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A CHARACTERIZATION OF
THREE-INTERVAL SCALING SETS

Abstract

In this paper, we characterize scaling sets consisting of three inter-
vals. In addition, we provide a procedure to obtain scaling sets possess-
ing finitely many intervals.

1 Introduction.

Observing that a minimally supported frequency (MSF) wavelet ψ arises from
a multiresolution analysis (MRA) with scaling function ϕ iff there is a measur-
able set S in the real line R such that |ϕ̂| = χS , the notion of a scaling set has
been developed in [2, 6]. A measurable set S of R containing a neighborhood
of zero and contained in 2S is a scaling set if each element of S uniquely cor-
responds with an element of [a, a+ 2π), a ∈ R, by a 2π-integral translate and
vice versa. In case an MSF wavelet arises from a generalized multiresolution
analysis (GMRA) with scaling function ϕ and there is a measurable set S in
R such that |ϕ̂| = χS , S has been called to be a generalized scaling set [2, 10].

The notion of a generalized scaling set provides a method to obtain wavelet
sets. A measurable set W of the real line R is called a wavelet set if the char-
acteristic function on W is

√
2π times the modulus of the Fourier transform

of an orthonormal wavelet ψ of L2(R) [3]. By an orthonormal wavelet ψ, we
mean a function in L2(R) whose successive dilates by a scalar d of all integral
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translates form an orthonormal basis for L2(R). These notions have their ver-
sions in higher dimensions as well [2, 4, 5, 10], and these have been extensively
studied in many research papers besides those already referred. Ha, Kang, Lee
and Seo [7] characterized wavelet sets in R which are unions of three disjoint
intervals. These are precisely[

− 2(1− 2p+ 1
2j+1 − 1

)π, −(1− 2p+ 1
2j+1 − 1

)π
]
∪
[ 2(p+ 1)π

2j+1 − 1
,

2(2p+ 1)π
2j+1 − 1

]
∪[ 2j+1(2p+ 1)π

2j+1 − 1
,

2j+2(p+ 1)π
2j+1 − 1

]
(1)

for natural numbers j and p, where j ≥ 2 and 1 ≤ p ≤ 2j − 2.
Determination of wavelet sets of R which are unions of pairwise disjoint

intervals attracted several workers who made significant contributions towards
this end [1, 3, 7, 8, 10].

The purpose of this paper is to characterize three-interval scaling sets of
R by selecting three distinct and increasing points in the circle S1, or equiva-
lently, in [0, 2π). Certain examples of wavelet sets arising from three-interval
scaling sets are provided. In the end, we give a procedure to obtain scaling
sets of R consisting of finitely many intervals.

2 Notation and Preliminaries.

For a set W of the real line R, W+ denotes W ∩ (0,∞) and W− denotes
W ∩ (−∞, 0). Also, we denote (0,∞) by R+ and (−∞, 0) by R−. Let a ∈ R.
Then for x ∈ R, there is a unique integer k such that a ≤ x + 2kπ < a + 2π.
Next, let b ∈ R+. Then for x > 0, there is a unique integer j such that b ≤
2jx < 2b. These observations provide the following maps for a ∈ R, b ∈ R+

and c ∈ R−:

(i) τa : R −→ [a, a+ 2π), defined by

τa(x) = x+ 2kπ, x ∈ R,

(ii) δb : R+ −→ [b, 2b), defined by

δb(x) = 2jx, x ∈ R+,

(iii) δc : R− −→ [2c, c), defined by

δc(x) = −δ−c(−x), x ∈ R−.
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It has been proved in [7, Theorem 3.6], that W is a wavelet set of R iff
τa, δb and δc are measurable bijections for some a ∈ R, b ∈ R+ and c ∈ R−,
when restricted to W, W+ and W−, respectively. It is pertinent to mention
that there are several other criteria for wavelet sets [2, 3, 4, 5, 9].

In the sequel, we shall frequently make use of the consequence of Lemma
3 in [6] stated below.

Lemma 2.1 (6; Lemma 3). Let A be a real expansive n×n matrix such that
|detA| = 2 and AZn ⊂ Zn. Let S be a measurable subset of Rn such that S
contains a neighborhood of zero. If S ⊂ AtS and S is, modulo null sets, 2π-
translation congruent to [−π, π)n, then W = AtS − S is an A-dilation MRA
wavelet.

As its consequence, we have

Result 2.2. Let S be a measurable set in R which contains a neighborhood
of zero and satisfies S ⊂ 2S. If S is 2π-translation congruent to [−π, π), or
equivalently to [α, α+ 2π), where α ∈ R, modulo a null set, then W = 2S−S
is a wavelet set associated with a multiresolution analysis.

Definition 2.3. A measurable set S in R is called a generalized scaling set
for the dilation 2 if S = ∪j<02jW , for some wavelet set W [10, Definition 1].
This is equivalent to saying that S is a generalized scaling set of R [2] iff

(i) S ⊂ 2S, and
(ii) W ≡ 2S − S is a wavelet set of R.

A scaling set of R is a generalized scaling set but the converse is not
necessarily true as is shown in the following example.

Example 2.4. The set

S = [−4π
7 , 4π

7 ) ∪ [ 6π7 ,
8π
7 ) ∪ [ 12π7 , 16π

7 ),

is a generalized scaling set because
(i) S ⊂ 2S, and

(ii) W ≡ 2S − S = [−8π
7 , −4π

7 ) ∪ [ 4π7 ,
6π
7 ) ∪ [ 24π7 , 32π

7 )
is a wavelet set, in view of (1) in the Introduction, for j = 2 and p = 1.
However, S is not a scaling set.

In the light of Result 2.2 and Definition 2.3, we have the following result:
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Result 2.5. A measurable set S of R which contains a neighborhood of zero
and satisfies:

(1) S ⊂ 2S, and
(2) S is 2π-translation congruent to [a, a+ 2π), where a ∈ R,

is a scaling set of R.

Consider the map p : R −→ S1 which sends t ∈ R to eit ∈ S1. We identify
t ∈ [0, 2π) with eit. For α1, α2, α3, ..., αn in S1, or equivalently, in [0, 2π)
such that 0 < α1 < α2 < α3 < ... < αn < 2π, p←(α1, α2, α3, ..., αn) denotes
the set [α1, α2) ∪ [α2, α3) ∪ ... ∪ [αn, α1 + 2π) in R. By an n-interval scaling
set (generalized scaling set), we mean a scaling set (generalized scaling set)
consisting of n intervals of R. Similarly, we define an n-interval wavelet set.
We say an n-interval scaling (generalized scaling, wavelet) set to consist of n
components.

The next section is devoted to the characterization of three-interval scaling
sets of R.

3 A Characterization of Three-Interval Scaling Sets.

Let α, β, γ in S1, or equivalently, in [0, 2π) be such that 0 < α < β < γ < 2π.
Recall that p←(α, β, γ) denotes the set [α, β)∪[β, γ)∪[γ, α+2π) in R. We now
proceed to obtain three-interval scaling sets of R by translating [α, β), [β, γ)
and [γ, α + 2π) by integral multiples of 2π. Since a scaling set of R has to
contain a neighborhood of zero, we have to translate the interval [γ, α + 2π)
by −2π. Translate [α, β) by 2nπ and [β, γ) by 2mπ such that the three
intervals [γ−2π, α), [α+2nπ, β+2nπ) and [β+2mπ, γ+2mπ) are mutually
separated; that is to say that the closure of one does not meet the other.

Let m > 0. Then, in light of the fact that we are concerned with three-
interval scaling sets, we have to discard the cases when n = 0 and also when
n = m. For n > 0, consider the two possibilities: (i) m > n, and (ii) n > m. In
both the possibilities, the components remain mutually separated. However,
S 6⊂ 2S in these situations, where

S = [γ − 2π, α) ∪ [α+ 2nπ, β + 2nπ) ∪ [β + 2mπ, γ + 2mπ).

For n < 0, m > n, it can again be seen that S 6⊂ 2S. Thus S cannot be a
scaling set, when m > 0.

Next, let m < 0. To have components in S mutually separated, m 6= −1
and also, n 6= 0. Therefore m ≤ −2. Suppose m < −2. If n > 0, then
n > m, and in this situation, although the three-components of S remain
mutually separated, S 6⊂ 2S. For n < 0, the possibilities (i) n > m, and (ii)
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n < m, provide S 6⊂ 2S, while n = m reduces the number of components
in S. Thus only m ∈ {−2, 0} can provide scaling sets. When m = −2, and
n ∈ Z− {−1}, S 6⊂ 2S. Likewise, when m = 0 and n ∈ Z− {−1, 1}, S 6⊂ 2S.
Therefore, to have S as a scaling set of R, we are left with following choices:

Choice I. m = 0 and n = 1,

Choice II. m = 0 and n = −1, and

Choice III. m = −2 and n = −1.

Choice I gives

S = [γ − 2π, α) ∪ [β, γ) ∪ [α+ 2π, β + 2π).

The requirement that S ⊂ 2S for S to be a scaling set holds iff the following
conditions are satisfied:

(a) 2α ≥ γ,

(b) α+ 2π ≥ 2β, and

(c) 2γ ≥ β + 2π.

By construction, S is 2π-translation congruent to [α, α+2π). Hence, by Result
2.5, it follows that S is a scaling set.

Given below is an alternative proof for S to be a scaling set. Note that

W =
[
2(γ − 2π), γ − 2π

)
∪
[
α, β

)
∪
[
γ, 2α

)
∪
[
2β, α+ 2π

)
∪[

β + 2π, 2γ
)
∪
[
2(α+ 2π), 2(β + 2π)

)
,

≡ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 (say).

That W is a wavelet set follows by observing that the maps τα, δγ−2π and δα
are bijections. Indeed,

(i) τα : W −→ [α, α+ 2π) is defined by

τα (x) =


x+ 2π if x ∈ I1,
x if x ∈ I2 ∪ I3 ∪ I4,
x− 2π if x ∈ I5,
x− 4π if x ∈ I6.

(ii) δγ−2π : W− −→
[
2(γ − 2π), γ − 2π

)
, where W− ≡ I1, is defined by

δγ−2π(x) = x.
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(iii) δα : W+ −→ [α, 2α), where W+ ≡ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6, is defined by

δα (x) =

 x if x ∈ I2 ∪ I3,
x
2 if x ∈ I4 ∪ I5,
x
4 if x ∈ I6.

Thus S is a generalized scaling set. Further, in the light of Corollary 3.4
of [2] according to which a measurable set S in R is a scaling set iff it is a
generalized scaling set of order d− 1 ≡ 2− 1 = 1 and

∑
k∈Z χS(ξ + 2kπ) = 1,

almost everywhere, it follows that S is a scaling set.
Choice II gives

S = [α− 2π, β − 2π) ∪ [γ − 2π, α) ∪ [β, γ).

The requirement that S ⊂ 2S for S to be a scaling set holds iff the following
conditions are satisfied:

(a) 2α ≥ γ, and

(b) α+ 2π ≥ 2γ.

By construction, S is 2π-translation congruent to [α, α+2π). Hence, by Result
2.5, it follows that S is a scaling set.
Choice III gives

S = [β − 4π, γ − 4π) ∪ [α− 2π, β − 2π) ∪ [γ − 2π, α).

The requirement that S ⊂ 2S for S to be a scaling set holds iff the following
conditions are satisfied:

(a) 2γ ≤ α+ 2π,

(b) γ ≤ 2β, and

(c) 2α ≤ β.

By construction, S is 2π-translation congruent to [α, α+2π). Hence, by Result
2.5, it follows that S is a scaling set.

We sum up the above in the following:

Theorem 3.1. A triple (α, β, γ), where α, β, γ in S1, or equivalently, in
[0, 2π) such that 0 < α < β < γ < 2π provides exactly three kinds of three-
interval scaling sets described as follows:
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(i) S = [γ − 2π, α) ∪ [β, γ) ∪ [α+ 2π, β + 2π), where

(a) 2α ≥ γ, (b) α+ 2π ≥ 2β, and (c) 2γ ≥ β + 2π.

(ii) S = [α− 2π, β − 2π) ∪ [γ − 2π, α) ∪ [β, γ), where

(a) 2α ≥ γ, and (b) α+ 2π ≥ 2γ.

(iii) S = [β − 4π, γ − 4π) ∪ [α− 2π, β − 2π) ∪ [γ − 2π, α), where

(a) 2γ ≤ α+ 2π, (b) γ ≤ 2β, and (c) 2α ≤ β.

The converse of Theorem 3.1 is also true.

Theorem 3.2. Suppose S is a three-interval scaling set of R. Then there are
three elements α, β, γ in S1, or equivalently, in [0, 2π) such that 0 < α < β <
γ < 2π for which S is of the form (i) or (ii) or (iii) as described in Theorem
3.1.

Proof. Suppose S = I1∪I2∪I3, where I1 = [a, b), I2 = [c, d), and I3 = [e, f)
are three mutually separated intervals of R. Since a scaling set is associated
with an MRA, S is 2π-translation congruent to an interval of R of measure
2π. Also, one of the components of S, say, I1 contains a neighborhood of zero.

(1) Suppose a < b < c < d < e < f . As a scaling set satisfies S ⊂ 2S, we
shall have either of the following cases:

(i) f ≤ 2b.

(ii) (1) d ≤ 2b, (2) 2c ≤ e, and (3) f ≤ 2d.

When restricted to S the map τa : S −→ [a, a + 2π) is the identity on
I1. Furthermore, from the fact that neither I2 nor I3 can contain an integer
multiple of 2π, we have either of the following situations arising from τa :

(A) b = c+ 2mπ (B) b = e+ 2nπ
d+ 2mπ = e+ 2nπ f + 2nπ = c+ 2mπ
f + 2nπ = a+ 2π a+ 2π = d+ 2mπ

First we take up Case (i) with (A). Since b < 2π, from b = c + 2mπ, we
deduce that m < 0 and c ∈ (−2mπ, 2(1 −m)π). As f ≤ 2b and c < f , we
have c < 4π. Thus m = −1. This gives c = b + 2π and hence 2b < c. This
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contradicts the fact that S ⊂ 2S. Considering Case (i) with (B), we arrive at
a similar conclusion and therefore Case (i) cannot occur.

Next, we consider Case (ii) with (A). Since b < 2π, from b = c+ 2mπ, we
deduce that m < 0 and c ∈

(
−2mπ, 2(1−m)π

)
. As d < 4π and c < d, c < 4π.

Thus m = −1. This gives c = b + 2π and hence 2b < c. This contradicts the
fact that S ⊂ 2S.

Now consider Case (ii) with (B). Since d ≤ 2b, d < 4π. Also, f ≤ 2d gives
f < 8π. From b = e+2nπ, we get n < 0 and e ∈

(
−2nπ, 2(1−n)π

)
. As f < 8π

and e < f , e < 8π. Thus n = −1, or −2, or −3. From a + 2π = d + 2mπ,
we get m < 1 and d ∈

(
− 2mπ, 2(1 −m)π

)
. As d < 4π, m = 0, or −1. If

m = −1, then d = a+ 4π, which gives 2b < d. This contradicts the fact that
S ⊂ 2S. If m = 0 and n ∈ {−2, −3}, 2d < f which again contradicts the fact
that S ⊂ 2S. Finally, m = 0 and n = −1 give

S = [a, b) ∪ [c, a+ 2π) ∪ [b+ 2π, c+ 2π),

showing that S arises via Choice I on taking α = b, β = c and γ = a+ 2π.
(2) Suppose e < f < a < b < c < d. Since S ⊂ 2S, we have 2a ≤ e, and

d ≤ 2b. When restricted to S the map τa : S −→ [a, a + 2π) is identity on
I1. Furthermore, from the fact that neither I2 nor I3 can contain an integral
multiple of 2π, we have either of the following situations arising from τa :

(A) b = c+ 2mπ (B) b = e+ 2nπ
d+ 2mπ = e+ 2nπ f + 2nπ = c+ 2mπ
f + 2nπ = a+ 2π a+ 2π = d+ 2mπ

First consider (A). From b = c + 2mπ, we get m < 0 and c ∈ (−2mπ, 2(1 −
m)π). As d < 4π and c < d, we have c < 4π. Thus m = −1, and c = b + 2π.
This provides 2b < c which is a contradiction to the fact that S ⊂ 2S.

Next, consider (B). From b = e + 2nπ, we deduce that n > 0 and e ∈
(−2nπ, 2(1−n)π). As 2a ≤ e and −2π < a, we have −4π < e. Thus n = 1, or
2. From a+2π = d+2mπ, we obtain that m < 1 and d ∈ (−2mπ, 2(1−m)π).
As d ≤ 2b and b < 2π, we have d < 4π. Thus m = 0, or −1. If m = −1,
then d = a+ 4π which gives 2b < d. This contradicts the fact that S ⊂ 2S. If
n = 2, then e = b − 4π which provides 2a > e, again a contradiction to the
fact S ⊂ 2S. If m = 0 and n = 1, then

S = [b− 2π, c− 2π) ∪ [a, b) ∪ [c, a+ 2π),

which arises via Choice II by taking α = b, β = c, γ = a+ 2π.
(3) In case, when e < f < c < d < a < b, it can be seen that S arises from

Choice III, in a way similar to (1) for α = b, β = d+ 2π and γ = a+ 2π.
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Remark 3.3. Denoting the scaling set S obtained in (i) of Theorem 3.1 by
S(I; α, β, γ) and that in (iii) by S(III; α, β, γ), it is seen that

S(III;α, β, γ) = −S(I; 2π − γ, 2π − β, 2π − α).

Remark 3.4. The generalized scaling set in Example 2.4 is not a scaling
set because S is not of the form (i), or (ii), or (iii) in Theorem 3.1 for any
α, β, γ ∈ [0, 2π).

4 Examples of Three-Interval Scaling Sets.

In this section, from the conditions obtained on α, β and γ so that p←(α, β, γ)
furnishes scaling sets are discussed. Certain three-interval scaling sets are
obtained and the number of components in the associated wavelet sets is seen
to be between 3 and 6 in case of Choice I as well as in case of Choice III
and between 4 and 6 in case of Choice II.

We first consider scaling sets obtained via Choice I.
(a) When 2α = γ, 2β = α+2π and 2γ = β+2π, we have α = 6π

7 , β = 10π
7

and γ = 12π
7 so that the scaling set obtained is given by

S =
[
−2π

7
,

6π
7

)
∪
[

10π
7
,

12π
7

)
∪
[

20π
7
,

24π
7

)
.

The corresponding wavelet set is

W ≡ 2S − S =
[
−4π

7
, −2π

7

)
∪
[

6π
7
,

10π
7

)
∪
[

40π
7
,

48π
7

)
.

Notice that W is a three-interval wavelet set.
(b) When 2α = γ, 2β = α+2π and 2γ > β+2π, we have α > 6π

7 , β >
10π
7

and γ > 12π
7 so that the scaling sets obtained are

S = [γ − 2π, α) ∪ [β, γ) ∪ [α+ 2π, β + 2π).

The corresponding wavelet sets are

W =
[
2(γ − 2π), γ − 2π

)
∪
[
α, β

)
∪
[
β + 2π, 2γ

)
∪
[
2(α+ 2π), 2(β + 2π)

)
.

These corresponding wavelet sets are four-interval wavelet sets. For illustra-
tion, choosing α = 13π

14 , we have β = 41π
28 and γ = 13π

7 so that the scaling set
thus obtained is

S =
[
−π

7
,

13π
14

)
∪
[

41π
28

,
13π
7

)
∪
[

41π
14

,
97π
28

)
,
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and the corresponding wavelet set is

W =
[
−2π

7
, −π

7

)
∪
[

13π
14

,
41π
28

)
∪
[

97π
28

,
26π
7

)
∪
[

41π
7
,

97π
14

)
which has four components.

Proceeding as in (b), we obtain scaling sets in cases

(i) 2α = γ, 2β < α+ 2π and 2γ = β + 2π,

(ii) 2α > γ, 2β = α+ 2π and 2γ = β + 2π,

in each of which the associated wavelet sets have four components.
(c) When 2α = γ, 2β < α + 2π and 2γ > β + 2π, we have scaling sets

given by
S = [γ − 2π, α) ∪ [β, γ) ∪ [α+ 2π, β + 2π),

and the corresponding wavelet sets are given by

W =
[
2(γ − 2π), γ − 2π

)
∪
[
α, β

)
∪
[
2β, α+ 2π

)
∪
[
β + 2π, 2γ

)
∪[

2(α+ 2π), 2(β + 2π)
)
.

These corresponding wavelet sets are five-interval wavelet sets. For illustration,
choosing α = 13π

14 , β = 10π
7 and γ = 13π

7 , we have the scaling set S as

S =
[
−π

7
,

13π
14

)
∪
[

10π
7
,

13π
7

)
∪
[

41π
14

,
24π
7

)
,

while the corresponding wavelet set is

W =
[
−2π

7
,−π

7

)
∪
[

13π
14

,
10π
7

)
∪
[

20π
7
,

41π
14

)
∪
[

24π
7
,

26π
7

)
∪
[

41π
7
,

48π
7

)
which possesses five components.

Proceeding as in (c), we obtain scaling sets in cases

(i) 2α > γ, 2β < α+ 2π and 2γ = β + 2π,

(ii) 2α > γ, 2β = α+ 2π and 2γ > β + 2π,

in each of which the associated wavelet sets have five components.
(d) When 2α > γ, 2β < α + 2π and 2γ > β + 2π, we have α > 2π

3 and
γ > 4π

3 so that the scaling sets thus obtained are

S = [γ − 2π, α) ∪ [β, γ) ∪ [α+ 2π, β + 2π),
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and the corresponding wavelet sets are

W =
[
2(γ − 2π), γ − 2π

)
∪
[
α, β

)
∪
[
γ, 2α

)
∪
[
2β, α+ 2π

)
∪[

β + 2π, 2γ
)
∪
[
2(α+ 2π), 2(β + 2π)

)
.

These corresponding wavelet sets are six-interval wavelet sets. For illustration,
choosing α = 13π

14 , β = 9π
7 and γ = 12π

7 , we have the scaling set

S =
[
−2π

7
,

13π
14

)
∪
[

9π
7
,

12π
7

)
∪
[

41π
14

,
23π
7

)
,

and the corresponding wavelet set

W =
[
−4π

7
, −2π

7

)
∪
[

13π
14

,
9π
7

)
∪
[

12π
7
,

13π
7

)
∪
[

18π
7
,

41π
14

)
∪[

23π
7
,

24π
7

)
∪
[

41π
7
,

46π
7

)
which has six components.

Next, we consider certain scaling sets obtained via Choice II.
(a) When γ = 2α and 2γ = α + 2π, we have α = 2π

3 , β ∈ ( 2π
3 ,

4π
3 ) and

γ = 4π
3 so that the scaling sets obtained are

S =
[
−4π

3
, β − 2π

)
∪
[
−2π

3
,

2π
3

)
∪
[
β,

4π
3

)
,

and the corresponding wavelet sets are

W =
[
−8π

3
, 2(β − 2π)

)
∪
[
β − 2π, −2π

3

)
∪
[

2π
3
, β

)
∪
[
2β,

8π
3

)
.

These corresponding wavelet sets are four-interval wavelet sets.
(b) When 2α = γ and 2γ < α + 2π, we have α < 2π

3 and γ < 4π
3 so that

the scaling sets obtained are

S = [α− 2π, β − 2π) ∪ [γ − 2π, α) ∪ [β, γ),

while the corresponding wavelet sets are

W =
[
2(α− 2π), 2(β − 2π)

)
∪
[
2(γ − 2π), α− 2π

)
∪
[
β − 2π, γ − 2π

)
∪[

α, β
)
∪
[
2β, 2γ

)
.

These corresponding wavelet sets are five-interval wavelet sets.
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Proceeding as in (b), we obtain scaling sets in case 2α > γ and 2γ = α+2π
for which the associated wavelet sets possess five components.

(c) When 2α > γ and 2γ < α+ 2π, we have the scaling sets as

S = [α− 2π, β − 2π) ∪ [γ − 2π, α) ∪ [β, γ),

and the corresponding wavelet sets as

W =
[
2(α− 2π), 2(β − 2π)

)
∪
[
2(γ − 2π), α− 2π

)
∪
[
β − 2π, γ − 2π

)
∪[

α, β
)
∪
[
γ, 2α

)
∪
[
2β, 2γ

)
.

These corresponding wavelet sets are six-interval wavelet sets. For illustration,
choosing α = π, β = 9π

8 and γ = 5π
4 , we have the scaling set

S =
[
−π, −7π

8

)
∪
[
−3π

4
, π

)
∪
[

9π
8
,

5π
4

)
,

whose corresponding wavelet set is

W =
[
−2π, −7π

4

)
∪
[
−3π

2
, −π

)
∪
[
−7π

8
, −3π

4

)
∪
[
π,

9π
8

)
∪[

5π
4
, 2π

)
∪
[

9π
4
,

5π
2

)
having six components.

A similar discussion as for Choice I can be made for Choice III to have
particular scaling sets.

5 n-Interval Scaling Sets.

Consider α1, α2, α3, ..., αn in S1, or equivalently, in [0, 2π) such that 0 <
α1 < α2 < α3 < ... < αn < 2π. Recall that p←(α1, α2, α3, ..., αn) de-
notes the set [α1, α2) ∪ [α2, α3) ∪ ... ∪ [αn, α1 + 2π) in R. In this section,
we provide n-interval scaling sets with the help of these points. First, assume
that n is an odd natural number greater than 1. For n=1, p←(α1) − 2π be-
comes a scaling set. Translate the interval [αn, α1 + 2π) by −2π and intervals
[α1, α2), [α3, α4), [α5, α6), ..., [αn−2, αn−1), each by 2π, to have

S =
[
αn − 2π, α1

)
∪

n−1
2⋃

m=1

[
α2m, α2m+1

)
∪

n−1
2⋃

m=1

[
α2m−1 + 2π, α2m + 2π

)
.

The requirement that S ⊂ 2S for S to be a scaling set holds if the following
conditions are satisfied:
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(i) αn ≤ 2α1,

(ii) 2α2m ≤ α2m−1 + 2π,

(iii) α2m + 2π ≤ 2α2m+1,

where m ∈ {1, 2, 3, ..., n−1
2 }.

By construction, S is 2π-translation congruent to [α, α+2π). Hence, by Result
2.5, it follows that S is a scaling set.

Below is given an alternative proof for S to be a scaling set. Note that

W =
[
2(αn − 2π), αn − 2π

)
∪

n−1
2⋃

m=1

[
α2m−1, α2m

)
∪
[
αn, 2α1

)
∪

n−1
2⋃

m=1[
2α2m, α2m−1 + 2π

)
∪

n−1
2⋃

m=1

[
α2m + 2π, 2α2m+1

)
∪

n−1
2⋃

m=1[
2(α2m−1 + 2π), 2(α2m + 2π)

)
,

≡I1 ∪

n−1
2⋃

m=1

I2,m ∪ I3 ∪

n−1
2⋃

m=1

I4,m ∪

n−1
2⋃

m=1

I5,m ∪

n−1
2⋃

m=1

I6,m (say),

where

I1 =
[
2(αn − 2π), αn − 2π

)
,

I2,m =
[
α2m−1, α2m

)
,

I3 =
[
αn, 2α1

)
,

I4,m =
[
2α2m, α2m−1 + 2π

)
,

I5,m =
[
α2m + 2π, 2α2m+1

)
,

I6,m =
[
2(α2m−1 + 2π), 2(α2m + 2π)

)
.

That W is a wavelet set follows by observing that the maps τα1 , δαn−2π and
δα1 are bijections. Indeed,

(i) τα1 : W −→ [α1, α1 + 2π) is defined by

τα1(x) =



x if x ∈
⋃n−1

2
m=1 I2,m ∪ I3 ∪ I4, 1,

x− 2π if x ∈
⋃n−1

2
m=2 I4,m ∪

⋃n−1
2

m=1 I5,m,
x− 4π if x ∈ I6, 1,
x− 6π if x ∈

⋃n−1
2

m=2 I6,m,
x+ 2π if x ∈ I1.
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(ii) δαn−2π : W− −→
[
2(αn − 2π), αn − 2π

)
, where W− ≡ I1, is defined by

δαn−2π(x) = x.

(iii) δα1 : W+ −→ [α1, 2α1), where W+ ≡W −W−, is defined by

δα1(x) =


x if x ∈

⋃n−1
2

m=1 I2,m ∪ I3,
x
2 if x ∈

⋃n−1
2

m=1 I4,m ∪
⋃n−1

2
m=1 I5,m,

x
4 if x ∈

⋃n−1
2

m=1 I6,m.

Next, assume that n is an even natural number greater than 2. Translate
the intervals [αn, α1 + 2π) and [αn−2, αn−1) by −2π and intervals [α1, α2),
[α3, α4), [α5, α6), . . . , [αn−3, αn−2), each by 2π, to have

S =
[
αn−2 − 2π, αn−1 − 2π

)
∪
[
αn − 2π, α1

)
∪

n−4
2⋃

m=1

[
α2m, α2m+1

)
∪

[
αn−1, αn

)
∪

n−2
2⋃

m=1

[
α2m−1 + 2π, α2m + 2π

)
.

The requirement that S ⊂ 2S for S to be a scaling set holds if the following
conditions are satisfied:

(i) 2αn = αn−2 + 2π,

(ii) αn ≤ 2α1,

(iii) 2αn−1 ≤ αn−3 + 2π,

(iv) 2α2m ≤ α2m−1 + 2π,

(v) α2m + 2π ≤ 2α2m+1,

where m ∈ {1, 2, 3, ..., n−4
2 }. In case n = 4, we require (i), (ii) and (iii),

as others do not arise. By construction, S is 2π-translation congruent to
[α, α+ 2π). Hence, by Result 2.5, it follows that S is a scaling set.
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Note that

W =
[
2(αn−2 − 2π), 2(αn−1 − 2π)

)
∪
[
αn−1 − 2π, αn − 2π

)
∪

n−4
2⋃

m=1

[
α2m−1, α2m

)
∪
[
αn−3, αn−1

)
∪
[
αn, 2α1

)
∪

n−4
2⋃

m=1

[
2α2m, α2m−1 + 2π

)
∪
[
2αn−1, αn−3 + 2π

)
∪

n−4
2⋃

m=1

[
α2m + 2π, 2α2m+1

)
∪

n−2
2⋃

m=1

[
2(α2m−1 + 2π), 2(α2m + 2π)

)
.

The above discussion is summed up below:

Result 5.1. Let α1, α2, α3, ..., αn in S1, or equivalently, in [0, 2π) be such
that 0 < α1 < α2 < α3 < ... < αn < 2π, where n is a natural number. Then

(a) for n=1, [α1 − 2π, α1) is a scaling set,

(b) for odd n > 1,

S =
[
αn − 2π, α1

)
∪

n−1
2⋃

m=1

[
α2m, α2m+1

)
∪

n−1
2⋃

m=1

[
α2m−1 + 2π, α2m + 2π

)
,

is a scaling set under the conditions:

(i) αn ≤ 2α1,
(ii) 2α2m ≤ α2m−1 + 2π,
(iii) α2m + 2π ≤ 2α2m+1,

where m ∈ {1, 2, 3, ..., n−1
2 }.

(c) for even n > 2,

S =
[
αn−2 − 2π, αn−1 − 2π

)
∪
[
αn − 2π, α1

)
∪

n−4
2⋃

m=1

[
α2m, α2m+1

)
∪

[
αn−1, αn

)
∪

n−2
2⋃

m=1

[
α2m−1 + 2π, α2m + 2π

)
,

is a scaling set under the conditions:
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(i) 2αn = αn−2 + 2π,

(ii) αn ≤ 2α1,

(iii) 2αn−1 ≤ αn−3 + 2π,

(iv) 2α2m ≤ α2m−1 + 2π,

(v) α2m + 2π ≤ 2α2m+1,

where m ∈ {1, 2, 3, ..., n−4
2 }. In case n = 4, (iv) and (v) do not arise.

Remark 5.2. In case n = 2, the condition S ⊂ 2S is not satisfied and hence
there is no two-interval scaling set.
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