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ON THE FOURIER-WALSH COEFFICIENTS

Abstract

For any 0 < ε < 1, p ≥ 1 and each function f ∈ Lp[0, 1] one can
find a function g ∈ Lp[0, 1], mes{x ∈ [0, 1]; g 6= f} < ε, such that
the sequence {|ck(g)|, k ∈ spec(g)} is monotonically decreasing, where
{ck(g)} is the sequence of Fourier-Walsh coefficients of the function g(x).

1 Introduction.

We will consider the behavior of Fourier-Walsh coefficients after modification
of functions. Note that Luzin’s idea of modification of a function improving
its properties (see [1]) was substantially developed later on. In 1939, Men’shov
[2] proved the following fundamental theorem.

Theorem 1 (Men’shov’s C-strong property). Let f(x) be an a.e. finite mea-
surable function on [0, 2π]. Then for each ε > 0 one can define a continuous
function g(x) coinciding with f(x) on a subset E of measure |E| > 2π − ε
such that its Fourier series with respect to the trigonometric system converges
uniformly on [0, 2π].

Further interesting results in this direction were obtained by many famous
mathematicians (see for example [3]-[7]).We mention also our papers [8]-[10].
Here we present results having a direct bearing on the present work.

In 1977 A. M. Olevskii [6] established that there exists a function g(x) ∈
C[0, 2π], such that for any function f(x) with

|{x ∈ [0, 2π] ; f(x) = g(x)}| > 0
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the sequence of trigonometric Fourier coefficients {an(f), bn(f)} fail to belong
to lp for any p ∈ (0, 2).

In 1990, [8] proved that for any ε > 0 there exists a measurable set E ⊂
[0, 1], with measure |E| > 1 − ε, such that for any function f(x) ∈ L1[0, 1]
there exists a function g(x) ∈ L1[0, 1] coinciding with f(x) on E and such
that the sequence of Fourier coefficients {ck(g)} of the function g(x) in the
trigonometric system belongs to lp for all p > 2.

The Walsh system, an extension of the Rademacher system, may be ob-
tained in the following manner. Let r be the periodic function, of least period
1, defined on [0, 1) by

r = χ[0,1/2) − χ[1/2,1).

The Rademacher system, R = rn : n = 0, 1, ..., is defined by the conditions

rn(x) = r(2nx), ∀x ∈ R,n = 0, 1, ...,

and, in the ordering employed by Payley (see [11] and [12]), the nth element
of the Walsh system {ϕn} is given by

ϕn =
∞∏
k=0

rnkk , (1)

where
∑∞
k=0 nk2k is the unique binary expansion of n, with each nk either 0

or 1.
Let{ϕk(x)} be the Walsh system and let f(x) ∈ Lp, p ≥ 1. We denote by

ck(f) the Fourier-Walsh coefficients of f ; i.e.

ck(f) =
∫ 1

0

f(x)ϕk(x) dx.

The spectrum of f(x) (denoted by spec(f)) is the support of ck(f); i.e. the
set of integers where ck(f) is non-zero.

In the present work we prove the following theorem:

Theorem 2. For any 0 < ε < 1 , p ≥ 1 and each function f ∈ Lp[0, 1] one
can find a function g ∈ Lp[0, 1], mes{x ∈ [0, 1]; g 6= f} < ε, such that the
sequence

{|ck(g)|, k ∈ spec(g)}, is monotonically decreasing.

Remark 1. It must be pointed out that in this theorem the “exceptional”
set on which the function f is modified depends on f .
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The following problem remains open:

Question 1. Is it possible to construct in Theorem 2 the “exceptional” set
independent from f?

Question 2. Is Theorem 2 true for the trigonometric system?

2 Proofs of Main Lemmas.

We put

I
(j)
k (x) =

{
1 if x ∈ [0, 1] \∆(j)

k ,

1− 2k if x ∈ ∆(j)
k = ( j−1

2k
, j

2k
) ,

(2)

for k = 1, 2, ... , 1 ≤ j ≤ 2k, and periodically extend these functions on R1

with period 1.
By χE(x) we denote the characteristic function of the set E; i.e.

χE(x) =

{
1 if x ∈ E
0 if x /∈ E.

(3)

Then, clearly
I

(j)
k (x) = ϕ0(x)− 2k · χ

∆
(j)
k

(x), (4)

and let for the natural numbers k ≥ 1 and j ∈ [1, 2k]

bi(χ∆
(j)
k

) =
∫ 1

0

χ
∆

(j)
k

(x)ϕi(x) dx = ± 1
2k

, 0 ≤ i < 2k, (5)

ai(I
(j)
k ) =

∫ 1

0

I
(j)
k (x)ϕi(x) dx =

{
0 if i = 0 and i ≥ 2k,
±1 if 1 ≤ i < 2k.

(6)

Hence

χ
∆

(j)
k

(x) =
2k−1∑
i=0

bi(χ∆
(j)
k

)ϕi(x), (7)

I
(j)
k (x) =

2k−1∑
i=1

ai(I
(j)
k )ϕi(x). (8)
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Lemma 1. Let dyadic interval ∆ = ∆(k)
m = ((k − 1)/2m; k/2m), k ∈ [1, 2m]

and numbers N0 ∈ N, γ 6= 0, ε ∈ (0, 1), p ≥ 1 be given. Then there exists a
measurable set E ⊂ [0, 1] and a polynomial Q in the Walsh system {ϕk} of the
following form:

Q =
N∑

k=N0

ckϕk

which satisfy the following conditions:

1. the coefficients {ck}Nk=N0
are 0 or ±γ|∆|,

2. |E| > (1− ε)|∆|,

3. Q(x) =

{
γ if x ∈ E,
0 if x /∈ ∆,

4.
(∫ 1

0
|Q(x)|pdx

) 1
p ≤ 3|γ||∆|

1
p ε−

1
q , 1

p + 1
q = 1.

Proof. Let

ν0 =
[
log2

1
ε

]
+ 1; s = [log2N0] +m. (9)

We define the polynomial Q(x) and the numbers cn, ai and bj in the
following form:

Q(x) = γ · χ
∆

(k)
m

(x) · I(1)
ν0 (2sx), x ∈ [0, 1], (10)

cn = cn(Q) =
∫ 1

0

Q(x)ϕn(x) dx, ∀n ≥ 0, (11)

bi = bi(χ∆
(k)
m

) , 0 ≤ i < 2m, aj = aj(I(1)
ν0 ), 0 < j < 2ν0 . (12)

Taking into consideration the following equation

ϕi(x) · ϕj(2sx) = ϕj·2s+i(x), if 0 ≤ i, j < 2s(see (1)),

and having the relations (5)-(8) and (10)-(12), we obtain that the polynomial
Q(x) has the following form:
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Q(x) = γ ·
2m−1∑
i=0

biϕi(x) ·
2ν0−1∑
j=1

ajϕj(2sx)

= γ ·
2ν0−1∑
j=1

aj ·
2m−1∑
i=0

biϕj·2s+i(x) =
N̄∑

k=N0

ckϕk(x),

(13)

where

ck = ck(Q) =

{
± γ

2m or 0 if k ∈ [N0, N̄ ]
0 if k /∈ [N0, N̄ ]

, N̄ = 2s+ν0 + 2m − 2s − 1. (14)

Then let
E = {x;Q(x) = γ}.

Clearly that (see (2) and (10)),

|E| = 2−m(1− 2−ν0) > (1− ε)|∆|, (15)

Q(x) =


γ if x ∈ E
γ(1− 2ν0) if x ∈ ∆ \ E
0 if x /∈ ∆.

(16)

Thus, for p ≥ 1 and 1
p + 1

q = 1 (if p = 1, then q =∞)(∫ 1

0

|Q(x)|p dx
) 1
p

≤ 3|γ||∆|
1
p ε−

1
q .

Lemma 2. Let numbers p ≥ 1, m0 > 1, positive ε and δ and Walsh polyno-
mial f(x) are given. Then one can find a set E ⊂ [0, 1], |E| > 1 − ε and a
polynomial in the Walsh system

Q(x) =
N∑

k=m0

akϕk(x),

satisfying the following conditions:

1. 0 ≤ |ak| < δ and the non-zero coefficients in {|ak|}Nk=m0
are in decreasing

order,
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2. Q(x) = f(x), for all x ∈ E,

3. ‖Q‖p <
3

ε
1
q

‖f‖p
(

1
p + 1

q = 1
)

.

Proof. Let

f(x) =
M∑
k=0

bkϕk(x) =
ν0∑
ν=1

γν · χ∆ν
(x),

ν0∑
ν=1

|∆ν | = 1, (17)

where ∆ν are dyadic intervals of the form ∆(k)
m = ((k − 1)/2m; k/2m),

k ∈ [1, 2m].
Without loss of generality, one may assume that

0 < |γ1||∆1| < ... < |γν ||∆ν | < ... < |γν0 ||∆ν0 | < δ. (18)

Successively applying Lemma 1, we determine some sets Eν ⊂ [0, 1] and poly-
nomials

Qν =
mν−1∑
j=mν−1

ajϕj , aj = 0 or ±γj |∆j |, if j ∈ [mν−1,mν), ν = 1, ..., ν0, (19)

which satisfy the following conditions:

|Eν | > (1− ε) · |∆ν |, (20)

Qν =

{
γν if x ∈ Eν ,

0 if x /∈ ∆ν ,
(21)

||Qν ||p =
(∫ 1

0

| Qν(x) |p dx
)1/p

<
3 | γν |
ε1−1/p

· | ∆ν |1/p . (22)

We define

Q =
ν0∑
ν=1

Qν =
N∑

k=m0

akϕk, N = mν0 − 1, (23)

E =
ν0⋃
ν=1

Eν . (24)

By (18)–(24) we obtain

Q(x) = f(x), for x ∈ E,
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|E| > 1− ε ,
0 ≤ |ak| < δ and the non-zero coefficients in {|ak|}Nk=m0

are in decreasing
order. Taking into account (17), (21)–(23) we have∫ 1

0

| Q(x) |p dx =
ν0∑
i=1

∫
∆i

|
ν0∑
n=1

Qn(x) |p dx

=
ν0∑
i=1

∫
∆i

| Qi(x) |p dx ≤
ν0∑
i=1

3p | γi |p| ∆i |
εp−1

≤ 3p
∫ 1

0
| f(x) |p dx

εp−1
.

3 Proof of Theorem 2.

Proof. Let p ≥ 1, f(x) be an arbitrary element of Lp[0, 1], and let ε ∈ (0, 1).
It is easy to see that one can choose a sequence {fn(x)}∞n=1 of polynomials in
the Walsh systems such that

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣
N∑
n=1

fn(x)− f(x)

∣∣∣∣∣
∣∣∣∣∣
p

dx = 0,

||fn(x)||p dx ≤ ε
1
q · 2−2(n+1), n ≥ 2

(
1
p

+
1
q

= 1
)
.

Applying repeatedly Lemma 2, we obtain sequences of sets {En}∞n=1 and
polynomials in the Walsh systems {ϕn(x)}

Qn(x) =
mn−1∑
k=mn−1

askϕsk(x), n ≥ 1 ,mn ↗,

which for all n ≥ 1 satisfy the following conditions:

Qn(x) = fn(x), for x ∈ En,
|En| > 1− ε2−n,

||Qn||p ≤ 3ε−
1
q 2

n
q · ||fn||p,

|asmn | < |ask+1 | < |ask | < 2−n, for all k ∈ [mn−1;mn).

We put

g(x) =
∞∑
n=1

Qn(x).
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Obviously g(x) ∈ Lp[0, 1] , {|ck(g)|, k ∈ spec(g)} is monotonically decreasing,

g(x) = f(x), for x ∈
∞⋂
n=1

En, |
∞⋂
n=1

En| > 1− ε.

Remark 2. Note that the following more general result is true: let {βk}∞k=1

be a sequence of positive numbers with βk → 0. There exists a sequence
{Ak}∞k=1 of real numbers with |Ak | ↘0,

∑∞
n=1 |Ak| βk <∞, with the follow-

ing property: for any 0 < ε < 1, p ≥ 1 and each function f ∈ Lp[0, 1] one can
find a function g(x) ∈ ∩p≥1 Lp , mes{x ∈ [0, 1] ; g 6= f} < ε, such that the
sequence {|ck(g)|, k ∈ spec(g)} ⊂ {Ak}∞k=1, and for all n ≥ 0∥∥∥∥∥

n∑
k=0

ck(g)ϕk(x)

∥∥∥∥∥
p

≤ 5

ε1−
1
p

||f ||p,

where {ck(g)} is the sequence of Fourier-Walsh coefficients of the function
g(x).

From this we have the following corollary:

Corollary 1. For any 0 < ε < 1, p > 2 and each function f ∈ Lp[0, 1] one
can find a function g ∈ Lp[0, 1], mes{x ∈ [0, 1]; g 6= f} < ε, whose greedy
algorithm {Gm(g)} with respect to the Walsh system converges to g in Lp[0, 1]
and

‖Gm(g)‖p ≤
5

ε1−
1
p

||f ||p.

Greedy algorithms in Banach spaces with respect to normalized bases have
been considered in [13]–[20].

Note that in [17] it is proved that for any p 6= 2 there exists a function
from Lp[0, 1], whose greedy algorithm diverges in Lp[0, 1].

Note also that in [20] it is proved that there exist a complete orthonormal
system {ϕk(x)} and a function f(x) ∈ Lp, p > 2, such that if g(x) is any
function from Lp[0, 1] with

|{x ∈ [0, 2π]; f(x) = g(x)}| > 0,

then its greedy algorithm with respect to the system {ϕk(x)} diverges in
Lp[0, 1].

A question rises concerning Corollary 1:
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Question 3. Is Corollary 1 true for the trigonometric system?

Note that for p = 1 the answer to Question 1 is positive. Note also that,
in Theorem 2 the modified function g can be chosen such that spec(g) ≡ Z+.

Acknowledgment. The author wishes to thank the referees for their con-
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