ij

)1/2

.

Theorem 3.1 (Luc [63]). Let f be a Ck,1 function from Rn to R and let
a, b be two arbitrary points in Rn. Then there exist a point c ∈ (a, b) and a
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(k + 1)-th order subgradient Ab of f at c such that

f(b)−f(a) =
k∑
i=1

1
i!
Dif(a)(b−a, . . . , b−a)+

1
(k + 1)!

Ab(b−a, . . . , b−a) . (3.1)

Moreover, there exists a neighborhood U of a and a positive K such that ‖Ab‖ ≤
K for all b ∈ U .

For k = 0 this theorem gives:

Corollary 3.2 (Lebourg Mean Value Theorem [59]). Let f be a C0,1 function
from Rn to R and let a, b be two arbitrary points in Rn. Then there exist a
point c ∈ (a, b) and a subgradient Ab of f at c such that

f(b)− f(a) = Ab(b− a) .

Moreover, there exists a neighborhood U of a and a positive K such that ‖Ab‖ ≤
K for all b ∈ U .

For references, other generalizations and applications of the Mean Value
Theorem we refer to [64].

3.2 The Implicit Function Theorem.

The Implicit Function Theorem plays an important role in analysis. For Ck,1

functions the following result holds.

Theorem 3.3 (The Implicit Function Theorem). Let f : Rn × Rm → Rm be
a Ck,1 function with the property that f(x0, y0) = 0 and suppose that every
matrix of πy∂f(x0, y0) is invertible. Then there exists an open neighborhood
U of x0 and an open neighborhood V of y0 such that for any x ∈ U there
exists a unique g(x) ∈ V with the property that f(x, g(x)) = 0. The function
g : U → V satisfies g(x0) = y0 and g ∈ Ck,1.

Here πy stands for the projection operator on the y-space, in this case Rm.
When k = 0 this theorem is established in [13]. When k ≥ 1, then f is also
C1, the condition “every matrix of πy∂f(x0, y0) is invertible” can be written in
the form ∇yf(x0, y0) 6= 0. The assertion with g ∈ C1 is the classical Implicit
Function Theorem. The fact that g ∈ Ck,1 is established in [63].

Since the function g in Theorem 3.3 is Ck,1, an important problem is to
give a formula for ∂k+1f(x0). Such formulas when k = 0 and k = 1 are
established in [63].
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a) When k = 0, then

∂g(x0) ⊆ − (∂yf(x0, y0))−1
∂xf(x0, y0) .

b) When k = 1, then the following partition for every (n + m) × (n + m)
matrix H is used.

H =
(
Hxx Hxy

Hyx Hyy

)
,

where the dimensions of the submatrices Hxx, Hxy, Hyx, Hyy are n×n, n×m,
m× n, m×m respectively. With this partition

∂2g(x0) ⊆ − (∂yf(x0, y0))−1 {Hxx + (Dg(x0))>Hyx +HxyDg(x0)

+Hyy(Dg(x0))>D(g(x0)) | H ∈ ∂f(x0, g(x0))} ,

where (. . . )> denotes the transpose of the matrix in the parentheses.

3.3 Quasiconvexity.

We recall that a function f from Rn to R is said to be quasiconvex if for every
x, y ∈ Rn and every λ ∈ (0, 1) one has f(λx + (1 − λ)y) ≤ max(f(x), f(y)).
Conditions for quasiconvexity of C1,1 functions are obtained in [63] as an
application of the results from the previous two subsection. The necessary
conditions in Theorem 3.4 is derived on the basis of the Taylor’s formula (3.1)
while the proof of the sufficient conditions in Theorem 3.5 uses also the Implicit
Function Theorem 3.3. See also [16] for additional information on this. The
formulations use the following notations (with k = 1).

Dk+1
+ f(x)(u) = sup{A(u, . . . , u) | A ∈ ∂k+1f(x)} , (3.2)

Dk+1
− f(x)(u) = inf{A(u, . . . , u) | A ∈ ∂k+1f(x)} . (3.3)

Theorem 3.4 (Quasiconvexity, Necessary condition, [63]). Let f be a qua-
siconvex C1,1 function. Then for every x, u ∈ Rn, Df(x)(u) = 0 implies
D2

+f(x)(u) ≥ 0.

The following theorem generalizes from C2 to C1,1 functions a result of
Crouzeix [16].

Theorem 3.5 (Quasiconvexity, Sufficient condition, [63]). Let the C1,1 func-
tion f satisfy the following conditions for every x, u ∈ Rn, u 6= 0:

Df(x)(u) = 0 implies D2
−f(x)(u) ≥ 0 , (3.4)

and Df(x) = 0 implies D2
−f(x)(u) > 0 . (3.5)

Then f is quasiconvex.
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Under the hypotheses of Theorem 3.5 the function f is pseudoconvex, (see
the Remark in [63, page 668]). Recall that the function f : Rn → R is said to
be pseudoconvex if for all x, y ∈ Rn, f(y) < f(x) implies Df(x)(y − x) ≤ 0.

The pseudoconvex functions generalize the convex functions and obey some
similar properties; for instance every local minimum of a pseudoconvex func-
tion is a global minimum. A larger class with similar properties is the class of
pseudoconvex functions of order k([35]). A natural question, left here as an
open problem, is whether Theorem 3.5 admits an appropriate generalization
with respect to the class of Ck,1 pseudoconvex functions of order k.

4 Optimization.

In this section we deal with optimality conditions for problems with Ck,1 func-
tions. Initially following Luc [63] we present optimality conditions based on
Taylor’s formula from the previous section. Thereafter we prove Taylor’s for-
mula with an integral representation of the remainder and on its basis establish
optimality conditions for Ck,1 functions using Dini directional derivatives of
order k + 1. We show that this new result implies that of [63]. We follow an
approach similar to that of Ginchev, Guerraggio, Rocca [30], [29], [31], [34]
for vector optimization problems with C1,1 data (and that of [28], [32], [29]
for vector optimization problems with C0,1 data). In the present paper for
simplicity we restrict our discussion to scalar problems.

The importance of the locally Lipschitz, that is C0,1, optimization both
from theoretical and practical points of view is well known. Actually it gave
birth to an intensively studied, vast area of mathematics referred to recently
as variational analysis, see [76], [68], [69]. Optimization problems with C1,1

data were considered initially by Hiriart-Urruty, Strodiot, and Hien Nguen
[40]. Since then such problems, both scalar and vector, have been frequently
studied. For instance second-order conditions for C1,1 scalar problems are
studied in [17, 25, 43, 44, 45, 48, 54, 55, 56, 57, 88, 87, 91, 92] and for C1,1 vector
problems in [36, 37, 49, 50, 60, 61, 62]. Here is a short explanation about the
choice of the Dini derivatives in the optimality conditions. In [26] optimality
conditions are proposed in terms of the so called Hadamard derivatives which
work with quite arbitrary functions. The Hadamard derivatives are however
inconsistent with the classical derivatives in the case of differentiable functions.
That is why in [30] Dini derivatives were considered instead of Hadamard ones,
which on the one hand have similar structure to Hadamard derivatives, while
on the other hand are consistent with the classical derivatives. However it is
shown in [30] that second-order conditions designed like the ones in [26] but
applying Dini derivatives do not work for arbitrary functions. The question
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is posed to find a class of functions F for which these conditions work. It
is shown there that an appropriate choice is the class F = C1,1. Recently
Bednař́ık and Pastor [4] introduced a more general class of functions called
`-stable functions, which also could be an appropriate choice. In our opinion
the class of `-stable functions deserves a separate study from the point of view
of real analysis. It is shown in [3, 4, 5, 6, 7] that the optimality conditions for
scalar problems with `-stable functions not only generalize those of [30], but
also the ones from [8], [14] and [3].

4.1 Some Optimality Conditions.

Taylor’s formula from Section 3 is applied to derive the following optimality
conditions.

Theorem 4.1 (Necessary conditions, [63]). Let x0 ∈ Rn be a local minimum of
f with the property that Dif(x0) = 0 for i = 1, . . . , k. Then Dk+1

+ f(x0)(u) ≥ 0
for all u ∈ Rn. In particular, if k is even, then 0 ∈ ∂k+1f(x0)(u, . . . , u) for
all u ∈ Rn.

Theorem 4.2 (Sufficient conditions, [63]). Let x0 ∈ Rn be a point with the
property that Dif(x0) = 0 for i = 1, . . . , k, and Dk+1

− f(x0)(u) > 0 for all
u ∈ Rn, u 6= 0. Then x0 is a local strict minimum of f .

4.2 Taylor’s Formula With An Integral Form Of The Rest.

We establish a variant of Taylor’s formula.

Theorem 4.3. Let f be a Ck,1 function from Rn to R and let a, b be two
arbitrary points in Rn. Then

f(b)− f(a) =
k∑
i=1

1
i!
Dif(a)(b− a, . . . , b− a) +Rk+1 ,

where

Rk+1 =
1

(k − 1)!

∫ 1

0

(1− s)k−1
(
Dkf(a+ s(b− a))(b− a, . . . , b− a)

−Dkf(a))(b− a, . . . , b− a)
)
ds (4.1)

=
1
k!

∫ 1

0

(1− s)kDk+1f(a+ s(b− a))(b− a, . . . , b− a) ds .
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Proof. Define the function

g(t) = f(a+ t(b− a))− f(a)−
k∑
i=1

ti

i!
Di(a)(b− a, . . . , b− a) .

Then g(0) = 0 and

g(1) = f(b)− f(a)−
k∑
i=1

1
i!
Di(a)(b− a, . . . , b− a)

=
∫ 1

0

∫ t1

0

. . .

∫ tk−1

0

(
Dkf(a+ s(b− a))(b− a, . . . , b− a)

−Dkf(a)(b− a, . . . , b− a)
)
ds

=
1

(k − 1)!

∫ 1

0

(1− s)k−1
(
Dkf(a+ s(b− a))(b− a, . . . , b− a)

−Dkf(a))(b− a, . . . , b− a)
)
ds

=
1

(k − 1)!

∫ 1

0

(1− s)k−1

∫ s

0

Dk+1f(a+ τ(b− a))(b− a, . . . , b− a) dτ ds

=
1
k!

∫ 1

0

(1− s)kDk+1f(a+ s(b− a))(b− a, . . . , b− a) ds .

To obtain the next to last expression we have used that Dkf(a+ s(b− a))(b−
a, . . . , b− a) is absolutely continuous (since Lipschitz) in s. To obtain the last
expression we have applied the Fubini Theorem.

The second integral in the representation (4.1) can be used to obtain the
inclusion

1
k!

∫ 1

0

(1− s)kDk+1f(a+ s(b− a))(b− a, . . . , b− a) ds (4.2)

∈ 1
(k + 1)!

∂k+1 f(c)(b− a, . . . , b− a)

for some c ∈ [a, b], which shows, roughly speaking, that Theorem 4.3 is a
refinement of Theorem 3.1. Actually this result shows that in general the
remainder term in Theorem 4.3 gives a more precise estimation, with the only
exception that in (4.2), and hence in the representation of the remainder in
Theorem 4.3, the point c possibly takes as values a or b, the extremes points
of [a, b], while in Theorem 4.3 this is excluded. In the case f ∈ Ck+1 the
inclusion (4.2) turns into equality and the result is a simple application of
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the Integral Mean Value Theorem. As Theorem 4.4 below shows, the integral
representation of the rest from Theorem 4.3 is more convenient for estimations
than the form involving an intermediate point and generalized gradients from
Theorem 3.1. We skip the proof of (4.2) in general, since on the one hand this
result won’t be used in the sequel, and on the other hand we don’t wish to
enter more deeply into the theory of Clarke generalized gradients. The first
integral in the representation (4.1) is used to obtain the estimation in Theorem
4.4 below. For x, w ∈ Rn and t ∈ R (we are interested further in the case
t > 0) we introduce the notation:

∆k+1f(x0, t, w) =
(k + 1)!
tk+1

(
f(x+ tw)− f(x)−

k∑
i=1

ti

i!
Dif(x)(w, . . . , w)

)
.

In the sequel we also use the notation S := {u ∈ Rn | ‖u‖ = 1}. For x0 ∈ Rn
and r > we put also B(x0, r) = {x ∈ Rn | ‖x− x0‖ < r}.

Theorem 4.4. Let f be Ck,1 on B(x0, r), where x0 ∈ Rn, r > 0, with Dkf(x0)
being Lipschitz with constant λ. Then for all u, v ∈ S, and all t with 0 < t < r,

|∆k+1f(x0, t, u)−∆k+1f(x0, t, v)| ≤ (k + 1)λ ‖u− v‖ . (4.3)

For v = 0 we get
|∆k+1f(x0, t, u)| ≤ (k + 1)λ ‖u‖ . (4.4)

Proof. The estimation (4.3) follows from the following chain:

|∆k+1f(x0, t, u)−∆k+1f(x0, t, v)|

=
(k + 1)!
tk+1

· 1
(k − 1)!

·
∣∣ ∫ 1

0

(1− s)k−1
(
Dkf(x0 + stu)−Dkf(x0)

)
(tu, . . . , tu) ds

−
∫ 1

0

(1− s)k−1
(
Dkf(x0 + stv)−Dkf(x0)

)
(tv, . . . , tv) ds

∣∣
=

(k + 1)k
t

·
∣∣ ∫ 1

0

(1− s)k−1

((
(Dkf(x0 + stu)−Dkf(x0))(u, . . . , u))

−(Dkf(x0 + stv)−Dkf(x0))(u, . . . , u)
)

+(Dkf(x0 + stv)−Dkf(x0))(u− v, u, . . . , u)

+(Dkf(x0 + stv)−Dkf(x0))(v, u− v, . . . , u) + ...
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+(Dkf(x0 + stv)−Dkf(x0))(v, v, . . . , u− v)
)
ds
∣∣

≤ (k + 1)k λ
∫ 1

0

(1− s)k−1(s+ · · ·+ s) ds ‖u− v‖

= (k + 1)2k λ

∫ 1

0

(1− s)k−1s ds ‖u− v‖ = (k + 1)λ ‖u− v‖ .

For the last equality we applied the integral
∫ 1

0
(1− s)k−1s ds = 1

k(k+1) . Now
(4.4) follows immediately from ∆k+1f(x0, t, 0) = 0 and (4.3).

4.3 Unconstrained Problems.

In this section we deal with the problem of finding the local minimum of a
Ck,1 function f : Rn → R. (All results are also valid for functions f defined
on an open subset of Rn.) We denote this problem by

min f(x) . (4.5)

Our goal is to discuss optimality conditions for this problem. In the sequel we
make use of the (k+ 1)-th order lower Dini directional derivative of f , defined
at the point x ∈ Rn in direction u ∈ Rn by

f
(k+1)
− (x, u) = lim inf

t→0+
∆k+1f(x, t, u) . (4.6)

A suitable notation for this derivative could be also Dk+1
− f(x)(u, . . . , u); we

avoid it however because Dk+1
− f(x)(u, . . . , u) has been used earlier in another

sense. Moreover, to unify the notation we also put

f
(i)
− (x, u) := Dif(x)(u, . . . , u), i = 1, . . . , k .

Note that a formula similar to (4.6) is valid (with k + 1 substituted by i and
∆if(x, t, u) defined similarly to ∆k+1f(x, t, u)).

The following conditions are important in the forthcoming discussion.

N(i)
− (x, u) : f

(j)
− (x, u) = 0, j = 1, . . . , i− 1, implies f (i)

− (x, u) ≥ 0 .
S(i)
− (x, u) : f

(j)
− (x, u) = 0, j = 1, . . . , i− 1, implies f (i)

− (x, u) > 0 .

Clearly, condition N(1)
− (x, u) is simply f

(1)
− (x, u) ≥ 0, and similarly condi-

tion S(1)
− (x, u) is f (1)

− (x, u) > 0.
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Theorem 4.5 (Necessary conditions, [26]). Let f : Rn → R be a Ck,1 function
near x0 for which x0 is a local minimum. Then for all u ∈ S conditions
N(i)
− (x0, u), i = 1, . . . , k + 1, hold.

The strict minima are in some sense more restrictive than the usual ones.
We will say that x0 is a strict minimum of order k + 1 of f (or of problem
(4.5)) if there is r > 0 and a > 0 such that

f(x) > f(x0) + a ‖x− x0‖k+1 for all x ∈ B(x0, r) . (4.7)

Obviously, each strict minimum of order k+ 1 is a strict minimum, and more-
over a minimum of f .

Theorem 4.6 (Sufficient conditions, Strict minima). Let f : Rn → R be a
Ck,1 function near x0. Let x0 ∈ Rn be such that for each u ∈ S there exist
ı̄ = ı̄(u) ∈ {1, . . . , k + 1}, δ̄ = δ̄(u) > 0 and t̄ = t̄(u) > 0 for which

a) Condition S(ı̄)
− (x0, u) is satisfied,

b)
∑ı̄−1
i=1

ti

i! f
(i)
− (x0, v) ≥ 0 for 0 < t < t̄ and v ∈ S ∩B(u, δ̄).

Then x0 is a strict minimum of order k + 1.

Proof. Since f ∈ Ck,1 near x0, we can choose r̄ > 0 such that f is Ck,1 on
B(x0, r̄), and all Dif , i = 1, . . . , k, are Lipschitz with a constant λ > 0 on
B(x0, r̄).

Fix u ∈ S. Condition S(ı̄)
− (x0, u) gives

f
(ı̄)
− (x0, u) = lim inf

t→0+

ı̄ !
tı̄

(f(x0 + tu)− f(x0)) > 0 ,

whence there exists ε = ε(u) > 0 and r1 = r1(u), 0 < r1 < min(r̄, 1), such
that

f(x0 + tu)− f(x0) >
tı̄

ı̄ !
ε for 0 < t < r1 .

From Theorem 4.4, with k+ 1 replaced by ı̄, for 0 < t < r̄ and v ∈ S ∩B(u, δ̄)

f(x0 + tv)− f(x0) ≥ f(x0 + tu)− f(x0)

+
ı̄−1∑
i=1

ti

i!
f

(i)
− (x0, v)− tı̄

ı̄ !
λ ‖v − u‖ ≥ tı̄

ı̄ !
(ε− ı̄ λ ‖v − u‖ ) .
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Choose δ1 = min(δ̄, ε/(2ı̄λ)). Then for v ∈ S ∩ B(u, δ1) and 0 < t < r1 we
have

f(x0 + tv)− f(x0) ≥ ε

2ı̄ !
tı̄ ≥ ε

2(k + 1)!
tk+1 .

Thus, we have shown that for every u ∈ S there exist r = r(u), a neigh-
borhood U = U(u) of u, and a = a(u) > 0, such that

f(x0 + tv) ≥ f(x0) + a tk+1 for 0 < t < r and v ∈ S ∩ U .

Because of the compactness of S, this implies that x0 is a strict minimum of
order k + 1.

Theorem 4.2 is a corollary from Theorem 4.6. Indeed, when Dif(x0) = 0,
i = 1, . . . , k, and Dk+1

− f(x0)(u) > 0 for all u ∈ Rn \ {0}, then conditions a)
and b) are satisfied. Condition a) follows from

f
(i)
− (x0, u) = Dif(x0)(u, . . . , u) = 0, i = 1, . . . , k,

and, with regard to Theorem 4.3,

f
(k+1)
− (x0, u) = lim inf

t→0+

(k + 1)!
tk+1

(f(x0 + tu)− f(x0))

= lim inf
t→0+

(k + 1)
∫ 1

0

(1− s)kDk+1f(x0 + stu)(u, . . . , u) ds > 0 .

Here we have used that Dk+1f(x) > 0 for x in some neighborhood of x0, a
consequence of Dk+1

− f(x0)(u) > 0 and the upper semi continuity of Dk+1f .
In fact, we have shown that for all u ∈ S condition S(k+1)

− (x0, u) is satisfied.
Condition b) follows immediately from f

(i)
− (x0, u) = Dif(x0)(u, . . . , u) = 0,

i = 1, . . . , k. Then
∑k
i=1

ti

i! f
(i)
− (x0, v) ≡ 0.

Theorem 4.6 admits a converse with assumptions similar to Theorem 4.2.
This fact is shown in the next theorem and stresses that the strict minimum
of order k + 1 is the appropriate notion of a solution for problem (4.5).

Theorem 4.7. Let f : Rn → R be Ck,1 near x0 ∈ Rn and let Dif(x0) = 0,
i = 1, . . . , k. If x0 is a strict minimum of order k + 1 then for all u ∈ S

condition S(k+1)
− (x0, u) is satisfied.

Proof. By the hypotheses there exist a > 0 and δ > 0 such that

f(x0 + tu) ≥ f(x0) + a tk+1 for 0 < t < δ and u ∈ S ,
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f
(i)
− (x0, u) = Dif(x0)(u, . . . , u) = 0, i = 1, . . . , k .

Now

∆k+1f(x0, t, u) =
(k + 1)!
tk+1

(f(x0 + tu)− f(x0))

≥ (k + 1)!
tk+1

a tk+1 = (k + 1)! a ,

and
f

(k+1)
− (x0, u) = lim inf

t→0+
∆k+1f(x0, t, u) ≥ (k + 1)! a > 0 .

Therefore condition S(k+1)
− (x0, u) holds.

The next two theorems are corollaries of Theorems 4.6 and 4.7 in the cases
k = 0 and k = 1 respectively.

Theorem 4.8. Let f : Rn → R be a C0,1 function near x0 ∈ Rn. Let
f

(1)
− (x0, u) > 0 for all u ∈ S. Then x0 is a strict minimum of order 1.

Conversely, if x0 is a strict minimum of order 1, then f
(1)
− (x0, u) > 0 for all

u ∈ S.

Proof. One need observe that condition S(1)
− (x0, u) is f (1)

− (x0, u) > 0, and
for k = 0 condition b) in Theorem 4.6 is missing.

Theorem 4.9 ([30]). Let f : Rn → R be a C1,1 function near x0 ∈ Rn. Let
D1f(x0) = 0 and f

(2)
− (x0, u) > 0 for all u ∈ S. Then x0 is a strict minimum

of order 2. Conversely, if x0 is a strict minimum of order 2, then D1f(x0) = 0
and f (2)

− (x0, u) > 0 for all u ∈ S.

Proof. Let D1f(x0) = 0 and f
(2)
− (x0, u) > 0 for all u ∈ S. This means

that S(2)
− (x0, u) holds for all u ∈ S, which verifies condition a) of Theorem 4.6.

Condition b) follows trivially from tf
(1)
− (x0, v) = tD1f(x0)(v) = 0. Conversely,

if x0 is a strict minimum of order 2, and hence a minimum, then necessarily
D1f(x0) = 0. The hypotheses of Theorem 4.7 are satisfied. Hence S(2)

− (x0, u)
holds, which gives f (2)

− (x0, u) > 0 for all u ∈ S.
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4.4 Constrained Problems.

In this section we deal with the scalar constrained problem

min f(x1, . . . , xn) ,
gi(x1, . . . , xn) ≤ 0, i = 1, . . . , p, (4.8)
hj(x1, . . . , xn) = 0, j = 1, . . . , q.

under the assumption that all functions are Ck,1. (We say that the prob-
lem is with Ck,1 data.) This problem is the scalar counterpart of the vector
optimization problem considered in [32] and [34] with the assumptions that
the problem data are respectively C0,1 and C1,1 functions. We will adapt
these results for the scalar problem considered here. Our approach is based
on the Dini set-valued derivatives. Let Φ : Rn → Rm be a Ck,1 function and
x0 ∈ Rn. Then the (k + 1)-th order Dini set-valued derivative of Φ at x in
direction u ∈ Rn is defined by

Φ(k+1)
u (x0) = Limsup

t→0+
∆k+1Φ(x, t, u) .

Here Limsupt→+0 stands for the Painlevé-Kuratowski limit. In other words
we have y ∈ Φ(k+1)

u (x0) if there exists a sequence tν → 0+ such that y =
limν→∞∆k+1Φ(x, tν , u). Instead of Φ(1)

u (x0) and Φ(2)
u (x0) we will write Φ′u(x0)

and Φ′′u(x0) respectively. With problem (4.4) we relate the vector functions
g : Rn → Rp whose components are the functions gi, i = 1, . . . , p, and h :
Rn → Rq whose components are the functions hj , j = 1, . . . , q. We will
suppose that q ≤ n and will assume the hypotheses of the implicit function
theorem that guarantee the equation h(x) = 0 to be solved with respect to
q of the components of x = (x1, . . . , xn). Substituting them in the objective
function and in the inequality constraints, we transform the problem into
one with only inequality constraints to which we can apply the optimality
conditions from [28] (in the case k = 0) or [29] (in the case k = 1). In such a
way we obtain Theorems 4.10 and 4.10 stated below.

In the sequel we will use the notation. R+ = [0, +∞), Rp+ = (R+)p. For
y ∈ R+ let R+[0] = R+ and R+[y] = R if y > 0. For y = (y1, . . . , yp) ∈ Rp+ we
put Rp+[y] = R+[y1] × · · · × R+[yp]. Further, for y ∈ R+ we put R∗+[0] = R+,
and R∗+[y] = {0} if y > 0. Similarly, for y = (y1, . . . , yp) ∈ Rp+ let Rp ∗+ [y] =
R∗+[y1]×· · ·×R∗+[yp]. The scalar product of the vectors zi = (zi1, . . . , z

i
p) ∈ Rp,

i = 1, 2, is 〈z1, z2〉 =
∑p
i=1 z

1
i z

2
i . We apply upper indices for the points, as

e. g. z1 and z2 here, or x0 for the reference point, reserving the lower indices
for their components. Recall that x0 is a minimum point for problem (4.4) if
there is r > 0 such that f(x) ≥ f(x0) for all feasible x ∈ B(x0, r) (x is said
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to be feasible if it satisfies the constraints g(x) ≤ 0 and h(x) = 0). Similarly,
we call x0 a strict minimum point of order k if there is r > 0 and a > 0
such that inequality (4.7) for all feasible points x ∈ B(x0, r). For brevity we
say minimum instead of minimum point, and strict minimum instead of strict
minimum point.

We will consider the cases k = 0 and k = 1 separately.

Case k = 0 .
Now the assumption is that f , g, h are C0,1 functions. The goal is to

establish first-order optimality conditions the feasible point x0 = (x0
1, . . . , x

0
n)

to be a minimum or strict minimum. Further we will suppose that the variable
feasible point x = (x1, . . . , xn) admits a representation x = (xa, xb) where xa
unifies some n− q components of x and xb the remaining q components of x,
such that

A0(x0) : All the matrices in πb ∂h(x0) are invertible.

Theorem 4.10 ([32]). Consider problem (4.4) with f , g, h being C0,1 func-
tions near x0 ∈ Rn. Assume that x0 is a feasible point satisfying condition
A0(x0).

(Necessary Conditions) Let x0 be a minimum of problem (4.4). Then for
each u ∈ S

N 0,1
p (x0, u) : (f, g, h)′u(x0) ∩

(
−
(
int R+ × int Rp+[−g(x0)]× {0}

))
= ∅ .

(Sufficient Conditions) Suppose that for each u ∈ S the following condition
is satisfied:

S 0,1
p (x0, u) : (f, g, h)′u(x0) ∩

(
−
(
R+ × Rp+[−g(x0)]× {0}

))
= ∅ .

Then x0 is a strict minimum of order 1 of problem (4.4).

The primal form conditions N 0,1
p (x0, u) and S 0,1

p (x0, u) admit an equivalent
dual form representation, respectively.

N 0,1
d (x0, u) :

{
∀(y0, z0, 0) ∈ (f, g, h)′u(x0) : ∃(ξ0, η0) ∈ R+ × Rp ∗+ [−g(x0)] :

(ξ0, η0) 6= (0, 0) and 〈ξ0, y0〉+ 〈η0, z0〉 ≥ 0 .

S 0,1
d (x0, u) :

{
∀(y0, z0, 0) ∈ (f, g, h)′u(x0) : ∃(ξ0, η0) ∈ R+ × Rp ∗+ [−g(x0)] :

(ξ0, η0) 6= (0, 0) and 〈ξ0, y0〉+ 〈η0, z0〉 > 0 .
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In this form one can recognize ξ0, η0 as Lagrange multipliers. The relation
η0 = (η0

1 , . . . , η
0
p) ∈ Rp ∗+ [−g(x0)] is equivalent to η0

i gi(x
0) = 0, i = 1, . . . , p,

which in the classical Karush-Kuhn-Tucker (KKT) theory is known as the
complementary slackness condition. In contrast to the classical KKT theory
the multipliers here depend on the direction, which gives some flexibility and
generality. We emphasize, that optimality conditions in nonsmooth optimiza-
tion are often designed on the basis of the smooth counterpart, the classical
KKT conditions. Theorem 6.1.1 in [13, page 228] establishes conditions for
problems with C0,1 data of this type based on the Clarke generalized gra-
dient. Let us stress that this theorem, as the usual results involving KKT
conditions, is limited only to necessary optimality conditions, while Theorem
4.10 presents sufficient ones. In the case of necessary conditions, it is shown
in [32] that Theorem 4.10 works in cases when [13] fails. The disadvantage
of conditions based on Dini derivatives is that in general the Dini derivative
does not admit convenient calculus rules, while the Clarke generalized gradient
does. However, they are still effective when the functions considered present
some regularity as it is shown in [33].

Case k = 1 .
Now the assumption is that f , g, h are C1,1 functions. The goal is to estab-

lish second-order optimality conditions for the feasible point x0 = (x0
1, . . . , x

0
n)

to be a minimum or strict minimum. For simplicity, the Jacobians of f , g and
h at a point x will be denoted by f ′(x), g′(x) and h′(x) respectively. We will
suppose that at the reference feasible point x0

A1(x0) : The Jacobian h′(x0) is of full range q.
Note that condition A1(x0) is only a more natural formulation of condition

A0(x0) with regard to the present now case of a differentiable function h.

Theorem 4.11 ([34]). Consider problem (4.4) with f , g, h being C1,1 func-
tions. Let x0 be a feasible point and condition A1(x0) be satisfied.

(Necessary Conditions) Let x0 be a minimum of problem (4.4). Then for
all u ∈ S both conditions N 0,1

p (x0, u) and N1,1
d (x0, u) given below are satisfied.

N1,1
d (x0, u) :



if (f ′(x0)u, g′(x0)u, h′(x0)u)
∈ −(R+ × Rp+[−g(x0)] \ int R+ × int Rp+[−g(x0)])× {0}

then ∀ (y0, z0, w0) ∈ (f, g, h)′′u (x0) : ∃ (ξ0, η0, ζ0) :
(ξ0, η0) ∈ R+ × Rp ∗+ [−g(x0)] \ {(0, 0)},

〈ξ0, f ′(x0)u〉+ 〈η0, g′(x0)u〉 = 0, ζ0 ∈ Rq satisfies (4.9),
and 〈ξ0, y0〉+ 〈η0, z0〉+ 〈ζ0, w0〉 ≥ 0 .
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(Sufficient Conditions) Suppose that for each u ∈ S one of the conditions
S 0,1
p (x0, u) and S 1,1

d (x0, u) given below is satisfied.

S1,1
d (x0, u) :



(f ′(x0)u, g′(x0)u, h′(x0)u)
∈ −(R+ × Rp+[−g(x0)] \ int R+ × int Rp+[−g(x0)])× {0}

and ∀ (y0, z0, w0) ∈ (f, g, h)′′u (x0) : ∃ (ξ0, η0, ζ0) :
(ξ0, η0) ∈ R+ × Rp ∗+ [−g(x0)] \ {(0, 0)},

〈ξ0, f ′(x0)u〉+ 〈η0, g′(x0)u〉 = 0, ζ0 ∈ Rq satisfies (4.9),
and 〈ξ0, y0〉+ 〈η0, z0〉+ 〈ζ0, w0〉 > 0 .

Then x0 is a strict minimum of order 2 of problem (4.4).

Both N1,1
d (x0, u) and S1,1

d (x0, u) refer to the following condition:

〈ζ0, w0〉 = −〈ξ0, fxb
(x0
a, x

0
b)
(
h−1
xb

(x0
a, x

0
b)w

0
)
〉 (4.9)

−〈η0, gxb
(x0
a, x

0
b)
(
h−1
xb

(x0
a, x

0
b)w

0
)
〉 .

Here x = (xa, xb) is a representation of x such that πxb
h′(x) is of full rank q.

Let us mention that the existence of ζ0 is guaranteed by the Riesz Theorem
(saying that each linear functional `(w0) admits a representation 〈ζ0, w0〉 =
`(w0) for some ζ0).

With regard to the differentiability of the data, conditions N 0,1
p (x0, u) and

S 0,1
p (x0, u) used in Theorem 4.11 admit a more convenient representation,

noted below as N′ and S′ respectively.

N′ : (f ′(x0)u, g′(x0)u, h′(x0)u) /∈ −(int R+ × int Rp+[−g(x0)])× {0} ,

S′ : (f ′(x0)u, g′(x0)u, h′(x0)u) /∈ −(R+ × Rp+[−g(x0)])× {0} .

In conclusion we remark that Theorems 4.10 and 4.11 establish first and
second-order optimality conditions for the constrained problem (4.4) with C0,1

and C1,1 data respectively. The proof is based on the implicit function the-
orem for the equation h(xa, xb) = 0, excluding the equality constraints and
the variables xb, and reducing the problem in this way to the one considered
in [28] or [29] respectively. In Section 4.5 the Taylor’s formula of order 1 and
2 for the implicit function is presented with the remainder represented with
a mean point and generalized gradients. Here for the exclusion process we
needed rather the representation like in Theorem 4.3 with an integral form for
the remainder. A similar problem for k ≥ 3 is an open problem. Also an open
problem, but of less importance, is establishing optimality conditions of order
k ≥ 3 for the constrained problem (4.4) with Ck,1 data.
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4.5 Numerical Methods.

Several efficient numerical methods have been developed and implemented
to solve nonsmooth optimization problems with C1,1 functions (sometimes
called LC1 functions). Among them, the milestone is the one due to Qi and
Sun (see [73]) which represents an extension of the classical Newton method
for minimization of C2 functions. See also [12], [18] and [85] for additional
information. This method works under the assumption that the derivatives
of the objective functions are semismooth. This is not an unusual hypothe-
sis since, for instance, the derivative of the objective function of an extended
linear-quadratic programming problem in the fully quadratic case is semis-
mooth and the derivative of the augmented Lagrangian of a twice smooth
nonlinear programming problem is also semismooth. The main difference be-
tween the classical Newton method and the one for C1,1 functions is based
on the choice of the second order differential. Since twice differentiability is
not assumed, the Newton method for nonsmooth function at each step picks
up one element belonging to the generalized Hessian in the sense of Clarke
(see [13]). As already announced at the beginning of this section, convergence
is proved under the extra hypothesis of semismoothness of the involved data.
The generalized Newton method for C1,1 problems reads as

xk+1 = xk − V −1
k ∇f(xk) (4.10)

where Vk ∈ ∂2f(xk) is the generalized Hessian. The definition of semismooth-
ness is the following.

Definition 4.12. [73] ∇f is said to be semismooth at x if ∇f is locally
Lipschitzian at x and

lim
V ∈∂2f(x+th′),h′→h,t→0

V h′ (4.11)

exists for any h.

The local convergence of Newton’s method for nonsmooth problems is
stated in the following result.

Theorem 4.13. [84] Suppose that f is a LC1 function and ∇f is semismooth
at x∗, xk is sufficiently close to x∗, where x∗ is a local minimum, V ∈ ∂2f(x∗)
is positive definite. Then the generalized Newton iteration 4.10 is well defined,
and converges to x∗ at a superlinear rate.

There are results regarding the global convergence of this method and the
analysis of the speed of convergence (see [74, 75, 84]).
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5 Conclusions And Final Remarks.

We have presented a short survey on the theory of Ck,1 functions mainly con-
centrated on characterizations, generalized Taylor’s formula and optimization
of objects belonging to this class of nonsmooth functions. Before concluding
this brief survey, we think it is worthwhile to give a quick look at how this
class of functions has been used in other branches of nonsmooth calculus.

In fact, in the literature the class of Ck,1 functions has also been considered
in several papers dealing with differential equations with initial conditions or
boundary value problems. For instance, H.Shahgholian (see [79] and the ref-
erences therein) proved C1,1 regularity in semilinear elliptic problems, Y.Luo
and A.Eberhad (see [65]) used C1,1 approximation to prove comparison prin-
ciples for viscosity solutions of curvature equations, and finally, M.Salo ([77])
considered the stable dependence of solutions to wave equations on metrics
in the C1,1 class. Another interesting application of C1,1 functions for a new
parametrix construction for the wave equation with variable coefficients is
given in [80]. The same author shows the importance of regularity C1,1 in
considering L2-Lq estimates for the spectral projections of an elliptic differen-
tial operator on a compact manifold ([81]). Other applications can be found
in [9, 41, 47, 78, 82, 83, 90]. Without pretending to be exhaustive but just to
give an idea of such applications, let us consider the main result obtained by
H.Shahgholian in the above mentioned paper. He presents a simple proof of
C1,1 regularity of the solution u to the stationary reaction-diffusion equations

∇u = f(x, y). (5.1)

Let B1 the unit ball in Rn, W 2,p the classical Sobolev space and suppose
that f be a function which satisfies

|f(x, t)| ≤M, |f(x, t)− f(y, t)| ≤M |x− y|, f ′(x, t) ≥ −M(weakly) (5.2)

for all x ∈ B1. A function u ∈W 2,p(B1), p > n, is said to belong to the class
P := P (M,n) if u satisfies

• ∇u = f(x, y)

• ‖u‖W 2,p ≤M

The main result in this paper states there exists a universal constant C =
C(M,n) such that for all u ∈ P (M,n)

|∇u(x)−∇u(y)| ≤ C|x− y| (5.3)

for all x, y ∈ B1/2 or, in other words, that u is locally a C1,1 function.
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