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ON THE FOURIER-WALSH COEFFICIENTS

Abstract

For any 0 < € < 1, p > 1 and each function f € LP[0,1] one can
find a function g € LP[0,1], mes{z € [0,1]; g # f} < ¢, such that
the sequence {|cx(g)|, k € spec(g)} is monotonically decreasing, where
{ck(g)} is the sequence of Fourier-Walsh coefficients of the function g(z).

1 Introduction.

We will consider the behavior of Fourier-Walsh coefficients after modification
of functions. Note that Luzin’s idea of modification of a function improving
its properties (see [1]) was substantially developed later on. In 1939, Men’shov
[2] proved the following fundamental theorem.

Theorem 1 (Men’shov’s C-strong property). Let f(x) be an a.e. finite mea-
surable function on [0,2x]. Then for each € > 0 one can define a continuous
function g(x) coinciding with f(x) on a subset E of measure |E| > 21 — €
such that its Fourier series with respect to the trigonometric system converges
uniformly on [0, 27].

Further interesting results in this direction were obtained by many famous
mathematicians (see for example [3]-[7]).We mention also our papers [8]-[10].
Here we present results having a direct bearing on the present work.

In 1977 A. M. Olevskii [6] established that there exists a function g(z) €
C10, 2], such that for any function f(x) with

{z €[0,27]; f(z) =g(x)}| >0
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the sequence of trigonometric Fourier coefficients {a, (f), b, (f)} fail to belong
to I, for any p € (0,2).

In 1990, [8] proved that for any e > 0 there exists a measurable set E C
[0,1], with measure |E| > 1 — ¢, such that for any function f(x) € L[0,1]
there exists a function g(x) € L'[0,1] coinciding with f(z) on E and such
that the sequence of Fourier coefficients {ci(g)} of the function g(z) in the
trigonometric system belongs to [, for all p > 2.

The Walsh system, an extension of the Rademacher system, may be ob-
tained in the following manner. Let r be the periodic function, of least period
1, defined on [0, 1) by

T = X][0,1/2) — X[1/2,1)-

The Rademacher system, R =1, : n = 0,1, ..., is defined by the conditions
rp(z) =r(2"z), Ve e R,n=0,1, ...,

and, in the ordering employed by Payley (see [11] and [12]), the nth element
of the Walsh system {¢,} is given by

Pn = H Tlrclk7 (1)
k=0

where Zzio nk2" is the unique binary expansion of n, with each ny either 0
or 1.

Let{¢k(x)} be the Walsh system and let f(x) € LP, p > 1. We denote by
¢ (f) the Fourier-Walsh coefficients of f; i.e.

c(f) = /0 f(@)pr(z) do.

The spectrum of f(z) (denoted by spec(f)) is the support of cx(f); i.e. the
set of integers where ¢ (f) is non-zero.
In the present work we prove the following theorem:

Theorem 2. For any 0 < e <1, p>1 and each function f € L?[0,1] one
can find a function g € LP[0,1], mes{z € [0,1]; g # f} < €, such that the
sequence

{lex(9)], k € spec(g)}, is monotonically decreasing.

Remark 1. It must be pointed out that in this theorem the “exceptional”
set on which the function f is modified depends on f.
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The following problem remains open:

Question 1. Is it possible to construct in Theorem 2 the “exceptional” set
independent from f?

Question 2. Is Theorem 2 true for the trigonometric system?

2 Proofs of Main Lemmas.

We put

I]ij)(x) _

1 (2)
C

for k =1,2,..., 1 < j < 2% and periodically extend these functions on R!

with period 1.

{1 if 2 € 0,11\ AY)

1-2F ifzeAl) =

By xr(z) we denote the characteristic function of the set E; i.e.

1 ifzeF
xe(r) =

3
0 ifx¢E. )
Then, clearly

I;Ej)(x) = po(z) — 2k XA}(cﬂ(x),

and let for the natural numbers k > 1 and j € [1,2"]
! 1
bi(XAl(cﬂ) = / XAlgj)(f)SOi(i) dr = top, 0<i< 2k,
0 :

1 e - . k
; ; 0 if i =0 and 7 > 2%,
) = [ 10 @eta) de = {

6
+1 if1<i< 2k (6)
Hence

2k_1

2k 1

@)= Y a(dP)pi(a). (8)
=1
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Lemma 1. Let dyadic interval A = Al = ((k=1)/2™;k/2™), k € [1,2™]
and numbers Ny € N, v £ 0, e € (0,1),p > 1 be given. Then there exists a
measurable set E C [0, 1] and a polynomial Q in the Walsh system {@r} of the
following form.:

N
Q= Z CrPk

k=No

which satisfy the following conditions:

1. the coefficients {cp}_y, are 0 or £7]A],

2. |[El > (1-¢)|A],

)y ifrek,
s Q(x)_{o ifrd A,

b (R1e@lrdn)” <splalted byl =1

1
q
PROOF. Let

1
vy = [logQ e] + 155 = [logy No| + m. 9)

We define the polynomial Q(x) and the numbers ¢,, a; and b; in the
following form:

Q) =7 - x a0 (@) - ID(20), = € [0,1], (10)
1
e = en(Q) = / Q@) () dz, ¥n >0, (11)
0
bi = bi(x ), 0< i< 2™ a5 =a;(I)), 0<j<2". (12)

Taking into consideration the following equation

pi(®) - 95 (2°2) = @jaeyi(@), i 0 <4, j < 2%(see (1)),

and having the relations (5)-(8) and (10)-(12), we obtain that the polynomial
Q(z) has the following form:



ON THE FOURIER-WALSH COEFFICIENTS 161

ovo—1

Q)= 3 bigila) - 3 ases(2°)
1=0

j=1
13
2vo—1 om_1 N ( )
= 'y . Z aj . Z bZSD‘]QSJr'L(-T) = Z ck@k(x%
j=1 =0 k=No

where

+-Lor 0 if k € [No, N]

ck:ck(Q):{ 2" , N=25tr pom 95 1. (14)

Then let
E={x;Q(z) =}
Clearly that (see (2) and (10)),
|E|=2""(1-27")> (1-¢)|A], (15)
ol ifreFE
Qxz)=¢~y(1—-2") ifzxeA\E (16)
0 ifx ¢ A.

Thu&forpEland%—l—%:l(ifp:Lthenq:oo)
! » ’ 11
Q)P dx ) < 3]y[|AlPe7 .
0

Lemma 2. Let numbers p > 1, mgy > 1, positive € and § and Walsh polyno-
mial f(x) are given. Then one can find a set E C [0,1], |E| > 1 —¢€ and a
polynomial in the Walsh system

O

N
Q) = > arpr(),

k?:mo

satisfying the following conditions:

1. 0 < |ag| < 0 and the non-zero coefficients in {|ax|};_,,, are in decreasing
order,
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2. Q(z) = f(x), forallxe€E,

3
5.1l < sl (2+1=1).
Eq

PROOF. Let

M 120 0]
F@) =Y bepr(r) =D v xa @), D IA =1, (17)
k=0 v=1 v=1

where A, are dyadic intervals of the form Al = ((k=1)/2m; k/2™),
ke [1,2m].
Without loss of generality, one may assume that

0 < A1l < oo < WAL < oo < Y l|Ave | < 6. (18)

Successively applying Lemma 1, we determine some sets F,, C [0, 1] and poly-
nomials

m,—1

Q. = Z a;pi, aj =0or £v;]|A;|, if j € [my_1,my,), v =1,...,10, (19)

J=my—1

which satisfy the following conditions:

|Eu‘ > (1 - 6) ' |Au|7 (20)
v, ifxe E,,
L= 21
@ {O ifed A, (21
! IR )
_ D vi, 1/p
Q0= ([ 1@ par)  <2elia e
We define
Vo N
Q=>Q,= > awpr, N=my, —1, (23)
v=1 k=mg
0]
E=|]E,. (24)
v=1

By (18)—(24) we obtain

Q(z) = f(x), forz € E,
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|E|>1—¢€,

0 < |ag| < 6 and the non-zero coefficients in {|ax|};_,,, are in decreasing
order. Taking into account (17), (21)—(23) we have

[rewr a=3 [ 13 0w w
—Z/IQ \pdx<z3p|%‘p|A|<3pfol|f($)|pda:.

ep—1

3 Proof of Theorem 2.

PROOF. Let p > 1, f(x) be an arbitrary element of LP[0, 1], and let £ € (0, 1).
It is easy to see that one can choose a sequence {f,(z)}32; of polynomials in
the Walsh systems such that

p

11
1 fa(@)l, do < &7 - 270D, > 2 (p+q=1).

Applying repeatedly Lemma 2, we obtain sequences of sets {E,}52,; and
polynomials in the Walsh systems {p, (x)}

my,—1

Z askwsk(l‘); nZ 1 7mn /7

k=my,_1
which for all n > 1 satisfy the following conditions:
Qn(z) = fu(z), for z € E,,
|En| >1—¢e27",
1Qnll, < 357527 - [|fullp,
|as,,, | <lag i | <las,| <277, for all k € [my_1;my,).

We put

n=1
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Obviously g(z) € LP[0,1] ,{|ck(g)], k € spec(g)} is monotonically decreasing,

g(z) = f(x), for z € ﬁ E,, |ﬁ E,|>1-—e.

n=1 n=1

O

Remark 2. Note that the following more general result is true: let {8;}72,
be a sequence of positive numbers with 8y — 0. There exists a sequence
{Ag}32, of real numbers with [Ag| N, Yoney |Ak| Bk < 0o, with the follow-
ing property: for any 0 < € < 1, p > 1 and each function f € LP[0, 1] one can
find a function g(z) € Np>;LP, mes{z € [0,1] ; g # f} < ¢, such that the
sequence {|ck(g)|, k € spec(g)} C {Ax}2,, and for alln >0

5

< 7zl lps
€ P

p

Z cr(9)er(@)
k=0

where {cr(g)} is the sequence of Fourier-Walsh coefficients of the function
g(x).

From this we have the following corollary:

Corollary 1. For any 0 < € < 1, p > 2 and each function f € LP[0,1] one
can find a function g € LP[0,1], mes{z € [0,1]; g # f} < ¢, whose greedy
algorithm {G,,,(g)} with respect to the Walsh system converges to g in L0, 1]
and

5
1Gm (@, < <= /1lp-

61

Greedy algorithms in Banach spaces with respect to normalized bases have
been considered in [13]-]20].

Note that in [17] it is proved that for any p # 2 there exists a function
from LP[0,1], whose greedy algorithm diverges in L?0, 1].

Note also that in [20] it is proved that there exist a complete orthonormal
system {pr(z)} and a function f(z) € LP, p > 2, such that if g(z) is any
function from LP[0,1] with

{z €[0,27]; f(x) = g(x)}| >0,

then its greedy algorithm with respect to the system {¢j(z)} diverges in
LP[0,1].
A question rises concerning Corollary 1:
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Question 3. Is Corollary 1 true for the trigonometric system?

Note that for p = 1 the answer to Question 1 is positive. Note also that,

in Theorem 2 the modified function g can be chosen such that spec(g) = Z;.
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