Martin G. Grigoryan, Department of Physics, Yerevan State University, 0025
Yerevan, Armenia. email: gmarting@ysu.am

ON THE FOURIER-WALSH COEFFICIENTS

Abstract

For any $0<\epsilon<1, p \geq 1$ and each function $f \in L^{p}[0,1]$ one can find a function $g \in L^{p}[0,1]$, $\operatorname{mes}\{x \in[0,1] ; g \neq f\}<\epsilon$, such that the sequence $\left\{\left|c_{k}(g)\right|, k \in \operatorname{spec}(g)\right\}$ is monotonically decreasing, where $\left\{c_{k}(g)\right\}$ is the sequence of Fourier-Walsh coefficients of the function $g(x)$.

1 Introduction.

We will consider the behavior of Fourier-Walsh coefficients after modification of functions. Note that Luzin's idea of modification of a function improving its properties (see [1]) was substantially developed later on. In 1939, Men'shov [2] proved the following fundamental theorem.

Theorem 1 (Men'shov's C-strong property). Let $f(x)$ be an a.e. finite measurable function on $[0,2 \pi]$. Then for each $\epsilon>0$ one can define a continuous function $g(x)$ coinciding with $f(x)$ on a subset E of measure $|E|>2 \pi-\epsilon$ such that its Fourier series with respect to the trigonometric system converges uniformly on $[0,2 \pi]$.

Further interesting results in this direction were obtained by many famous mathematicians (see for example [3]-[7]).We mention also our papers [8]-[10]. Here we present results having a direct bearing on the present work.

In 1977 A. M. Olevskii [6] established that there exists a function $g(x) \in$ $C[0,2 \pi]$, such that for any function $f(x)$ with

$$
|\{x \in[0,2 \pi] ; f(x)=g(x)\}|>0
$$

[^0]the sequence of trigonometric Fourier coefficients $\left\{a_{n}(f), b_{n}(f)\right\}$ fail to belong to l_{p} for any $p \in(0,2)$.

In 1990, [8] proved that for any $\epsilon>0$ there exists a measurable set $E \subset$ $[0,1]$, with measure $|E|>1-\epsilon$, such that for any function $f(x) \in L^{1}[0,1]$ there exists a function $g(x) \in L^{1}[0,1]$ coinciding with $f(x)$ on E and such that the sequence of Fourier coefficients $\left\{c_{k}(g)\right\}$ of the function $g(x)$ in the trigonometric system belongs to l_{p} for all $p>2$.

The Walsh system, an extension of the Rademacher system, may be obtained in the following manner. Let r be the periodic function, of least period 1 , defined on $[0,1)$ by

$$
r=\chi_{[0,1 / 2)}-\chi_{[1 / 2,1)} .
$$

The Rademacher system, $R=r_{n}: n=0,1, \ldots$, is defined by the conditions

$$
r_{n}(x)=r\left(2^{n} x\right), \forall x \in R, n=0,1, \ldots
$$

and, in the ordering employed by Payley (see [11] and [12]), the nth element of the Walsh system $\left\{\varphi_{n}\right\}$ is given by

$$
\begin{equation*}
\varphi_{n}=\prod_{k=0}^{\infty} r_{k}^{n_{k}} \tag{1}
\end{equation*}
$$

where $\sum_{k=0}^{\infty} n_{k} 2^{k}$ is the unique binary expansion of n, with each n_{k} either 0 or 1 .
$\operatorname{Let}\left\{\varphi_{k}(x)\right\}$ be the Walsh system and let $f(x) \in L^{p}, p \geq 1$. We denote by $c_{k}(f)$ the Fourier-Walsh coefficients of f; i.e.

$$
c_{k}(f)=\int_{0}^{1} f(x) \varphi_{k}(x) d x
$$

The spectrum of $f(x)$ (denoted by $\operatorname{spec}(f)$) is the support of $c_{k}(f)$; i.e. the set of integers where $c_{k}(f)$ is non-zero.

In the present work we prove the following theorem:
Theorem 2. For any $0<\epsilon<1, p \geq 1$ and each function $f \in L^{p}[0,1]$ one can find a function $g \in L^{p}[0,1]$, mes $\{x \in[0,1] ; g \neq f\}<\epsilon$, such that the sequence

$$
\left\{\left|c_{k}(g)\right|, k \in \operatorname{spec}(g)\right\}, \text { is monotonically decreasing. }
$$

Remark 1. It must be pointed out that in this theorem the "exceptional" set on which the function f is modified depends on f.

The following problem remains open:
Question 1. Is it possible to construct in Theorem 2 the "exceptional" set independent from f ?

Question 2. Is Theorem 2 true for the trigonometric system?

2 Proofs of Main Lemmas.

We put

$$
I_{k}^{(j)}(x)= \begin{cases}1 & \text { if } x \in[0,1] \backslash \Delta_{k}^{(j)} \tag{2}\\ 1-2^{k} & \text { if } x \in \Delta_{k}^{(j)}=\left(\frac{j-1}{2^{k}}, \frac{j}{2^{k}}\right)\end{cases}
$$

for $k=1,2, \ldots, 1 \leq j \leq 2^{k}$, and periodically extend these functions on R^{1} with period 1 .

By $\chi_{E}(x)$ we denote the characteristic function of the set E; i.e.

$$
\chi_{E}(x)= \begin{cases}1 & \text { if } x \in E \tag{3}\\ 0 & \text { if } x \notin E\end{cases}
$$

Then, clearly

$$
\begin{equation*}
I_{k}^{(j)}(x)=\varphi_{0}(x)-2^{k} \cdot \chi_{\Delta_{k}^{(j)}}(x) \tag{4}
\end{equation*}
$$

and let for the natural numbers $k \geq 1$ and $j \in\left[1,2^{k}\right]$

$$
\begin{gather*}
b_{i}\left(\chi_{\Delta_{k}^{(j)}}\right)=\int_{0}^{1} \chi_{\Delta_{k}^{(j)}}(x) \varphi_{i}(x) d x= \pm \frac{1}{2^{k}}, 0 \leq i<2^{k} \tag{5}\\
a_{i}\left(I_{k}^{(j)}\right)=\int_{0}^{1} I_{k}^{(j)}(x) \varphi_{i}(x) d x= \begin{cases}0 & \text { if } i=0 \text { and } i \geq 2^{k} \\
\pm 1 & \text { if } 1 \leq i<2^{k}\end{cases} \tag{6}
\end{gather*}
$$

Hence

$$
\begin{align*}
\chi_{\Delta_{k}^{(j)}}(x) & =\sum_{i=0}^{2^{k}-1} b_{i}\left(\chi_{\Delta_{k}^{(j)}}\right) \varphi_{i}(x), \tag{7}\\
I_{k}^{(j)}(x) & =\sum_{i=1}^{2^{k}-1} a_{i}\left(I_{k}^{(j)}\right) \varphi_{i}(x) \tag{8}
\end{align*}
$$

Lemma 1. Let dyadic interval $\Delta=\Delta_{m}^{(k)}=\left((k-1) / 2^{m} ; k / 2^{m}\right), k \in\left[1,2^{m}\right]$ and numbers $N_{0} \in \mathbb{N}, \gamma \neq 0, \epsilon \in(0,1), p \geq 1$ be given. Then there exists a measurable set $E \subset[0,1]$ and a polynomial Q in the Walsh system $\left\{\varphi_{k}\right\}$ of the following form:

$$
Q=\sum_{k=N_{0}}^{N} c_{k} \varphi_{k}
$$

which satisfy the following conditions:

1. the coefficients $\left\{c_{k}\right\}_{k=N_{0}}^{N}$ are 0 or $\pm \gamma|\Delta|$,
2. $|E|>(1-\varepsilon)|\Delta|$,
3. $Q(x)= \begin{cases}\gamma & \text { if } x \in E, \\ 0 & \text { if } x \notin \Delta,\end{cases}$
4. $\left(\int_{0}^{1}|Q(x)|^{p} d x\right)^{\frac{1}{p}} \leq 3|\gamma||\Delta|^{\frac{1}{p}} \epsilon^{-\frac{1}{q}}, \frac{1}{p}+\frac{1}{q}=1$.

Proof. Let

$$
\begin{equation*}
\nu_{0}=\left[\log _{2} \frac{1}{\epsilon}\right]+1 ; s=\left[\log _{2} N_{0}\right]+m \tag{9}
\end{equation*}
$$

We define the polynomial $Q(x)$ and the numbers c_{n}, a_{i} and b_{j} in the following form:

$$
\begin{gather*}
Q(x)=\gamma \cdot \chi_{\Delta_{m}^{(k)}}(x) \cdot I_{\nu_{0}}^{(1)}\left(2^{s} x\right), x \in[0,1], \tag{10}\\
c_{n}=c_{n}(Q)=\int_{0}^{1} Q(x) \varphi_{n}(x) d x, \forall n \geq 0, \tag{11}\\
b_{i}=b_{i}\left(\chi_{\Delta_{m}^{(k)}}\right), 0 \leq i<2^{m}, a_{j}=a_{j}\left(I_{\nu_{0}}^{(1)}\right), 0<j<2^{\nu_{0}} . \tag{12}
\end{gather*}
$$

Taking into consideration the following equation

$$
\varphi_{i}(x) \cdot \varphi_{j}\left(2^{s} x\right)=\varphi_{j \cdot 2^{s}+i}(x), \text { if } 0 \leq i, j<2^{s}(\text { see }(1)),
$$

and having the relations (5)-(8) and (10)-(12), we obtain that the polynomial $Q(x)$ has the following form:

$$
\begin{array}{r}
Q(x)=\gamma \cdot \sum_{i=0}^{2^{m}-1} b_{i} \varphi_{i}(x) \cdot \sum_{j=1}^{2^{\nu_{0}-1}} a_{j} \varphi_{j}\left(2^{s} x\right) \\
=\gamma \cdot \sum_{j=1}^{2^{\nu_{0}-1}} a_{j} \cdot \sum_{i=0}^{2^{m}-1} b_{i} \varphi_{j \cdot 2^{s}+i}(x)=\sum_{k=N_{0}}^{\bar{N}} c_{k} \varphi_{k}(x) \tag{13}
\end{array}
$$

where

$$
c_{k}=c_{k}(Q)=\left\{\begin{array}{ll}
\pm \frac{\gamma}{2^{m}} \text { or } 0 & \text { if } k \in\left[N_{0}, \bar{N}\right] \tag{14}\\
0 & \text { if } k \notin\left[N_{0}, \bar{N}\right]
\end{array}, \bar{N}=2^{s+\nu_{0}}+2^{m}-2^{s}-1\right.
$$

Then let

$$
E=\{x ; Q(x)=\gamma\}
$$

Clearly that (see (2) and (10)),

$$
\begin{align*}
& |E|=2^{-m}\left(1-2^{-\nu_{0}}\right)>(1-\epsilon)|\Delta| \tag{15}\\
& Q(x)= \begin{cases}\gamma & \text { if } x \in E \\
\gamma\left(1-2^{\nu_{0}}\right) & \text { if } x \in \Delta \backslash E \\
0 & \text { if } x \notin \Delta\end{cases} \tag{16}
\end{align*}
$$

Thus, for $p \geq 1$ and $\frac{1}{p}+\frac{1}{q}=1$ (if $p=1$, then $q=\infty$)

$$
\left(\int_{0}^{1}|Q(x)|^{p} d x\right)^{\frac{1}{p}} \leq 3|\gamma||\Delta|^{\frac{1}{p}} \epsilon^{-\frac{1}{q}}
$$

Lemma 2. Let numbers $p \geq 1, m_{0}>1$, positive ε and δ and Walsh polynomial $f(x)$ are given. Then one can find a set $E \subset[0,1],|E|>1-\epsilon$ and a polynomial in the Walsh system

$$
Q(x)=\sum_{k=m_{0}}^{N} a_{k} \varphi_{k}(x)
$$

satisfying the following conditions:

1. $0 \leq\left|a_{k}\right|<\delta$ and the non-zero coefficients in $\left\{\left|a_{k}\right|\right\}_{k=m_{0}}^{N}$ are in decreasing order,
2. $Q(x)=f(x)$, for all $x \in E$,
3. $\|Q\|_{p}<\frac{3}{\epsilon^{\frac{1}{q}}}\|f\|_{p} \quad\left(\frac{1}{p}+\frac{1}{q}=1\right)$.

Proof. Let

$$
\begin{equation*}
f(x)=\sum_{k=0}^{M} b_{k} \varphi_{k}(x)=\sum_{\nu=1}^{\nu_{0}} \gamma_{\nu} \cdot \chi_{\Delta_{\nu}}(x), \sum_{\nu=1}^{\nu_{0}}\left|\Delta_{\nu}\right|=1, \tag{17}
\end{equation*}
$$

where Δ_{ν} are dyadic intervals of the form $\Delta_{m}^{(k)}=\left((k-1) / 2^{m} ; k / 2^{m}\right)$, $k \in\left[1,2^{m}\right]$.

Without loss of generality, one may assume that

$$
\begin{equation*}
0<\left|\gamma_{1}\right|\left|\Delta_{1}\right|<\ldots<\left|\gamma_{\nu}\right|\left|\Delta_{\nu}\right|<\ldots<\left|\gamma_{\nu_{0}}\right|\left|\Delta_{\nu_{0}}\right|<\delta . \tag{18}
\end{equation*}
$$

Successively applying Lemma 1 , we determine some sets $E_{\nu} \subset[0,1]$ and polynomials

$$
\begin{equation*}
Q_{\nu}=\sum_{j=m_{\nu-1}}^{m_{\nu}-1} a_{j} \varphi_{j}, a_{j}=0 \text { or } \pm \gamma_{j}\left|\Delta_{j}\right|, \text { if } j \in\left[m_{\nu-1}, m_{\nu}\right), \nu=1, \ldots, \nu_{0}, \tag{19}
\end{equation*}
$$

which satisfy the following conditions:

$$
\begin{gather*}
\left|E_{\nu}\right|>(1-\epsilon) \cdot\left|\Delta_{\nu}\right|, \tag{20}\\
Q_{\nu}= \begin{cases}\gamma_{\nu} & \text { if } x \in E_{\nu}, \\
0 & \text { if } x \notin \Delta_{\nu},\end{cases} \tag{21}\\
\left\|Q_{\nu}\right\|_{p}=\left(\int_{0}^{1}\left|Q_{\nu}(x)\right|^{p} d x\right)^{1 / p}<\frac{3\left|\gamma_{\nu}\right|}{\epsilon^{1-1 / p}} \cdot\left|\Delta_{\nu}\right|^{1 / p} . \tag{22}
\end{gather*}
$$

We define

$$
\begin{gather*}
Q=\sum_{\nu=1}^{\nu_{0}} Q_{\nu}=\sum_{k=m_{0}}^{N} a_{k} \varphi_{k}, N=m_{\nu_{0}}-1, \tag{23}\\
E=\bigcup_{\nu=1}^{\nu_{0}} E_{\nu} . \tag{24}
\end{gather*}
$$

By (18)-(24) we obtain

$$
Q(x)=f(x), \text { for } x \in E,
$$

$$
|E|>1-\epsilon
$$

$0 \leq\left|a_{k}\right|<\delta$ and the non-zero coefficients in $\left\{\left|a_{k}\right|\right\}_{k=m_{0}}^{N}$ are in decreasing order. Taking into account (17), (21)-(23) we have

$$
\begin{gathered}
\int_{0}^{1}|Q(x)|^{p} d x=\sum_{i=1}^{\nu_{0}} \int_{\Delta_{i}}\left|\sum_{n=1}^{\nu_{0}} Q_{n}(x)\right|^{p} d x \\
=\sum_{i=1}^{\nu_{0}} \int_{\Delta_{i}}\left|Q_{i}(x)\right|^{p} d x \leq \sum_{i=1}^{\nu_{0}} \frac{3^{p}\left|\gamma_{i}\right|^{p}\left|\Delta_{i}\right|}{\epsilon^{p-1}} \leq 3^{p} \frac{\int_{0}^{1}|f(x)|^{p} d x}{\epsilon^{p-1}} .
\end{gathered}
$$

3 Proof of Theorem 2.

Proof. Let $p \geq 1, f(x)$ be an arbitrary element of $L^{p}[0,1]$, and let $\varepsilon \in(0,1)$. It is easy to see that one can choose a sequence $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ of polynomials in the Walsh systems such that

$$
\begin{gathered}
\lim _{N \rightarrow \infty}\left\|\sum_{n=1}^{N} f_{n}(x)-f(x)\right\|_{p} d x=0 \\
\left\|f_{n}(x)\right\|_{p} d x \leq \varepsilon^{\frac{1}{q}} \cdot 2^{-2(n+1)}, n \geq 2\left(\frac{1}{p}+\frac{1}{q}=1\right)
\end{gathered}
$$

Applying repeatedly Lemma 2, we obtain sequences of sets $\left\{E_{n}\right\}_{n=1}^{\infty}$ and polynomials in the Walsh systems $\left\{\varphi_{n}(x)\right\}$

$$
Q_{n}(x)=\sum_{k=m_{n-1}}^{m_{n}-1} a_{s_{k}} \varphi_{s_{k}}(x), n \geq 1, m_{n} \quad \nearrow
$$

which for all $n \geq 1$ satisfy the following conditions:

$$
\begin{gathered}
Q_{n}(x)=f_{n}(x), \text { for } x \in E_{n} \\
\left|E_{n}\right|>1-\varepsilon 2^{-n} \\
\left|\left\lvert\, Q_{n}\left\|_{p} \leq 3 \varepsilon^{-\frac{1}{q}} 2^{\frac{n}{q}} \cdot\right\| f_{n}\right. \|_{p},\right. \\
\left|a_{s_{m_{n}}}\right|<\left|a_{s_{k+1}}\right|<\left|a_{s_{k}}\right|<2^{-n}, \text { for all } k \in\left[m_{n-1} ; m_{n}\right) .
\end{gathered}
$$

We put

$$
g(x)=\sum_{n=1}^{\infty} Q_{n}(x)
$$

Obviously $g(x) \in L^{p}[0,1],\left\{\left|c_{k}(g)\right|, k \in \operatorname{spec}(g)\right\}$ is monotonically decreasing,

$$
g(x)=f(x), \text { for } x \in \bigcap_{n=1}^{\infty} E_{n},\left|\bigcap_{n=1}^{\infty} E_{n}\right|>1-\varepsilon
$$

Remark 2. Note that the following more general result is true: let $\left\{\beta_{k}\right\}_{k=1}^{\infty}$ be a sequence of positive numbers with $\beta_{k} \rightarrow 0$. There exists a sequence $\left\{A_{k}\right\}_{k=1}^{\infty}$ of real numbers with $\left|A_{k}\right| \searrow_{0}, \sum_{n=1}^{\infty}\left|A_{k}\right| \beta_{k}<\infty$, with the following property: for any $0<\epsilon<1, p \geq 1$ and each function $f \in L^{p}[0,1]$ one can find a function $g(x) \in \cap_{p \geq 1} L^{p}$, mes $\{x \in[0,1] ; g \neq f\}<\epsilon$, such that the sequence $\left\{\left|c_{k}(g)\right|, k \in \operatorname{spec}(g)\right\} \subset\left\{A_{k}\right\}_{k=1}^{\infty}$, and for all $n \geq 0$

$$
\left\|\sum_{k=0}^{n} c_{k}(g) \varphi_{k}(x)\right\|_{p} \leq \frac{5}{\epsilon^{1-\frac{1}{p}}}\|f\|_{p}
$$

where $\left\{c_{k}(g)\right\}$ is the sequence of Fourier-Walsh coefficients of the function $g(x)$.

From this we have the following corollary:
Corollary 1. For any $0<\epsilon<1, p>2$ and each function $f \in L^{p}[0,1]$ one can find a function $g \in L^{p}[0,1]$, mes $\{x \in[0,1] ; g \neq f\}<\epsilon$, whose greedy algorithm $\left\{G_{m}(g)\right\}$ with respect to the Walsh system converges to g in $L^{p}[0,1]$ and

$$
\left\|G_{m}(g)\right\|_{p} \leq \frac{5}{\epsilon^{1-\frac{1}{p}}}\|f\|_{p}
$$

Greedy algorithms in Banach spaces with respect to normalized bases have been considered in [13]-[20].

Note that in [17] it is proved that for any $p \neq 2$ there exists a function from $L^{p}[0,1]$, whose greedy algorithm diverges in $L^{p}[0,1]$.

Note also that in [20] it is proved that there exist a complete orthonormal system $\left\{\varphi_{k}(x)\right\}$ and a function $f(x) \in L^{p}, p>2$, such that if $g(x)$ is any function from $L^{p}[0,1]$ with

$$
|\{x \in[0,2 \pi] ; f(x)=g(x)\}|>0
$$

then its greedy algorithm with respect to the system $\left\{\varphi_{k}(x)\right\}$ diverges in $L^{p}[0,1]$.

A question rises concerning Corollary 1:

Question 3. Is Corollary 1 true for the trigonometric system?
Note that for $p=1$ the answer to Question 1 is positive. Note also that, in Theorem 2 the modified function g can be chosen such that $\operatorname{spec}(g) \equiv Z_{+}$.

Acknowledgment. The author wishes to thank the referees for their constructive critique of the first draft.

References

[1] N. N. Luzin, On the fundamental theorem of the integral calculus, Mat. Sbornik, 28 (1912), 266-294 (in Russian).
[2] D. E. Men'shov, Sur la representation des fonctions measurables des series trigonometriques, Mat. Sbornik, 9 (1941), 667-692.
[3] D. E. Men'shov, On Fourier series of integrable functions, Trudy Moskov. Mat. Obshch., 1 (1952), 5-38.
[4] F. G. Arutjunjan, Series with respect to the Haar system, (Russian. Armenian summary), Akad. Nauk Armjan. SSR Dokl., 42(3) (1966), 134-140.
[5] J. J. Price, Walsh series and adjustment of functions on small sets, Illinois J. Math., 13 (1969), 131-136.
[6] A. M. Olevskii, Modifications of functions and Fourier series. (Russian) Uspekhi Mat. Nauk 40 (1985), 157-193.
[7] K. I. Oskolkov, The uniform modulus of continuity of summable functions on sets of positive measure, (Russian), Dokl. Akad. Nauk SSSR, 229(2) (1976), 304-306.
[8] M. G. Grigoryan, Convergence in the L^{1}-metric and almost everywhere convergence of Fourier series in complete orthonormal systems, (Russian), Mat. Sb., 181(8) (1990), 1011-1030; translation in Math. USSRSb., 70(2) (1991), 445-466.
[9] M. G. Grigoryan, On the representation of functions by orthogonal series in weighted L^{p} spaces, Studia. Math., 134(3) (1999), 207-216.
[10] M. G. Grigoryan, On the strong L_{μ}^{p}-property of orthonormal systems, (Russian. Russian summary), Mat. Sb., 194(10) (2003), 77-106; translation in Sb. Math., 194(9-10) (2003), 1503-1532.
[11] B. I. Golubov, A. F. Efimov, V. A. Skvortsov, (Russian), Walsh Series and Transforms, Theory and Applications, "Nauka", Moscow, 1987.
[12] R. E. A. C. Paley, A remarkable set of orthogonal functions, Proc. London Math. Soc., 34 (1932), 241-279.
[13] R. A. DeVore, V. N. Temlyakov, Some remarks on greedy algorithms, Advances in Computational Math., 5 (1996), 173-187.
[14] S. V. Konyagin and V. N. Temlyakov, A remark on Greedy approximation in Banach spaces, East Journal on Approx., 5(1) (1999), 1-15.
[15] V. N. Temlyakov, Nonlinear methods of approximation, Found. Comput. Math., 3 (2003), 33-107.
[16] P. Wojtaszczyk, Greedy algorithm for general biorthogonal systems, Journal of Approx. Theory, 107 (2000), 293-314.
[17] R. Gribonval, M. Nielsen, On the quasi-greedy property and uniformly bounded orthonormal systems, http://www.math.auc.dk/research/reports/R-2003-09.pdf.
[18] T. W. Körner, Divergence of decreasing rearranged Fourier series, Ann. of Math., 144 (1996), 167-180.
[19] M. G. Grigoryan and R. E. Zink, Greedy approximation with respect to certain subsystems of the Walsh orthonormal system, Proc. of the Amer. Mat. Soc., 134(12) (2006), 3495-3505.
[20] M. G. Grigoryan, K. S. Kazarian, F. Soria, Mean convergence of orthogonal Fourier series of mod. func., Trans. Amer. Math. Soc., 352(8) (2000), 3777-3798.

[^0]: Mathematical Reviews subject classification: Primary: 42C10, 42C20; Secondary: 26D15
 Key words: Fourier coefficients, orthonormal system, functional series
 Received by the editors January 23, 2009
 Communicated by: Alexander Olevskii

